mirror of https://github.com/PCSX2/pcsx2.git
Added libjpeg (version 7!)
git-svn-id: http://pcsx2.googlecode.com/svn/trunk@1791 96395faa-99c1-11dd-bbfe-3dabce05a288
This commit is contained in:
parent
e03e8bff40
commit
ea37e06654
|
@ -0,0 +1,322 @@
|
|||
The Independent JPEG Group's JPEG software
|
||||
==========================================
|
||||
|
||||
README for release 7 of 27-Jun-2009
|
||||
===================================
|
||||
|
||||
This distribution contains the seventh public release of the Independent JPEG
|
||||
Group's free JPEG software. You are welcome to redistribute this software and
|
||||
to use it for any purpose, subject to the conditions under LEGAL ISSUES, below.
|
||||
|
||||
This software is the work of Tom Lane, Guido Vollbeding, Philip Gladstone,
|
||||
Bill Allombert, Jim Boucher, Lee Crocker, Bob Friesenhahn, Ben Jackson,
|
||||
Julian Minguillon, Luis Ortiz, George Phillips, Davide Rossi, Ge' Weijers,
|
||||
and other members of the Independent JPEG Group.
|
||||
|
||||
IJG is not affiliated with the official ISO JPEG standards committee.
|
||||
|
||||
|
||||
DOCUMENTATION ROADMAP
|
||||
=====================
|
||||
|
||||
This file contains the following sections:
|
||||
|
||||
OVERVIEW General description of JPEG and the IJG software.
|
||||
LEGAL ISSUES Copyright, lack of warranty, terms of distribution.
|
||||
REFERENCES Where to learn more about JPEG.
|
||||
ARCHIVE LOCATIONS Where to find newer versions of this software.
|
||||
ACKNOWLEDGMENTS Special thanks.
|
||||
FILE FORMAT WARS Software *not* to get.
|
||||
TO DO Plans for future IJG releases.
|
||||
|
||||
Other documentation files in the distribution are:
|
||||
|
||||
User documentation:
|
||||
install.txt How to configure and install the IJG software.
|
||||
usage.txt Usage instructions for cjpeg, djpeg, jpegtran,
|
||||
rdjpgcom, and wrjpgcom.
|
||||
*.1 Unix-style man pages for programs (same info as usage.txt).
|
||||
wizard.txt Advanced usage instructions for JPEG wizards only.
|
||||
change.log Version-to-version change highlights.
|
||||
Programmer and internal documentation:
|
||||
libjpeg.txt How to use the JPEG library in your own programs.
|
||||
example.c Sample code for calling the JPEG library.
|
||||
structure.txt Overview of the JPEG library's internal structure.
|
||||
filelist.txt Road map of IJG files.
|
||||
coderules.txt Coding style rules --- please read if you contribute code.
|
||||
|
||||
Please read at least the files install.txt and usage.txt. Some information
|
||||
can also be found in the JPEG FAQ (Frequently Asked Questions) article. See
|
||||
ARCHIVE LOCATIONS below to find out where to obtain the FAQ article.
|
||||
|
||||
If you want to understand how the JPEG code works, we suggest reading one or
|
||||
more of the REFERENCES, then looking at the documentation files (in roughly
|
||||
the order listed) before diving into the code.
|
||||
|
||||
|
||||
OVERVIEW
|
||||
========
|
||||
|
||||
This package contains C software to implement JPEG image encoding, decoding,
|
||||
and transcoding. JPEG (pronounced "jay-peg") is a standardized compression
|
||||
method for full-color and gray-scale images.
|
||||
|
||||
This software implements JPEG baseline, extended-sequential, and progressive
|
||||
compression processes. Provision is made for supporting all variants of these
|
||||
processes, although some uncommon parameter settings aren't implemented yet.
|
||||
We have made no provision for supporting the hierarchical or lossless
|
||||
processes defined in the standard.
|
||||
|
||||
We provide a set of library routines for reading and writing JPEG image files,
|
||||
plus two sample applications "cjpeg" and "djpeg", which use the library to
|
||||
perform conversion between JPEG and some other popular image file formats.
|
||||
The library is intended to be reused in other applications.
|
||||
|
||||
In order to support file conversion and viewing software, we have included
|
||||
considerable functionality beyond the bare JPEG coding/decoding capability;
|
||||
for example, the color quantization modules are not strictly part of JPEG
|
||||
decoding, but they are essential for output to colormapped file formats or
|
||||
colormapped displays. These extra functions can be compiled out of the
|
||||
library if not required for a particular application.
|
||||
|
||||
We have also included "jpegtran", a utility for lossless transcoding between
|
||||
different JPEG processes, and "rdjpgcom" and "wrjpgcom", two simple
|
||||
applications for inserting and extracting textual comments in JFIF files.
|
||||
|
||||
The emphasis in designing this software has been on achieving portability and
|
||||
flexibility, while also making it fast enough to be useful. In particular,
|
||||
the software is not intended to be read as a tutorial on JPEG. (See the
|
||||
REFERENCES section for introductory material.) Rather, it is intended to
|
||||
be reliable, portable, industrial-strength code. We do not claim to have
|
||||
achieved that goal in every aspect of the software, but we strive for it.
|
||||
|
||||
We welcome the use of this software as a component of commercial products.
|
||||
No royalty is required, but we do ask for an acknowledgement in product
|
||||
documentation, as described under LEGAL ISSUES.
|
||||
|
||||
|
||||
LEGAL ISSUES
|
||||
============
|
||||
|
||||
In plain English:
|
||||
|
||||
1. We don't promise that this software works. (But if you find any bugs,
|
||||
please let us know!)
|
||||
2. You can use this software for whatever you want. You don't have to pay us.
|
||||
3. You may not pretend that you wrote this software. If you use it in a
|
||||
program, you must acknowledge somewhere in your documentation that
|
||||
you've used the IJG code.
|
||||
|
||||
In legalese:
|
||||
|
||||
The authors make NO WARRANTY or representation, either express or implied,
|
||||
with respect to this software, its quality, accuracy, merchantability, or
|
||||
fitness for a particular purpose. This software is provided "AS IS", and you,
|
||||
its user, assume the entire risk as to its quality and accuracy.
|
||||
|
||||
This software is copyright (C) 1991-2009, Thomas G. Lane, Guido Vollbeding.
|
||||
All Rights Reserved except as specified below.
|
||||
|
||||
Permission is hereby granted to use, copy, modify, and distribute this
|
||||
software (or portions thereof) for any purpose, without fee, subject to these
|
||||
conditions:
|
||||
(1) If any part of the source code for this software is distributed, then this
|
||||
README file must be included, with this copyright and no-warranty notice
|
||||
unaltered; and any additions, deletions, or changes to the original files
|
||||
must be clearly indicated in accompanying documentation.
|
||||
(2) If only executable code is distributed, then the accompanying
|
||||
documentation must state that "this software is based in part on the work of
|
||||
the Independent JPEG Group".
|
||||
(3) Permission for use of this software is granted only if the user accepts
|
||||
full responsibility for any undesirable consequences; the authors accept
|
||||
NO LIABILITY for damages of any kind.
|
||||
|
||||
These conditions apply to any software derived from or based on the IJG code,
|
||||
not just to the unmodified library. If you use our work, you ought to
|
||||
acknowledge us.
|
||||
|
||||
Permission is NOT granted for the use of any IJG author's name or company name
|
||||
in advertising or publicity relating to this software or products derived from
|
||||
it. This software may be referred to only as "the Independent JPEG Group's
|
||||
software".
|
||||
|
||||
We specifically permit and encourage the use of this software as the basis of
|
||||
commercial products, provided that all warranty or liability claims are
|
||||
assumed by the product vendor.
|
||||
|
||||
|
||||
ansi2knr.c is included in this distribution by permission of L. Peter Deutsch,
|
||||
sole proprietor of its copyright holder, Aladdin Enterprises of Menlo Park, CA.
|
||||
ansi2knr.c is NOT covered by the above copyright and conditions, but instead
|
||||
by the usual distribution terms of the Free Software Foundation; principally,
|
||||
that you must include source code if you redistribute it. (See the file
|
||||
ansi2knr.c for full details.) However, since ansi2knr.c is not needed as part
|
||||
of any program generated from the IJG code, this does not limit you more than
|
||||
the foregoing paragraphs do.
|
||||
|
||||
The Unix configuration script "configure" was produced with GNU Autoconf.
|
||||
It is copyright by the Free Software Foundation but is freely distributable.
|
||||
The same holds for its supporting scripts (config.guess, config.sub,
|
||||
ltmain.sh). Another support script, install-sh, is copyright by X Consortium
|
||||
but is also freely distributable.
|
||||
|
||||
The IJG distribution formerly included code to read and write GIF files.
|
||||
To avoid entanglement with the Unisys LZW patent, GIF reading support has
|
||||
been removed altogether, and the GIF writer has been simplified to produce
|
||||
"uncompressed GIFs". This technique does not use the LZW algorithm; the
|
||||
resulting GIF files are larger than usual, but are readable by all standard
|
||||
GIF decoders.
|
||||
|
||||
We are required to state that
|
||||
"The Graphics Interchange Format(c) is the Copyright property of
|
||||
CompuServe Incorporated. GIF(sm) is a Service Mark property of
|
||||
CompuServe Incorporated."
|
||||
|
||||
|
||||
REFERENCES
|
||||
==========
|
||||
|
||||
We recommend reading one or more of these references before trying to
|
||||
understand the innards of the JPEG software.
|
||||
|
||||
The best short technical introduction to the JPEG compression algorithm is
|
||||
Wallace, Gregory K. "The JPEG Still Picture Compression Standard",
|
||||
Communications of the ACM, April 1991 (vol. 34 no. 4), pp. 30-44.
|
||||
(Adjacent articles in that issue discuss MPEG motion picture compression,
|
||||
applications of JPEG, and related topics.) If you don't have the CACM issue
|
||||
handy, a PostScript file containing a revised version of Wallace's article is
|
||||
available at http://www.ijg.org/files/wallace.ps.gz. The file (actually
|
||||
a preprint for an article that appeared in IEEE Trans. Consumer Electronics)
|
||||
omits the sample images that appeared in CACM, but it includes corrections
|
||||
and some added material. Note: the Wallace article is copyright ACM and IEEE,
|
||||
and it may not be used for commercial purposes.
|
||||
|
||||
A somewhat less technical, more leisurely introduction to JPEG can be found in
|
||||
"The Data Compression Book" by Mark Nelson and Jean-loup Gailly, published by
|
||||
M&T Books (New York), 2nd ed. 1996, ISBN 1-55851-434-1. This book provides
|
||||
good explanations and example C code for a multitude of compression methods
|
||||
including JPEG. It is an excellent source if you are comfortable reading C
|
||||
code but don't know much about data compression in general. The book's JPEG
|
||||
sample code is far from industrial-strength, but when you are ready to look
|
||||
at a full implementation, you've got one here...
|
||||
|
||||
The best currently available description of JPEG is the textbook "JPEG Still
|
||||
Image Data Compression Standard" by William B. Pennebaker and Joan L.
|
||||
Mitchell, published by Van Nostrand Reinhold, 1993, ISBN 0-442-01272-1.
|
||||
Price US$59.95, 638 pp. The book includes the complete text of the ISO JPEG
|
||||
standards (DIS 10918-1 and draft DIS 10918-2).
|
||||
Although this is by far the most detailed and comprehensive exposition of
|
||||
JPEG publicly available, we point out that it is still missing an explanation
|
||||
of the most essential properties and algorithms of the underlying DCT
|
||||
technology.
|
||||
If you think that you know about DCT-based JPEG after reading this book,
|
||||
then you are in delusion. The real fundamentals and corresponding potential
|
||||
of DCT-based JPEG are not publicly known so far, and that is the reason for
|
||||
all the mistaken developments taking place in the image coding domain.
|
||||
|
||||
The original JPEG standard is divided into two parts, Part 1 being the actual
|
||||
specification, while Part 2 covers compliance testing methods. Part 1 is
|
||||
titled "Digital Compression and Coding of Continuous-tone Still Images,
|
||||
Part 1: Requirements and guidelines" and has document numbers ISO/IEC IS
|
||||
10918-1, ITU-T T.81. Part 2 is titled "Digital Compression and Coding of
|
||||
Continuous-tone Still Images, Part 2: Compliance testing" and has document
|
||||
numbers ISO/IEC IS 10918-2, ITU-T T.83.
|
||||
|
||||
The JPEG standard does not specify all details of an interchangeable file
|
||||
format. For the omitted details we follow the "JFIF" conventions, revision
|
||||
1.02. A copy of the JFIF spec is available from:
|
||||
Literature Department
|
||||
C-Cube Microsystems, Inc.
|
||||
1778 McCarthy Blvd.
|
||||
Milpitas, CA 95035
|
||||
phone (408) 944-6300, fax (408) 944-6314
|
||||
A PostScript version of this document is available at
|
||||
http://www.ijg.org/files/jfif.ps.gz. There is also a plain text version at
|
||||
http://www.ijg.org/files/jfif.txt.gz, but it is missing the figures.
|
||||
|
||||
The TIFF 6.0 file format specification can be obtained by FTP from
|
||||
ftp://ftp.sgi.com/graphics/tiff/TIFF6.ps.gz. The JPEG incorporation scheme
|
||||
found in the TIFF 6.0 spec of 3-June-92 has a number of serious problems.
|
||||
IJG does not recommend use of the TIFF 6.0 design (TIFF Compression tag 6).
|
||||
Instead, we recommend the JPEG design proposed by TIFF Technical Note #2
|
||||
(Compression tag 7). Copies of this Note can be obtained from
|
||||
http://www.ijg.org/files/. It is expected that the next revision
|
||||
of the TIFF spec will replace the 6.0 JPEG design with the Note's design.
|
||||
Although IJG's own code does not support TIFF/JPEG, the free libtiff library
|
||||
uses our library to implement TIFF/JPEG per the Note.
|
||||
|
||||
|
||||
ARCHIVE LOCATIONS
|
||||
=================
|
||||
|
||||
The "official" archive site for this software is www.ijg.org.
|
||||
The most recent released version can always be found there in
|
||||
directory "files". This particular version will be archived as
|
||||
http://www.ijg.org/files/jpegsrc.v7.tar.gz, and in Windows-compatible
|
||||
"zip" archive format as http://www.ijg.org/files/jpegsr7.zip.
|
||||
|
||||
The JPEG FAQ (Frequently Asked Questions) article is a source of some
|
||||
general information about JPEG.
|
||||
It is available on the World Wide Web at http://www.faqs.org/faqs/jpeg-faq/
|
||||
and other news.answers archive sites, including the official news.answers
|
||||
archive at rtfm.mit.edu: ftp://rtfm.mit.edu/pub/usenet/news.answers/jpeg-faq/.
|
||||
If you don't have Web or FTP access, send e-mail to mail-server@rtfm.mit.edu
|
||||
with body
|
||||
send usenet/news.answers/jpeg-faq/part1
|
||||
send usenet/news.answers/jpeg-faq/part2
|
||||
|
||||
|
||||
ACKNOWLEDGMENTS
|
||||
===============
|
||||
|
||||
Thank to Juergen Bruder of the Georg-Cantor-Organization at the
|
||||
Martin-Luther-University Halle for providing me with a copy of the common
|
||||
DCT algorithm article, only to find out that I had come to the same result
|
||||
in a more direct and comprehensible way with a more generative approach.
|
||||
|
||||
Thank to Istvan Sebestyen and Joan L. Mitchell for inviting me to the
|
||||
ITU JPEG (Study Group 16) meeting in Geneva, Switzerland.
|
||||
|
||||
Thank to Thomas Wiegand and Gary Sullivan for inviting me to the
|
||||
Joint Video Team (MPEG & ITU) meeting in Geneva, Switzerland.
|
||||
|
||||
Thank to John Korejwa and Massimo Ballerini for inviting me to
|
||||
fruitful consultations in Boston, MA and Milan, Italy.
|
||||
|
||||
Thank to Hendrik Elstner, Roland Fassauer, and Simone Zuck for
|
||||
corresponding business development.
|
||||
|
||||
Thank to Nico Zschach and Dirk Stelling of the technical support team
|
||||
at the Digital Images company in Halle for providing me with extra
|
||||
equipment for configuration tests.
|
||||
|
||||
Thank to Richard F. Lyon (then of Foveon Inc.) for fruitful
|
||||
communication about JPEG configuration in Sigma Photo Pro software.
|
||||
|
||||
Last but not least special thank to Thomas G. Lane for the original
|
||||
design and development of this singular software package.
|
||||
|
||||
|
||||
FILE FORMAT WARS
|
||||
================
|
||||
|
||||
The ISO JPEG standards committee actually promotes different formats like
|
||||
JPEG-2000 or JPEG-XR which are incompatible with original DCT-based JPEG
|
||||
and which are based on faulty technologies. IJG therefore does not and
|
||||
will not support such momentary mistakes (see REFERENCES).
|
||||
We have little or no sympathy for the promotion of these formats. Indeed,
|
||||
one of the original reasons for developing this free software was to help
|
||||
force convergence on common, interoperable format standards for JPEG files.
|
||||
Don't use an incompatible file format!
|
||||
(In any case, our decoder will remain capable of reading existing JPEG
|
||||
image files indefinitely.)
|
||||
|
||||
|
||||
TO DO
|
||||
=====
|
||||
|
||||
v7 is basically just a necessary interim release, paving the way for a
|
||||
major breakthrough in image coding technology with the next v8 package
|
||||
which is scheduled for release in the year 2010.
|
||||
|
||||
Please send bug reports, offers of help, etc. to jpeg-info@jpegclub.org.
|
|
@ -0,0 +1,270 @@
|
|||
CHANGE LOG for Independent JPEG Group's JPEG software
|
||||
|
||||
|
||||
Version 7 27-Jun-2009
|
||||
----------------------
|
||||
|
||||
New scaled DCTs implemented.
|
||||
djpeg now supports scalings N/8 with all N from 1 to 16.
|
||||
cjpeg now supports scalings 8/N with all N from 1 to 16.
|
||||
Scaled DCTs with size larger than 8 are now also used for resolving the
|
||||
common 2x2 chroma subsampling case without additional spatial resampling.
|
||||
Separate spatial resampling for those kind of files is now only necessary
|
||||
for N>8 scaling cases.
|
||||
Furthermore, separate scaled DCT functions are provided for direct resolving
|
||||
of the common asymmetric subsampling cases (2x1 and 1x2) without additional
|
||||
spatial resampling.
|
||||
|
||||
cjpeg -quality option has been extended for support of separate quality
|
||||
settings for luminance and chrominance (or in general, for every provided
|
||||
quantization table slot).
|
||||
New API function jpeg_default_qtables() and q_scale_factor array in library.
|
||||
|
||||
Added -nosmooth option to cjpeg, complementary to djpeg.
|
||||
New variable "do_fancy_downsampling" in library, complement to fancy
|
||||
upsampling. Fancy upsampling now uses direct DCT scaling with sizes
|
||||
larger than 8. The old method is not reversible and has been removed.
|
||||
|
||||
Support arithmetic entropy encoding and decoding.
|
||||
Added files jaricom.c, jcarith.c, jdarith.c.
|
||||
|
||||
Straighten the file structure:
|
||||
Removed files jidctred.c, jcphuff.c, jchuff.h, jdphuff.c, jdhuff.h.
|
||||
|
||||
jpegtran has a new "lossless" cropping feature.
|
||||
|
||||
Implement -perfect option in jpegtran, new API function
|
||||
jtransform_perfect_transform() in transupp. (DP 204_perfect.dpatch)
|
||||
|
||||
Better error messages for jpegtran fopen failure.
|
||||
(DP 203_jpegtran_errmsg.dpatch)
|
||||
|
||||
Fix byte order issue with 16bit PPM/PGM files in rdppm.c/wrppm.c:
|
||||
according to Netpbm, the de facto standard implementation of the PNM formats,
|
||||
the most significant byte is first. (DP 203_rdppm.dpatch)
|
||||
|
||||
Add -raw option to rdjpgcom not to mangle the output.
|
||||
(DP 205_rdjpgcom_raw.dpatch)
|
||||
|
||||
Make rdjpgcom locale aware. (DP 201_rdjpgcom_locale.dpatch)
|
||||
|
||||
Add extern "C" to jpeglib.h.
|
||||
This avoids the need to put extern "C" { ... } around #include "jpeglib.h"
|
||||
in your C++ application. Defining the symbol DONT_USE_EXTERN_C in the
|
||||
configuration prevents this. (DP 202_jpeglib.h_c++.dpatch)
|
||||
|
||||
|
||||
Version 6b 27-Mar-1998
|
||||
-----------------------
|
||||
|
||||
jpegtran has new features for lossless image transformations (rotation
|
||||
and flipping) as well as "lossless" reduction to grayscale.
|
||||
|
||||
jpegtran now copies comments by default; it has a -copy switch to enable
|
||||
copying all APPn blocks as well, or to suppress comments. (Formerly it
|
||||
always suppressed comments and APPn blocks.) jpegtran now also preserves
|
||||
JFIF version and resolution information.
|
||||
|
||||
New decompressor library feature: COM and APPn markers found in the input
|
||||
file can be saved in memory for later use by the application. (Before,
|
||||
you had to code this up yourself with a custom marker processor.)
|
||||
|
||||
There is an unused field "void * client_data" now in compress and decompress
|
||||
parameter structs; this may be useful in some applications.
|
||||
|
||||
JFIF version number information is now saved by the decoder and accepted by
|
||||
the encoder. jpegtran uses this to copy the source file's version number,
|
||||
to ensure "jpegtran -copy all" won't create bogus files that contain JFXX
|
||||
extensions but claim to be version 1.01. Applications that generate their
|
||||
own JFXX extension markers also (finally) have a supported way to cause the
|
||||
encoder to emit JFIF version number 1.02.
|
||||
|
||||
djpeg's trace mode reports JFIF 1.02 thumbnail images as such, rather
|
||||
than as unknown APP0 markers.
|
||||
|
||||
In -verbose mode, djpeg and rdjpgcom will try to print the contents of
|
||||
APP12 markers as text. Some digital cameras store useful text information
|
||||
in APP12 markers.
|
||||
|
||||
Handling of truncated data streams is more robust: blocks beyond the one in
|
||||
which the error occurs will be output as uniform gray, or left unchanged
|
||||
if decoding a progressive JPEG. The appearance no longer depends on the
|
||||
Huffman tables being used.
|
||||
|
||||
Huffman tables are checked for validity much more carefully than before.
|
||||
|
||||
To avoid the Unisys LZW patent, djpeg's GIF output capability has been
|
||||
changed to produce "uncompressed GIFs", and cjpeg's GIF input capability
|
||||
has been removed altogether. We're not happy about it either, but there
|
||||
seems to be no good alternative.
|
||||
|
||||
The configure script now supports building libjpeg as a shared library
|
||||
on many flavors of Unix (all the ones that GNU libtool knows how to
|
||||
build shared libraries for). Use "./configure --enable-shared" to
|
||||
try this out.
|
||||
|
||||
New jconfig file and makefiles for Microsoft Visual C++ and Developer Studio.
|
||||
Also, a jconfig file and a build script for Metrowerks CodeWarrior
|
||||
on Apple Macintosh. makefile.dj has been updated for DJGPP v2, and there
|
||||
are miscellaneous other minor improvements in the makefiles.
|
||||
|
||||
jmemmac.c now knows how to create temporary files following Mac System 7
|
||||
conventions.
|
||||
|
||||
djpeg's -map switch is now able to read raw-format PPM files reliably.
|
||||
|
||||
cjpeg -progressive -restart no longer generates any unnecessary DRI markers.
|
||||
|
||||
Multiple calls to jpeg_simple_progression for a single JPEG object
|
||||
no longer leak memory.
|
||||
|
||||
|
||||
Version 6a 7-Feb-96
|
||||
--------------------
|
||||
|
||||
Library initialization sequence modified to detect version mismatches
|
||||
and struct field packing mismatches between library and calling application.
|
||||
This change requires applications to be recompiled, but does not require
|
||||
any application source code change.
|
||||
|
||||
All routine declarations changed to the style "GLOBAL(type) name ...",
|
||||
that is, GLOBAL, LOCAL, METHODDEF, EXTERN are now macros taking the
|
||||
routine's return type as an argument. This makes it possible to add
|
||||
Microsoft-style linkage keywords to all the routines by changing just
|
||||
these macros. Note that any application code that was using these macros
|
||||
will have to be changed.
|
||||
|
||||
DCT coefficient quantization tables are now stored in normal array order
|
||||
rather than zigzag order. Application code that calls jpeg_add_quant_table,
|
||||
or otherwise manipulates quantization tables directly, will need to be
|
||||
changed. If you need to make such code work with either older or newer
|
||||
versions of the library, a test like "#if JPEG_LIB_VERSION >= 61" is
|
||||
recommended.
|
||||
|
||||
djpeg's trace capability now dumps DQT tables in natural order, not zigzag
|
||||
order. This allows the trace output to be made into a "-qtables" file
|
||||
more easily.
|
||||
|
||||
New system-dependent memory manager module for use on Apple Macintosh.
|
||||
|
||||
Fix bug in cjpeg's -smooth option: last one or two scanlines would be
|
||||
duplicates of the prior line unless the image height mod 16 was 1 or 2.
|
||||
|
||||
Repair minor problems in VMS, BCC, MC6 makefiles.
|
||||
|
||||
New configure script based on latest GNU Autoconf.
|
||||
|
||||
Correct the list of include files needed by MetroWerks C for ccommand().
|
||||
|
||||
Numerous small documentation updates.
|
||||
|
||||
|
||||
Version 6 2-Aug-95
|
||||
-------------------
|
||||
|
||||
Progressive JPEG support: library can read and write full progressive JPEG
|
||||
files. A "buffered image" mode supports incremental decoding for on-the-fly
|
||||
display of progressive images. Simply recompiling an existing IJG-v5-based
|
||||
decoder with v6 should allow it to read progressive files, though of course
|
||||
without any special progressive display.
|
||||
|
||||
New "jpegtran" application performs lossless transcoding between different
|
||||
JPEG formats; primarily, it can be used to convert baseline to progressive
|
||||
JPEG and vice versa. In support of jpegtran, the library now allows lossless
|
||||
reading and writing of JPEG files as DCT coefficient arrays. This ability
|
||||
may be of use in other applications.
|
||||
|
||||
Notes for programmers:
|
||||
* We changed jpeg_start_decompress() to be able to suspend; this makes all
|
||||
decoding modes available to suspending-input applications. However,
|
||||
existing applications that use suspending input will need to be changed
|
||||
to check the return value from jpeg_start_decompress(). You don't need to
|
||||
do anything if you don't use a suspending data source.
|
||||
* We changed the interface to the virtual array routines: access_virt_array
|
||||
routines now take a count of the number of rows to access this time. The
|
||||
last parameter to request_virt_array routines is now interpreted as the
|
||||
maximum number of rows that may be accessed at once, but not necessarily
|
||||
the height of every access.
|
||||
|
||||
|
||||
Version 5b 15-Mar-95
|
||||
---------------------
|
||||
|
||||
Correct bugs with grayscale images having v_samp_factor > 1.
|
||||
|
||||
jpeg_write_raw_data() now supports output suspension.
|
||||
|
||||
Correct bugs in "configure" script for case of compiling in
|
||||
a directory other than the one containing the source files.
|
||||
|
||||
Repair bug in jquant1.c: sometimes didn't use as many colors as it could.
|
||||
|
||||
Borland C makefile and jconfig file work under either MS-DOS or OS/2.
|
||||
|
||||
Miscellaneous improvements to documentation.
|
||||
|
||||
|
||||
Version 5a 7-Dec-94
|
||||
--------------------
|
||||
|
||||
Changed color conversion roundoff behavior so that grayscale values are
|
||||
represented exactly. (This causes test image files to change.)
|
||||
|
||||
Make ordered dither use 16x16 instead of 4x4 pattern for a small quality
|
||||
improvement.
|
||||
|
||||
New configure script based on latest GNU Autoconf.
|
||||
Fix configure script to handle CFLAGS correctly.
|
||||
Rename *.auto files to *.cfg, so that configure script still works if
|
||||
file names have been truncated for DOS.
|
||||
|
||||
Fix bug in rdbmp.c: didn't allow for extra data between header and image.
|
||||
|
||||
Modify rdppm.c/wrppm.c to handle 2-byte raw PPM/PGM formats for 12-bit data.
|
||||
|
||||
Fix several bugs in rdrle.c.
|
||||
|
||||
NEED_SHORT_EXTERNAL_NAMES option was broken.
|
||||
|
||||
Revise jerror.h/jerror.c for more flexibility in message table.
|
||||
|
||||
Repair oversight in jmemname.c NO_MKTEMP case: file could be there
|
||||
but unreadable.
|
||||
|
||||
|
||||
Version 5 24-Sep-94
|
||||
--------------------
|
||||
|
||||
Version 5 represents a nearly complete redesign and rewrite of the IJG
|
||||
software. Major user-visible changes include:
|
||||
* Automatic configuration simplifies installation for most Unix systems.
|
||||
* A range of speed vs. image quality tradeoffs are supported.
|
||||
This includes resizing of an image during decompression: scaling down
|
||||
by a factor of 1/2, 1/4, or 1/8 is handled very efficiently.
|
||||
* New programs rdjpgcom and wrjpgcom allow insertion and extraction
|
||||
of text comments in a JPEG file.
|
||||
|
||||
The application programmer's interface to the library has changed completely.
|
||||
Notable improvements include:
|
||||
* We have eliminated the use of callback routines for handling the
|
||||
uncompressed image data. The application now sees the library as a
|
||||
set of routines that it calls to read or write image data on a
|
||||
scanline-by-scanline basis.
|
||||
* The application image data is represented in a conventional interleaved-
|
||||
pixel format, rather than as a separate array for each color channel.
|
||||
This can save a copying step in many programs.
|
||||
* The handling of compressed data has been cleaned up: the application can
|
||||
supply routines to source or sink the compressed data. It is possible to
|
||||
suspend processing on source/sink buffer overrun, although this is not
|
||||
supported in all operating modes.
|
||||
* All static state has been eliminated from the library, so that multiple
|
||||
instances of compression or decompression can be active concurrently.
|
||||
* JPEG abbreviated datastream formats are supported, ie, quantization and
|
||||
Huffman tables can be stored separately from the image data.
|
||||
* And not only that, but the documentation of the library has improved
|
||||
considerably!
|
||||
|
||||
|
||||
The last widely used release before the version 5 rewrite was version 4A of
|
||||
18-Feb-93. Change logs before that point have been discarded, since they
|
||||
are not of much interest after the rewrite.
|
|
@ -0,0 +1,215 @@
|
|||
IJG JPEG LIBRARY: FILE LIST
|
||||
|
||||
Copyright (C) 1994-2009, Thomas G. Lane, Guido Vollbeding.
|
||||
This file is part of the Independent JPEG Group's software.
|
||||
For conditions of distribution and use, see the accompanying README file.
|
||||
|
||||
|
||||
Here is a road map to the files in the IJG JPEG distribution. The
|
||||
distribution includes the JPEG library proper, plus two application
|
||||
programs ("cjpeg" and "djpeg") which use the library to convert JPEG
|
||||
files to and from some other popular image formats. A third application
|
||||
"jpegtran" uses the library to do lossless conversion between different
|
||||
variants of JPEG. There are also two stand-alone applications,
|
||||
"rdjpgcom" and "wrjpgcom".
|
||||
|
||||
|
||||
THE JPEG LIBRARY
|
||||
================
|
||||
|
||||
Include files:
|
||||
|
||||
jpeglib.h JPEG library's exported data and function declarations.
|
||||
jconfig.h Configuration declarations. Note: this file is not present
|
||||
in the distribution; it is generated during installation.
|
||||
jmorecfg.h Additional configuration declarations; need not be changed
|
||||
for a standard installation.
|
||||
jerror.h Declares JPEG library's error and trace message codes.
|
||||
jinclude.h Central include file used by all IJG .c files to reference
|
||||
system include files.
|
||||
jpegint.h JPEG library's internal data structures.
|
||||
jdct.h Private declarations for forward & reverse DCT subsystems.
|
||||
jmemsys.h Private declarations for memory management subsystem.
|
||||
jversion.h Version information.
|
||||
|
||||
Applications using the library should include jpeglib.h (which in turn
|
||||
includes jconfig.h and jmorecfg.h). Optionally, jerror.h may be included
|
||||
if the application needs to reference individual JPEG error codes. The
|
||||
other include files are intended for internal use and would not normally
|
||||
be included by an application program. (cjpeg/djpeg/etc do use jinclude.h,
|
||||
since its function is to improve portability of the whole IJG distribution.
|
||||
Most other applications will directly include the system include files they
|
||||
want, and hence won't need jinclude.h.)
|
||||
|
||||
|
||||
C source code files:
|
||||
|
||||
These files contain most of the functions intended to be called directly by
|
||||
an application program:
|
||||
|
||||
jcapimin.c Application program interface: core routines for compression.
|
||||
jcapistd.c Application program interface: standard compression.
|
||||
jdapimin.c Application program interface: core routines for decompression.
|
||||
jdapistd.c Application program interface: standard decompression.
|
||||
jcomapi.c Application program interface routines common to compression
|
||||
and decompression.
|
||||
jcparam.c Compression parameter setting helper routines.
|
||||
jctrans.c API and library routines for transcoding compression.
|
||||
jdtrans.c API and library routines for transcoding decompression.
|
||||
|
||||
Compression side of the library:
|
||||
|
||||
jcinit.c Initialization: determines which other modules to use.
|
||||
jcmaster.c Master control: setup and inter-pass sequencing logic.
|
||||
jcmainct.c Main buffer controller (preprocessor => JPEG compressor).
|
||||
jcprepct.c Preprocessor buffer controller.
|
||||
jccoefct.c Buffer controller for DCT coefficient buffer.
|
||||
jccolor.c Color space conversion.
|
||||
jcsample.c Downsampling.
|
||||
jcdctmgr.c DCT manager (DCT implementation selection & control).
|
||||
jfdctint.c Forward DCT using slow-but-accurate integer method.
|
||||
jfdctfst.c Forward DCT using faster, less accurate integer method.
|
||||
jfdctflt.c Forward DCT using floating-point arithmetic.
|
||||
jchuff.c Huffman entropy coding.
|
||||
jcarith.c Arithmetic entropy coding.
|
||||
jcmarker.c JPEG marker writing.
|
||||
jdatadst.c Data destination manager for stdio output.
|
||||
|
||||
Decompression side of the library:
|
||||
|
||||
jdmaster.c Master control: determines which other modules to use.
|
||||
jdinput.c Input controller: controls input processing modules.
|
||||
jdmainct.c Main buffer controller (JPEG decompressor => postprocessor).
|
||||
jdcoefct.c Buffer controller for DCT coefficient buffer.
|
||||
jdpostct.c Postprocessor buffer controller.
|
||||
jdmarker.c JPEG marker reading.
|
||||
jdhuff.c Huffman entropy decoding.
|
||||
jdarith.c Arithmetic entropy decoding.
|
||||
jddctmgr.c IDCT manager (IDCT implementation selection & control).
|
||||
jidctint.c Inverse DCT using slow-but-accurate integer method.
|
||||
jidctfst.c Inverse DCT using faster, less accurate integer method.
|
||||
jidctflt.c Inverse DCT using floating-point arithmetic.
|
||||
jdsample.c Upsampling.
|
||||
jdcolor.c Color space conversion.
|
||||
jdmerge.c Merged upsampling/color conversion (faster, lower quality).
|
||||
jquant1.c One-pass color quantization using a fixed-spacing colormap.
|
||||
jquant2.c Two-pass color quantization using a custom-generated colormap.
|
||||
Also handles one-pass quantization to an externally given map.
|
||||
jdatasrc.c Data source manager for stdio input.
|
||||
|
||||
Support files for both compression and decompression:
|
||||
|
||||
jaricom.c Tables for common use in arithmetic entropy encoding and
|
||||
decoding routines.
|
||||
jerror.c Standard error handling routines (application replaceable).
|
||||
jmemmgr.c System-independent (more or less) memory management code.
|
||||
jutils.c Miscellaneous utility routines.
|
||||
|
||||
jmemmgr.c relies on a system-dependent memory management module. The IJG
|
||||
distribution includes the following implementations of the system-dependent
|
||||
module:
|
||||
|
||||
jmemnobs.c "No backing store": assumes adequate virtual memory exists.
|
||||
jmemansi.c Makes temporary files with ANSI-standard routine tmpfile().
|
||||
jmemname.c Makes temporary files with program-generated file names.
|
||||
jmemdos.c Custom implementation for MS-DOS (16-bit environment only):
|
||||
can use extended and expanded memory as well as temp files.
|
||||
jmemmac.c Custom implementation for Apple Macintosh.
|
||||
|
||||
Exactly one of the system-dependent modules should be configured into an
|
||||
installed JPEG library (see install.txt for hints about which one to use).
|
||||
On unusual systems you may find it worthwhile to make a special
|
||||
system-dependent memory manager.
|
||||
|
||||
|
||||
Non-C source code files:
|
||||
|
||||
jmemdosa.asm 80x86 assembly code support for jmemdos.c; used only in
|
||||
MS-DOS-specific configurations of the JPEG library.
|
||||
|
||||
|
||||
CJPEG/DJPEG/JPEGTRAN
|
||||
====================
|
||||
|
||||
Include files:
|
||||
|
||||
cdjpeg.h Declarations shared by cjpeg/djpeg/jpegtran modules.
|
||||
cderror.h Additional error and trace message codes for cjpeg et al.
|
||||
transupp.h Declarations for jpegtran support routines in transupp.c.
|
||||
|
||||
C source code files:
|
||||
|
||||
cjpeg.c Main program for cjpeg.
|
||||
djpeg.c Main program for djpeg.
|
||||
jpegtran.c Main program for jpegtran.
|
||||
cdjpeg.c Utility routines used by all three programs.
|
||||
rdcolmap.c Code to read a colormap file for djpeg's "-map" switch.
|
||||
rdswitch.c Code to process some of cjpeg's more complex switches.
|
||||
Also used by jpegtran.
|
||||
transupp.c Support code for jpegtran: lossless image manipulations.
|
||||
|
||||
Image file reader modules for cjpeg:
|
||||
|
||||
rdbmp.c BMP file input.
|
||||
rdgif.c GIF file input (now just a stub).
|
||||
rdppm.c PPM/PGM file input.
|
||||
rdrle.c Utah RLE file input.
|
||||
rdtarga.c Targa file input.
|
||||
|
||||
Image file writer modules for djpeg:
|
||||
|
||||
wrbmp.c BMP file output.
|
||||
wrgif.c GIF file output (a mere shadow of its former self).
|
||||
wrppm.c PPM/PGM file output.
|
||||
wrrle.c Utah RLE file output.
|
||||
wrtarga.c Targa file output.
|
||||
|
||||
|
||||
RDJPGCOM/WRJPGCOM
|
||||
=================
|
||||
|
||||
C source code files:
|
||||
|
||||
rdjpgcom.c Stand-alone rdjpgcom application.
|
||||
wrjpgcom.c Stand-alone wrjpgcom application.
|
||||
|
||||
These programs do not depend on the IJG library. They do use
|
||||
jconfig.h and jinclude.h, only to improve portability.
|
||||
|
||||
|
||||
ADDITIONAL FILES
|
||||
================
|
||||
|
||||
Documentation (see README for a guide to the documentation files):
|
||||
|
||||
README Master documentation file.
|
||||
*.txt Other documentation files.
|
||||
*.1 Documentation in Unix man page format.
|
||||
change.log Version-to-version change highlights.
|
||||
example.c Sample code for calling JPEG library.
|
||||
|
||||
Configuration/installation files and programs (see install.txt for more info):
|
||||
|
||||
configure Unix shell script to perform automatic configuration.
|
||||
configure.ac Source file for use with Autoconf to generate configure.
|
||||
ltmain.sh Support scripts for configure (from GNU libtool).
|
||||
config.guess
|
||||
config.sub
|
||||
depcomp
|
||||
missing
|
||||
install-sh Install shell script for those Unix systems lacking one.
|
||||
Makefile.in Makefile input for configure.
|
||||
Makefile.am Source file for use with Automake to generate Makefile.in.
|
||||
ckconfig.c Program to generate jconfig.h on non-Unix systems.
|
||||
jconfig.txt Template for making jconfig.h by hand.
|
||||
mak*.* Sample makefiles for particular systems.
|
||||
jconfig.* Sample jconfig.h for particular systems.
|
||||
libjpeg.map Script to generate shared library with versioned symbols.
|
||||
aclocal.m4 M4 macro definitions for use with Autoconf.
|
||||
ansi2knr.c De-ANSIfier for pre-ANSI C compilers (courtesy of
|
||||
L. Peter Deutsch and Aladdin Enterprises).
|
||||
|
||||
Test files (see install.txt for test procedure):
|
||||
|
||||
test*.* Source and comparison files for confidence test.
|
||||
These are binary image files, NOT text files.
|
|
@ -0,0 +1,148 @@
|
|||
/*
|
||||
* jaricom.c
|
||||
*
|
||||
* Developed 1997 by Guido Vollbeding.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains probability estimation tables for common use in
|
||||
* arithmetic entropy encoding and decoding routines.
|
||||
*
|
||||
* This data represents Table D.2 in the JPEG spec (ISO/IEC IS 10918-1
|
||||
* and CCITT Recommendation ITU-T T.81) and Table 24 in the JBIG spec
|
||||
* (ISO/IEC IS 11544 and CCITT Recommendation ITU-T T.82).
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
/* The following #define specifies the packing of the four components
|
||||
* into the compact INT32 representation.
|
||||
* Note that this formula must match the actual arithmetic encoder
|
||||
* and decoder implementation. The implementation has to be changed
|
||||
* if this formula is changed.
|
||||
* The current organization is leaned on Markus Kuhn's JBIG
|
||||
* implementation (jbig_tab.c).
|
||||
*/
|
||||
|
||||
#define V(a,b,c,d) (((INT32)a << 16) | ((INT32)c << 8) | ((INT32)d << 7) | b)
|
||||
|
||||
const INT32 jaritab[113] = {
|
||||
/*
|
||||
* Index, Qe_Value, Next_Index_LPS, Next_Index_MPS, Switch_MPS
|
||||
*/
|
||||
/* 0 */ V( 0x5a1d, 1, 1, 1 ),
|
||||
/* 1 */ V( 0x2586, 14, 2, 0 ),
|
||||
/* 2 */ V( 0x1114, 16, 3, 0 ),
|
||||
/* 3 */ V( 0x080b, 18, 4, 0 ),
|
||||
/* 4 */ V( 0x03d8, 20, 5, 0 ),
|
||||
/* 5 */ V( 0x01da, 23, 6, 0 ),
|
||||
/* 6 */ V( 0x00e5, 25, 7, 0 ),
|
||||
/* 7 */ V( 0x006f, 28, 8, 0 ),
|
||||
/* 8 */ V( 0x0036, 30, 9, 0 ),
|
||||
/* 9 */ V( 0x001a, 33, 10, 0 ),
|
||||
/* 10 */ V( 0x000d, 35, 11, 0 ),
|
||||
/* 11 */ V( 0x0006, 9, 12, 0 ),
|
||||
/* 12 */ V( 0x0003, 10, 13, 0 ),
|
||||
/* 13 */ V( 0x0001, 12, 13, 0 ),
|
||||
/* 14 */ V( 0x5a7f, 15, 15, 1 ),
|
||||
/* 15 */ V( 0x3f25, 36, 16, 0 ),
|
||||
/* 16 */ V( 0x2cf2, 38, 17, 0 ),
|
||||
/* 17 */ V( 0x207c, 39, 18, 0 ),
|
||||
/* 18 */ V( 0x17b9, 40, 19, 0 ),
|
||||
/* 19 */ V( 0x1182, 42, 20, 0 ),
|
||||
/* 20 */ V( 0x0cef, 43, 21, 0 ),
|
||||
/* 21 */ V( 0x09a1, 45, 22, 0 ),
|
||||
/* 22 */ V( 0x072f, 46, 23, 0 ),
|
||||
/* 23 */ V( 0x055c, 48, 24, 0 ),
|
||||
/* 24 */ V( 0x0406, 49, 25, 0 ),
|
||||
/* 25 */ V( 0x0303, 51, 26, 0 ),
|
||||
/* 26 */ V( 0x0240, 52, 27, 0 ),
|
||||
/* 27 */ V( 0x01b1, 54, 28, 0 ),
|
||||
/* 28 */ V( 0x0144, 56, 29, 0 ),
|
||||
/* 29 */ V( 0x00f5, 57, 30, 0 ),
|
||||
/* 30 */ V( 0x00b7, 59, 31, 0 ),
|
||||
/* 31 */ V( 0x008a, 60, 32, 0 ),
|
||||
/* 32 */ V( 0x0068, 62, 33, 0 ),
|
||||
/* 33 */ V( 0x004e, 63, 34, 0 ),
|
||||
/* 34 */ V( 0x003b, 32, 35, 0 ),
|
||||
/* 35 */ V( 0x002c, 33, 9, 0 ),
|
||||
/* 36 */ V( 0x5ae1, 37, 37, 1 ),
|
||||
/* 37 */ V( 0x484c, 64, 38, 0 ),
|
||||
/* 38 */ V( 0x3a0d, 65, 39, 0 ),
|
||||
/* 39 */ V( 0x2ef1, 67, 40, 0 ),
|
||||
/* 40 */ V( 0x261f, 68, 41, 0 ),
|
||||
/* 41 */ V( 0x1f33, 69, 42, 0 ),
|
||||
/* 42 */ V( 0x19a8, 70, 43, 0 ),
|
||||
/* 43 */ V( 0x1518, 72, 44, 0 ),
|
||||
/* 44 */ V( 0x1177, 73, 45, 0 ),
|
||||
/* 45 */ V( 0x0e74, 74, 46, 0 ),
|
||||
/* 46 */ V( 0x0bfb, 75, 47, 0 ),
|
||||
/* 47 */ V( 0x09f8, 77, 48, 0 ),
|
||||
/* 48 */ V( 0x0861, 78, 49, 0 ),
|
||||
/* 49 */ V( 0x0706, 79, 50, 0 ),
|
||||
/* 50 */ V( 0x05cd, 48, 51, 0 ),
|
||||
/* 51 */ V( 0x04de, 50, 52, 0 ),
|
||||
/* 52 */ V( 0x040f, 50, 53, 0 ),
|
||||
/* 53 */ V( 0x0363, 51, 54, 0 ),
|
||||
/* 54 */ V( 0x02d4, 52, 55, 0 ),
|
||||
/* 55 */ V( 0x025c, 53, 56, 0 ),
|
||||
/* 56 */ V( 0x01f8, 54, 57, 0 ),
|
||||
/* 57 */ V( 0x01a4, 55, 58, 0 ),
|
||||
/* 58 */ V( 0x0160, 56, 59, 0 ),
|
||||
/* 59 */ V( 0x0125, 57, 60, 0 ),
|
||||
/* 60 */ V( 0x00f6, 58, 61, 0 ),
|
||||
/* 61 */ V( 0x00cb, 59, 62, 0 ),
|
||||
/* 62 */ V( 0x00ab, 61, 63, 0 ),
|
||||
/* 63 */ V( 0x008f, 61, 32, 0 ),
|
||||
/* 64 */ V( 0x5b12, 65, 65, 1 ),
|
||||
/* 65 */ V( 0x4d04, 80, 66, 0 ),
|
||||
/* 66 */ V( 0x412c, 81, 67, 0 ),
|
||||
/* 67 */ V( 0x37d8, 82, 68, 0 ),
|
||||
/* 68 */ V( 0x2fe8, 83, 69, 0 ),
|
||||
/* 69 */ V( 0x293c, 84, 70, 0 ),
|
||||
/* 70 */ V( 0x2379, 86, 71, 0 ),
|
||||
/* 71 */ V( 0x1edf, 87, 72, 0 ),
|
||||
/* 72 */ V( 0x1aa9, 87, 73, 0 ),
|
||||
/* 73 */ V( 0x174e, 72, 74, 0 ),
|
||||
/* 74 */ V( 0x1424, 72, 75, 0 ),
|
||||
/* 75 */ V( 0x119c, 74, 76, 0 ),
|
||||
/* 76 */ V( 0x0f6b, 74, 77, 0 ),
|
||||
/* 77 */ V( 0x0d51, 75, 78, 0 ),
|
||||
/* 78 */ V( 0x0bb6, 77, 79, 0 ),
|
||||
/* 79 */ V( 0x0a40, 77, 48, 0 ),
|
||||
/* 80 */ V( 0x5832, 80, 81, 1 ),
|
||||
/* 81 */ V( 0x4d1c, 88, 82, 0 ),
|
||||
/* 82 */ V( 0x438e, 89, 83, 0 ),
|
||||
/* 83 */ V( 0x3bdd, 90, 84, 0 ),
|
||||
/* 84 */ V( 0x34ee, 91, 85, 0 ),
|
||||
/* 85 */ V( 0x2eae, 92, 86, 0 ),
|
||||
/* 86 */ V( 0x299a, 93, 87, 0 ),
|
||||
/* 87 */ V( 0x2516, 86, 71, 0 ),
|
||||
/* 88 */ V( 0x5570, 88, 89, 1 ),
|
||||
/* 89 */ V( 0x4ca9, 95, 90, 0 ),
|
||||
/* 90 */ V( 0x44d9, 96, 91, 0 ),
|
||||
/* 91 */ V( 0x3e22, 97, 92, 0 ),
|
||||
/* 92 */ V( 0x3824, 99, 93, 0 ),
|
||||
/* 93 */ V( 0x32b4, 99, 94, 0 ),
|
||||
/* 94 */ V( 0x2e17, 93, 86, 0 ),
|
||||
/* 95 */ V( 0x56a8, 95, 96, 1 ),
|
||||
/* 96 */ V( 0x4f46, 101, 97, 0 ),
|
||||
/* 97 */ V( 0x47e5, 102, 98, 0 ),
|
||||
/* 98 */ V( 0x41cf, 103, 99, 0 ),
|
||||
/* 99 */ V( 0x3c3d, 104, 100, 0 ),
|
||||
/* 100 */ V( 0x375e, 99, 93, 0 ),
|
||||
/* 101 */ V( 0x5231, 105, 102, 0 ),
|
||||
/* 102 */ V( 0x4c0f, 106, 103, 0 ),
|
||||
/* 103 */ V( 0x4639, 107, 104, 0 ),
|
||||
/* 104 */ V( 0x415e, 103, 99, 0 ),
|
||||
/* 105 */ V( 0x5627, 105, 106, 1 ),
|
||||
/* 106 */ V( 0x50e7, 108, 107, 0 ),
|
||||
/* 107 */ V( 0x4b85, 109, 103, 0 ),
|
||||
/* 108 */ V( 0x5597, 110, 109, 0 ),
|
||||
/* 109 */ V( 0x504f, 111, 107, 0 ),
|
||||
/* 110 */ V( 0x5a10, 110, 111, 1 ),
|
||||
/* 111 */ V( 0x5522, 112, 109, 0 ),
|
||||
/* 112 */ V( 0x59eb, 112, 111, 1 )
|
||||
};
|
|
@ -0,0 +1,282 @@
|
|||
/*
|
||||
* jcapimin.c
|
||||
*
|
||||
* Copyright (C) 1994-1998, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains application interface code for the compression half
|
||||
* of the JPEG library. These are the "minimum" API routines that may be
|
||||
* needed in either the normal full-compression case or the transcoding-only
|
||||
* case.
|
||||
*
|
||||
* Most of the routines intended to be called directly by an application
|
||||
* are in this file or in jcapistd.c. But also see jcparam.c for
|
||||
* parameter-setup helper routines, jcomapi.c for routines shared by
|
||||
* compression and decompression, and jctrans.c for the transcoding case.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* Initialization of a JPEG compression object.
|
||||
* The error manager must already be set up (in case memory manager fails).
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_CreateCompress (j_compress_ptr cinfo, int version, size_t structsize)
|
||||
{
|
||||
int i;
|
||||
|
||||
/* Guard against version mismatches between library and caller. */
|
||||
cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
|
||||
if (version != JPEG_LIB_VERSION)
|
||||
ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
|
||||
if (structsize != SIZEOF(struct jpeg_compress_struct))
|
||||
ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
|
||||
(int) SIZEOF(struct jpeg_compress_struct), (int) structsize);
|
||||
|
||||
/* For debugging purposes, we zero the whole master structure.
|
||||
* But the application has already set the err pointer, and may have set
|
||||
* client_data, so we have to save and restore those fields.
|
||||
* Note: if application hasn't set client_data, tools like Purify may
|
||||
* complain here.
|
||||
*/
|
||||
{
|
||||
struct jpeg_error_mgr * err = cinfo->err;
|
||||
void * client_data = cinfo->client_data; /* ignore Purify complaint here */
|
||||
MEMZERO(cinfo, SIZEOF(struct jpeg_compress_struct));
|
||||
cinfo->err = err;
|
||||
cinfo->client_data = client_data;
|
||||
}
|
||||
cinfo->is_decompressor = FALSE;
|
||||
|
||||
/* Initialize a memory manager instance for this object */
|
||||
jinit_memory_mgr((j_common_ptr) cinfo);
|
||||
|
||||
/* Zero out pointers to permanent structures. */
|
||||
cinfo->progress = NULL;
|
||||
cinfo->dest = NULL;
|
||||
|
||||
cinfo->comp_info = NULL;
|
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
||||
cinfo->quant_tbl_ptrs[i] = NULL;
|
||||
cinfo->q_scale_factor[i] = 100;
|
||||
}
|
||||
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
cinfo->dc_huff_tbl_ptrs[i] = NULL;
|
||||
cinfo->ac_huff_tbl_ptrs[i] = NULL;
|
||||
}
|
||||
|
||||
cinfo->script_space = NULL;
|
||||
|
||||
cinfo->input_gamma = 1.0; /* in case application forgets */
|
||||
|
||||
/* OK, I'm ready */
|
||||
cinfo->global_state = CSTATE_START;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Destruction of a JPEG compression object
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_destroy_compress (j_compress_ptr cinfo)
|
||||
{
|
||||
jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Abort processing of a JPEG compression operation,
|
||||
* but don't destroy the object itself.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_abort_compress (j_compress_ptr cinfo)
|
||||
{
|
||||
jpeg_abort((j_common_ptr) cinfo); /* use common routine */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Forcibly suppress or un-suppress all quantization and Huffman tables.
|
||||
* Marks all currently defined tables as already written (if suppress)
|
||||
* or not written (if !suppress). This will control whether they get emitted
|
||||
* by a subsequent jpeg_start_compress call.
|
||||
*
|
||||
* This routine is exported for use by applications that want to produce
|
||||
* abbreviated JPEG datastreams. It logically belongs in jcparam.c, but
|
||||
* since it is called by jpeg_start_compress, we put it here --- otherwise
|
||||
* jcparam.o would be linked whether the application used it or not.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_suppress_tables (j_compress_ptr cinfo, boolean suppress)
|
||||
{
|
||||
int i;
|
||||
JQUANT_TBL * qtbl;
|
||||
JHUFF_TBL * htbl;
|
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
||||
if ((qtbl = cinfo->quant_tbl_ptrs[i]) != NULL)
|
||||
qtbl->sent_table = suppress;
|
||||
}
|
||||
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
if ((htbl = cinfo->dc_huff_tbl_ptrs[i]) != NULL)
|
||||
htbl->sent_table = suppress;
|
||||
if ((htbl = cinfo->ac_huff_tbl_ptrs[i]) != NULL)
|
||||
htbl->sent_table = suppress;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish JPEG compression.
|
||||
*
|
||||
* If a multipass operating mode was selected, this may do a great deal of
|
||||
* work including most of the actual output.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_finish_compress (j_compress_ptr cinfo)
|
||||
{
|
||||
JDIMENSION iMCU_row;
|
||||
|
||||
if (cinfo->global_state == CSTATE_SCANNING ||
|
||||
cinfo->global_state == CSTATE_RAW_OK) {
|
||||
/* Terminate first pass */
|
||||
if (cinfo->next_scanline < cinfo->image_height)
|
||||
ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
|
||||
(*cinfo->master->finish_pass) (cinfo);
|
||||
} else if (cinfo->global_state != CSTATE_WRCOEFS)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
/* Perform any remaining passes */
|
||||
while (! cinfo->master->is_last_pass) {
|
||||
(*cinfo->master->prepare_for_pass) (cinfo);
|
||||
for (iMCU_row = 0; iMCU_row < cinfo->total_iMCU_rows; iMCU_row++) {
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long) iMCU_row;
|
||||
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
}
|
||||
/* We bypass the main controller and invoke coef controller directly;
|
||||
* all work is being done from the coefficient buffer.
|
||||
*/
|
||||
if (! (*cinfo->coef->compress_data) (cinfo, (JSAMPIMAGE) NULL))
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
}
|
||||
(*cinfo->master->finish_pass) (cinfo);
|
||||
}
|
||||
/* Write EOI, do final cleanup */
|
||||
(*cinfo->marker->write_file_trailer) (cinfo);
|
||||
(*cinfo->dest->term_destination) (cinfo);
|
||||
/* We can use jpeg_abort to release memory and reset global_state */
|
||||
jpeg_abort((j_common_ptr) cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write a special marker.
|
||||
* This is only recommended for writing COM or APPn markers.
|
||||
* Must be called after jpeg_start_compress() and before
|
||||
* first call to jpeg_write_scanlines() or jpeg_write_raw_data().
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_write_marker (j_compress_ptr cinfo, int marker,
|
||||
const JOCTET *dataptr, unsigned int datalen)
|
||||
{
|
||||
JMETHOD(void, write_marker_byte, (j_compress_ptr info, int val));
|
||||
|
||||
if (cinfo->next_scanline != 0 ||
|
||||
(cinfo->global_state != CSTATE_SCANNING &&
|
||||
cinfo->global_state != CSTATE_RAW_OK &&
|
||||
cinfo->global_state != CSTATE_WRCOEFS))
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
(*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
|
||||
write_marker_byte = cinfo->marker->write_marker_byte; /* copy for speed */
|
||||
while (datalen--) {
|
||||
(*write_marker_byte) (cinfo, *dataptr);
|
||||
dataptr++;
|
||||
}
|
||||
}
|
||||
|
||||
/* Same, but piecemeal. */
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_write_m_header (j_compress_ptr cinfo, int marker, unsigned int datalen)
|
||||
{
|
||||
if (cinfo->next_scanline != 0 ||
|
||||
(cinfo->global_state != CSTATE_SCANNING &&
|
||||
cinfo->global_state != CSTATE_RAW_OK &&
|
||||
cinfo->global_state != CSTATE_WRCOEFS))
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
(*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_write_m_byte (j_compress_ptr cinfo, int val)
|
||||
{
|
||||
(*cinfo->marker->write_marker_byte) (cinfo, val);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Alternate compression function: just write an abbreviated table file.
|
||||
* Before calling this, all parameters and a data destination must be set up.
|
||||
*
|
||||
* To produce a pair of files containing abbreviated tables and abbreviated
|
||||
* image data, one would proceed as follows:
|
||||
*
|
||||
* initialize JPEG object
|
||||
* set JPEG parameters
|
||||
* set destination to table file
|
||||
* jpeg_write_tables(cinfo);
|
||||
* set destination to image file
|
||||
* jpeg_start_compress(cinfo, FALSE);
|
||||
* write data...
|
||||
* jpeg_finish_compress(cinfo);
|
||||
*
|
||||
* jpeg_write_tables has the side effect of marking all tables written
|
||||
* (same as jpeg_suppress_tables(..., TRUE)). Thus a subsequent start_compress
|
||||
* will not re-emit the tables unless it is passed write_all_tables=TRUE.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_write_tables (j_compress_ptr cinfo)
|
||||
{
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
/* (Re)initialize error mgr and destination modules */
|
||||
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
|
||||
(*cinfo->dest->init_destination) (cinfo);
|
||||
/* Initialize the marker writer ... bit of a crock to do it here. */
|
||||
jinit_marker_writer(cinfo);
|
||||
/* Write them tables! */
|
||||
(*cinfo->marker->write_tables_only) (cinfo);
|
||||
/* And clean up. */
|
||||
(*cinfo->dest->term_destination) (cinfo);
|
||||
/*
|
||||
* In library releases up through v6a, we called jpeg_abort() here to free
|
||||
* any working memory allocated by the destination manager and marker
|
||||
* writer. Some applications had a problem with that: they allocated space
|
||||
* of their own from the library memory manager, and didn't want it to go
|
||||
* away during write_tables. So now we do nothing. This will cause a
|
||||
* memory leak if an app calls write_tables repeatedly without doing a full
|
||||
* compression cycle or otherwise resetting the JPEG object. However, that
|
||||
* seems less bad than unexpectedly freeing memory in the normal case.
|
||||
* An app that prefers the old behavior can call jpeg_abort for itself after
|
||||
* each call to jpeg_write_tables().
|
||||
*/
|
||||
}
|
|
@ -0,0 +1,161 @@
|
|||
/*
|
||||
* jcapistd.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains application interface code for the compression half
|
||||
* of the JPEG library. These are the "standard" API routines that are
|
||||
* used in the normal full-compression case. They are not used by a
|
||||
* transcoding-only application. Note that if an application links in
|
||||
* jpeg_start_compress, it will end up linking in the entire compressor.
|
||||
* We thus must separate this file from jcapimin.c to avoid linking the
|
||||
* whole compression library into a transcoder.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* Compression initialization.
|
||||
* Before calling this, all parameters and a data destination must be set up.
|
||||
*
|
||||
* We require a write_all_tables parameter as a failsafe check when writing
|
||||
* multiple datastreams from the same compression object. Since prior runs
|
||||
* will have left all the tables marked sent_table=TRUE, a subsequent run
|
||||
* would emit an abbreviated stream (no tables) by default. This may be what
|
||||
* is wanted, but for safety's sake it should not be the default behavior:
|
||||
* programmers should have to make a deliberate choice to emit abbreviated
|
||||
* images. Therefore the documentation and examples should encourage people
|
||||
* to pass write_all_tables=TRUE; then it will take active thought to do the
|
||||
* wrong thing.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables)
|
||||
{
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
if (write_all_tables)
|
||||
jpeg_suppress_tables(cinfo, FALSE); /* mark all tables to be written */
|
||||
|
||||
/* (Re)initialize error mgr and destination modules */
|
||||
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
|
||||
(*cinfo->dest->init_destination) (cinfo);
|
||||
/* Perform master selection of active modules */
|
||||
jinit_compress_master(cinfo);
|
||||
/* Set up for the first pass */
|
||||
(*cinfo->master->prepare_for_pass) (cinfo);
|
||||
/* Ready for application to drive first pass through jpeg_write_scanlines
|
||||
* or jpeg_write_raw_data.
|
||||
*/
|
||||
cinfo->next_scanline = 0;
|
||||
cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write some scanlines of data to the JPEG compressor.
|
||||
*
|
||||
* The return value will be the number of lines actually written.
|
||||
* This should be less than the supplied num_lines only in case that
|
||||
* the data destination module has requested suspension of the compressor,
|
||||
* or if more than image_height scanlines are passed in.
|
||||
*
|
||||
* Note: we warn about excess calls to jpeg_write_scanlines() since
|
||||
* this likely signals an application programmer error. However,
|
||||
* excess scanlines passed in the last valid call are *silently* ignored,
|
||||
* so that the application need not adjust num_lines for end-of-image
|
||||
* when using a multiple-scanline buffer.
|
||||
*/
|
||||
|
||||
GLOBAL(JDIMENSION)
|
||||
jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines,
|
||||
JDIMENSION num_lines)
|
||||
{
|
||||
JDIMENSION row_ctr, rows_left;
|
||||
|
||||
if (cinfo->global_state != CSTATE_SCANNING)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
if (cinfo->next_scanline >= cinfo->image_height)
|
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
|
||||
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long) cinfo->next_scanline;
|
||||
cinfo->progress->pass_limit = (long) cinfo->image_height;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
}
|
||||
|
||||
/* Give master control module another chance if this is first call to
|
||||
* jpeg_write_scanlines. This lets output of the frame/scan headers be
|
||||
* delayed so that application can write COM, etc, markers between
|
||||
* jpeg_start_compress and jpeg_write_scanlines.
|
||||
*/
|
||||
if (cinfo->master->call_pass_startup)
|
||||
(*cinfo->master->pass_startup) (cinfo);
|
||||
|
||||
/* Ignore any extra scanlines at bottom of image. */
|
||||
rows_left = cinfo->image_height - cinfo->next_scanline;
|
||||
if (num_lines > rows_left)
|
||||
num_lines = rows_left;
|
||||
|
||||
row_ctr = 0;
|
||||
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines);
|
||||
cinfo->next_scanline += row_ctr;
|
||||
return row_ctr;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Alternate entry point to write raw data.
|
||||
* Processes exactly one iMCU row per call, unless suspended.
|
||||
*/
|
||||
|
||||
GLOBAL(JDIMENSION)
|
||||
jpeg_write_raw_data (j_compress_ptr cinfo, JSAMPIMAGE data,
|
||||
JDIMENSION num_lines)
|
||||
{
|
||||
JDIMENSION lines_per_iMCU_row;
|
||||
|
||||
if (cinfo->global_state != CSTATE_RAW_OK)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
if (cinfo->next_scanline >= cinfo->image_height) {
|
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long) cinfo->next_scanline;
|
||||
cinfo->progress->pass_limit = (long) cinfo->image_height;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
}
|
||||
|
||||
/* Give master control module another chance if this is first call to
|
||||
* jpeg_write_raw_data. This lets output of the frame/scan headers be
|
||||
* delayed so that application can write COM, etc, markers between
|
||||
* jpeg_start_compress and jpeg_write_raw_data.
|
||||
*/
|
||||
if (cinfo->master->call_pass_startup)
|
||||
(*cinfo->master->pass_startup) (cinfo);
|
||||
|
||||
/* Verify that at least one iMCU row has been passed. */
|
||||
lines_per_iMCU_row = cinfo->max_v_samp_factor * DCTSIZE;
|
||||
if (num_lines < lines_per_iMCU_row)
|
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE);
|
||||
|
||||
/* Directly compress the row. */
|
||||
if (! (*cinfo->coef->compress_data) (cinfo, data)) {
|
||||
/* If compressor did not consume the whole row, suspend processing. */
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* OK, we processed one iMCU row. */
|
||||
cinfo->next_scanline += lines_per_iMCU_row;
|
||||
return lines_per_iMCU_row;
|
||||
}
|
|
@ -0,0 +1,921 @@
|
|||
/*
|
||||
* jcarith.c
|
||||
*
|
||||
* Developed 1997 by Guido Vollbeding.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains portable arithmetic entropy encoding routines for JPEG
|
||||
* (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
|
||||
*
|
||||
* Both sequential and progressive modes are supported in this single module.
|
||||
*
|
||||
* Suspension is not currently supported in this module.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Expanded entropy encoder object for arithmetic encoding. */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_entropy_encoder pub; /* public fields */
|
||||
|
||||
INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */
|
||||
INT32 a; /* A register, normalized size of coding interval */
|
||||
INT32 sc; /* counter for stacked 0xFF values which might overflow */
|
||||
INT32 zc; /* counter for pending 0x00 output values which might *
|
||||
* be discarded at the end ("Pacman" termination) */
|
||||
int ct; /* bit shift counter, determines when next byte will be written */
|
||||
int buffer; /* buffer for most recent output byte != 0xFF */
|
||||
|
||||
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
||||
int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
|
||||
|
||||
unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
||||
int next_restart_num; /* next restart number to write (0-7) */
|
||||
|
||||
/* Pointers to statistics areas (these workspaces have image lifespan) */
|
||||
unsigned char * dc_stats[NUM_ARITH_TBLS];
|
||||
unsigned char * ac_stats[NUM_ARITH_TBLS];
|
||||
} arith_entropy_encoder;
|
||||
|
||||
typedef arith_entropy_encoder * arith_entropy_ptr;
|
||||
|
||||
/* The following two definitions specify the allocation chunk size
|
||||
* for the statistics area.
|
||||
* According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
|
||||
* 49 statistics bins for DC, and 245 statistics bins for AC coding.
|
||||
* Note that we use one additional AC bin for codings with fixed
|
||||
* probability (0.5), thus the minimum number for AC is 246.
|
||||
*
|
||||
* We use a compact representation with 1 byte per statistics bin,
|
||||
* thus the numbers directly represent byte sizes.
|
||||
* This 1 byte per statistics bin contains the meaning of the MPS
|
||||
* (more probable symbol) in the highest bit (mask 0x80), and the
|
||||
* index into the probability estimation state machine table
|
||||
* in the lower bits (mask 0x7F).
|
||||
*/
|
||||
|
||||
#define DC_STAT_BINS 64
|
||||
#define AC_STAT_BINS 256
|
||||
|
||||
/* NOTE: Uncomment the following #define if you want to use the
|
||||
* given formula for calculating the AC conditioning parameter Kx
|
||||
* for spectral selection progressive coding in section G.1.3.2
|
||||
* of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
|
||||
* Although the spec and P&M authors claim that this "has proven
|
||||
* to give good results for 8 bit precision samples", I'm not
|
||||
* convinced yet that this is really beneficial.
|
||||
* Early tests gave only very marginal compression enhancements
|
||||
* (a few - around 5 or so - bytes even for very large files),
|
||||
* which would turn out rather negative if we'd suppress the
|
||||
* DAC (Define Arithmetic Conditioning) marker segments for
|
||||
* the default parameters in the future.
|
||||
* Note that currently the marker writing module emits 12-byte
|
||||
* DAC segments for a full-component scan in a color image.
|
||||
* This is not worth worrying about IMHO. However, since the
|
||||
* spec defines the default values to be used if the tables
|
||||
* are omitted (unlike Huffman tables, which are required
|
||||
* anyway), one might optimize this behaviour in the future,
|
||||
* and then it would be disadvantageous to use custom tables if
|
||||
* they don't provide sufficient gain to exceed the DAC size.
|
||||
*
|
||||
* On the other hand, I'd consider it as a reasonable result
|
||||
* that the conditioning has no significant influence on the
|
||||
* compression performance. This means that the basic
|
||||
* statistical model is already rather stable.
|
||||
*
|
||||
* Thus, at the moment, we use the default conditioning values
|
||||
* anyway, and do not use the custom formula.
|
||||
*
|
||||
#define CALCULATE_SPECTRAL_CONDITIONING
|
||||
*/
|
||||
|
||||
/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
|
||||
* We assume that int right shift is unsigned if INT32 right shift is,
|
||||
* which should be safe.
|
||||
*/
|
||||
|
||||
#ifdef RIGHT_SHIFT_IS_UNSIGNED
|
||||
#define ISHIFT_TEMPS int ishift_temp;
|
||||
#define IRIGHT_SHIFT(x,shft) \
|
||||
((ishift_temp = (x)) < 0 ? \
|
||||
(ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
|
||||
(ishift_temp >> (shft)))
|
||||
#else
|
||||
#define ISHIFT_TEMPS
|
||||
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
|
||||
#endif
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_byte (int val, j_compress_ptr cinfo)
|
||||
/* Write next output byte; we do not support suspension in this module. */
|
||||
{
|
||||
struct jpeg_destination_mgr * dest = cinfo->dest;
|
||||
|
||||
*dest->next_output_byte++ = (JOCTET) val;
|
||||
if (--dest->free_in_buffer == 0)
|
||||
if (! (*dest->empty_output_buffer) (cinfo))
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at the end of an arithmetic-compressed scan.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
finish_pass (j_compress_ptr cinfo)
|
||||
{
|
||||
arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
|
||||
INT32 temp;
|
||||
|
||||
/* Section D.1.8: Termination of encoding */
|
||||
|
||||
/* Find the e->c in the coding interval with the largest
|
||||
* number of trailing zero bits */
|
||||
if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
|
||||
e->c = temp + 0x8000L;
|
||||
else
|
||||
e->c = temp;
|
||||
/* Send remaining bytes to output */
|
||||
e->c <<= e->ct;
|
||||
if (e->c & 0xF8000000L) {
|
||||
/* One final overflow has to be handled */
|
||||
if (e->buffer >= 0) {
|
||||
if (e->zc)
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
emit_byte(e->buffer + 1, cinfo);
|
||||
if (e->buffer + 1 == 0xFF)
|
||||
emit_byte(0x00, cinfo);
|
||||
}
|
||||
e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
|
||||
e->sc = 0;
|
||||
} else {
|
||||
if (e->buffer == 0)
|
||||
++e->zc;
|
||||
else if (e->buffer >= 0) {
|
||||
if (e->zc)
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
emit_byte(e->buffer, cinfo);
|
||||
}
|
||||
if (e->sc) {
|
||||
if (e->zc)
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
do {
|
||||
emit_byte(0xFF, cinfo);
|
||||
emit_byte(0x00, cinfo);
|
||||
} while (--e->sc);
|
||||
}
|
||||
}
|
||||
/* Output final bytes only if they are not 0x00 */
|
||||
if (e->c & 0x7FFF800L) {
|
||||
if (e->zc) /* output final pending zero bytes */
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
emit_byte((e->c >> 19) & 0xFF, cinfo);
|
||||
if (((e->c >> 19) & 0xFF) == 0xFF)
|
||||
emit_byte(0x00, cinfo);
|
||||
if (e->c & 0x7F800L) {
|
||||
emit_byte((e->c >> 11) & 0xFF, cinfo);
|
||||
if (((e->c >> 11) & 0xFF) == 0xFF)
|
||||
emit_byte(0x00, cinfo);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The core arithmetic encoding routine (common in JPEG and JBIG).
|
||||
* This needs to go as fast as possible.
|
||||
* Machine-dependent optimization facilities
|
||||
* are not utilized in this portable implementation.
|
||||
* However, this code should be fairly efficient and
|
||||
* may be a good base for further optimizations anyway.
|
||||
*
|
||||
* Parameter 'val' to be encoded may be 0 or 1 (binary decision).
|
||||
*
|
||||
* Note: I've added full "Pacman" termination support to the
|
||||
* byte output routines, which is equivalent to the optional
|
||||
* Discard_final_zeros procedure (Figure D.15) in the spec.
|
||||
* Thus, we always produce the shortest possible output
|
||||
* stream compliant to the spec (no trailing zero bytes,
|
||||
* except for FF stuffing).
|
||||
*
|
||||
* I've also introduced a new scheme for accessing
|
||||
* the probability estimation state machine table,
|
||||
* derived from Markus Kuhn's JBIG implementation.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
|
||||
{
|
||||
extern const INT32 jaritab[];
|
||||
register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
|
||||
register unsigned char nl, nm;
|
||||
register INT32 qe, temp;
|
||||
register int sv;
|
||||
|
||||
/* Fetch values from our compact representation of Table D.2:
|
||||
* Qe values and probability estimation state machine
|
||||
*/
|
||||
sv = *st;
|
||||
qe = jaritab[sv & 0x7F]; /* => Qe_Value */
|
||||
nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
|
||||
nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
|
||||
|
||||
/* Encode & estimation procedures per sections D.1.4 & D.1.5 */
|
||||
e->a -= qe;
|
||||
if (val != (sv >> 7)) {
|
||||
/* Encode the less probable symbol */
|
||||
if (e->a >= qe) {
|
||||
/* If the interval size (qe) for the less probable symbol (LPS)
|
||||
* is larger than the interval size for the MPS, then exchange
|
||||
* the two symbols for coding efficiency, otherwise code the LPS
|
||||
* as usual: */
|
||||
e->c += e->a;
|
||||
e->a = qe;
|
||||
}
|
||||
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
|
||||
} else {
|
||||
/* Encode the more probable symbol */
|
||||
if (e->a >= 0x8000L)
|
||||
return; /* A >= 0x8000 -> ready, no renormalization required */
|
||||
if (e->a < qe) {
|
||||
/* If the interval size (qe) for the less probable symbol (LPS)
|
||||
* is larger than the interval size for the MPS, then exchange
|
||||
* the two symbols for coding efficiency: */
|
||||
e->c += e->a;
|
||||
e->a = qe;
|
||||
}
|
||||
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
|
||||
}
|
||||
|
||||
/* Renormalization & data output per section D.1.6 */
|
||||
do {
|
||||
e->a <<= 1;
|
||||
e->c <<= 1;
|
||||
if (--e->ct == 0) {
|
||||
/* Another byte is ready for output */
|
||||
temp = e->c >> 19;
|
||||
if (temp > 0xFF) {
|
||||
/* Handle overflow over all stacked 0xFF bytes */
|
||||
if (e->buffer >= 0) {
|
||||
if (e->zc)
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
emit_byte(e->buffer + 1, cinfo);
|
||||
if (e->buffer + 1 == 0xFF)
|
||||
emit_byte(0x00, cinfo);
|
||||
}
|
||||
e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
|
||||
e->sc = 0;
|
||||
/* Note: The 3 spacer bits in the C register guarantee
|
||||
* that the new buffer byte can't be 0xFF here
|
||||
* (see page 160 in the P&M JPEG book). */
|
||||
e->buffer = temp & 0xFF; /* new output byte, might overflow later */
|
||||
} else if (temp == 0xFF) {
|
||||
++e->sc; /* stack 0xFF byte (which might overflow later) */
|
||||
} else {
|
||||
/* Output all stacked 0xFF bytes, they will not overflow any more */
|
||||
if (e->buffer == 0)
|
||||
++e->zc;
|
||||
else if (e->buffer >= 0) {
|
||||
if (e->zc)
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
emit_byte(e->buffer, cinfo);
|
||||
}
|
||||
if (e->sc) {
|
||||
if (e->zc)
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
do {
|
||||
emit_byte(0xFF, cinfo);
|
||||
emit_byte(0x00, cinfo);
|
||||
} while (--e->sc);
|
||||
}
|
||||
e->buffer = temp & 0xFF; /* new output byte (can still overflow) */
|
||||
}
|
||||
e->c &= 0x7FFFFL;
|
||||
e->ct += 8;
|
||||
}
|
||||
} while (e->a < 0x8000L);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Emit a restart marker & resynchronize predictions.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
emit_restart (j_compress_ptr cinfo, int restart_num)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
int ci;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
finish_pass(cinfo);
|
||||
|
||||
emit_byte(0xFF, cinfo);
|
||||
emit_byte(JPEG_RST0 + restart_num, cinfo);
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Re-initialize statistics areas */
|
||||
if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
|
||||
MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
|
||||
/* Reset DC predictions to 0 */
|
||||
entropy->last_dc_val[ci] = 0;
|
||||
entropy->dc_context[ci] = 0;
|
||||
}
|
||||
if (cinfo->progressive_mode == 0 || cinfo->Ss) {
|
||||
MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
|
||||
}
|
||||
}
|
||||
|
||||
/* Reset arithmetic encoding variables */
|
||||
entropy->c = 0;
|
||||
entropy->a = 0x10000L;
|
||||
entropy->sc = 0;
|
||||
entropy->zc = 0;
|
||||
entropy->ct = 11;
|
||||
entropy->buffer = -1; /* empty */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for DC initial scan (either spectral selection,
|
||||
* or first pass of successive approximation).
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int blkn, ci, tbl;
|
||||
int v, v2, m;
|
||||
ISHIFT_TEMPS
|
||||
|
||||
/* Emit restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0) {
|
||||
emit_restart(cinfo, entropy->next_restart_num);
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num++;
|
||||
entropy->next_restart_num &= 7;
|
||||
}
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
/* Encode the MCU data blocks */
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
block = MCU_data[blkn];
|
||||
ci = cinfo->MCU_membership[blkn];
|
||||
tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
|
||||
|
||||
/* Compute the DC value after the required point transform by Al.
|
||||
* This is simply an arithmetic right shift.
|
||||
*/
|
||||
m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al);
|
||||
|
||||
/* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
|
||||
|
||||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
|
||||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
|
||||
|
||||
/* Figure F.4: Encode_DC_DIFF */
|
||||
if ((v = m - entropy->last_dc_val[ci]) == 0) {
|
||||
arith_encode(cinfo, st, 0);
|
||||
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||
} else {
|
||||
entropy->last_dc_val[ci] = m;
|
||||
arith_encode(cinfo, st, 1);
|
||||
/* Figure F.6: Encoding nonzero value v */
|
||||
/* Figure F.7: Encoding the sign of v */
|
||||
if (v > 0) {
|
||||
arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
|
||||
st += 2; /* Table F.4: SP = S0 + 2 */
|
||||
entropy->dc_context[ci] = 4; /* small positive diff category */
|
||||
} else {
|
||||
v = -v;
|
||||
arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
|
||||
st += 3; /* Table F.4: SN = S0 + 3 */
|
||||
entropy->dc_context[ci] = 8; /* small negative diff category */
|
||||
}
|
||||
/* Figure F.8: Encoding the magnitude category of v */
|
||||
m = 0;
|
||||
if (v -= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m = 1;
|
||||
v2 = v;
|
||||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
|
||||
while (v2 >>= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m <<= 1;
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
arith_encode(cinfo, st, 0);
|
||||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
|
||||
if (m < (int) (((INT32) 1 << cinfo->arith_dc_L[tbl]) >> 1))
|
||||
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||
else if (m > (int) (((INT32) 1 << cinfo->arith_dc_U[tbl]) >> 1))
|
||||
entropy->dc_context[ci] += 8; /* large diff category */
|
||||
/* Figure F.9: Encoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
||||
}
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for AC initial scan (either spectral selection,
|
||||
* or first pass of successive approximation).
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int tbl, k, ke;
|
||||
int v, v2, m;
|
||||
|
||||
/* Emit restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0) {
|
||||
emit_restart(cinfo, entropy->next_restart_num);
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num++;
|
||||
entropy->next_restart_num &= 7;
|
||||
}
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
/* Encode the MCU data block */
|
||||
block = MCU_data[0];
|
||||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
|
||||
|
||||
/* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
|
||||
|
||||
/* Establish EOB (end-of-block) index */
|
||||
for (ke = cinfo->Se + 1; ke > 1; ke--)
|
||||
/* We must apply the point transform by Al. For AC coefficients this
|
||||
* is an integer division with rounding towards 0. To do this portably
|
||||
* in C, we shift after obtaining the absolute value.
|
||||
*/
|
||||
if ((v = (*block)[jpeg_natural_order[ke - 1]]) >= 0) {
|
||||
if (v >>= cinfo->Al) break;
|
||||
} else {
|
||||
v = -v;
|
||||
if (v >>= cinfo->Al) break;
|
||||
}
|
||||
|
||||
/* Figure F.5: Encode_AC_Coefficients */
|
||||
for (k = cinfo->Ss; k < ke; k++) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
arith_encode(cinfo, st, 0); /* EOB decision */
|
||||
entropy->ac_stats[tbl][245] = 0;
|
||||
for (;;) {
|
||||
if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
|
||||
if (v >>= cinfo->Al) {
|
||||
arith_encode(cinfo, st + 1, 1);
|
||||
arith_encode(cinfo, entropy->ac_stats[tbl] + 245, 0);
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
v = -v;
|
||||
if (v >>= cinfo->Al) {
|
||||
arith_encode(cinfo, st + 1, 1);
|
||||
arith_encode(cinfo, entropy->ac_stats[tbl] + 245, 1);
|
||||
break;
|
||||
}
|
||||
}
|
||||
arith_encode(cinfo, st + 1, 0); st += 3; k++;
|
||||
}
|
||||
st += 2;
|
||||
/* Figure F.8: Encoding the magnitude category of v */
|
||||
m = 0;
|
||||
if (v -= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m = 1;
|
||||
v2 = v;
|
||||
if (v2 >>= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m <<= 1;
|
||||
st = entropy->ac_stats[tbl] +
|
||||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
|
||||
while (v2 >>= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m <<= 1;
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
arith_encode(cinfo, st, 0);
|
||||
/* Figure F.9: Encoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
||||
}
|
||||
/* Encode EOB decision only if k <= cinfo->Se */
|
||||
if (k <= cinfo->Se) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
arith_encode(cinfo, st, 1);
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for DC successive approximation refinement scan.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
unsigned char st[4];
|
||||
int Al, blkn;
|
||||
|
||||
/* Emit restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0) {
|
||||
emit_restart(cinfo, entropy->next_restart_num);
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num++;
|
||||
entropy->next_restart_num &= 7;
|
||||
}
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
Al = cinfo->Al;
|
||||
|
||||
/* Encode the MCU data blocks */
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
st[0] = 0; /* use fixed probability estimation */
|
||||
/* We simply emit the Al'th bit of the DC coefficient value. */
|
||||
arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for AC successive approximation refinement scan.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int tbl, k, ke, kex;
|
||||
int v;
|
||||
|
||||
/* Emit restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0) {
|
||||
emit_restart(cinfo, entropy->next_restart_num);
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num++;
|
||||
entropy->next_restart_num &= 7;
|
||||
}
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
/* Encode the MCU data block */
|
||||
block = MCU_data[0];
|
||||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
|
||||
|
||||
/* Section G.1.3.3: Encoding of AC coefficients */
|
||||
|
||||
/* Establish EOB (end-of-block) index */
|
||||
for (ke = cinfo->Se + 1; ke > 1; ke--)
|
||||
/* We must apply the point transform by Al. For AC coefficients this
|
||||
* is an integer division with rounding towards 0. To do this portably
|
||||
* in C, we shift after obtaining the absolute value.
|
||||
*/
|
||||
if ((v = (*block)[jpeg_natural_order[ke - 1]]) >= 0) {
|
||||
if (v >>= cinfo->Al) break;
|
||||
} else {
|
||||
v = -v;
|
||||
if (v >>= cinfo->Al) break;
|
||||
}
|
||||
|
||||
/* Establish EOBx (previous stage end-of-block) index */
|
||||
for (kex = ke; kex > 1; kex--)
|
||||
if ((v = (*block)[jpeg_natural_order[kex - 1]]) >= 0) {
|
||||
if (v >>= cinfo->Ah) break;
|
||||
} else {
|
||||
v = -v;
|
||||
if (v >>= cinfo->Ah) break;
|
||||
}
|
||||
|
||||
/* Figure G.10: Encode_AC_Coefficients_SA */
|
||||
for (k = cinfo->Ss; k < ke; k++) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
if (k >= kex)
|
||||
arith_encode(cinfo, st, 0); /* EOB decision */
|
||||
entropy->ac_stats[tbl][245] = 0;
|
||||
for (;;) {
|
||||
if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
|
||||
if (v >>= cinfo->Al) {
|
||||
if (v >> 1) /* previously nonzero coef */
|
||||
arith_encode(cinfo, st + 2, (v & 1));
|
||||
else { /* newly nonzero coef */
|
||||
arith_encode(cinfo, st + 1, 1);
|
||||
arith_encode(cinfo, entropy->ac_stats[tbl] + 245, 0);
|
||||
}
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
v = -v;
|
||||
if (v >>= cinfo->Al) {
|
||||
if (v >> 1) /* previously nonzero coef */
|
||||
arith_encode(cinfo, st + 2, (v & 1));
|
||||
else { /* newly nonzero coef */
|
||||
arith_encode(cinfo, st + 1, 1);
|
||||
arith_encode(cinfo, entropy->ac_stats[tbl] + 245, 1);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
arith_encode(cinfo, st + 1, 0); st += 3; k++;
|
||||
}
|
||||
}
|
||||
/* Encode EOB decision only if k <= cinfo->Se */
|
||||
if (k <= cinfo->Se) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
arith_encode(cinfo, st, 1);
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Encode and output one MCU's worth of arithmetic-compressed coefficients.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
jpeg_component_info * compptr;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int blkn, ci, tbl, k, ke;
|
||||
int v, v2, m;
|
||||
|
||||
/* Emit restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0) {
|
||||
emit_restart(cinfo, entropy->next_restart_num);
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num++;
|
||||
entropy->next_restart_num &= 7;
|
||||
}
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
/* Encode the MCU data blocks */
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
block = MCU_data[blkn];
|
||||
ci = cinfo->MCU_membership[blkn];
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
|
||||
/* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
|
||||
|
||||
tbl = compptr->dc_tbl_no;
|
||||
|
||||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
|
||||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
|
||||
|
||||
/* Figure F.4: Encode_DC_DIFF */
|
||||
if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
|
||||
arith_encode(cinfo, st, 0);
|
||||
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||
} else {
|
||||
entropy->last_dc_val[ci] = (*block)[0];
|
||||
arith_encode(cinfo, st, 1);
|
||||
/* Figure F.6: Encoding nonzero value v */
|
||||
/* Figure F.7: Encoding the sign of v */
|
||||
if (v > 0) {
|
||||
arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
|
||||
st += 2; /* Table F.4: SP = S0 + 2 */
|
||||
entropy->dc_context[ci] = 4; /* small positive diff category */
|
||||
} else {
|
||||
v = -v;
|
||||
arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
|
||||
st += 3; /* Table F.4: SN = S0 + 3 */
|
||||
entropy->dc_context[ci] = 8; /* small negative diff category */
|
||||
}
|
||||
/* Figure F.8: Encoding the magnitude category of v */
|
||||
m = 0;
|
||||
if (v -= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m = 1;
|
||||
v2 = v;
|
||||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
|
||||
while (v2 >>= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m <<= 1;
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
arith_encode(cinfo, st, 0);
|
||||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
|
||||
if (m < (int) (((INT32) 1 << cinfo->arith_dc_L[tbl]) >> 1))
|
||||
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||
else if (m > (int) (((INT32) 1 << cinfo->arith_dc_U[tbl]) >> 1))
|
||||
entropy->dc_context[ci] += 8; /* large diff category */
|
||||
/* Figure F.9: Encoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
||||
}
|
||||
|
||||
/* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
|
||||
|
||||
tbl = compptr->ac_tbl_no;
|
||||
|
||||
/* Establish EOB (end-of-block) index */
|
||||
for (ke = DCTSIZE2; ke > 1; ke--)
|
||||
if ((*block)[jpeg_natural_order[ke - 1]]) break;
|
||||
|
||||
/* Figure F.5: Encode_AC_Coefficients */
|
||||
for (k = 1; k < ke; k++) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
arith_encode(cinfo, st, 0); /* EOB decision */
|
||||
while ((v = (*block)[jpeg_natural_order[k]]) == 0) {
|
||||
arith_encode(cinfo, st + 1, 0); st += 3; k++;
|
||||
}
|
||||
arith_encode(cinfo, st + 1, 1);
|
||||
/* Figure F.6: Encoding nonzero value v */
|
||||
/* Figure F.7: Encoding the sign of v */
|
||||
entropy->ac_stats[tbl][245] = 0;
|
||||
if (v > 0) {
|
||||
arith_encode(cinfo, entropy->ac_stats[tbl] + 245, 0);
|
||||
} else {
|
||||
v = -v;
|
||||
arith_encode(cinfo, entropy->ac_stats[tbl] + 245, 1);
|
||||
}
|
||||
st += 2;
|
||||
/* Figure F.8: Encoding the magnitude category of v */
|
||||
m = 0;
|
||||
if (v -= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m = 1;
|
||||
v2 = v;
|
||||
if (v2 >>= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m <<= 1;
|
||||
st = entropy->ac_stats[tbl] +
|
||||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
|
||||
while (v2 >>= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m <<= 1;
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
arith_encode(cinfo, st, 0);
|
||||
/* Figure F.9: Encoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
||||
}
|
||||
/* Encode EOB decision only if k < DCTSIZE2 */
|
||||
if (k < DCTSIZE2) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
arith_encode(cinfo, st, 1);
|
||||
}
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for an arithmetic-compressed scan.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass (j_compress_ptr cinfo, boolean gather_statistics)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
int ci, tbl;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
if (gather_statistics)
|
||||
/* Make sure to avoid that in the master control logic!
|
||||
* We are fully adaptive here and need no extra
|
||||
* statistics gathering pass!
|
||||
*/
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
|
||||
/* We assume jcmaster.c already validated the progressive scan parameters. */
|
||||
|
||||
/* Select execution routines */
|
||||
if (cinfo->progressive_mode) {
|
||||
if (cinfo->Ah == 0) {
|
||||
if (cinfo->Ss == 0)
|
||||
entropy->pub.encode_mcu = encode_mcu_DC_first;
|
||||
else
|
||||
entropy->pub.encode_mcu = encode_mcu_AC_first;
|
||||
} else {
|
||||
if (cinfo->Ss == 0)
|
||||
entropy->pub.encode_mcu = encode_mcu_DC_refine;
|
||||
else
|
||||
entropy->pub.encode_mcu = encode_mcu_AC_refine;
|
||||
}
|
||||
} else
|
||||
entropy->pub.encode_mcu = encode_mcu;
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Allocate & initialize requested statistics areas */
|
||||
if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
|
||||
tbl = compptr->dc_tbl_no;
|
||||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
|
||||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
|
||||
if (entropy->dc_stats[tbl] == NULL)
|
||||
entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
|
||||
MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
|
||||
/* Initialize DC predictions to 0 */
|
||||
entropy->last_dc_val[ci] = 0;
|
||||
entropy->dc_context[ci] = 0;
|
||||
}
|
||||
if (cinfo->progressive_mode == 0 || cinfo->Ss) {
|
||||
tbl = compptr->ac_tbl_no;
|
||||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
|
||||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
|
||||
if (entropy->ac_stats[tbl] == NULL)
|
||||
entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
|
||||
MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
|
||||
#ifdef CALCULATE_SPECTRAL_CONDITIONING
|
||||
if (cinfo->progressive_mode)
|
||||
/* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
|
||||
cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
/* Initialize arithmetic encoding variables */
|
||||
entropy->c = 0;
|
||||
entropy->a = 0x10000L;
|
||||
entropy->sc = 0;
|
||||
entropy->zc = 0;
|
||||
entropy->ct = 11;
|
||||
entropy->buffer = -1; /* empty */
|
||||
|
||||
/* Initialize restart stuff */
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num = 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for arithmetic entropy encoding.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_arith_encoder (j_compress_ptr cinfo)
|
||||
{
|
||||
arith_entropy_ptr entropy;
|
||||
int i;
|
||||
|
||||
entropy = (arith_entropy_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(arith_entropy_encoder));
|
||||
cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
|
||||
entropy->pub.start_pass = start_pass;
|
||||
entropy->pub.finish_pass = finish_pass;
|
||||
|
||||
/* Mark tables unallocated */
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) {
|
||||
entropy->dc_stats[i] = NULL;
|
||||
entropy->ac_stats[i] = NULL;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,453 @@
|
|||
/*
|
||||
* jccoefct.c
|
||||
*
|
||||
* Copyright (C) 1994-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the coefficient buffer controller for compression.
|
||||
* This controller is the top level of the JPEG compressor proper.
|
||||
* The coefficient buffer lies between forward-DCT and entropy encoding steps.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* We use a full-image coefficient buffer when doing Huffman optimization,
|
||||
* and also for writing multiple-scan JPEG files. In all cases, the DCT
|
||||
* step is run during the first pass, and subsequent passes need only read
|
||||
* the buffered coefficients.
|
||||
*/
|
||||
#ifdef ENTROPY_OPT_SUPPORTED
|
||||
#define FULL_COEF_BUFFER_SUPPORTED
|
||||
#else
|
||||
#ifdef C_MULTISCAN_FILES_SUPPORTED
|
||||
#define FULL_COEF_BUFFER_SUPPORTED
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_c_coef_controller pub; /* public fields */
|
||||
|
||||
JDIMENSION iMCU_row_num; /* iMCU row # within image */
|
||||
JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
|
||||
int MCU_vert_offset; /* counts MCU rows within iMCU row */
|
||||
int MCU_rows_per_iMCU_row; /* number of such rows needed */
|
||||
|
||||
/* For single-pass compression, it's sufficient to buffer just one MCU
|
||||
* (although this may prove a bit slow in practice). We allocate a
|
||||
* workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
|
||||
* MCU constructed and sent. (On 80x86, the workspace is FAR even though
|
||||
* it's not really very big; this is to keep the module interfaces unchanged
|
||||
* when a large coefficient buffer is necessary.)
|
||||
* In multi-pass modes, this array points to the current MCU's blocks
|
||||
* within the virtual arrays.
|
||||
*/
|
||||
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
|
||||
|
||||
/* In multi-pass modes, we need a virtual block array for each component. */
|
||||
jvirt_barray_ptr whole_image[MAX_COMPONENTS];
|
||||
} my_coef_controller;
|
||||
|
||||
typedef my_coef_controller * my_coef_ptr;
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF(boolean) compress_data
|
||||
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
|
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
||||
METHODDEF(boolean) compress_first_pass
|
||||
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
|
||||
METHODDEF(boolean) compress_output
|
||||
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
|
||||
#endif
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
start_iMCU_row (j_compress_ptr cinfo)
|
||||
/* Reset within-iMCU-row counters for a new row */
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
|
||||
/* In an interleaved scan, an MCU row is the same as an iMCU row.
|
||||
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
|
||||
* But at the bottom of the image, process only what's left.
|
||||
*/
|
||||
if (cinfo->comps_in_scan > 1) {
|
||||
coef->MCU_rows_per_iMCU_row = 1;
|
||||
} else {
|
||||
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
|
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
|
||||
else
|
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
|
||||
}
|
||||
|
||||
coef->mcu_ctr = 0;
|
||||
coef->MCU_vert_offset = 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
|
||||
coef->iMCU_row_num = 0;
|
||||
start_iMCU_row(cinfo);
|
||||
|
||||
switch (pass_mode) {
|
||||
case JBUF_PASS_THRU:
|
||||
if (coef->whole_image[0] != NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
coef->pub.compress_data = compress_data;
|
||||
break;
|
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
||||
case JBUF_SAVE_AND_PASS:
|
||||
if (coef->whole_image[0] == NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
coef->pub.compress_data = compress_first_pass;
|
||||
break;
|
||||
case JBUF_CRANK_DEST:
|
||||
if (coef->whole_image[0] == NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
coef->pub.compress_data = compress_output;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data in the single-pass case.
|
||||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
||||
* per call, ie, v_samp_factor block rows for each component in the image.
|
||||
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
|
||||
*
|
||||
* NB: input_buf contains a plane for each component in image,
|
||||
* which we index according to the component's SOF position.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
||||
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
|
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
||||
int blkn, bi, ci, yindex, yoffset, blockcnt;
|
||||
JDIMENSION ypos, xpos;
|
||||
jpeg_component_info *compptr;
|
||||
forward_DCT_ptr forward_DCT;
|
||||
|
||||
/* Loop to write as much as one whole iMCU row */
|
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
||||
yoffset++) {
|
||||
for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
|
||||
MCU_col_num++) {
|
||||
/* Determine where data comes from in input_buf and do the DCT thing.
|
||||
* Each call on forward_DCT processes a horizontal row of DCT blocks
|
||||
* as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
|
||||
* sequentially. Dummy blocks at the right or bottom edge are filled in
|
||||
* specially. The data in them does not matter for image reconstruction,
|
||||
* so we fill them with values that will encode to the smallest amount of
|
||||
* data, viz: all zeroes in the AC entries, DC entries equal to previous
|
||||
* block's DC value. (Thanks to Thomas Kinsman for this idea.)
|
||||
*/
|
||||
blkn = 0;
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
forward_DCT = cinfo->fdct->forward_DCT[compptr->component_index];
|
||||
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
|
||||
: compptr->last_col_width;
|
||||
xpos = MCU_col_num * compptr->MCU_sample_width;
|
||||
ypos = yoffset * compptr->DCT_v_scaled_size;
|
||||
/* ypos == (yoffset+yindex) * DCTSIZE */
|
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
||||
if (coef->iMCU_row_num < last_iMCU_row ||
|
||||
yoffset+yindex < compptr->last_row_height) {
|
||||
(*forward_DCT) (cinfo, compptr,
|
||||
input_buf[compptr->component_index],
|
||||
coef->MCU_buffer[blkn],
|
||||
ypos, xpos, (JDIMENSION) blockcnt);
|
||||
if (blockcnt < compptr->MCU_width) {
|
||||
/* Create some dummy blocks at the right edge of the image. */
|
||||
jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
|
||||
(compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
|
||||
for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
|
||||
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
|
||||
}
|
||||
}
|
||||
} else {
|
||||
/* Create a row of dummy blocks at the bottom of the image. */
|
||||
jzero_far((void FAR *) coef->MCU_buffer[blkn],
|
||||
compptr->MCU_width * SIZEOF(JBLOCK));
|
||||
for (bi = 0; bi < compptr->MCU_width; bi++) {
|
||||
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
|
||||
}
|
||||
}
|
||||
blkn += compptr->MCU_width;
|
||||
ypos += compptr->DCT_v_scaled_size;
|
||||
}
|
||||
}
|
||||
/* Try to write the MCU. In event of a suspension failure, we will
|
||||
* re-DCT the MCU on restart (a bit inefficient, could be fixed...)
|
||||
*/
|
||||
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
|
||||
/* Suspension forced; update state counters and exit */
|
||||
coef->MCU_vert_offset = yoffset;
|
||||
coef->mcu_ctr = MCU_col_num;
|
||||
return FALSE;
|
||||
}
|
||||
}
|
||||
/* Completed an MCU row, but perhaps not an iMCU row */
|
||||
coef->mcu_ctr = 0;
|
||||
}
|
||||
/* Completed the iMCU row, advance counters for next one */
|
||||
coef->iMCU_row_num++;
|
||||
start_iMCU_row(cinfo);
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
||||
|
||||
/*
|
||||
* Process some data in the first pass of a multi-pass case.
|
||||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
||||
* per call, ie, v_samp_factor block rows for each component in the image.
|
||||
* This amount of data is read from the source buffer, DCT'd and quantized,
|
||||
* and saved into the virtual arrays. We also generate suitable dummy blocks
|
||||
* as needed at the right and lower edges. (The dummy blocks are constructed
|
||||
* in the virtual arrays, which have been padded appropriately.) This makes
|
||||
* it possible for subsequent passes not to worry about real vs. dummy blocks.
|
||||
*
|
||||
* We must also emit the data to the entropy encoder. This is conveniently
|
||||
* done by calling compress_output() after we've loaded the current strip
|
||||
* of the virtual arrays.
|
||||
*
|
||||
* NB: input_buf contains a plane for each component in image. All
|
||||
* components are DCT'd and loaded into the virtual arrays in this pass.
|
||||
* However, it may be that only a subset of the components are emitted to
|
||||
* the entropy encoder during this first pass; be careful about looking
|
||||
* at the scan-dependent variables (MCU dimensions, etc).
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
||||
JDIMENSION blocks_across, MCUs_across, MCUindex;
|
||||
int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
|
||||
JCOEF lastDC;
|
||||
jpeg_component_info *compptr;
|
||||
JBLOCKARRAY buffer;
|
||||
JBLOCKROW thisblockrow, lastblockrow;
|
||||
forward_DCT_ptr forward_DCT;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Align the virtual buffer for this component. */
|
||||
buffer = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr) cinfo, coef->whole_image[ci],
|
||||
coef->iMCU_row_num * compptr->v_samp_factor,
|
||||
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
||||
/* Count non-dummy DCT block rows in this iMCU row. */
|
||||
if (coef->iMCU_row_num < last_iMCU_row)
|
||||
block_rows = compptr->v_samp_factor;
|
||||
else {
|
||||
/* NB: can't use last_row_height here, since may not be set! */
|
||||
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
|
||||
if (block_rows == 0) block_rows = compptr->v_samp_factor;
|
||||
}
|
||||
blocks_across = compptr->width_in_blocks;
|
||||
h_samp_factor = compptr->h_samp_factor;
|
||||
/* Count number of dummy blocks to be added at the right margin. */
|
||||
ndummy = (int) (blocks_across % h_samp_factor);
|
||||
if (ndummy > 0)
|
||||
ndummy = h_samp_factor - ndummy;
|
||||
forward_DCT = cinfo->fdct->forward_DCT[ci];
|
||||
/* Perform DCT for all non-dummy blocks in this iMCU row. Each call
|
||||
* on forward_DCT processes a complete horizontal row of DCT blocks.
|
||||
*/
|
||||
for (block_row = 0; block_row < block_rows; block_row++) {
|
||||
thisblockrow = buffer[block_row];
|
||||
(*forward_DCT) (cinfo, compptr, input_buf[ci], thisblockrow,
|
||||
(JDIMENSION) (block_row * compptr->DCT_v_scaled_size),
|
||||
(JDIMENSION) 0, blocks_across);
|
||||
if (ndummy > 0) {
|
||||
/* Create dummy blocks at the right edge of the image. */
|
||||
thisblockrow += blocks_across; /* => first dummy block */
|
||||
jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
|
||||
lastDC = thisblockrow[-1][0];
|
||||
for (bi = 0; bi < ndummy; bi++) {
|
||||
thisblockrow[bi][0] = lastDC;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* If at end of image, create dummy block rows as needed.
|
||||
* The tricky part here is that within each MCU, we want the DC values
|
||||
* of the dummy blocks to match the last real block's DC value.
|
||||
* This squeezes a few more bytes out of the resulting file...
|
||||
*/
|
||||
if (coef->iMCU_row_num == last_iMCU_row) {
|
||||
blocks_across += ndummy; /* include lower right corner */
|
||||
MCUs_across = blocks_across / h_samp_factor;
|
||||
for (block_row = block_rows; block_row < compptr->v_samp_factor;
|
||||
block_row++) {
|
||||
thisblockrow = buffer[block_row];
|
||||
lastblockrow = buffer[block_row-1];
|
||||
jzero_far((void FAR *) thisblockrow,
|
||||
(size_t) (blocks_across * SIZEOF(JBLOCK)));
|
||||
for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
|
||||
lastDC = lastblockrow[h_samp_factor-1][0];
|
||||
for (bi = 0; bi < h_samp_factor; bi++) {
|
||||
thisblockrow[bi][0] = lastDC;
|
||||
}
|
||||
thisblockrow += h_samp_factor; /* advance to next MCU in row */
|
||||
lastblockrow += h_samp_factor;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/* NB: compress_output will increment iMCU_row_num if successful.
|
||||
* A suspension return will result in redoing all the work above next time.
|
||||
*/
|
||||
|
||||
/* Emit data to the entropy encoder, sharing code with subsequent passes */
|
||||
return compress_output(cinfo, input_buf);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data in subsequent passes of a multi-pass case.
|
||||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
||||
* per call, ie, v_samp_factor block rows for each component in the scan.
|
||||
* The data is obtained from the virtual arrays and fed to the entropy coder.
|
||||
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
|
||||
*
|
||||
* NB: input_buf is ignored; it is likely to be a NULL pointer.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
||||
int blkn, ci, xindex, yindex, yoffset;
|
||||
JDIMENSION start_col;
|
||||
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
|
||||
JBLOCKROW buffer_ptr;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
/* Align the virtual buffers for the components used in this scan.
|
||||
* NB: during first pass, this is safe only because the buffers will
|
||||
* already be aligned properly, so jmemmgr.c won't need to do any I/O.
|
||||
*/
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
buffer[ci] = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
|
||||
coef->iMCU_row_num * compptr->v_samp_factor,
|
||||
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
||||
}
|
||||
|
||||
/* Loop to process one whole iMCU row */
|
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
||||
yoffset++) {
|
||||
for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
|
||||
MCU_col_num++) {
|
||||
/* Construct list of pointers to DCT blocks belonging to this MCU */
|
||||
blkn = 0; /* index of current DCT block within MCU */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
start_col = MCU_col_num * compptr->MCU_width;
|
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
||||
buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
|
||||
for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
|
||||
coef->MCU_buffer[blkn++] = buffer_ptr++;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Try to write the MCU. */
|
||||
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
|
||||
/* Suspension forced; update state counters and exit */
|
||||
coef->MCU_vert_offset = yoffset;
|
||||
coef->mcu_ctr = MCU_col_num;
|
||||
return FALSE;
|
||||
}
|
||||
}
|
||||
/* Completed an MCU row, but perhaps not an iMCU row */
|
||||
coef->mcu_ctr = 0;
|
||||
}
|
||||
/* Completed the iMCU row, advance counters for next one */
|
||||
coef->iMCU_row_num++;
|
||||
start_iMCU_row(cinfo);
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
#endif /* FULL_COEF_BUFFER_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize coefficient buffer controller.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_coef_ptr coef;
|
||||
|
||||
coef = (my_coef_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_coef_controller));
|
||||
cinfo->coef = (struct jpeg_c_coef_controller *) coef;
|
||||
coef->pub.start_pass = start_pass_coef;
|
||||
|
||||
/* Create the coefficient buffer. */
|
||||
if (need_full_buffer) {
|
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
||||
/* Allocate a full-image virtual array for each component, */
|
||||
/* padded to a multiple of samp_factor DCT blocks in each direction. */
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
|
||||
(JDIMENSION) jround_up((long) compptr->width_in_blocks,
|
||||
(long) compptr->h_samp_factor),
|
||||
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
|
||||
(long) compptr->v_samp_factor),
|
||||
(JDIMENSION) compptr->v_samp_factor);
|
||||
}
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
#endif
|
||||
} else {
|
||||
/* We only need a single-MCU buffer. */
|
||||
JBLOCKROW buffer;
|
||||
int i;
|
||||
|
||||
buffer = (JBLOCKROW)
|
||||
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
|
||||
for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
|
||||
coef->MCU_buffer[i] = buffer + i;
|
||||
}
|
||||
coef->whole_image[0] = NULL; /* flag for no virtual arrays */
|
||||
}
|
||||
}
|
|
@ -0,0 +1,459 @@
|
|||
/*
|
||||
* jccolor.c
|
||||
*
|
||||
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains input colorspace conversion routines.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_color_converter pub; /* public fields */
|
||||
|
||||
/* Private state for RGB->YCC conversion */
|
||||
INT32 * rgb_ycc_tab; /* => table for RGB to YCbCr conversion */
|
||||
} my_color_converter;
|
||||
|
||||
typedef my_color_converter * my_cconvert_ptr;
|
||||
|
||||
|
||||
/**************** RGB -> YCbCr conversion: most common case **************/
|
||||
|
||||
/*
|
||||
* YCbCr is defined per CCIR 601-1, except that Cb and Cr are
|
||||
* normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
|
||||
* The conversion equations to be implemented are therefore
|
||||
* Y = 0.29900 * R + 0.58700 * G + 0.11400 * B
|
||||
* Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE
|
||||
* Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE
|
||||
* (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
|
||||
* Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2,
|
||||
* rather than CENTERJSAMPLE, for Cb and Cr. This gave equal positive and
|
||||
* negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0)
|
||||
* were not represented exactly. Now we sacrifice exact representation of
|
||||
* maximum red and maximum blue in order to get exact grayscales.
|
||||
*
|
||||
* To avoid floating-point arithmetic, we represent the fractional constants
|
||||
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide
|
||||
* the products by 2^16, with appropriate rounding, to get the correct answer.
|
||||
*
|
||||
* For even more speed, we avoid doing any multiplications in the inner loop
|
||||
* by precalculating the constants times R,G,B for all possible values.
|
||||
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
|
||||
* for 12-bit samples it is still acceptable. It's not very reasonable for
|
||||
* 16-bit samples, but if you want lossless storage you shouldn't be changing
|
||||
* colorspace anyway.
|
||||
* The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included
|
||||
* in the tables to save adding them separately in the inner loop.
|
||||
*/
|
||||
|
||||
#define SCALEBITS 16 /* speediest right-shift on some machines */
|
||||
#define CBCR_OFFSET ((INT32) CENTERJSAMPLE << SCALEBITS)
|
||||
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
|
||||
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
|
||||
|
||||
/* We allocate one big table and divide it up into eight parts, instead of
|
||||
* doing eight alloc_small requests. This lets us use a single table base
|
||||
* address, which can be held in a register in the inner loops on many
|
||||
* machines (more than can hold all eight addresses, anyway).
|
||||
*/
|
||||
|
||||
#define R_Y_OFF 0 /* offset to R => Y section */
|
||||
#define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */
|
||||
#define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */
|
||||
#define R_CB_OFF (3*(MAXJSAMPLE+1))
|
||||
#define G_CB_OFF (4*(MAXJSAMPLE+1))
|
||||
#define B_CB_OFF (5*(MAXJSAMPLE+1))
|
||||
#define R_CR_OFF B_CB_OFF /* B=>Cb, R=>Cr are the same */
|
||||
#define G_CR_OFF (6*(MAXJSAMPLE+1))
|
||||
#define B_CR_OFF (7*(MAXJSAMPLE+1))
|
||||
#define TABLE_SIZE (8*(MAXJSAMPLE+1))
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for RGB->YCC colorspace conversion.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
rgb_ycc_start (j_compress_ptr cinfo)
|
||||
{
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
INT32 * rgb_ycc_tab;
|
||||
INT32 i;
|
||||
|
||||
/* Allocate and fill in the conversion tables. */
|
||||
cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(TABLE_SIZE * SIZEOF(INT32)));
|
||||
|
||||
for (i = 0; i <= MAXJSAMPLE; i++) {
|
||||
rgb_ycc_tab[i+R_Y_OFF] = FIX(0.29900) * i;
|
||||
rgb_ycc_tab[i+G_Y_OFF] = FIX(0.58700) * i;
|
||||
rgb_ycc_tab[i+B_Y_OFF] = FIX(0.11400) * i + ONE_HALF;
|
||||
rgb_ycc_tab[i+R_CB_OFF] = (-FIX(0.16874)) * i;
|
||||
rgb_ycc_tab[i+G_CB_OFF] = (-FIX(0.33126)) * i;
|
||||
/* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr.
|
||||
* This ensures that the maximum output will round to MAXJSAMPLE
|
||||
* not MAXJSAMPLE+1, and thus that we don't have to range-limit.
|
||||
*/
|
||||
rgb_ycc_tab[i+B_CB_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1;
|
||||
/* B=>Cb and R=>Cr tables are the same
|
||||
rgb_ycc_tab[i+R_CR_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1;
|
||||
*/
|
||||
rgb_ycc_tab[i+G_CR_OFF] = (-FIX(0.41869)) * i;
|
||||
rgb_ycc_tab[i+B_CR_OFF] = (-FIX(0.08131)) * i;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
*
|
||||
* Note that we change from the application's interleaved-pixel format
|
||||
* to our internal noninterleaved, one-plane-per-component format.
|
||||
* The input buffer is therefore three times as wide as the output buffer.
|
||||
*
|
||||
* A starting row offset is provided only for the output buffer. The caller
|
||||
* can easily adjust the passed input_buf value to accommodate any row
|
||||
* offset required on that side.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
rgb_ycc_convert (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||
JDIMENSION output_row, int num_rows)
|
||||
{
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
register int r, g, b;
|
||||
register INT32 * ctab = cconvert->rgb_ycc_tab;
|
||||
register JSAMPROW inptr;
|
||||
register JSAMPROW outptr0, outptr1, outptr2;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->image_width;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr = *input_buf++;
|
||||
outptr0 = output_buf[0][output_row];
|
||||
outptr1 = output_buf[1][output_row];
|
||||
outptr2 = output_buf[2][output_row];
|
||||
output_row++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
r = GETJSAMPLE(inptr[RGB_RED]);
|
||||
g = GETJSAMPLE(inptr[RGB_GREEN]);
|
||||
b = GETJSAMPLE(inptr[RGB_BLUE]);
|
||||
inptr += RGB_PIXELSIZE;
|
||||
/* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
|
||||
* must be too; we do not need an explicit range-limiting operation.
|
||||
* Hence the value being shifted is never negative, and we don't
|
||||
* need the general RIGHT_SHIFT macro.
|
||||
*/
|
||||
/* Y */
|
||||
outptr0[col] = (JSAMPLE)
|
||||
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
|
||||
>> SCALEBITS);
|
||||
/* Cb */
|
||||
outptr1[col] = (JSAMPLE)
|
||||
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
|
||||
>> SCALEBITS);
|
||||
/* Cr */
|
||||
outptr2[col] = (JSAMPLE)
|
||||
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
|
||||
>> SCALEBITS);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**************** Cases other than RGB -> YCbCr **************/
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
* This version handles RGB->grayscale conversion, which is the same
|
||||
* as the RGB->Y portion of RGB->YCbCr.
|
||||
* We assume rgb_ycc_start has been called (we only use the Y tables).
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
rgb_gray_convert (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||
JDIMENSION output_row, int num_rows)
|
||||
{
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
register int r, g, b;
|
||||
register INT32 * ctab = cconvert->rgb_ycc_tab;
|
||||
register JSAMPROW inptr;
|
||||
register JSAMPROW outptr;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->image_width;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr = *input_buf++;
|
||||
outptr = output_buf[0][output_row];
|
||||
output_row++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
r = GETJSAMPLE(inptr[RGB_RED]);
|
||||
g = GETJSAMPLE(inptr[RGB_GREEN]);
|
||||
b = GETJSAMPLE(inptr[RGB_BLUE]);
|
||||
inptr += RGB_PIXELSIZE;
|
||||
/* Y */
|
||||
outptr[col] = (JSAMPLE)
|
||||
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
|
||||
>> SCALEBITS);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
* This version handles Adobe-style CMYK->YCCK conversion,
|
||||
* where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the same
|
||||
* conversion as above, while passing K (black) unchanged.
|
||||
* We assume rgb_ycc_start has been called.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
cmyk_ycck_convert (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||
JDIMENSION output_row, int num_rows)
|
||||
{
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
register int r, g, b;
|
||||
register INT32 * ctab = cconvert->rgb_ycc_tab;
|
||||
register JSAMPROW inptr;
|
||||
register JSAMPROW outptr0, outptr1, outptr2, outptr3;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->image_width;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr = *input_buf++;
|
||||
outptr0 = output_buf[0][output_row];
|
||||
outptr1 = output_buf[1][output_row];
|
||||
outptr2 = output_buf[2][output_row];
|
||||
outptr3 = output_buf[3][output_row];
|
||||
output_row++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
r = MAXJSAMPLE - GETJSAMPLE(inptr[0]);
|
||||
g = MAXJSAMPLE - GETJSAMPLE(inptr[1]);
|
||||
b = MAXJSAMPLE - GETJSAMPLE(inptr[2]);
|
||||
/* K passes through as-is */
|
||||
outptr3[col] = inptr[3]; /* don't need GETJSAMPLE here */
|
||||
inptr += 4;
|
||||
/* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
|
||||
* must be too; we do not need an explicit range-limiting operation.
|
||||
* Hence the value being shifted is never negative, and we don't
|
||||
* need the general RIGHT_SHIFT macro.
|
||||
*/
|
||||
/* Y */
|
||||
outptr0[col] = (JSAMPLE)
|
||||
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
|
||||
>> SCALEBITS);
|
||||
/* Cb */
|
||||
outptr1[col] = (JSAMPLE)
|
||||
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
|
||||
>> SCALEBITS);
|
||||
/* Cr */
|
||||
outptr2[col] = (JSAMPLE)
|
||||
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
|
||||
>> SCALEBITS);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
* This version handles grayscale output with no conversion.
|
||||
* The source can be either plain grayscale or YCbCr (since Y == gray).
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
grayscale_convert (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||
JDIMENSION output_row, int num_rows)
|
||||
{
|
||||
register JSAMPROW inptr;
|
||||
register JSAMPROW outptr;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->image_width;
|
||||
int instride = cinfo->input_components;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr = *input_buf++;
|
||||
outptr = output_buf[0][output_row];
|
||||
output_row++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
outptr[col] = inptr[0]; /* don't need GETJSAMPLE() here */
|
||||
inptr += instride;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
* This version handles multi-component colorspaces without conversion.
|
||||
* We assume input_components == num_components.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
null_convert (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||
JDIMENSION output_row, int num_rows)
|
||||
{
|
||||
register JSAMPROW inptr;
|
||||
register JSAMPROW outptr;
|
||||
register JDIMENSION col;
|
||||
register int ci;
|
||||
int nc = cinfo->num_components;
|
||||
JDIMENSION num_cols = cinfo->image_width;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
/* It seems fastest to make a separate pass for each component. */
|
||||
for (ci = 0; ci < nc; ci++) {
|
||||
inptr = *input_buf;
|
||||
outptr = output_buf[ci][output_row];
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
outptr[col] = inptr[ci]; /* don't need GETJSAMPLE() here */
|
||||
inptr += nc;
|
||||
}
|
||||
}
|
||||
input_buf++;
|
||||
output_row++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Empty method for start_pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
null_method (j_compress_ptr cinfo)
|
||||
{
|
||||
/* no work needed */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for input colorspace conversion.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_color_converter (j_compress_ptr cinfo)
|
||||
{
|
||||
my_cconvert_ptr cconvert;
|
||||
|
||||
cconvert = (my_cconvert_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_color_converter));
|
||||
cinfo->cconvert = (struct jpeg_color_converter *) cconvert;
|
||||
/* set start_pass to null method until we find out differently */
|
||||
cconvert->pub.start_pass = null_method;
|
||||
|
||||
/* Make sure input_components agrees with in_color_space */
|
||||
switch (cinfo->in_color_space) {
|
||||
case JCS_GRAYSCALE:
|
||||
if (cinfo->input_components != 1)
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
break;
|
||||
|
||||
case JCS_RGB:
|
||||
#if RGB_PIXELSIZE != 3
|
||||
if (cinfo->input_components != RGB_PIXELSIZE)
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
break;
|
||||
#endif /* else share code with YCbCr */
|
||||
|
||||
case JCS_YCbCr:
|
||||
if (cinfo->input_components != 3)
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
break;
|
||||
|
||||
case JCS_CMYK:
|
||||
case JCS_YCCK:
|
||||
if (cinfo->input_components != 4)
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
break;
|
||||
|
||||
default: /* JCS_UNKNOWN can be anything */
|
||||
if (cinfo->input_components < 1)
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
break;
|
||||
}
|
||||
|
||||
/* Check num_components, set conversion method based on requested space */
|
||||
switch (cinfo->jpeg_color_space) {
|
||||
case JCS_GRAYSCALE:
|
||||
if (cinfo->num_components != 1)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
if (cinfo->in_color_space == JCS_GRAYSCALE)
|
||||
cconvert->pub.color_convert = grayscale_convert;
|
||||
else if (cinfo->in_color_space == JCS_RGB) {
|
||||
cconvert->pub.start_pass = rgb_ycc_start;
|
||||
cconvert->pub.color_convert = rgb_gray_convert;
|
||||
} else if (cinfo->in_color_space == JCS_YCbCr)
|
||||
cconvert->pub.color_convert = grayscale_convert;
|
||||
else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case JCS_RGB:
|
||||
if (cinfo->num_components != 3)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
if (cinfo->in_color_space == JCS_RGB && RGB_PIXELSIZE == 3)
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case JCS_YCbCr:
|
||||
if (cinfo->num_components != 3)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
if (cinfo->in_color_space == JCS_RGB) {
|
||||
cconvert->pub.start_pass = rgb_ycc_start;
|
||||
cconvert->pub.color_convert = rgb_ycc_convert;
|
||||
} else if (cinfo->in_color_space == JCS_YCbCr)
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case JCS_CMYK:
|
||||
if (cinfo->num_components != 4)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
if (cinfo->in_color_space == JCS_CMYK)
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case JCS_YCCK:
|
||||
if (cinfo->num_components != 4)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
if (cinfo->in_color_space == JCS_CMYK) {
|
||||
cconvert->pub.start_pass = rgb_ycc_start;
|
||||
cconvert->pub.color_convert = cmyk_ycck_convert;
|
||||
} else if (cinfo->in_color_space == JCS_YCCK)
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
default: /* allow null conversion of JCS_UNKNOWN */
|
||||
if (cinfo->jpeg_color_space != cinfo->in_color_space ||
|
||||
cinfo->num_components != cinfo->input_components)
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
break;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,482 @@
|
|||
/*
|
||||
* jcdctmgr.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the forward-DCT management logic.
|
||||
* This code selects a particular DCT implementation to be used,
|
||||
* and it performs related housekeeping chores including coefficient
|
||||
* quantization.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
|
||||
/* Private subobject for this module */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_forward_dct pub; /* public fields */
|
||||
|
||||
/* Pointer to the DCT routine actually in use */
|
||||
forward_DCT_method_ptr do_dct[MAX_COMPONENTS];
|
||||
|
||||
/* The actual post-DCT divisors --- not identical to the quant table
|
||||
* entries, because of scaling (especially for an unnormalized DCT).
|
||||
* Each table is given in normal array order.
|
||||
*/
|
||||
DCTELEM * divisors[NUM_QUANT_TBLS];
|
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
/* Same as above for the floating-point case. */
|
||||
float_DCT_method_ptr do_float_dct[MAX_COMPONENTS];
|
||||
FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
|
||||
#endif
|
||||
} my_fdct_controller;
|
||||
|
||||
typedef my_fdct_controller * my_fdct_ptr;
|
||||
|
||||
|
||||
/* The current scaled-DCT routines require ISLOW-style divisor tables,
|
||||
* so be sure to compile that code if either ISLOW or SCALING is requested.
|
||||
*/
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
#define PROVIDE_ISLOW_TABLES
|
||||
#else
|
||||
#ifdef DCT_SCALING_SUPPORTED
|
||||
#define PROVIDE_ISLOW_TABLES
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Perform forward DCT on one or more blocks of a component.
|
||||
*
|
||||
* The input samples are taken from the sample_data[] array starting at
|
||||
* position start_row/start_col, and moving to the right for any additional
|
||||
* blocks. The quantized coefficients are returned in coef_blocks[].
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
||||
JDIMENSION start_row, JDIMENSION start_col,
|
||||
JDIMENSION num_blocks)
|
||||
/* This version is used for integer DCT implementations. */
|
||||
{
|
||||
/* This routine is heavily used, so it's worth coding it tightly. */
|
||||
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
||||
forward_DCT_method_ptr do_dct = fdct->do_dct[compptr->component_index];
|
||||
DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
|
||||
DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */
|
||||
JDIMENSION bi;
|
||||
|
||||
sample_data += start_row; /* fold in the vertical offset once */
|
||||
|
||||
for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) {
|
||||
/* Perform the DCT */
|
||||
(*do_dct) (workspace, sample_data, start_col);
|
||||
|
||||
/* Quantize/descale the coefficients, and store into coef_blocks[] */
|
||||
{ register DCTELEM temp, qval;
|
||||
register int i;
|
||||
register JCOEFPTR output_ptr = coef_blocks[bi];
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
qval = divisors[i];
|
||||
temp = workspace[i];
|
||||
/* Divide the coefficient value by qval, ensuring proper rounding.
|
||||
* Since C does not specify the direction of rounding for negative
|
||||
* quotients, we have to force the dividend positive for portability.
|
||||
*
|
||||
* In most files, at least half of the output values will be zero
|
||||
* (at default quantization settings, more like three-quarters...)
|
||||
* so we should ensure that this case is fast. On many machines,
|
||||
* a comparison is enough cheaper than a divide to make a special test
|
||||
* a win. Since both inputs will be nonnegative, we need only test
|
||||
* for a < b to discover whether a/b is 0.
|
||||
* If your machine's division is fast enough, define FAST_DIVIDE.
|
||||
*/
|
||||
#ifdef FAST_DIVIDE
|
||||
#define DIVIDE_BY(a,b) a /= b
|
||||
#else
|
||||
#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
|
||||
#endif
|
||||
if (temp < 0) {
|
||||
temp = -temp;
|
||||
temp += qval>>1; /* for rounding */
|
||||
DIVIDE_BY(temp, qval);
|
||||
temp = -temp;
|
||||
} else {
|
||||
temp += qval>>1; /* for rounding */
|
||||
DIVIDE_BY(temp, qval);
|
||||
}
|
||||
output_ptr[i] = (JCOEF) temp;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
|
||||
METHODDEF(void)
|
||||
forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
||||
JDIMENSION start_row, JDIMENSION start_col,
|
||||
JDIMENSION num_blocks)
|
||||
/* This version is used for floating-point DCT implementations. */
|
||||
{
|
||||
/* This routine is heavily used, so it's worth coding it tightly. */
|
||||
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
||||
float_DCT_method_ptr do_dct = fdct->do_float_dct[compptr->component_index];
|
||||
FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
|
||||
FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
|
||||
JDIMENSION bi;
|
||||
|
||||
sample_data += start_row; /* fold in the vertical offset once */
|
||||
|
||||
for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) {
|
||||
/* Perform the DCT */
|
||||
(*do_dct) (workspace, sample_data, start_col);
|
||||
|
||||
/* Quantize/descale the coefficients, and store into coef_blocks[] */
|
||||
{ register FAST_FLOAT temp;
|
||||
register int i;
|
||||
register JCOEFPTR output_ptr = coef_blocks[bi];
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
/* Apply the quantization and scaling factor */
|
||||
temp = workspace[i] * divisors[i];
|
||||
/* Round to nearest integer.
|
||||
* Since C does not specify the direction of rounding for negative
|
||||
* quotients, we have to force the dividend positive for portability.
|
||||
* The maximum coefficient size is +-16K (for 12-bit data), so this
|
||||
* code should work for either 16-bit or 32-bit ints.
|
||||
*/
|
||||
output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_FLOAT_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
* Verify that all referenced Q-tables are present, and set up
|
||||
* the divisor table for each one.
|
||||
* In the current implementation, DCT of all components is done during
|
||||
* the first pass, even if only some components will be output in the
|
||||
* first scan. Hence all components should be examined here.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_fdctmgr (j_compress_ptr cinfo)
|
||||
{
|
||||
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
||||
int ci, qtblno, i;
|
||||
jpeg_component_info *compptr;
|
||||
int method = 0;
|
||||
JQUANT_TBL * qtbl;
|
||||
DCTELEM * dtbl;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Select the proper DCT routine for this component's scaling */
|
||||
switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) {
|
||||
#ifdef DCT_SCALING_SUPPORTED
|
||||
case ((1 << 8) + 1):
|
||||
fdct->do_dct[ci] = jpeg_fdct_1x1;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((2 << 8) + 2):
|
||||
fdct->do_dct[ci] = jpeg_fdct_2x2;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((3 << 8) + 3):
|
||||
fdct->do_dct[ci] = jpeg_fdct_3x3;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((4 << 8) + 4):
|
||||
fdct->do_dct[ci] = jpeg_fdct_4x4;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((5 << 8) + 5):
|
||||
fdct->do_dct[ci] = jpeg_fdct_5x5;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((6 << 8) + 6):
|
||||
fdct->do_dct[ci] = jpeg_fdct_6x6;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((7 << 8) + 7):
|
||||
fdct->do_dct[ci] = jpeg_fdct_7x7;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((9 << 8) + 9):
|
||||
fdct->do_dct[ci] = jpeg_fdct_9x9;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((10 << 8) + 10):
|
||||
fdct->do_dct[ci] = jpeg_fdct_10x10;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((11 << 8) + 11):
|
||||
fdct->do_dct[ci] = jpeg_fdct_11x11;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((12 << 8) + 12):
|
||||
fdct->do_dct[ci] = jpeg_fdct_12x12;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((13 << 8) + 13):
|
||||
fdct->do_dct[ci] = jpeg_fdct_13x13;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((14 << 8) + 14):
|
||||
fdct->do_dct[ci] = jpeg_fdct_14x14;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((15 << 8) + 15):
|
||||
fdct->do_dct[ci] = jpeg_fdct_15x15;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((16 << 8) + 16):
|
||||
fdct->do_dct[ci] = jpeg_fdct_16x16;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((16 << 8) + 8):
|
||||
fdct->do_dct[ci] = jpeg_fdct_16x8;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((14 << 8) + 7):
|
||||
fdct->do_dct[ci] = jpeg_fdct_14x7;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((12 << 8) + 6):
|
||||
fdct->do_dct[ci] = jpeg_fdct_12x6;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((10 << 8) + 5):
|
||||
fdct->do_dct[ci] = jpeg_fdct_10x5;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((8 << 8) + 4):
|
||||
fdct->do_dct[ci] = jpeg_fdct_8x4;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((6 << 8) + 3):
|
||||
fdct->do_dct[ci] = jpeg_fdct_6x3;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((4 << 8) + 2):
|
||||
fdct->do_dct[ci] = jpeg_fdct_4x2;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((2 << 8) + 1):
|
||||
fdct->do_dct[ci] = jpeg_fdct_2x1;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((8 << 8) + 16):
|
||||
fdct->do_dct[ci] = jpeg_fdct_8x16;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((7 << 8) + 14):
|
||||
fdct->do_dct[ci] = jpeg_fdct_7x14;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((6 << 8) + 12):
|
||||
fdct->do_dct[ci] = jpeg_fdct_6x12;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((5 << 8) + 10):
|
||||
fdct->do_dct[ci] = jpeg_fdct_5x10;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((4 << 8) + 8):
|
||||
fdct->do_dct[ci] = jpeg_fdct_4x8;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((3 << 8) + 6):
|
||||
fdct->do_dct[ci] = jpeg_fdct_3x6;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((2 << 8) + 4):
|
||||
fdct->do_dct[ci] = jpeg_fdct_2x4;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((1 << 8) + 2):
|
||||
fdct->do_dct[ci] = jpeg_fdct_1x2;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
#endif
|
||||
case ((DCTSIZE << 8) + DCTSIZE):
|
||||
switch (cinfo->dct_method) {
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
case JDCT_ISLOW:
|
||||
fdct->do_dct[ci] = jpeg_fdct_islow;
|
||||
method = JDCT_ISLOW;
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
case JDCT_IFAST:
|
||||
fdct->do_dct[ci] = jpeg_fdct_ifast;
|
||||
method = JDCT_IFAST;
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
case JDCT_FLOAT:
|
||||
fdct->do_float_dct[ci] = jpeg_fdct_float;
|
||||
method = JDCT_FLOAT;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
break;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
ERREXIT2(cinfo, JERR_BAD_DCTSIZE,
|
||||
compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size);
|
||||
break;
|
||||
}
|
||||
qtblno = compptr->quant_tbl_no;
|
||||
/* Make sure specified quantization table is present */
|
||||
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
|
||||
cinfo->quant_tbl_ptrs[qtblno] == NULL)
|
||||
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
|
||||
qtbl = cinfo->quant_tbl_ptrs[qtblno];
|
||||
/* Compute divisors for this quant table */
|
||||
/* We may do this more than once for same table, but it's not a big deal */
|
||||
switch (method) {
|
||||
#ifdef PROVIDE_ISLOW_TABLES
|
||||
case JDCT_ISLOW:
|
||||
/* For LL&M IDCT method, divisors are equal to raw quantization
|
||||
* coefficients multiplied by 8 (to counteract scaling).
|
||||
*/
|
||||
if (fdct->divisors[qtblno] == NULL) {
|
||||
fdct->divisors[qtblno] = (DCTELEM *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
DCTSIZE2 * SIZEOF(DCTELEM));
|
||||
}
|
||||
dtbl = fdct->divisors[qtblno];
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
|
||||
}
|
||||
fdct->pub.forward_DCT[ci] = forward_DCT;
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
case JDCT_IFAST:
|
||||
{
|
||||
/* For AA&N IDCT method, divisors are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
||||
* scalefactor[0] = 1
|
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
||||
* We apply a further scale factor of 8.
|
||||
*/
|
||||
#define CONST_BITS 14
|
||||
static const INT16 aanscales[DCTSIZE2] = {
|
||||
/* precomputed values scaled up by 14 bits */
|
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
||||
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
||||
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
||||
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
||||
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
||||
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
||||
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
||||
};
|
||||
SHIFT_TEMPS
|
||||
|
||||
if (fdct->divisors[qtblno] == NULL) {
|
||||
fdct->divisors[qtblno] = (DCTELEM *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
DCTSIZE2 * SIZEOF(DCTELEM));
|
||||
}
|
||||
dtbl = fdct->divisors[qtblno];
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
dtbl[i] = (DCTELEM)
|
||||
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
|
||||
(INT32) aanscales[i]),
|
||||
CONST_BITS-3);
|
||||
}
|
||||
}
|
||||
fdct->pub.forward_DCT[ci] = forward_DCT;
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
case JDCT_FLOAT:
|
||||
{
|
||||
/* For float AA&N IDCT method, divisors are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
||||
* scalefactor[0] = 1
|
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
||||
* We apply a further scale factor of 8.
|
||||
* What's actually stored is 1/divisor so that the inner loop can
|
||||
* use a multiplication rather than a division.
|
||||
*/
|
||||
FAST_FLOAT * fdtbl;
|
||||
int row, col;
|
||||
static const double aanscalefactor[DCTSIZE] = {
|
||||
1.0, 1.387039845, 1.306562965, 1.175875602,
|
||||
1.0, 0.785694958, 0.541196100, 0.275899379
|
||||
};
|
||||
|
||||
if (fdct->float_divisors[qtblno] == NULL) {
|
||||
fdct->float_divisors[qtblno] = (FAST_FLOAT *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
DCTSIZE2 * SIZEOF(FAST_FLOAT));
|
||||
}
|
||||
fdtbl = fdct->float_divisors[qtblno];
|
||||
i = 0;
|
||||
for (row = 0; row < DCTSIZE; row++) {
|
||||
for (col = 0; col < DCTSIZE; col++) {
|
||||
fdtbl[i] = (FAST_FLOAT)
|
||||
(1.0 / (((double) qtbl->quantval[i] *
|
||||
aanscalefactor[row] * aanscalefactor[col] * 8.0)));
|
||||
i++;
|
||||
}
|
||||
}
|
||||
}
|
||||
fdct->pub.forward_DCT[ci] = forward_DCT_float;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize FDCT manager.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_forward_dct (j_compress_ptr cinfo)
|
||||
{
|
||||
my_fdct_ptr fdct;
|
||||
int i;
|
||||
|
||||
fdct = (my_fdct_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_fdct_controller));
|
||||
cinfo->fdct = (struct jpeg_forward_dct *) fdct;
|
||||
fdct->pub.start_pass = start_pass_fdctmgr;
|
||||
|
||||
/* Mark divisor tables unallocated */
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
||||
fdct->divisors[i] = NULL;
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
fdct->float_divisors[i] = NULL;
|
||||
#endif
|
||||
}
|
||||
}
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,65 @@
|
|||
/*
|
||||
* jcinit.c
|
||||
*
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains initialization logic for the JPEG compressor.
|
||||
* This routine is in charge of selecting the modules to be executed and
|
||||
* making an initialization call to each one.
|
||||
*
|
||||
* Logically, this code belongs in jcmaster.c. It's split out because
|
||||
* linking this routine implies linking the entire compression library.
|
||||
* For a transcoding-only application, we want to be able to use jcmaster.c
|
||||
* without linking in the whole library.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* Master selection of compression modules.
|
||||
* This is done once at the start of processing an image. We determine
|
||||
* which modules will be used and give them appropriate initialization calls.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_compress_master (j_compress_ptr cinfo)
|
||||
{
|
||||
/* Initialize master control (includes parameter checking/processing) */
|
||||
jinit_c_master_control(cinfo, FALSE /* full compression */);
|
||||
|
||||
/* Preprocessing */
|
||||
if (! cinfo->raw_data_in) {
|
||||
jinit_color_converter(cinfo);
|
||||
jinit_downsampler(cinfo);
|
||||
jinit_c_prep_controller(cinfo, FALSE /* never need full buffer here */);
|
||||
}
|
||||
/* Forward DCT */
|
||||
jinit_forward_dct(cinfo);
|
||||
/* Entropy encoding: either Huffman or arithmetic coding. */
|
||||
if (cinfo->arith_code)
|
||||
jinit_arith_encoder(cinfo);
|
||||
else {
|
||||
jinit_huff_encoder(cinfo);
|
||||
}
|
||||
|
||||
/* Need a full-image coefficient buffer in any multi-pass mode. */
|
||||
jinit_c_coef_controller(cinfo,
|
||||
(boolean) (cinfo->num_scans > 1 || cinfo->optimize_coding));
|
||||
jinit_c_main_controller(cinfo, FALSE /* never need full buffer here */);
|
||||
|
||||
jinit_marker_writer(cinfo);
|
||||
|
||||
/* We can now tell the memory manager to allocate virtual arrays. */
|
||||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
|
||||
|
||||
/* Write the datastream header (SOI) immediately.
|
||||
* Frame and scan headers are postponed till later.
|
||||
* This lets application insert special markers after the SOI.
|
||||
*/
|
||||
(*cinfo->marker->write_file_header) (cinfo);
|
||||
}
|
|
@ -0,0 +1,293 @@
|
|||
/*
|
||||
* jcmainct.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the main buffer controller for compression.
|
||||
* The main buffer lies between the pre-processor and the JPEG
|
||||
* compressor proper; it holds downsampled data in the JPEG colorspace.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Note: currently, there is no operating mode in which a full-image buffer
|
||||
* is needed at this step. If there were, that mode could not be used with
|
||||
* "raw data" input, since this module is bypassed in that case. However,
|
||||
* we've left the code here for possible use in special applications.
|
||||
*/
|
||||
#undef FULL_MAIN_BUFFER_SUPPORTED
|
||||
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_c_main_controller pub; /* public fields */
|
||||
|
||||
JDIMENSION cur_iMCU_row; /* number of current iMCU row */
|
||||
JDIMENSION rowgroup_ctr; /* counts row groups received in iMCU row */
|
||||
boolean suspended; /* remember if we suspended output */
|
||||
J_BUF_MODE pass_mode; /* current operating mode */
|
||||
|
||||
/* If using just a strip buffer, this points to the entire set of buffers
|
||||
* (we allocate one for each component). In the full-image case, this
|
||||
* points to the currently accessible strips of the virtual arrays.
|
||||
*/
|
||||
JSAMPARRAY buffer[MAX_COMPONENTS];
|
||||
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
/* If using full-image storage, this array holds pointers to virtual-array
|
||||
* control blocks for each component. Unused if not full-image storage.
|
||||
*/
|
||||
jvirt_sarray_ptr whole_image[MAX_COMPONENTS];
|
||||
#endif
|
||||
} my_main_controller;
|
||||
|
||||
typedef my_main_controller * my_main_ptr;
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF(void) process_data_simple_main
|
||||
JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
METHODDEF(void) process_data_buffer_main
|
||||
JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_main (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
|
||||
/* Do nothing in raw-data mode. */
|
||||
if (cinfo->raw_data_in)
|
||||
return;
|
||||
|
||||
main->cur_iMCU_row = 0; /* initialize counters */
|
||||
main->rowgroup_ctr = 0;
|
||||
main->suspended = FALSE;
|
||||
main->pass_mode = pass_mode; /* save mode for use by process_data */
|
||||
|
||||
switch (pass_mode) {
|
||||
case JBUF_PASS_THRU:
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
if (main->whole_image[0] != NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
#endif
|
||||
main->pub.process_data = process_data_simple_main;
|
||||
break;
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
case JBUF_SAVE_SOURCE:
|
||||
case JBUF_CRANK_DEST:
|
||||
case JBUF_SAVE_AND_PASS:
|
||||
if (main->whole_image[0] == NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
main->pub.process_data = process_data_buffer_main;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* This routine handles the simple pass-through mode,
|
||||
* where we have only a strip buffer.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
process_data_simple_main (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
|
||||
JDIMENSION in_rows_avail)
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
|
||||
while (main->cur_iMCU_row < cinfo->total_iMCU_rows) {
|
||||
/* Read input data if we haven't filled the main buffer yet */
|
||||
if (main->rowgroup_ctr < (JDIMENSION) cinfo->min_DCT_v_scaled_size)
|
||||
(*cinfo->prep->pre_process_data) (cinfo,
|
||||
input_buf, in_row_ctr, in_rows_avail,
|
||||
main->buffer, &main->rowgroup_ctr,
|
||||
(JDIMENSION) cinfo->min_DCT_v_scaled_size);
|
||||
|
||||
/* If we don't have a full iMCU row buffered, return to application for
|
||||
* more data. Note that preprocessor will always pad to fill the iMCU row
|
||||
* at the bottom of the image.
|
||||
*/
|
||||
if (main->rowgroup_ctr != (JDIMENSION) cinfo->min_DCT_v_scaled_size)
|
||||
return;
|
||||
|
||||
/* Send the completed row to the compressor */
|
||||
if (! (*cinfo->coef->compress_data) (cinfo, main->buffer)) {
|
||||
/* If compressor did not consume the whole row, then we must need to
|
||||
* suspend processing and return to the application. In this situation
|
||||
* we pretend we didn't yet consume the last input row; otherwise, if
|
||||
* it happened to be the last row of the image, the application would
|
||||
* think we were done.
|
||||
*/
|
||||
if (! main->suspended) {
|
||||
(*in_row_ctr)--;
|
||||
main->suspended = TRUE;
|
||||
}
|
||||
return;
|
||||
}
|
||||
/* We did finish the row. Undo our little suspension hack if a previous
|
||||
* call suspended; then mark the main buffer empty.
|
||||
*/
|
||||
if (main->suspended) {
|
||||
(*in_row_ctr)++;
|
||||
main->suspended = FALSE;
|
||||
}
|
||||
main->rowgroup_ctr = 0;
|
||||
main->cur_iMCU_row++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* This routine handles all of the modes that use a full-size buffer.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
process_data_buffer_main (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
|
||||
JDIMENSION in_rows_avail)
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
boolean writing = (main->pass_mode != JBUF_CRANK_DEST);
|
||||
|
||||
while (main->cur_iMCU_row < cinfo->total_iMCU_rows) {
|
||||
/* Realign the virtual buffers if at the start of an iMCU row. */
|
||||
if (main->rowgroup_ctr == 0) {
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
main->buffer[ci] = (*cinfo->mem->access_virt_sarray)
|
||||
((j_common_ptr) cinfo, main->whole_image[ci],
|
||||
main->cur_iMCU_row * (compptr->v_samp_factor * DCTSIZE),
|
||||
(JDIMENSION) (compptr->v_samp_factor * DCTSIZE), writing);
|
||||
}
|
||||
/* In a read pass, pretend we just read some source data. */
|
||||
if (! writing) {
|
||||
*in_row_ctr += cinfo->max_v_samp_factor * DCTSIZE;
|
||||
main->rowgroup_ctr = DCTSIZE;
|
||||
}
|
||||
}
|
||||
|
||||
/* If a write pass, read input data until the current iMCU row is full. */
|
||||
/* Note: preprocessor will pad if necessary to fill the last iMCU row. */
|
||||
if (writing) {
|
||||
(*cinfo->prep->pre_process_data) (cinfo,
|
||||
input_buf, in_row_ctr, in_rows_avail,
|
||||
main->buffer, &main->rowgroup_ctr,
|
||||
(JDIMENSION) DCTSIZE);
|
||||
/* Return to application if we need more data to fill the iMCU row. */
|
||||
if (main->rowgroup_ctr < DCTSIZE)
|
||||
return;
|
||||
}
|
||||
|
||||
/* Emit data, unless this is a sink-only pass. */
|
||||
if (main->pass_mode != JBUF_SAVE_SOURCE) {
|
||||
if (! (*cinfo->coef->compress_data) (cinfo, main->buffer)) {
|
||||
/* If compressor did not consume the whole row, then we must need to
|
||||
* suspend processing and return to the application. In this situation
|
||||
* we pretend we didn't yet consume the last input row; otherwise, if
|
||||
* it happened to be the last row of the image, the application would
|
||||
* think we were done.
|
||||
*/
|
||||
if (! main->suspended) {
|
||||
(*in_row_ctr)--;
|
||||
main->suspended = TRUE;
|
||||
}
|
||||
return;
|
||||
}
|
||||
/* We did finish the row. Undo our little suspension hack if a previous
|
||||
* call suspended; then mark the main buffer empty.
|
||||
*/
|
||||
if (main->suspended) {
|
||||
(*in_row_ctr)++;
|
||||
main->suspended = FALSE;
|
||||
}
|
||||
}
|
||||
|
||||
/* If get here, we are done with this iMCU row. Mark buffer empty. */
|
||||
main->rowgroup_ctr = 0;
|
||||
main->cur_iMCU_row++;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* FULL_MAIN_BUFFER_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize main buffer controller.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_main_ptr main;
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
main = (my_main_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_main_controller));
|
||||
cinfo->main = (struct jpeg_c_main_controller *) main;
|
||||
main->pub.start_pass = start_pass_main;
|
||||
|
||||
/* We don't need to create a buffer in raw-data mode. */
|
||||
if (cinfo->raw_data_in)
|
||||
return;
|
||||
|
||||
/* Create the buffer. It holds downsampled data, so each component
|
||||
* may be of a different size.
|
||||
*/
|
||||
if (need_full_buffer) {
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
/* Allocate a full-image virtual array for each component */
|
||||
/* Note we pad the bottom to a multiple of the iMCU height */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
main->whole_image[ci] = (*cinfo->mem->request_virt_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
|
||||
compptr->width_in_blocks * compptr->DCT_h_scaled_size,
|
||||
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
|
||||
(long) compptr->v_samp_factor) * DCTSIZE,
|
||||
(JDIMENSION) (compptr->v_samp_factor * compptr->DCT_v_scaled_size));
|
||||
}
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
#endif
|
||||
} else {
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
main->whole_image[0] = NULL; /* flag for no virtual arrays */
|
||||
#endif
|
||||
/* Allocate a strip buffer for each component */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
main->buffer[ci] = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
compptr->width_in_blocks * compptr->DCT_h_scaled_size,
|
||||
(JDIMENSION) (compptr->v_samp_factor * compptr->DCT_v_scaled_size));
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,667 @@
|
|||
/*
|
||||
* jcmarker.c
|
||||
*
|
||||
* Copyright (C) 1991-1998, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains routines to write JPEG datastream markers.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
typedef enum { /* JPEG marker codes */
|
||||
M_SOF0 = 0xc0,
|
||||
M_SOF1 = 0xc1,
|
||||
M_SOF2 = 0xc2,
|
||||
M_SOF3 = 0xc3,
|
||||
|
||||
M_SOF5 = 0xc5,
|
||||
M_SOF6 = 0xc6,
|
||||
M_SOF7 = 0xc7,
|
||||
|
||||
M_JPG = 0xc8,
|
||||
M_SOF9 = 0xc9,
|
||||
M_SOF10 = 0xca,
|
||||
M_SOF11 = 0xcb,
|
||||
|
||||
M_SOF13 = 0xcd,
|
||||
M_SOF14 = 0xce,
|
||||
M_SOF15 = 0xcf,
|
||||
|
||||
M_DHT = 0xc4,
|
||||
|
||||
M_DAC = 0xcc,
|
||||
|
||||
M_RST0 = 0xd0,
|
||||
M_RST1 = 0xd1,
|
||||
M_RST2 = 0xd2,
|
||||
M_RST3 = 0xd3,
|
||||
M_RST4 = 0xd4,
|
||||
M_RST5 = 0xd5,
|
||||
M_RST6 = 0xd6,
|
||||
M_RST7 = 0xd7,
|
||||
|
||||
M_SOI = 0xd8,
|
||||
M_EOI = 0xd9,
|
||||
M_SOS = 0xda,
|
||||
M_DQT = 0xdb,
|
||||
M_DNL = 0xdc,
|
||||
M_DRI = 0xdd,
|
||||
M_DHP = 0xde,
|
||||
M_EXP = 0xdf,
|
||||
|
||||
M_APP0 = 0xe0,
|
||||
M_APP1 = 0xe1,
|
||||
M_APP2 = 0xe2,
|
||||
M_APP3 = 0xe3,
|
||||
M_APP4 = 0xe4,
|
||||
M_APP5 = 0xe5,
|
||||
M_APP6 = 0xe6,
|
||||
M_APP7 = 0xe7,
|
||||
M_APP8 = 0xe8,
|
||||
M_APP9 = 0xe9,
|
||||
M_APP10 = 0xea,
|
||||
M_APP11 = 0xeb,
|
||||
M_APP12 = 0xec,
|
||||
M_APP13 = 0xed,
|
||||
M_APP14 = 0xee,
|
||||
M_APP15 = 0xef,
|
||||
|
||||
M_JPG0 = 0xf0,
|
||||
M_JPG13 = 0xfd,
|
||||
M_COM = 0xfe,
|
||||
|
||||
M_TEM = 0x01,
|
||||
|
||||
M_ERROR = 0x100
|
||||
} JPEG_MARKER;
|
||||
|
||||
|
||||
/* Private state */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_marker_writer pub; /* public fields */
|
||||
|
||||
unsigned int last_restart_interval; /* last DRI value emitted; 0 after SOI */
|
||||
} my_marker_writer;
|
||||
|
||||
typedef my_marker_writer * my_marker_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Basic output routines.
|
||||
*
|
||||
* Note that we do not support suspension while writing a marker.
|
||||
* Therefore, an application using suspension must ensure that there is
|
||||
* enough buffer space for the initial markers (typ. 600-700 bytes) before
|
||||
* calling jpeg_start_compress, and enough space to write the trailing EOI
|
||||
* (a few bytes) before calling jpeg_finish_compress. Multipass compression
|
||||
* modes are not supported at all with suspension, so those two are the only
|
||||
* points where markers will be written.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
emit_byte (j_compress_ptr cinfo, int val)
|
||||
/* Emit a byte */
|
||||
{
|
||||
struct jpeg_destination_mgr * dest = cinfo->dest;
|
||||
|
||||
*(dest->next_output_byte)++ = (JOCTET) val;
|
||||
if (--dest->free_in_buffer == 0) {
|
||||
if (! (*dest->empty_output_buffer) (cinfo))
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_marker (j_compress_ptr cinfo, JPEG_MARKER mark)
|
||||
/* Emit a marker code */
|
||||
{
|
||||
emit_byte(cinfo, 0xFF);
|
||||
emit_byte(cinfo, (int) mark);
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_2bytes (j_compress_ptr cinfo, int value)
|
||||
/* Emit a 2-byte integer; these are always MSB first in JPEG files */
|
||||
{
|
||||
emit_byte(cinfo, (value >> 8) & 0xFF);
|
||||
emit_byte(cinfo, value & 0xFF);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Routines to write specific marker types.
|
||||
*/
|
||||
|
||||
LOCAL(int)
|
||||
emit_dqt (j_compress_ptr cinfo, int index)
|
||||
/* Emit a DQT marker */
|
||||
/* Returns the precision used (0 = 8bits, 1 = 16bits) for baseline checking */
|
||||
{
|
||||
JQUANT_TBL * qtbl = cinfo->quant_tbl_ptrs[index];
|
||||
int prec;
|
||||
int i;
|
||||
|
||||
if (qtbl == NULL)
|
||||
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, index);
|
||||
|
||||
prec = 0;
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
if (qtbl->quantval[i] > 255)
|
||||
prec = 1;
|
||||
}
|
||||
|
||||
if (! qtbl->sent_table) {
|
||||
emit_marker(cinfo, M_DQT);
|
||||
|
||||
emit_2bytes(cinfo, prec ? DCTSIZE2*2 + 1 + 2 : DCTSIZE2 + 1 + 2);
|
||||
|
||||
emit_byte(cinfo, index + (prec<<4));
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
/* The table entries must be emitted in zigzag order. */
|
||||
unsigned int qval = qtbl->quantval[jpeg_natural_order[i]];
|
||||
if (prec)
|
||||
emit_byte(cinfo, (int) (qval >> 8));
|
||||
emit_byte(cinfo, (int) (qval & 0xFF));
|
||||
}
|
||||
|
||||
qtbl->sent_table = TRUE;
|
||||
}
|
||||
|
||||
return prec;
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_dht (j_compress_ptr cinfo, int index, boolean is_ac)
|
||||
/* Emit a DHT marker */
|
||||
{
|
||||
JHUFF_TBL * htbl;
|
||||
int length, i;
|
||||
|
||||
if (is_ac) {
|
||||
htbl = cinfo->ac_huff_tbl_ptrs[index];
|
||||
index += 0x10; /* output index has AC bit set */
|
||||
} else {
|
||||
htbl = cinfo->dc_huff_tbl_ptrs[index];
|
||||
}
|
||||
|
||||
if (htbl == NULL)
|
||||
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, index);
|
||||
|
||||
if (! htbl->sent_table) {
|
||||
emit_marker(cinfo, M_DHT);
|
||||
|
||||
length = 0;
|
||||
for (i = 1; i <= 16; i++)
|
||||
length += htbl->bits[i];
|
||||
|
||||
emit_2bytes(cinfo, length + 2 + 1 + 16);
|
||||
emit_byte(cinfo, index);
|
||||
|
||||
for (i = 1; i <= 16; i++)
|
||||
emit_byte(cinfo, htbl->bits[i]);
|
||||
|
||||
for (i = 0; i < length; i++)
|
||||
emit_byte(cinfo, htbl->huffval[i]);
|
||||
|
||||
htbl->sent_table = TRUE;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_dac (j_compress_ptr cinfo)
|
||||
/* Emit a DAC marker */
|
||||
/* Since the useful info is so small, we want to emit all the tables in */
|
||||
/* one DAC marker. Therefore this routine does its own scan of the table. */
|
||||
{
|
||||
#ifdef C_ARITH_CODING_SUPPORTED
|
||||
char dc_in_use[NUM_ARITH_TBLS];
|
||||
char ac_in_use[NUM_ARITH_TBLS];
|
||||
int length, i;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++)
|
||||
dc_in_use[i] = ac_in_use[i] = 0;
|
||||
|
||||
for (i = 0; i < cinfo->comps_in_scan; i++) {
|
||||
compptr = cinfo->cur_comp_info[i];
|
||||
dc_in_use[compptr->dc_tbl_no] = 1;
|
||||
ac_in_use[compptr->ac_tbl_no] = 1;
|
||||
}
|
||||
|
||||
length = 0;
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++)
|
||||
length += dc_in_use[i] + ac_in_use[i];
|
||||
|
||||
emit_marker(cinfo, M_DAC);
|
||||
|
||||
emit_2bytes(cinfo, length*2 + 2);
|
||||
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) {
|
||||
if (dc_in_use[i]) {
|
||||
emit_byte(cinfo, i);
|
||||
emit_byte(cinfo, cinfo->arith_dc_L[i] + (cinfo->arith_dc_U[i]<<4));
|
||||
}
|
||||
if (ac_in_use[i]) {
|
||||
emit_byte(cinfo, i + 0x10);
|
||||
emit_byte(cinfo, cinfo->arith_ac_K[i]);
|
||||
}
|
||||
}
|
||||
#endif /* C_ARITH_CODING_SUPPORTED */
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_dri (j_compress_ptr cinfo)
|
||||
/* Emit a DRI marker */
|
||||
{
|
||||
emit_marker(cinfo, M_DRI);
|
||||
|
||||
emit_2bytes(cinfo, 4); /* fixed length */
|
||||
|
||||
emit_2bytes(cinfo, (int) cinfo->restart_interval);
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_sof (j_compress_ptr cinfo, JPEG_MARKER code)
|
||||
/* Emit a SOF marker */
|
||||
{
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
emit_marker(cinfo, code);
|
||||
|
||||
emit_2bytes(cinfo, 3 * cinfo->num_components + 2 + 5 + 1); /* length */
|
||||
|
||||
/* Make sure image isn't bigger than SOF field can handle */
|
||||
if ((long) cinfo->jpeg_height > 65535L ||
|
||||
(long) cinfo->jpeg_width > 65535L)
|
||||
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) 65535);
|
||||
|
||||
emit_byte(cinfo, cinfo->data_precision);
|
||||
emit_2bytes(cinfo, (int) cinfo->jpeg_height);
|
||||
emit_2bytes(cinfo, (int) cinfo->jpeg_width);
|
||||
|
||||
emit_byte(cinfo, cinfo->num_components);
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
emit_byte(cinfo, compptr->component_id);
|
||||
emit_byte(cinfo, (compptr->h_samp_factor << 4) + compptr->v_samp_factor);
|
||||
emit_byte(cinfo, compptr->quant_tbl_no);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_sos (j_compress_ptr cinfo)
|
||||
/* Emit a SOS marker */
|
||||
{
|
||||
int i, td, ta;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
emit_marker(cinfo, M_SOS);
|
||||
|
||||
emit_2bytes(cinfo, 2 * cinfo->comps_in_scan + 2 + 1 + 3); /* length */
|
||||
|
||||
emit_byte(cinfo, cinfo->comps_in_scan);
|
||||
|
||||
for (i = 0; i < cinfo->comps_in_scan; i++) {
|
||||
compptr = cinfo->cur_comp_info[i];
|
||||
emit_byte(cinfo, compptr->component_id);
|
||||
td = compptr->dc_tbl_no;
|
||||
ta = compptr->ac_tbl_no;
|
||||
if (cinfo->progressive_mode) {
|
||||
/* Progressive mode: only DC or only AC tables are used in one scan;
|
||||
* furthermore, Huffman coding of DC refinement uses no table at all.
|
||||
* We emit 0 for unused field(s); this is recommended by the P&M text
|
||||
* but does not seem to be specified in the standard.
|
||||
*/
|
||||
if (cinfo->Ss == 0) {
|
||||
ta = 0; /* DC scan */
|
||||
if (cinfo->Ah != 0 && !cinfo->arith_code)
|
||||
td = 0; /* no DC table either */
|
||||
} else {
|
||||
td = 0; /* AC scan */
|
||||
}
|
||||
}
|
||||
emit_byte(cinfo, (td << 4) + ta);
|
||||
}
|
||||
|
||||
emit_byte(cinfo, cinfo->Ss);
|
||||
emit_byte(cinfo, cinfo->Se);
|
||||
emit_byte(cinfo, (cinfo->Ah << 4) + cinfo->Al);
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_jfif_app0 (j_compress_ptr cinfo)
|
||||
/* Emit a JFIF-compliant APP0 marker */
|
||||
{
|
||||
/*
|
||||
* Length of APP0 block (2 bytes)
|
||||
* Block ID (4 bytes - ASCII "JFIF")
|
||||
* Zero byte (1 byte to terminate the ID string)
|
||||
* Version Major, Minor (2 bytes - major first)
|
||||
* Units (1 byte - 0x00 = none, 0x01 = inch, 0x02 = cm)
|
||||
* Xdpu (2 bytes - dots per unit horizontal)
|
||||
* Ydpu (2 bytes - dots per unit vertical)
|
||||
* Thumbnail X size (1 byte)
|
||||
* Thumbnail Y size (1 byte)
|
||||
*/
|
||||
|
||||
emit_marker(cinfo, M_APP0);
|
||||
|
||||
emit_2bytes(cinfo, 2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1); /* length */
|
||||
|
||||
emit_byte(cinfo, 0x4A); /* Identifier: ASCII "JFIF" */
|
||||
emit_byte(cinfo, 0x46);
|
||||
emit_byte(cinfo, 0x49);
|
||||
emit_byte(cinfo, 0x46);
|
||||
emit_byte(cinfo, 0);
|
||||
emit_byte(cinfo, cinfo->JFIF_major_version); /* Version fields */
|
||||
emit_byte(cinfo, cinfo->JFIF_minor_version);
|
||||
emit_byte(cinfo, cinfo->density_unit); /* Pixel size information */
|
||||
emit_2bytes(cinfo, (int) cinfo->X_density);
|
||||
emit_2bytes(cinfo, (int) cinfo->Y_density);
|
||||
emit_byte(cinfo, 0); /* No thumbnail image */
|
||||
emit_byte(cinfo, 0);
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_adobe_app14 (j_compress_ptr cinfo)
|
||||
/* Emit an Adobe APP14 marker */
|
||||
{
|
||||
/*
|
||||
* Length of APP14 block (2 bytes)
|
||||
* Block ID (5 bytes - ASCII "Adobe")
|
||||
* Version Number (2 bytes - currently 100)
|
||||
* Flags0 (2 bytes - currently 0)
|
||||
* Flags1 (2 bytes - currently 0)
|
||||
* Color transform (1 byte)
|
||||
*
|
||||
* Although Adobe TN 5116 mentions Version = 101, all the Adobe files
|
||||
* now in circulation seem to use Version = 100, so that's what we write.
|
||||
*
|
||||
* We write the color transform byte as 1 if the JPEG color space is
|
||||
* YCbCr, 2 if it's YCCK, 0 otherwise. Adobe's definition has to do with
|
||||
* whether the encoder performed a transformation, which is pretty useless.
|
||||
*/
|
||||
|
||||
emit_marker(cinfo, M_APP14);
|
||||
|
||||
emit_2bytes(cinfo, 2 + 5 + 2 + 2 + 2 + 1); /* length */
|
||||
|
||||
emit_byte(cinfo, 0x41); /* Identifier: ASCII "Adobe" */
|
||||
emit_byte(cinfo, 0x64);
|
||||
emit_byte(cinfo, 0x6F);
|
||||
emit_byte(cinfo, 0x62);
|
||||
emit_byte(cinfo, 0x65);
|
||||
emit_2bytes(cinfo, 100); /* Version */
|
||||
emit_2bytes(cinfo, 0); /* Flags0 */
|
||||
emit_2bytes(cinfo, 0); /* Flags1 */
|
||||
switch (cinfo->jpeg_color_space) {
|
||||
case JCS_YCbCr:
|
||||
emit_byte(cinfo, 1); /* Color transform = 1 */
|
||||
break;
|
||||
case JCS_YCCK:
|
||||
emit_byte(cinfo, 2); /* Color transform = 2 */
|
||||
break;
|
||||
default:
|
||||
emit_byte(cinfo, 0); /* Color transform = 0 */
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* These routines allow writing an arbitrary marker with parameters.
|
||||
* The only intended use is to emit COM or APPn markers after calling
|
||||
* write_file_header and before calling write_frame_header.
|
||||
* Other uses are not guaranteed to produce desirable results.
|
||||
* Counting the parameter bytes properly is the caller's responsibility.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
write_marker_header (j_compress_ptr cinfo, int marker, unsigned int datalen)
|
||||
/* Emit an arbitrary marker header */
|
||||
{
|
||||
if (datalen > (unsigned int) 65533) /* safety check */
|
||||
ERREXIT(cinfo, JERR_BAD_LENGTH);
|
||||
|
||||
emit_marker(cinfo, (JPEG_MARKER) marker);
|
||||
|
||||
emit_2bytes(cinfo, (int) (datalen + 2)); /* total length */
|
||||
}
|
||||
|
||||
METHODDEF(void)
|
||||
write_marker_byte (j_compress_ptr cinfo, int val)
|
||||
/* Emit one byte of marker parameters following write_marker_header */
|
||||
{
|
||||
emit_byte(cinfo, val);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write datastream header.
|
||||
* This consists of an SOI and optional APPn markers.
|
||||
* We recommend use of the JFIF marker, but not the Adobe marker,
|
||||
* when using YCbCr or grayscale data. The JFIF marker should NOT
|
||||
* be used for any other JPEG colorspace. The Adobe marker is helpful
|
||||
* to distinguish RGB, CMYK, and YCCK colorspaces.
|
||||
* Note that an application can write additional header markers after
|
||||
* jpeg_start_compress returns.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
write_file_header (j_compress_ptr cinfo)
|
||||
{
|
||||
my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
|
||||
|
||||
emit_marker(cinfo, M_SOI); /* first the SOI */
|
||||
|
||||
/* SOI is defined to reset restart interval to 0 */
|
||||
marker->last_restart_interval = 0;
|
||||
|
||||
if (cinfo->write_JFIF_header) /* next an optional JFIF APP0 */
|
||||
emit_jfif_app0(cinfo);
|
||||
if (cinfo->write_Adobe_marker) /* next an optional Adobe APP14 */
|
||||
emit_adobe_app14(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write frame header.
|
||||
* This consists of DQT and SOFn markers.
|
||||
* Note that we do not emit the SOF until we have emitted the DQT(s).
|
||||
* This avoids compatibility problems with incorrect implementations that
|
||||
* try to error-check the quant table numbers as soon as they see the SOF.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
write_frame_header (j_compress_ptr cinfo)
|
||||
{
|
||||
int ci, prec;
|
||||
boolean is_baseline;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
/* Emit DQT for each quantization table.
|
||||
* Note that emit_dqt() suppresses any duplicate tables.
|
||||
*/
|
||||
prec = 0;
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
prec += emit_dqt(cinfo, compptr->quant_tbl_no);
|
||||
}
|
||||
/* now prec is nonzero iff there are any 16-bit quant tables. */
|
||||
|
||||
/* Check for a non-baseline specification.
|
||||
* Note we assume that Huffman table numbers won't be changed later.
|
||||
*/
|
||||
if (cinfo->arith_code || cinfo->progressive_mode ||
|
||||
cinfo->data_precision != 8) {
|
||||
is_baseline = FALSE;
|
||||
} else {
|
||||
is_baseline = TRUE;
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
if (compptr->dc_tbl_no > 1 || compptr->ac_tbl_no > 1)
|
||||
is_baseline = FALSE;
|
||||
}
|
||||
if (prec && is_baseline) {
|
||||
is_baseline = FALSE;
|
||||
/* If it's baseline except for quantizer size, warn the user */
|
||||
TRACEMS(cinfo, 0, JTRC_16BIT_TABLES);
|
||||
}
|
||||
}
|
||||
|
||||
/* Emit the proper SOF marker */
|
||||
if (cinfo->arith_code) {
|
||||
if (cinfo->progressive_mode)
|
||||
emit_sof(cinfo, M_SOF10); /* SOF code for progressive arithmetic */
|
||||
else
|
||||
emit_sof(cinfo, M_SOF9); /* SOF code for sequential arithmetic */
|
||||
} else {
|
||||
if (cinfo->progressive_mode)
|
||||
emit_sof(cinfo, M_SOF2); /* SOF code for progressive Huffman */
|
||||
else if (is_baseline)
|
||||
emit_sof(cinfo, M_SOF0); /* SOF code for baseline implementation */
|
||||
else
|
||||
emit_sof(cinfo, M_SOF1); /* SOF code for non-baseline Huffman file */
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write scan header.
|
||||
* This consists of DHT or DAC markers, optional DRI, and SOS.
|
||||
* Compressed data will be written following the SOS.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
write_scan_header (j_compress_ptr cinfo)
|
||||
{
|
||||
my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
|
||||
int i;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
if (cinfo->arith_code) {
|
||||
/* Emit arith conditioning info. We may have some duplication
|
||||
* if the file has multiple scans, but it's so small it's hardly
|
||||
* worth worrying about.
|
||||
*/
|
||||
emit_dac(cinfo);
|
||||
} else {
|
||||
/* Emit Huffman tables.
|
||||
* Note that emit_dht() suppresses any duplicate tables.
|
||||
*/
|
||||
for (i = 0; i < cinfo->comps_in_scan; i++) {
|
||||
compptr = cinfo->cur_comp_info[i];
|
||||
if (cinfo->progressive_mode) {
|
||||
/* Progressive mode: only DC or only AC tables are used in one scan */
|
||||
if (cinfo->Ss == 0) {
|
||||
if (cinfo->Ah == 0) /* DC needs no table for refinement scan */
|
||||
emit_dht(cinfo, compptr->dc_tbl_no, FALSE);
|
||||
} else {
|
||||
emit_dht(cinfo, compptr->ac_tbl_no, TRUE);
|
||||
}
|
||||
} else {
|
||||
/* Sequential mode: need both DC and AC tables */
|
||||
emit_dht(cinfo, compptr->dc_tbl_no, FALSE);
|
||||
emit_dht(cinfo, compptr->ac_tbl_no, TRUE);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Emit DRI if required --- note that DRI value could change for each scan.
|
||||
* We avoid wasting space with unnecessary DRIs, however.
|
||||
*/
|
||||
if (cinfo->restart_interval != marker->last_restart_interval) {
|
||||
emit_dri(cinfo);
|
||||
marker->last_restart_interval = cinfo->restart_interval;
|
||||
}
|
||||
|
||||
emit_sos(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write datastream trailer.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
write_file_trailer (j_compress_ptr cinfo)
|
||||
{
|
||||
emit_marker(cinfo, M_EOI);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write an abbreviated table-specification datastream.
|
||||
* This consists of SOI, DQT and DHT tables, and EOI.
|
||||
* Any table that is defined and not marked sent_table = TRUE will be
|
||||
* emitted. Note that all tables will be marked sent_table = TRUE at exit.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
write_tables_only (j_compress_ptr cinfo)
|
||||
{
|
||||
int i;
|
||||
|
||||
emit_marker(cinfo, M_SOI);
|
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
||||
if (cinfo->quant_tbl_ptrs[i] != NULL)
|
||||
(void) emit_dqt(cinfo, i);
|
||||
}
|
||||
|
||||
if (! cinfo->arith_code) {
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
if (cinfo->dc_huff_tbl_ptrs[i] != NULL)
|
||||
emit_dht(cinfo, i, FALSE);
|
||||
if (cinfo->ac_huff_tbl_ptrs[i] != NULL)
|
||||
emit_dht(cinfo, i, TRUE);
|
||||
}
|
||||
}
|
||||
|
||||
emit_marker(cinfo, M_EOI);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize the marker writer module.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_marker_writer (j_compress_ptr cinfo)
|
||||
{
|
||||
my_marker_ptr marker;
|
||||
|
||||
/* Create the subobject */
|
||||
marker = (my_marker_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_marker_writer));
|
||||
cinfo->marker = (struct jpeg_marker_writer *) marker;
|
||||
/* Initialize method pointers */
|
||||
marker->pub.write_file_header = write_file_header;
|
||||
marker->pub.write_frame_header = write_frame_header;
|
||||
marker->pub.write_scan_header = write_scan_header;
|
||||
marker->pub.write_file_trailer = write_file_trailer;
|
||||
marker->pub.write_tables_only = write_tables_only;
|
||||
marker->pub.write_marker_header = write_marker_header;
|
||||
marker->pub.write_marker_byte = write_marker_byte;
|
||||
/* Initialize private state */
|
||||
marker->last_restart_interval = 0;
|
||||
}
|
|
@ -0,0 +1,770 @@
|
|||
/*
|
||||
* jcmaster.c
|
||||
*
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* Modified 2003-2009 by Guido Vollbeding.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains master control logic for the JPEG compressor.
|
||||
* These routines are concerned with parameter validation, initial setup,
|
||||
* and inter-pass control (determining the number of passes and the work
|
||||
* to be done in each pass).
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Private state */
|
||||
|
||||
typedef enum {
|
||||
main_pass, /* input data, also do first output step */
|
||||
huff_opt_pass, /* Huffman code optimization pass */
|
||||
output_pass /* data output pass */
|
||||
} c_pass_type;
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_comp_master pub; /* public fields */
|
||||
|
||||
c_pass_type pass_type; /* the type of the current pass */
|
||||
|
||||
int pass_number; /* # of passes completed */
|
||||
int total_passes; /* total # of passes needed */
|
||||
|
||||
int scan_number; /* current index in scan_info[] */
|
||||
} my_comp_master;
|
||||
|
||||
typedef my_comp_master * my_master_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Support routines that do various essential calculations.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Compute JPEG image dimensions and related values.
|
||||
* NOTE: this is exported for possible use by application.
|
||||
* Hence it mustn't do anything that can't be done twice.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_calc_jpeg_dimensions (j_compress_ptr cinfo)
|
||||
/* Do computations that are needed before master selection phase */
|
||||
{
|
||||
#ifdef DCT_SCALING_SUPPORTED
|
||||
|
||||
/* Compute actual JPEG image dimensions and DCT scaling choices. */
|
||||
if (cinfo->scale_num >= cinfo->scale_denom * 8) {
|
||||
/* Provide 8/1 scaling */
|
||||
cinfo->jpeg_width = cinfo->image_width << 3;
|
||||
cinfo->jpeg_height = cinfo->image_height << 3;
|
||||
cinfo->min_DCT_h_scaled_size = 1;
|
||||
cinfo->min_DCT_v_scaled_size = 1;
|
||||
} else if (cinfo->scale_num >= cinfo->scale_denom * 4) {
|
||||
/* Provide 4/1 scaling */
|
||||
cinfo->jpeg_width = cinfo->image_width << 2;
|
||||
cinfo->jpeg_height = cinfo->image_height << 2;
|
||||
cinfo->min_DCT_h_scaled_size = 2;
|
||||
cinfo->min_DCT_v_scaled_size = 2;
|
||||
} else if (cinfo->scale_num * 3 >= cinfo->scale_denom * 8) {
|
||||
/* Provide 8/3 scaling */
|
||||
cinfo->jpeg_width = (cinfo->image_width << 1) + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 2, 3L);
|
||||
cinfo->jpeg_height = (cinfo->image_height << 1) + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 2, 3L);
|
||||
cinfo->min_DCT_h_scaled_size = 3;
|
||||
cinfo->min_DCT_v_scaled_size = 3;
|
||||
} else if (cinfo->scale_num >= cinfo->scale_denom * 2) {
|
||||
/* Provide 2/1 scaling */
|
||||
cinfo->jpeg_width = cinfo->image_width << 1;
|
||||
cinfo->jpeg_height = cinfo->image_height << 1;
|
||||
cinfo->min_DCT_h_scaled_size = 4;
|
||||
cinfo->min_DCT_v_scaled_size = 4;
|
||||
} else if (cinfo->scale_num * 5 >= cinfo->scale_denom * 8) {
|
||||
/* Provide 8/5 scaling */
|
||||
cinfo->jpeg_width = cinfo->image_width + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 3, 5L);
|
||||
cinfo->jpeg_height = cinfo->image_height + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 3, 5L);
|
||||
cinfo->min_DCT_h_scaled_size = 5;
|
||||
cinfo->min_DCT_v_scaled_size = 5;
|
||||
} else if (cinfo->scale_num * 3 >= cinfo->scale_denom * 4) {
|
||||
/* Provide 4/3 scaling */
|
||||
cinfo->jpeg_width = cinfo->image_width + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width, 3L);
|
||||
cinfo->jpeg_height = cinfo->image_height + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height, 3L);
|
||||
cinfo->min_DCT_h_scaled_size = 6;
|
||||
cinfo->min_DCT_v_scaled_size = 6;
|
||||
} else if (cinfo->scale_num * 7 >= cinfo->scale_denom * 8) {
|
||||
/* Provide 8/7 scaling */
|
||||
cinfo->jpeg_width = cinfo->image_width + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width, 7L);
|
||||
cinfo->jpeg_height = cinfo->image_height + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height, 7L);
|
||||
cinfo->min_DCT_h_scaled_size = 7;
|
||||
cinfo->min_DCT_v_scaled_size = 7;
|
||||
} else if (cinfo->scale_num >= cinfo->scale_denom) {
|
||||
/* Provide 1/1 scaling */
|
||||
cinfo->jpeg_width = cinfo->image_width;
|
||||
cinfo->jpeg_height = cinfo->image_height;
|
||||
cinfo->min_DCT_h_scaled_size = DCTSIZE;
|
||||
cinfo->min_DCT_v_scaled_size = DCTSIZE;
|
||||
} else if (cinfo->scale_num * 9 >= cinfo->scale_denom * 8) {
|
||||
/* Provide 8/9 scaling */
|
||||
cinfo->jpeg_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 8, 9L);
|
||||
cinfo->jpeg_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 8, 9L);
|
||||
cinfo->min_DCT_h_scaled_size = 9;
|
||||
cinfo->min_DCT_v_scaled_size = 9;
|
||||
} else if (cinfo->scale_num * 5 >= cinfo->scale_denom * 4) {
|
||||
/* Provide 4/5 scaling */
|
||||
cinfo->jpeg_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 4, 5L);
|
||||
cinfo->jpeg_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 4, 5L);
|
||||
cinfo->min_DCT_h_scaled_size = 10;
|
||||
cinfo->min_DCT_v_scaled_size = 10;
|
||||
} else if (cinfo->scale_num * 11 >= cinfo->scale_denom * 8) {
|
||||
/* Provide 8/11 scaling */
|
||||
cinfo->jpeg_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 8, 11L);
|
||||
cinfo->jpeg_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 8, 11L);
|
||||
cinfo->min_DCT_h_scaled_size = 11;
|
||||
cinfo->min_DCT_v_scaled_size = 11;
|
||||
} else if (cinfo->scale_num * 3 >= cinfo->scale_denom * 2) {
|
||||
/* Provide 2/3 scaling */
|
||||
cinfo->jpeg_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 2, 3L);
|
||||
cinfo->jpeg_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 2, 3L);
|
||||
cinfo->min_DCT_h_scaled_size = 12;
|
||||
cinfo->min_DCT_v_scaled_size = 12;
|
||||
} else if (cinfo->scale_num * 13 >= cinfo->scale_denom * 8) {
|
||||
/* Provide 8/13 scaling */
|
||||
cinfo->jpeg_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 8, 13L);
|
||||
cinfo->jpeg_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 8, 13L);
|
||||
cinfo->min_DCT_h_scaled_size = 13;
|
||||
cinfo->min_DCT_v_scaled_size = 13;
|
||||
} else if (cinfo->scale_num * 7 >= cinfo->scale_denom * 4) {
|
||||
/* Provide 4/7 scaling */
|
||||
cinfo->jpeg_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 4, 7L);
|
||||
cinfo->jpeg_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 4, 7L);
|
||||
cinfo->min_DCT_h_scaled_size = 14;
|
||||
cinfo->min_DCT_v_scaled_size = 14;
|
||||
} else if (cinfo->scale_num * 15 >= cinfo->scale_denom * 8) {
|
||||
/* Provide 8/15 scaling */
|
||||
cinfo->jpeg_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 8, 15L);
|
||||
cinfo->jpeg_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 8, 15L);
|
||||
cinfo->min_DCT_h_scaled_size = 15;
|
||||
cinfo->min_DCT_v_scaled_size = 15;
|
||||
} else {
|
||||
/* Provide 1/2 scaling */
|
||||
cinfo->jpeg_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width, 2L);
|
||||
cinfo->jpeg_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height, 2L);
|
||||
cinfo->min_DCT_h_scaled_size = 16;
|
||||
cinfo->min_DCT_v_scaled_size = 16;
|
||||
}
|
||||
|
||||
#else /* !DCT_SCALING_SUPPORTED */
|
||||
|
||||
/* Hardwire it to "no scaling" */
|
||||
cinfo->jpeg_width = cinfo->image_width;
|
||||
cinfo->jpeg_height = cinfo->image_height;
|
||||
cinfo->min_DCT_h_scaled_size = DCTSIZE;
|
||||
cinfo->min_DCT_v_scaled_size = DCTSIZE;
|
||||
|
||||
#endif /* DCT_SCALING_SUPPORTED */
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
initial_setup (j_compress_ptr cinfo)
|
||||
/* Do computations that are needed before master selection phase */
|
||||
{
|
||||
int ci, ssize;
|
||||
jpeg_component_info *compptr;
|
||||
long samplesperrow;
|
||||
JDIMENSION jd_samplesperrow;
|
||||
|
||||
jpeg_calc_jpeg_dimensions(cinfo);
|
||||
|
||||
/* Sanity check on image dimensions */
|
||||
if (cinfo->jpeg_height <= 0 || cinfo->jpeg_width <= 0
|
||||
|| cinfo->num_components <= 0 || cinfo->input_components <= 0)
|
||||
ERREXIT(cinfo, JERR_EMPTY_IMAGE);
|
||||
|
||||
/* Make sure image isn't bigger than I can handle */
|
||||
if ((long) cinfo->jpeg_height > (long) JPEG_MAX_DIMENSION ||
|
||||
(long) cinfo->jpeg_width > (long) JPEG_MAX_DIMENSION)
|
||||
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
|
||||
|
||||
/* Width of an input scanline must be representable as JDIMENSION. */
|
||||
samplesperrow = (long) cinfo->image_width * (long) cinfo->input_components;
|
||||
jd_samplesperrow = (JDIMENSION) samplesperrow;
|
||||
if ((long) jd_samplesperrow != samplesperrow)
|
||||
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
|
||||
|
||||
/* For now, precision must match compiled-in value... */
|
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
|
||||
/* Check that number of components won't exceed internal array sizes */
|
||||
if (cinfo->num_components > MAX_COMPONENTS)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
|
||||
MAX_COMPONENTS);
|
||||
|
||||
/* Compute maximum sampling factors; check factor validity */
|
||||
cinfo->max_h_samp_factor = 1;
|
||||
cinfo->max_v_samp_factor = 1;
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
|
||||
compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
|
||||
ERREXIT(cinfo, JERR_BAD_SAMPLING);
|
||||
cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
|
||||
compptr->h_samp_factor);
|
||||
cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
|
||||
compptr->v_samp_factor);
|
||||
}
|
||||
|
||||
/* Compute dimensions of components */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Fill in the correct component_index value; don't rely on application */
|
||||
compptr->component_index = ci;
|
||||
/* In selecting the actual DCT scaling for each component, we try to
|
||||
* scale down the chroma components via DCT scaling rather than downsampling.
|
||||
* This saves time if the downsampler gets to use 1:1 scaling.
|
||||
* Note this code adapts subsampling ratios which are powers of 2.
|
||||
*/
|
||||
ssize = 1;
|
||||
#ifdef DCT_SCALING_SUPPORTED
|
||||
while (cinfo->min_DCT_h_scaled_size * ssize <=
|
||||
(cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) &&
|
||||
(cinfo->max_h_samp_factor % (compptr->h_samp_factor * ssize * 2)) == 0) {
|
||||
ssize = ssize * 2;
|
||||
}
|
||||
#endif
|
||||
compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size * ssize;
|
||||
ssize = 1;
|
||||
#ifdef DCT_SCALING_SUPPORTED
|
||||
while (cinfo->min_DCT_v_scaled_size * ssize <=
|
||||
(cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) &&
|
||||
(cinfo->max_v_samp_factor % (compptr->v_samp_factor * ssize * 2)) == 0) {
|
||||
ssize = ssize * 2;
|
||||
}
|
||||
#endif
|
||||
compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size * ssize;
|
||||
|
||||
/* We don't support DCT ratios larger than 2. */
|
||||
if (compptr->DCT_h_scaled_size > compptr->DCT_v_scaled_size * 2)
|
||||
compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size * 2;
|
||||
else if (compptr->DCT_v_scaled_size > compptr->DCT_h_scaled_size * 2)
|
||||
compptr->DCT_v_scaled_size = compptr->DCT_h_scaled_size * 2;
|
||||
|
||||
/* Size in DCT blocks */
|
||||
compptr->width_in_blocks = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->jpeg_width * (long) compptr->h_samp_factor,
|
||||
(long) (cinfo->max_h_samp_factor * DCTSIZE));
|
||||
compptr->height_in_blocks = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->jpeg_height * (long) compptr->v_samp_factor,
|
||||
(long) (cinfo->max_v_samp_factor * DCTSIZE));
|
||||
/* Size in samples */
|
||||
compptr->downsampled_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->jpeg_width *
|
||||
(long) (compptr->h_samp_factor * compptr->DCT_h_scaled_size),
|
||||
(long) (cinfo->max_h_samp_factor * DCTSIZE));
|
||||
compptr->downsampled_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->jpeg_height *
|
||||
(long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size),
|
||||
(long) (cinfo->max_v_samp_factor * DCTSIZE));
|
||||
/* Mark component needed (this flag isn't actually used for compression) */
|
||||
compptr->component_needed = TRUE;
|
||||
}
|
||||
|
||||
/* Compute number of fully interleaved MCU rows (number of times that
|
||||
* main controller will call coefficient controller).
|
||||
*/
|
||||
cinfo->total_iMCU_rows = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->jpeg_height,
|
||||
(long) (cinfo->max_v_samp_factor*DCTSIZE));
|
||||
}
|
||||
|
||||
|
||||
#ifdef C_MULTISCAN_FILES_SUPPORTED
|
||||
|
||||
LOCAL(void)
|
||||
validate_script (j_compress_ptr cinfo)
|
||||
/* Verify that the scan script in cinfo->scan_info[] is valid; also
|
||||
* determine whether it uses progressive JPEG, and set cinfo->progressive_mode.
|
||||
*/
|
||||
{
|
||||
const jpeg_scan_info * scanptr;
|
||||
int scanno, ncomps, ci, coefi, thisi;
|
||||
int Ss, Se, Ah, Al;
|
||||
boolean component_sent[MAX_COMPONENTS];
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||
int * last_bitpos_ptr;
|
||||
int last_bitpos[MAX_COMPONENTS][DCTSIZE2];
|
||||
/* -1 until that coefficient has been seen; then last Al for it */
|
||||
#endif
|
||||
|
||||
if (cinfo->num_scans <= 0)
|
||||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, 0);
|
||||
|
||||
/* For sequential JPEG, all scans must have Ss=0, Se=DCTSIZE2-1;
|
||||
* for progressive JPEG, no scan can have this.
|
||||
*/
|
||||
scanptr = cinfo->scan_info;
|
||||
if (scanptr->Ss != 0 || scanptr->Se != DCTSIZE2-1) {
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||
cinfo->progressive_mode = TRUE;
|
||||
last_bitpos_ptr = & last_bitpos[0][0];
|
||||
for (ci = 0; ci < cinfo->num_components; ci++)
|
||||
for (coefi = 0; coefi < DCTSIZE2; coefi++)
|
||||
*last_bitpos_ptr++ = -1;
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else {
|
||||
cinfo->progressive_mode = FALSE;
|
||||
for (ci = 0; ci < cinfo->num_components; ci++)
|
||||
component_sent[ci] = FALSE;
|
||||
}
|
||||
|
||||
for (scanno = 1; scanno <= cinfo->num_scans; scanptr++, scanno++) {
|
||||
/* Validate component indexes */
|
||||
ncomps = scanptr->comps_in_scan;
|
||||
if (ncomps <= 0 || ncomps > MAX_COMPS_IN_SCAN)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, ncomps, MAX_COMPS_IN_SCAN);
|
||||
for (ci = 0; ci < ncomps; ci++) {
|
||||
thisi = scanptr->component_index[ci];
|
||||
if (thisi < 0 || thisi >= cinfo->num_components)
|
||||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
|
||||
/* Components must appear in SOF order within each scan */
|
||||
if (ci > 0 && thisi <= scanptr->component_index[ci-1])
|
||||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
|
||||
}
|
||||
/* Validate progression parameters */
|
||||
Ss = scanptr->Ss;
|
||||
Se = scanptr->Se;
|
||||
Ah = scanptr->Ah;
|
||||
Al = scanptr->Al;
|
||||
if (cinfo->progressive_mode) {
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||
/* The JPEG spec simply gives the ranges 0..13 for Ah and Al, but that
|
||||
* seems wrong: the upper bound ought to depend on data precision.
|
||||
* Perhaps they really meant 0..N+1 for N-bit precision.
|
||||
* Here we allow 0..10 for 8-bit data; Al larger than 10 results in
|
||||
* out-of-range reconstructed DC values during the first DC scan,
|
||||
* which might cause problems for some decoders.
|
||||
*/
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define MAX_AH_AL 10
|
||||
#else
|
||||
#define MAX_AH_AL 13
|
||||
#endif
|
||||
if (Ss < 0 || Ss >= DCTSIZE2 || Se < Ss || Se >= DCTSIZE2 ||
|
||||
Ah < 0 || Ah > MAX_AH_AL || Al < 0 || Al > MAX_AH_AL)
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
if (Ss == 0) {
|
||||
if (Se != 0) /* DC and AC together not OK */
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
} else {
|
||||
if (ncomps != 1) /* AC scans must be for only one component */
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
}
|
||||
for (ci = 0; ci < ncomps; ci++) {
|
||||
last_bitpos_ptr = & last_bitpos[scanptr->component_index[ci]][0];
|
||||
if (Ss != 0 && last_bitpos_ptr[0] < 0) /* AC without prior DC scan */
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
for (coefi = Ss; coefi <= Se; coefi++) {
|
||||
if (last_bitpos_ptr[coefi] < 0) {
|
||||
/* first scan of this coefficient */
|
||||
if (Ah != 0)
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
} else {
|
||||
/* not first scan */
|
||||
if (Ah != last_bitpos_ptr[coefi] || Al != Ah-1)
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
}
|
||||
last_bitpos_ptr[coefi] = Al;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
} else {
|
||||
/* For sequential JPEG, all progression parameters must be these: */
|
||||
if (Ss != 0 || Se != DCTSIZE2-1 || Ah != 0 || Al != 0)
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
/* Make sure components are not sent twice */
|
||||
for (ci = 0; ci < ncomps; ci++) {
|
||||
thisi = scanptr->component_index[ci];
|
||||
if (component_sent[thisi])
|
||||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
|
||||
component_sent[thisi] = TRUE;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Now verify that everything got sent. */
|
||||
if (cinfo->progressive_mode) {
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||
/* For progressive mode, we only check that at least some DC data
|
||||
* got sent for each component; the spec does not require that all bits
|
||||
* of all coefficients be transmitted. Would it be wiser to enforce
|
||||
* transmission of all coefficient bits??
|
||||
*/
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
if (last_bitpos[ci][0] < 0)
|
||||
ERREXIT(cinfo, JERR_MISSING_DATA);
|
||||
}
|
||||
#endif
|
||||
} else {
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
if (! component_sent[ci])
|
||||
ERREXIT(cinfo, JERR_MISSING_DATA);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* C_MULTISCAN_FILES_SUPPORTED */
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
select_scan_parameters (j_compress_ptr cinfo)
|
||||
/* Set up the scan parameters for the current scan */
|
||||
{
|
||||
int ci;
|
||||
|
||||
#ifdef C_MULTISCAN_FILES_SUPPORTED
|
||||
if (cinfo->scan_info != NULL) {
|
||||
/* Prepare for current scan --- the script is already validated */
|
||||
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||
const jpeg_scan_info * scanptr = cinfo->scan_info + master->scan_number;
|
||||
|
||||
cinfo->comps_in_scan = scanptr->comps_in_scan;
|
||||
for (ci = 0; ci < scanptr->comps_in_scan; ci++) {
|
||||
cinfo->cur_comp_info[ci] =
|
||||
&cinfo->comp_info[scanptr->component_index[ci]];
|
||||
}
|
||||
cinfo->Ss = scanptr->Ss;
|
||||
cinfo->Se = scanptr->Se;
|
||||
cinfo->Ah = scanptr->Ah;
|
||||
cinfo->Al = scanptr->Al;
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
/* Prepare for single sequential-JPEG scan containing all components */
|
||||
if (cinfo->num_components > MAX_COMPS_IN_SCAN)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
|
||||
MAX_COMPS_IN_SCAN);
|
||||
cinfo->comps_in_scan = cinfo->num_components;
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci];
|
||||
}
|
||||
cinfo->Ss = 0;
|
||||
cinfo->Se = DCTSIZE2-1;
|
||||
cinfo->Ah = 0;
|
||||
cinfo->Al = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
per_scan_setup (j_compress_ptr cinfo)
|
||||
/* Do computations that are needed before processing a JPEG scan */
|
||||
/* cinfo->comps_in_scan and cinfo->cur_comp_info[] are already set */
|
||||
{
|
||||
int ci, mcublks, tmp;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
if (cinfo->comps_in_scan == 1) {
|
||||
|
||||
/* Noninterleaved (single-component) scan */
|
||||
compptr = cinfo->cur_comp_info[0];
|
||||
|
||||
/* Overall image size in MCUs */
|
||||
cinfo->MCUs_per_row = compptr->width_in_blocks;
|
||||
cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
|
||||
|
||||
/* For noninterleaved scan, always one block per MCU */
|
||||
compptr->MCU_width = 1;
|
||||
compptr->MCU_height = 1;
|
||||
compptr->MCU_blocks = 1;
|
||||
compptr->MCU_sample_width = compptr->DCT_h_scaled_size;
|
||||
compptr->last_col_width = 1;
|
||||
/* For noninterleaved scans, it is convenient to define last_row_height
|
||||
* as the number of block rows present in the last iMCU row.
|
||||
*/
|
||||
tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
|
||||
if (tmp == 0) tmp = compptr->v_samp_factor;
|
||||
compptr->last_row_height = tmp;
|
||||
|
||||
/* Prepare array describing MCU composition */
|
||||
cinfo->blocks_in_MCU = 1;
|
||||
cinfo->MCU_membership[0] = 0;
|
||||
|
||||
} else {
|
||||
|
||||
/* Interleaved (multi-component) scan */
|
||||
if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
|
||||
MAX_COMPS_IN_SCAN);
|
||||
|
||||
/* Overall image size in MCUs */
|
||||
cinfo->MCUs_per_row = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->jpeg_width,
|
||||
(long) (cinfo->max_h_samp_factor*DCTSIZE));
|
||||
cinfo->MCU_rows_in_scan = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->jpeg_height,
|
||||
(long) (cinfo->max_v_samp_factor*DCTSIZE));
|
||||
|
||||
cinfo->blocks_in_MCU = 0;
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Sampling factors give # of blocks of component in each MCU */
|
||||
compptr->MCU_width = compptr->h_samp_factor;
|
||||
compptr->MCU_height = compptr->v_samp_factor;
|
||||
compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
|
||||
compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_h_scaled_size;
|
||||
/* Figure number of non-dummy blocks in last MCU column & row */
|
||||
tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
|
||||
if (tmp == 0) tmp = compptr->MCU_width;
|
||||
compptr->last_col_width = tmp;
|
||||
tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
|
||||
if (tmp == 0) tmp = compptr->MCU_height;
|
||||
compptr->last_row_height = tmp;
|
||||
/* Prepare array describing MCU composition */
|
||||
mcublks = compptr->MCU_blocks;
|
||||
if (cinfo->blocks_in_MCU + mcublks > C_MAX_BLOCKS_IN_MCU)
|
||||
ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
|
||||
while (mcublks-- > 0) {
|
||||
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/* Convert restart specified in rows to actual MCU count. */
|
||||
/* Note that count must fit in 16 bits, so we provide limiting. */
|
||||
if (cinfo->restart_in_rows > 0) {
|
||||
long nominal = (long) cinfo->restart_in_rows * (long) cinfo->MCUs_per_row;
|
||||
cinfo->restart_interval = (unsigned int) MIN(nominal, 65535L);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Per-pass setup.
|
||||
* This is called at the beginning of each pass. We determine which modules
|
||||
* will be active during this pass and give them appropriate start_pass calls.
|
||||
* We also set is_last_pass to indicate whether any more passes will be
|
||||
* required.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
prepare_for_pass (j_compress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||
|
||||
switch (master->pass_type) {
|
||||
case main_pass:
|
||||
/* Initial pass: will collect input data, and do either Huffman
|
||||
* optimization or data output for the first scan.
|
||||
*/
|
||||
select_scan_parameters(cinfo);
|
||||
per_scan_setup(cinfo);
|
||||
if (! cinfo->raw_data_in) {
|
||||
(*cinfo->cconvert->start_pass) (cinfo);
|
||||
(*cinfo->downsample->start_pass) (cinfo);
|
||||
(*cinfo->prep->start_pass) (cinfo, JBUF_PASS_THRU);
|
||||
}
|
||||
(*cinfo->fdct->start_pass) (cinfo);
|
||||
(*cinfo->entropy->start_pass) (cinfo, cinfo->optimize_coding);
|
||||
(*cinfo->coef->start_pass) (cinfo,
|
||||
(master->total_passes > 1 ?
|
||||
JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
|
||||
(*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
|
||||
if (cinfo->optimize_coding) {
|
||||
/* No immediate data output; postpone writing frame/scan headers */
|
||||
master->pub.call_pass_startup = FALSE;
|
||||
} else {
|
||||
/* Will write frame/scan headers at first jpeg_write_scanlines call */
|
||||
master->pub.call_pass_startup = TRUE;
|
||||
}
|
||||
break;
|
||||
#ifdef ENTROPY_OPT_SUPPORTED
|
||||
case huff_opt_pass:
|
||||
/* Do Huffman optimization for a scan after the first one. */
|
||||
select_scan_parameters(cinfo);
|
||||
per_scan_setup(cinfo);
|
||||
if (cinfo->Ss != 0 || cinfo->Ah == 0) {
|
||||
(*cinfo->entropy->start_pass) (cinfo, TRUE);
|
||||
(*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
|
||||
master->pub.call_pass_startup = FALSE;
|
||||
break;
|
||||
}
|
||||
/* Special case: Huffman DC refinement scans need no Huffman table
|
||||
* and therefore we can skip the optimization pass for them.
|
||||
*/
|
||||
master->pass_type = output_pass;
|
||||
master->pass_number++;
|
||||
/*FALLTHROUGH*/
|
||||
#endif
|
||||
case output_pass:
|
||||
/* Do a data-output pass. */
|
||||
/* We need not repeat per-scan setup if prior optimization pass did it. */
|
||||
if (! cinfo->optimize_coding) {
|
||||
select_scan_parameters(cinfo);
|
||||
per_scan_setup(cinfo);
|
||||
}
|
||||
(*cinfo->entropy->start_pass) (cinfo, FALSE);
|
||||
(*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
|
||||
/* We emit frame/scan headers now */
|
||||
if (master->scan_number == 0)
|
||||
(*cinfo->marker->write_frame_header) (cinfo);
|
||||
(*cinfo->marker->write_scan_header) (cinfo);
|
||||
master->pub.call_pass_startup = FALSE;
|
||||
break;
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
}
|
||||
|
||||
master->pub.is_last_pass = (master->pass_number == master->total_passes-1);
|
||||
|
||||
/* Set up progress monitor's pass info if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->completed_passes = master->pass_number;
|
||||
cinfo->progress->total_passes = master->total_passes;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Special start-of-pass hook.
|
||||
* This is called by jpeg_write_scanlines if call_pass_startup is TRUE.
|
||||
* In single-pass processing, we need this hook because we don't want to
|
||||
* write frame/scan headers during jpeg_start_compress; we want to let the
|
||||
* application write COM markers etc. between jpeg_start_compress and the
|
||||
* jpeg_write_scanlines loop.
|
||||
* In multi-pass processing, this routine is not used.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
pass_startup (j_compress_ptr cinfo)
|
||||
{
|
||||
cinfo->master->call_pass_startup = FALSE; /* reset flag so call only once */
|
||||
|
||||
(*cinfo->marker->write_frame_header) (cinfo);
|
||||
(*cinfo->marker->write_scan_header) (cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at end of pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
finish_pass_master (j_compress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||
|
||||
/* The entropy coder always needs an end-of-pass call,
|
||||
* either to analyze statistics or to flush its output buffer.
|
||||
*/
|
||||
(*cinfo->entropy->finish_pass) (cinfo);
|
||||
|
||||
/* Update state for next pass */
|
||||
switch (master->pass_type) {
|
||||
case main_pass:
|
||||
/* next pass is either output of scan 0 (after optimization)
|
||||
* or output of scan 1 (if no optimization).
|
||||
*/
|
||||
master->pass_type = output_pass;
|
||||
if (! cinfo->optimize_coding)
|
||||
master->scan_number++;
|
||||
break;
|
||||
case huff_opt_pass:
|
||||
/* next pass is always output of current scan */
|
||||
master->pass_type = output_pass;
|
||||
break;
|
||||
case output_pass:
|
||||
/* next pass is either optimization or output of next scan */
|
||||
if (cinfo->optimize_coding)
|
||||
master->pass_type = huff_opt_pass;
|
||||
master->scan_number++;
|
||||
break;
|
||||
}
|
||||
|
||||
master->pass_number++;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize master compression control.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only)
|
||||
{
|
||||
my_master_ptr master;
|
||||
|
||||
master = (my_master_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_comp_master));
|
||||
cinfo->master = (struct jpeg_comp_master *) master;
|
||||
master->pub.prepare_for_pass = prepare_for_pass;
|
||||
master->pub.pass_startup = pass_startup;
|
||||
master->pub.finish_pass = finish_pass_master;
|
||||
master->pub.is_last_pass = FALSE;
|
||||
|
||||
/* Validate parameters, determine derived values */
|
||||
initial_setup(cinfo);
|
||||
|
||||
if (cinfo->scan_info != NULL) {
|
||||
#ifdef C_MULTISCAN_FILES_SUPPORTED
|
||||
validate_script(cinfo);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else {
|
||||
cinfo->progressive_mode = FALSE;
|
||||
cinfo->num_scans = 1;
|
||||
}
|
||||
|
||||
if (cinfo->progressive_mode && cinfo->arith_code == 0) /* TEMPORARY HACK ??? */
|
||||
cinfo->optimize_coding = TRUE; /* assume default tables no good for progressive mode */
|
||||
|
||||
/* Initialize my private state */
|
||||
if (transcode_only) {
|
||||
/* no main pass in transcoding */
|
||||
if (cinfo->optimize_coding)
|
||||
master->pass_type = huff_opt_pass;
|
||||
else
|
||||
master->pass_type = output_pass;
|
||||
} else {
|
||||
/* for normal compression, first pass is always this type: */
|
||||
master->pass_type = main_pass;
|
||||
}
|
||||
master->scan_number = 0;
|
||||
master->pass_number = 0;
|
||||
if (cinfo->optimize_coding)
|
||||
master->total_passes = cinfo->num_scans * 2;
|
||||
else
|
||||
master->total_passes = cinfo->num_scans;
|
||||
}
|
|
@ -0,0 +1,106 @@
|
|||
/*
|
||||
* jcomapi.c
|
||||
*
|
||||
* Copyright (C) 1994-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains application interface routines that are used for both
|
||||
* compression and decompression.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* Abort processing of a JPEG compression or decompression operation,
|
||||
* but don't destroy the object itself.
|
||||
*
|
||||
* For this, we merely clean up all the nonpermanent memory pools.
|
||||
* Note that temp files (virtual arrays) are not allowed to belong to
|
||||
* the permanent pool, so we will be able to close all temp files here.
|
||||
* Closing a data source or destination, if necessary, is the application's
|
||||
* responsibility.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_abort (j_common_ptr cinfo)
|
||||
{
|
||||
int pool;
|
||||
|
||||
/* Do nothing if called on a not-initialized or destroyed JPEG object. */
|
||||
if (cinfo->mem == NULL)
|
||||
return;
|
||||
|
||||
/* Releasing pools in reverse order might help avoid fragmentation
|
||||
* with some (brain-damaged) malloc libraries.
|
||||
*/
|
||||
for (pool = JPOOL_NUMPOOLS-1; pool > JPOOL_PERMANENT; pool--) {
|
||||
(*cinfo->mem->free_pool) (cinfo, pool);
|
||||
}
|
||||
|
||||
/* Reset overall state for possible reuse of object */
|
||||
if (cinfo->is_decompressor) {
|
||||
cinfo->global_state = DSTATE_START;
|
||||
/* Try to keep application from accessing now-deleted marker list.
|
||||
* A bit kludgy to do it here, but this is the most central place.
|
||||
*/
|
||||
((j_decompress_ptr) cinfo)->marker_list = NULL;
|
||||
} else {
|
||||
cinfo->global_state = CSTATE_START;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Destruction of a JPEG object.
|
||||
*
|
||||
* Everything gets deallocated except the master jpeg_compress_struct itself
|
||||
* and the error manager struct. Both of these are supplied by the application
|
||||
* and must be freed, if necessary, by the application. (Often they are on
|
||||
* the stack and so don't need to be freed anyway.)
|
||||
* Closing a data source or destination, if necessary, is the application's
|
||||
* responsibility.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_destroy (j_common_ptr cinfo)
|
||||
{
|
||||
/* We need only tell the memory manager to release everything. */
|
||||
/* NB: mem pointer is NULL if memory mgr failed to initialize. */
|
||||
if (cinfo->mem != NULL)
|
||||
(*cinfo->mem->self_destruct) (cinfo);
|
||||
cinfo->mem = NULL; /* be safe if jpeg_destroy is called twice */
|
||||
cinfo->global_state = 0; /* mark it destroyed */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convenience routines for allocating quantization and Huffman tables.
|
||||
* (Would jutils.c be a more reasonable place to put these?)
|
||||
*/
|
||||
|
||||
GLOBAL(JQUANT_TBL *)
|
||||
jpeg_alloc_quant_table (j_common_ptr cinfo)
|
||||
{
|
||||
JQUANT_TBL *tbl;
|
||||
|
||||
tbl = (JQUANT_TBL *)
|
||||
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JQUANT_TBL));
|
||||
tbl->sent_table = FALSE; /* make sure this is false in any new table */
|
||||
return tbl;
|
||||
}
|
||||
|
||||
|
||||
GLOBAL(JHUFF_TBL *)
|
||||
jpeg_alloc_huff_table (j_common_ptr cinfo)
|
||||
{
|
||||
JHUFF_TBL *tbl;
|
||||
|
||||
tbl = (JHUFF_TBL *)
|
||||
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JHUFF_TBL));
|
||||
tbl->sent_table = FALSE; /* make sure this is false in any new table */
|
||||
return tbl;
|
||||
}
|
|
@ -0,0 +1,45 @@
|
|||
/* jconfig.vc --- jconfig.h for Microsoft Visual C++ on Windows 95 or NT. */
|
||||
/* see jconfig.txt for explanations */
|
||||
|
||||
#define HAVE_PROTOTYPES
|
||||
#define HAVE_UNSIGNED_CHAR
|
||||
#define HAVE_UNSIGNED_SHORT
|
||||
/* #define void char */
|
||||
/* #define const */
|
||||
#undef CHAR_IS_UNSIGNED
|
||||
#define HAVE_STDDEF_H
|
||||
#define HAVE_STDLIB_H
|
||||
#undef NEED_BSD_STRINGS
|
||||
#undef NEED_SYS_TYPES_H
|
||||
#undef NEED_FAR_POINTERS /* we presume a 32-bit flat memory model */
|
||||
#undef NEED_SHORT_EXTERNAL_NAMES
|
||||
#undef INCOMPLETE_TYPES_BROKEN
|
||||
|
||||
/* Define "boolean" as unsigned char, not int, per Windows custom */
|
||||
#ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */
|
||||
typedef unsigned char boolean;
|
||||
#endif
|
||||
#define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */
|
||||
|
||||
|
||||
#ifdef JPEG_INTERNALS
|
||||
|
||||
#undef RIGHT_SHIFT_IS_UNSIGNED
|
||||
|
||||
#endif /* JPEG_INTERNALS */
|
||||
|
||||
#ifdef JPEG_CJPEG_DJPEG
|
||||
|
||||
#define BMP_SUPPORTED /* BMP image file format */
|
||||
#define GIF_SUPPORTED /* GIF image file format */
|
||||
#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
|
||||
#undef RLE_SUPPORTED /* Utah RLE image file format */
|
||||
#define TARGA_SUPPORTED /* Targa image file format */
|
||||
|
||||
#define TWO_FILE_COMMANDLINE /* optional */
|
||||
#define USE_SETMODE /* Microsoft has setmode() */
|
||||
#undef NEED_SIGNAL_CATCHER
|
||||
#undef DONT_USE_B_MODE
|
||||
#undef PROGRESS_REPORT /* optional */
|
||||
|
||||
#endif /* JPEG_CJPEG_DJPEG */
|
|
@ -0,0 +1,632 @@
|
|||
/*
|
||||
* jcparam.c
|
||||
*
|
||||
* Copyright (C) 1991-1998, Thomas G. Lane.
|
||||
* Modified 2003-2008 by Guido Vollbeding.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains optional default-setting code for the JPEG compressor.
|
||||
* Applications do not have to use this file, but those that don't use it
|
||||
* must know a lot more about the innards of the JPEG code.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* Quantization table setup routines
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
|
||||
const unsigned int *basic_table,
|
||||
int scale_factor, boolean force_baseline)
|
||||
/* Define a quantization table equal to the basic_table times
|
||||
* a scale factor (given as a percentage).
|
||||
* If force_baseline is TRUE, the computed quantization table entries
|
||||
* are limited to 1..255 for JPEG baseline compatibility.
|
||||
*/
|
||||
{
|
||||
JQUANT_TBL ** qtblptr;
|
||||
int i;
|
||||
long temp;
|
||||
|
||||
/* Safety check to ensure start_compress not called yet. */
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS)
|
||||
ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl);
|
||||
|
||||
qtblptr = & cinfo->quant_tbl_ptrs[which_tbl];
|
||||
|
||||
if (*qtblptr == NULL)
|
||||
*qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo);
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
temp = ((long) basic_table[i] * scale_factor + 50L) / 100L;
|
||||
/* limit the values to the valid range */
|
||||
if (temp <= 0L) temp = 1L;
|
||||
if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
|
||||
if (force_baseline && temp > 255L)
|
||||
temp = 255L; /* limit to baseline range if requested */
|
||||
(*qtblptr)->quantval[i] = (UINT16) temp;
|
||||
}
|
||||
|
||||
/* Initialize sent_table FALSE so table will be written to JPEG file. */
|
||||
(*qtblptr)->sent_table = FALSE;
|
||||
}
|
||||
|
||||
|
||||
/* These are the sample quantization tables given in JPEG spec section K.1.
|
||||
* The spec says that the values given produce "good" quality, and
|
||||
* when divided by 2, "very good" quality.
|
||||
*/
|
||||
static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = {
|
||||
16, 11, 10, 16, 24, 40, 51, 61,
|
||||
12, 12, 14, 19, 26, 58, 60, 55,
|
||||
14, 13, 16, 24, 40, 57, 69, 56,
|
||||
14, 17, 22, 29, 51, 87, 80, 62,
|
||||
18, 22, 37, 56, 68, 109, 103, 77,
|
||||
24, 35, 55, 64, 81, 104, 113, 92,
|
||||
49, 64, 78, 87, 103, 121, 120, 101,
|
||||
72, 92, 95, 98, 112, 100, 103, 99
|
||||
};
|
||||
static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = {
|
||||
17, 18, 24, 47, 99, 99, 99, 99,
|
||||
18, 21, 26, 66, 99, 99, 99, 99,
|
||||
24, 26, 56, 99, 99, 99, 99, 99,
|
||||
47, 66, 99, 99, 99, 99, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99
|
||||
};
|
||||
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline)
|
||||
/* Set or change the 'quality' (quantization) setting, using default tables
|
||||
* and straight percentage-scaling quality scales.
|
||||
* This entry point allows different scalings for luminance and chrominance.
|
||||
*/
|
||||
{
|
||||
/* Set up two quantization tables using the specified scaling */
|
||||
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
|
||||
cinfo->q_scale_factor[0], force_baseline);
|
||||
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
|
||||
cinfo->q_scale_factor[1], force_baseline);
|
||||
}
|
||||
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
|
||||
boolean force_baseline)
|
||||
/* Set or change the 'quality' (quantization) setting, using default tables
|
||||
* and a straight percentage-scaling quality scale. In most cases it's better
|
||||
* to use jpeg_set_quality (below); this entry point is provided for
|
||||
* applications that insist on a linear percentage scaling.
|
||||
*/
|
||||
{
|
||||
/* Set up two quantization tables using the specified scaling */
|
||||
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
|
||||
scale_factor, force_baseline);
|
||||
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
|
||||
scale_factor, force_baseline);
|
||||
}
|
||||
|
||||
|
||||
GLOBAL(int)
|
||||
jpeg_quality_scaling (int quality)
|
||||
/* Convert a user-specified quality rating to a percentage scaling factor
|
||||
* for an underlying quantization table, using our recommended scaling curve.
|
||||
* The input 'quality' factor should be 0 (terrible) to 100 (very good).
|
||||
*/
|
||||
{
|
||||
/* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */
|
||||
if (quality <= 0) quality = 1;
|
||||
if (quality > 100) quality = 100;
|
||||
|
||||
/* The basic table is used as-is (scaling 100) for a quality of 50.
|
||||
* Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
|
||||
* note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table
|
||||
* to make all the table entries 1 (hence, minimum quantization loss).
|
||||
* Qualities 1..50 are converted to scaling percentage 5000/Q.
|
||||
*/
|
||||
if (quality < 50)
|
||||
quality = 5000 / quality;
|
||||
else
|
||||
quality = 200 - quality*2;
|
||||
|
||||
return quality;
|
||||
}
|
||||
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)
|
||||
/* Set or change the 'quality' (quantization) setting, using default tables.
|
||||
* This is the standard quality-adjusting entry point for typical user
|
||||
* interfaces; only those who want detailed control over quantization tables
|
||||
* would use the preceding three routines directly.
|
||||
*/
|
||||
{
|
||||
/* Convert user 0-100 rating to percentage scaling */
|
||||
quality = jpeg_quality_scaling(quality);
|
||||
|
||||
/* Set up standard quality tables */
|
||||
jpeg_set_linear_quality(cinfo, quality, force_baseline);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Huffman table setup routines
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
add_huff_table (j_compress_ptr cinfo,
|
||||
JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val)
|
||||
/* Define a Huffman table */
|
||||
{
|
||||
int nsymbols, len;
|
||||
|
||||
if (*htblptr == NULL)
|
||||
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
|
||||
|
||||
/* Copy the number-of-symbols-of-each-code-length counts */
|
||||
MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));
|
||||
|
||||
/* Validate the counts. We do this here mainly so we can copy the right
|
||||
* number of symbols from the val[] array, without risking marching off
|
||||
* the end of memory. jchuff.c will do a more thorough test later.
|
||||
*/
|
||||
nsymbols = 0;
|
||||
for (len = 1; len <= 16; len++)
|
||||
nsymbols += bits[len];
|
||||
if (nsymbols < 1 || nsymbols > 256)
|
||||
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
||||
|
||||
MEMCOPY((*htblptr)->huffval, val, nsymbols * SIZEOF(UINT8));
|
||||
|
||||
/* Initialize sent_table FALSE so table will be written to JPEG file. */
|
||||
(*htblptr)->sent_table = FALSE;
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
std_huff_tables (j_compress_ptr cinfo)
|
||||
/* Set up the standard Huffman tables (cf. JPEG standard section K.3) */
|
||||
/* IMPORTANT: these are only valid for 8-bit data precision! */
|
||||
{
|
||||
static const UINT8 bits_dc_luminance[17] =
|
||||
{ /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
|
||||
static const UINT8 val_dc_luminance[] =
|
||||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
|
||||
|
||||
static const UINT8 bits_dc_chrominance[17] =
|
||||
{ /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
|
||||
static const UINT8 val_dc_chrominance[] =
|
||||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
|
||||
|
||||
static const UINT8 bits_ac_luminance[17] =
|
||||
{ /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
|
||||
static const UINT8 val_ac_luminance[] =
|
||||
{ 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
|
||||
0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
|
||||
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
|
||||
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
|
||||
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
|
||||
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
|
||||
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
|
||||
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
|
||||
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
|
||||
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
|
||||
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
|
||||
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
|
||||
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
|
||||
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
|
||||
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
|
||||
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
|
||||
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
|
||||
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
|
||||
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
|
||||
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
|
||||
0xf9, 0xfa };
|
||||
|
||||
static const UINT8 bits_ac_chrominance[17] =
|
||||
{ /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
|
||||
static const UINT8 val_ac_chrominance[] =
|
||||
{ 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
|
||||
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
|
||||
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
|
||||
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
|
||||
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
|
||||
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
|
||||
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
|
||||
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
|
||||
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
|
||||
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
|
||||
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
|
||||
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
|
||||
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
|
||||
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
|
||||
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
|
||||
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
|
||||
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
|
||||
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
|
||||
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
|
||||
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
|
||||
0xf9, 0xfa };
|
||||
|
||||
add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[0],
|
||||
bits_dc_luminance, val_dc_luminance);
|
||||
add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[0],
|
||||
bits_ac_luminance, val_ac_luminance);
|
||||
add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[1],
|
||||
bits_dc_chrominance, val_dc_chrominance);
|
||||
add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[1],
|
||||
bits_ac_chrominance, val_ac_chrominance);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Default parameter setup for compression.
|
||||
*
|
||||
* Applications that don't choose to use this routine must do their
|
||||
* own setup of all these parameters. Alternately, you can call this
|
||||
* to establish defaults and then alter parameters selectively. This
|
||||
* is the recommended approach since, if we add any new parameters,
|
||||
* your code will still work (they'll be set to reasonable defaults).
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_set_defaults (j_compress_ptr cinfo)
|
||||
{
|
||||
int i;
|
||||
|
||||
/* Safety check to ensure start_compress not called yet. */
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
/* Allocate comp_info array large enough for maximum component count.
|
||||
* Array is made permanent in case application wants to compress
|
||||
* multiple images at same param settings.
|
||||
*/
|
||||
if (cinfo->comp_info == NULL)
|
||||
cinfo->comp_info = (jpeg_component_info *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
||||
MAX_COMPONENTS * SIZEOF(jpeg_component_info));
|
||||
|
||||
/* Initialize everything not dependent on the color space */
|
||||
|
||||
cinfo->scale_num = 1; /* 1:1 scaling */
|
||||
cinfo->scale_denom = 1;
|
||||
cinfo->data_precision = BITS_IN_JSAMPLE;
|
||||
/* Set up two quantization tables using default quality of 75 */
|
||||
jpeg_set_quality(cinfo, 75, TRUE);
|
||||
/* Set up two Huffman tables */
|
||||
std_huff_tables(cinfo);
|
||||
|
||||
/* Initialize default arithmetic coding conditioning */
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) {
|
||||
cinfo->arith_dc_L[i] = 0;
|
||||
cinfo->arith_dc_U[i] = 1;
|
||||
cinfo->arith_ac_K[i] = 5;
|
||||
}
|
||||
|
||||
/* Default is no multiple-scan output */
|
||||
cinfo->scan_info = NULL;
|
||||
cinfo->num_scans = 0;
|
||||
|
||||
/* Expect normal source image, not raw downsampled data */
|
||||
cinfo->raw_data_in = FALSE;
|
||||
|
||||
/* Use Huffman coding, not arithmetic coding, by default */
|
||||
cinfo->arith_code = FALSE;
|
||||
|
||||
/* By default, don't do extra passes to optimize entropy coding */
|
||||
cinfo->optimize_coding = FALSE;
|
||||
/* The standard Huffman tables are only valid for 8-bit data precision.
|
||||
* If the precision is higher, force optimization on so that usable
|
||||
* tables will be computed. This test can be removed if default tables
|
||||
* are supplied that are valid for the desired precision.
|
||||
*/
|
||||
if (cinfo->data_precision > 8)
|
||||
cinfo->optimize_coding = TRUE;
|
||||
|
||||
/* By default, use the simpler non-cosited sampling alignment */
|
||||
cinfo->CCIR601_sampling = FALSE;
|
||||
|
||||
/* By default, apply fancy downsampling */
|
||||
cinfo->do_fancy_downsampling = TRUE;
|
||||
|
||||
/* No input smoothing */
|
||||
cinfo->smoothing_factor = 0;
|
||||
|
||||
/* DCT algorithm preference */
|
||||
cinfo->dct_method = JDCT_DEFAULT;
|
||||
|
||||
/* No restart markers */
|
||||
cinfo->restart_interval = 0;
|
||||
cinfo->restart_in_rows = 0;
|
||||
|
||||
/* Fill in default JFIF marker parameters. Note that whether the marker
|
||||
* will actually be written is determined by jpeg_set_colorspace.
|
||||
*
|
||||
* By default, the library emits JFIF version code 1.01.
|
||||
* An application that wants to emit JFIF 1.02 extension markers should set
|
||||
* JFIF_minor_version to 2. We could probably get away with just defaulting
|
||||
* to 1.02, but there may still be some decoders in use that will complain
|
||||
* about that; saying 1.01 should minimize compatibility problems.
|
||||
*/
|
||||
cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */
|
||||
cinfo->JFIF_minor_version = 1;
|
||||
cinfo->density_unit = 0; /* Pixel size is unknown by default */
|
||||
cinfo->X_density = 1; /* Pixel aspect ratio is square by default */
|
||||
cinfo->Y_density = 1;
|
||||
|
||||
/* Choose JPEG colorspace based on input space, set defaults accordingly */
|
||||
|
||||
jpeg_default_colorspace(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Select an appropriate JPEG colorspace for in_color_space.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_default_colorspace (j_compress_ptr cinfo)
|
||||
{
|
||||
switch (cinfo->in_color_space) {
|
||||
case JCS_GRAYSCALE:
|
||||
jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
|
||||
break;
|
||||
case JCS_RGB:
|
||||
jpeg_set_colorspace(cinfo, JCS_YCbCr);
|
||||
break;
|
||||
case JCS_YCbCr:
|
||||
jpeg_set_colorspace(cinfo, JCS_YCbCr);
|
||||
break;
|
||||
case JCS_CMYK:
|
||||
jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */
|
||||
break;
|
||||
case JCS_YCCK:
|
||||
jpeg_set_colorspace(cinfo, JCS_YCCK);
|
||||
break;
|
||||
case JCS_UNKNOWN:
|
||||
jpeg_set_colorspace(cinfo, JCS_UNKNOWN);
|
||||
break;
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Set the JPEG colorspace, and choose colorspace-dependent default values.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
|
||||
{
|
||||
jpeg_component_info * compptr;
|
||||
int ci;
|
||||
|
||||
#define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl) \
|
||||
(compptr = &cinfo->comp_info[index], \
|
||||
compptr->component_id = (id), \
|
||||
compptr->h_samp_factor = (hsamp), \
|
||||
compptr->v_samp_factor = (vsamp), \
|
||||
compptr->quant_tbl_no = (quant), \
|
||||
compptr->dc_tbl_no = (dctbl), \
|
||||
compptr->ac_tbl_no = (actbl) )
|
||||
|
||||
/* Safety check to ensure start_compress not called yet. */
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
/* For all colorspaces, we use Q and Huff tables 0 for luminance components,
|
||||
* tables 1 for chrominance components.
|
||||
*/
|
||||
|
||||
cinfo->jpeg_color_space = colorspace;
|
||||
|
||||
cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */
|
||||
cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */
|
||||
|
||||
switch (colorspace) {
|
||||
case JCS_GRAYSCALE:
|
||||
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
|
||||
cinfo->num_components = 1;
|
||||
/* JFIF specifies component ID 1 */
|
||||
SET_COMP(0, 1, 1,1, 0, 0,0);
|
||||
break;
|
||||
case JCS_RGB:
|
||||
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */
|
||||
cinfo->num_components = 3;
|
||||
SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0);
|
||||
SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0);
|
||||
SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0);
|
||||
break;
|
||||
case JCS_YCbCr:
|
||||
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
|
||||
cinfo->num_components = 3;
|
||||
/* JFIF specifies component IDs 1,2,3 */
|
||||
/* We default to 2x2 subsamples of chrominance */
|
||||
SET_COMP(0, 1, 2,2, 0, 0,0);
|
||||
SET_COMP(1, 2, 1,1, 1, 1,1);
|
||||
SET_COMP(2, 3, 1,1, 1, 1,1);
|
||||
break;
|
||||
case JCS_CMYK:
|
||||
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */
|
||||
cinfo->num_components = 4;
|
||||
SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0);
|
||||
SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0);
|
||||
SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0);
|
||||
SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0);
|
||||
break;
|
||||
case JCS_YCCK:
|
||||
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */
|
||||
cinfo->num_components = 4;
|
||||
SET_COMP(0, 1, 2,2, 0, 0,0);
|
||||
SET_COMP(1, 2, 1,1, 1, 1,1);
|
||||
SET_COMP(2, 3, 1,1, 1, 1,1);
|
||||
SET_COMP(3, 4, 2,2, 0, 0,0);
|
||||
break;
|
||||
case JCS_UNKNOWN:
|
||||
cinfo->num_components = cinfo->input_components;
|
||||
if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
|
||||
MAX_COMPONENTS);
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
SET_COMP(ci, ci, 1,1, 0, 0,0);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||
|
||||
LOCAL(jpeg_scan_info *)
|
||||
fill_a_scan (jpeg_scan_info * scanptr, int ci,
|
||||
int Ss, int Se, int Ah, int Al)
|
||||
/* Support routine: generate one scan for specified component */
|
||||
{
|
||||
scanptr->comps_in_scan = 1;
|
||||
scanptr->component_index[0] = ci;
|
||||
scanptr->Ss = Ss;
|
||||
scanptr->Se = Se;
|
||||
scanptr->Ah = Ah;
|
||||
scanptr->Al = Al;
|
||||
scanptr++;
|
||||
return scanptr;
|
||||
}
|
||||
|
||||
LOCAL(jpeg_scan_info *)
|
||||
fill_scans (jpeg_scan_info * scanptr, int ncomps,
|
||||
int Ss, int Se, int Ah, int Al)
|
||||
/* Support routine: generate one scan for each component */
|
||||
{
|
||||
int ci;
|
||||
|
||||
for (ci = 0; ci < ncomps; ci++) {
|
||||
scanptr->comps_in_scan = 1;
|
||||
scanptr->component_index[0] = ci;
|
||||
scanptr->Ss = Ss;
|
||||
scanptr->Se = Se;
|
||||
scanptr->Ah = Ah;
|
||||
scanptr->Al = Al;
|
||||
scanptr++;
|
||||
}
|
||||
return scanptr;
|
||||
}
|
||||
|
||||
LOCAL(jpeg_scan_info *)
|
||||
fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al)
|
||||
/* Support routine: generate interleaved DC scan if possible, else N scans */
|
||||
{
|
||||
int ci;
|
||||
|
||||
if (ncomps <= MAX_COMPS_IN_SCAN) {
|
||||
/* Single interleaved DC scan */
|
||||
scanptr->comps_in_scan = ncomps;
|
||||
for (ci = 0; ci < ncomps; ci++)
|
||||
scanptr->component_index[ci] = ci;
|
||||
scanptr->Ss = scanptr->Se = 0;
|
||||
scanptr->Ah = Ah;
|
||||
scanptr->Al = Al;
|
||||
scanptr++;
|
||||
} else {
|
||||
/* Noninterleaved DC scan for each component */
|
||||
scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al);
|
||||
}
|
||||
return scanptr;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Create a recommended progressive-JPEG script.
|
||||
* cinfo->num_components and cinfo->jpeg_color_space must be correct.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_simple_progression (j_compress_ptr cinfo)
|
||||
{
|
||||
int ncomps = cinfo->num_components;
|
||||
int nscans;
|
||||
jpeg_scan_info * scanptr;
|
||||
|
||||
/* Safety check to ensure start_compress not called yet. */
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
/* Figure space needed for script. Calculation must match code below! */
|
||||
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
|
||||
/* Custom script for YCbCr color images. */
|
||||
nscans = 10;
|
||||
} else {
|
||||
/* All-purpose script for other color spaces. */
|
||||
if (ncomps > MAX_COMPS_IN_SCAN)
|
||||
nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */
|
||||
else
|
||||
nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */
|
||||
}
|
||||
|
||||
/* Allocate space for script.
|
||||
* We need to put it in the permanent pool in case the application performs
|
||||
* multiple compressions without changing the settings. To avoid a memory
|
||||
* leak if jpeg_simple_progression is called repeatedly for the same JPEG
|
||||
* object, we try to re-use previously allocated space, and we allocate
|
||||
* enough space to handle YCbCr even if initially asked for grayscale.
|
||||
*/
|
||||
if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
|
||||
cinfo->script_space_size = MAX(nscans, 10);
|
||||
cinfo->script_space = (jpeg_scan_info *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
||||
cinfo->script_space_size * SIZEOF(jpeg_scan_info));
|
||||
}
|
||||
scanptr = cinfo->script_space;
|
||||
cinfo->scan_info = scanptr;
|
||||
cinfo->num_scans = nscans;
|
||||
|
||||
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
|
||||
/* Custom script for YCbCr color images. */
|
||||
/* Initial DC scan */
|
||||
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
|
||||
/* Initial AC scan: get some luma data out in a hurry */
|
||||
scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2);
|
||||
/* Chroma data is too small to be worth expending many scans on */
|
||||
scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1);
|
||||
scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1);
|
||||
/* Complete spectral selection for luma AC */
|
||||
scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2);
|
||||
/* Refine next bit of luma AC */
|
||||
scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1);
|
||||
/* Finish DC successive approximation */
|
||||
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
|
||||
/* Finish AC successive approximation */
|
||||
scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0);
|
||||
scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0);
|
||||
/* Luma bottom bit comes last since it's usually largest scan */
|
||||
scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0);
|
||||
} else {
|
||||
/* All-purpose script for other color spaces. */
|
||||
/* Successive approximation first pass */
|
||||
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
|
||||
scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2);
|
||||
scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2);
|
||||
/* Successive approximation second pass */
|
||||
scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1);
|
||||
/* Successive approximation final pass */
|
||||
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
|
||||
scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0);
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* C_PROGRESSIVE_SUPPORTED */
|
|
@ -0,0 +1,358 @@
|
|||
/*
|
||||
* jcprepct.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the compression preprocessing controller.
|
||||
* This controller manages the color conversion, downsampling,
|
||||
* and edge expansion steps.
|
||||
*
|
||||
* Most of the complexity here is associated with buffering input rows
|
||||
* as required by the downsampler. See the comments at the head of
|
||||
* jcsample.c for the downsampler's needs.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* At present, jcsample.c can request context rows only for smoothing.
|
||||
* In the future, we might also need context rows for CCIR601 sampling
|
||||
* or other more-complex downsampling procedures. The code to support
|
||||
* context rows should be compiled only if needed.
|
||||
*/
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||
#define CONTEXT_ROWS_SUPPORTED
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* For the simple (no-context-row) case, we just need to buffer one
|
||||
* row group's worth of pixels for the downsampling step. At the bottom of
|
||||
* the image, we pad to a full row group by replicating the last pixel row.
|
||||
* The downsampler's last output row is then replicated if needed to pad
|
||||
* out to a full iMCU row.
|
||||
*
|
||||
* When providing context rows, we must buffer three row groups' worth of
|
||||
* pixels. Three row groups are physically allocated, but the row pointer
|
||||
* arrays are made five row groups high, with the extra pointers above and
|
||||
* below "wrapping around" to point to the last and first real row groups.
|
||||
* This allows the downsampler to access the proper context rows.
|
||||
* At the top and bottom of the image, we create dummy context rows by
|
||||
* copying the first or last real pixel row. This copying could be avoided
|
||||
* by pointer hacking as is done in jdmainct.c, but it doesn't seem worth the
|
||||
* trouble on the compression side.
|
||||
*/
|
||||
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_c_prep_controller pub; /* public fields */
|
||||
|
||||
/* Downsampling input buffer. This buffer holds color-converted data
|
||||
* until we have enough to do a downsample step.
|
||||
*/
|
||||
JSAMPARRAY color_buf[MAX_COMPONENTS];
|
||||
|
||||
JDIMENSION rows_to_go; /* counts rows remaining in source image */
|
||||
int next_buf_row; /* index of next row to store in color_buf */
|
||||
|
||||
#ifdef CONTEXT_ROWS_SUPPORTED /* only needed for context case */
|
||||
int this_row_group; /* starting row index of group to process */
|
||||
int next_buf_stop; /* downsample when we reach this index */
|
||||
#endif
|
||||
} my_prep_controller;
|
||||
|
||||
typedef my_prep_controller * my_prep_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_prep (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
|
||||
|
||||
if (pass_mode != JBUF_PASS_THRU)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
|
||||
/* Initialize total-height counter for detecting bottom of image */
|
||||
prep->rows_to_go = cinfo->image_height;
|
||||
/* Mark the conversion buffer empty */
|
||||
prep->next_buf_row = 0;
|
||||
#ifdef CONTEXT_ROWS_SUPPORTED
|
||||
/* Preset additional state variables for context mode.
|
||||
* These aren't used in non-context mode, so we needn't test which mode.
|
||||
*/
|
||||
prep->this_row_group = 0;
|
||||
/* Set next_buf_stop to stop after two row groups have been read in. */
|
||||
prep->next_buf_stop = 2 * cinfo->max_v_samp_factor;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Expand an image vertically from height input_rows to height output_rows,
|
||||
* by duplicating the bottom row.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
expand_bottom_edge (JSAMPARRAY image_data, JDIMENSION num_cols,
|
||||
int input_rows, int output_rows)
|
||||
{
|
||||
register int row;
|
||||
|
||||
for (row = input_rows; row < output_rows; row++) {
|
||||
jcopy_sample_rows(image_data, input_rows-1, image_data, row,
|
||||
1, num_cols);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data in the simple no-context case.
|
||||
*
|
||||
* Preprocessor output data is counted in "row groups". A row group
|
||||
* is defined to be v_samp_factor sample rows of each component.
|
||||
* Downsampling will produce this much data from each max_v_samp_factor
|
||||
* input rows.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
pre_process_data (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
|
||||
JDIMENSION in_rows_avail,
|
||||
JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
|
||||
JDIMENSION out_row_groups_avail)
|
||||
{
|
||||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
|
||||
int numrows, ci;
|
||||
JDIMENSION inrows;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
while (*in_row_ctr < in_rows_avail &&
|
||||
*out_row_group_ctr < out_row_groups_avail) {
|
||||
/* Do color conversion to fill the conversion buffer. */
|
||||
inrows = in_rows_avail - *in_row_ctr;
|
||||
numrows = cinfo->max_v_samp_factor - prep->next_buf_row;
|
||||
numrows = (int) MIN((JDIMENSION) numrows, inrows);
|
||||
(*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
|
||||
prep->color_buf,
|
||||
(JDIMENSION) prep->next_buf_row,
|
||||
numrows);
|
||||
*in_row_ctr += numrows;
|
||||
prep->next_buf_row += numrows;
|
||||
prep->rows_to_go -= numrows;
|
||||
/* If at bottom of image, pad to fill the conversion buffer. */
|
||||
if (prep->rows_to_go == 0 &&
|
||||
prep->next_buf_row < cinfo->max_v_samp_factor) {
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
|
||||
prep->next_buf_row, cinfo->max_v_samp_factor);
|
||||
}
|
||||
prep->next_buf_row = cinfo->max_v_samp_factor;
|
||||
}
|
||||
/* If we've filled the conversion buffer, empty it. */
|
||||
if (prep->next_buf_row == cinfo->max_v_samp_factor) {
|
||||
(*cinfo->downsample->downsample) (cinfo,
|
||||
prep->color_buf, (JDIMENSION) 0,
|
||||
output_buf, *out_row_group_ctr);
|
||||
prep->next_buf_row = 0;
|
||||
(*out_row_group_ctr)++;
|
||||
}
|
||||
/* If at bottom of image, pad the output to a full iMCU height.
|
||||
* Note we assume the caller is providing a one-iMCU-height output buffer!
|
||||
*/
|
||||
if (prep->rows_to_go == 0 &&
|
||||
*out_row_group_ctr < out_row_groups_avail) {
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
numrows = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
|
||||
cinfo->min_DCT_v_scaled_size;
|
||||
expand_bottom_edge(output_buf[ci],
|
||||
compptr->width_in_blocks * compptr->DCT_h_scaled_size,
|
||||
(int) (*out_row_group_ctr * numrows),
|
||||
(int) (out_row_groups_avail * numrows));
|
||||
}
|
||||
*out_row_group_ctr = out_row_groups_avail;
|
||||
break; /* can exit outer loop without test */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef CONTEXT_ROWS_SUPPORTED
|
||||
|
||||
/*
|
||||
* Process some data in the context case.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
pre_process_context (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
|
||||
JDIMENSION in_rows_avail,
|
||||
JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
|
||||
JDIMENSION out_row_groups_avail)
|
||||
{
|
||||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
|
||||
int numrows, ci;
|
||||
int buf_height = cinfo->max_v_samp_factor * 3;
|
||||
JDIMENSION inrows;
|
||||
|
||||
while (*out_row_group_ctr < out_row_groups_avail) {
|
||||
if (*in_row_ctr < in_rows_avail) {
|
||||
/* Do color conversion to fill the conversion buffer. */
|
||||
inrows = in_rows_avail - *in_row_ctr;
|
||||
numrows = prep->next_buf_stop - prep->next_buf_row;
|
||||
numrows = (int) MIN((JDIMENSION) numrows, inrows);
|
||||
(*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
|
||||
prep->color_buf,
|
||||
(JDIMENSION) prep->next_buf_row,
|
||||
numrows);
|
||||
/* Pad at top of image, if first time through */
|
||||
if (prep->rows_to_go == cinfo->image_height) {
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
int row;
|
||||
for (row = 1; row <= cinfo->max_v_samp_factor; row++) {
|
||||
jcopy_sample_rows(prep->color_buf[ci], 0,
|
||||
prep->color_buf[ci], -row,
|
||||
1, cinfo->image_width);
|
||||
}
|
||||
}
|
||||
}
|
||||
*in_row_ctr += numrows;
|
||||
prep->next_buf_row += numrows;
|
||||
prep->rows_to_go -= numrows;
|
||||
} else {
|
||||
/* Return for more data, unless we are at the bottom of the image. */
|
||||
if (prep->rows_to_go != 0)
|
||||
break;
|
||||
/* When at bottom of image, pad to fill the conversion buffer. */
|
||||
if (prep->next_buf_row < prep->next_buf_stop) {
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
|
||||
prep->next_buf_row, prep->next_buf_stop);
|
||||
}
|
||||
prep->next_buf_row = prep->next_buf_stop;
|
||||
}
|
||||
}
|
||||
/* If we've gotten enough data, downsample a row group. */
|
||||
if (prep->next_buf_row == prep->next_buf_stop) {
|
||||
(*cinfo->downsample->downsample) (cinfo,
|
||||
prep->color_buf,
|
||||
(JDIMENSION) prep->this_row_group,
|
||||
output_buf, *out_row_group_ctr);
|
||||
(*out_row_group_ctr)++;
|
||||
/* Advance pointers with wraparound as necessary. */
|
||||
prep->this_row_group += cinfo->max_v_samp_factor;
|
||||
if (prep->this_row_group >= buf_height)
|
||||
prep->this_row_group = 0;
|
||||
if (prep->next_buf_row >= buf_height)
|
||||
prep->next_buf_row = 0;
|
||||
prep->next_buf_stop = prep->next_buf_row + cinfo->max_v_samp_factor;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Create the wrapped-around downsampling input buffer needed for context mode.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
create_context_buffer (j_compress_ptr cinfo)
|
||||
{
|
||||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
|
||||
int rgroup_height = cinfo->max_v_samp_factor;
|
||||
int ci, i;
|
||||
jpeg_component_info * compptr;
|
||||
JSAMPARRAY true_buffer, fake_buffer;
|
||||
|
||||
/* Grab enough space for fake row pointers for all the components;
|
||||
* we need five row groups' worth of pointers for each component.
|
||||
*/
|
||||
fake_buffer = (JSAMPARRAY)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(cinfo->num_components * 5 * rgroup_height) *
|
||||
SIZEOF(JSAMPROW));
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Allocate the actual buffer space (3 row groups) for this component.
|
||||
* We make the buffer wide enough to allow the downsampler to edge-expand
|
||||
* horizontally within the buffer, if it so chooses.
|
||||
*/
|
||||
true_buffer = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(JDIMENSION) (((long) compptr->width_in_blocks *
|
||||
cinfo->min_DCT_h_scaled_size *
|
||||
cinfo->max_h_samp_factor) / compptr->h_samp_factor),
|
||||
(JDIMENSION) (3 * rgroup_height));
|
||||
/* Copy true buffer row pointers into the middle of the fake row array */
|
||||
MEMCOPY(fake_buffer + rgroup_height, true_buffer,
|
||||
3 * rgroup_height * SIZEOF(JSAMPROW));
|
||||
/* Fill in the above and below wraparound pointers */
|
||||
for (i = 0; i < rgroup_height; i++) {
|
||||
fake_buffer[i] = true_buffer[2 * rgroup_height + i];
|
||||
fake_buffer[4 * rgroup_height + i] = true_buffer[i];
|
||||
}
|
||||
prep->color_buf[ci] = fake_buffer + rgroup_height;
|
||||
fake_buffer += 5 * rgroup_height; /* point to space for next component */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* CONTEXT_ROWS_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize preprocessing controller.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_c_prep_controller (j_compress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_prep_ptr prep;
|
||||
int ci;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
if (need_full_buffer) /* safety check */
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
|
||||
prep = (my_prep_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_prep_controller));
|
||||
cinfo->prep = (struct jpeg_c_prep_controller *) prep;
|
||||
prep->pub.start_pass = start_pass_prep;
|
||||
|
||||
/* Allocate the color conversion buffer.
|
||||
* We make the buffer wide enough to allow the downsampler to edge-expand
|
||||
* horizontally within the buffer, if it so chooses.
|
||||
*/
|
||||
if (cinfo->downsample->need_context_rows) {
|
||||
/* Set up to provide context rows */
|
||||
#ifdef CONTEXT_ROWS_SUPPORTED
|
||||
prep->pub.pre_process_data = pre_process_context;
|
||||
create_context_buffer(cinfo);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else {
|
||||
/* No context, just make it tall enough for one row group */
|
||||
prep->pub.pre_process_data = pre_process_data;
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
prep->color_buf[ci] = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(JDIMENSION) (((long) compptr->width_in_blocks *
|
||||
cinfo->min_DCT_h_scaled_size *
|
||||
cinfo->max_h_samp_factor) / compptr->h_samp_factor),
|
||||
(JDIMENSION) cinfo->max_v_samp_factor);
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,545 @@
|
|||
/*
|
||||
* jcsample.c
|
||||
*
|
||||
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains downsampling routines.
|
||||
*
|
||||
* Downsampling input data is counted in "row groups". A row group
|
||||
* is defined to be max_v_samp_factor pixel rows of each component,
|
||||
* from which the downsampler produces v_samp_factor sample rows.
|
||||
* A single row group is processed in each call to the downsampler module.
|
||||
*
|
||||
* The downsampler is responsible for edge-expansion of its output data
|
||||
* to fill an integral number of DCT blocks horizontally. The source buffer
|
||||
* may be modified if it is helpful for this purpose (the source buffer is
|
||||
* allocated wide enough to correspond to the desired output width).
|
||||
* The caller (the prep controller) is responsible for vertical padding.
|
||||
*
|
||||
* The downsampler may request "context rows" by setting need_context_rows
|
||||
* during startup. In this case, the input arrays will contain at least
|
||||
* one row group's worth of pixels above and below the passed-in data;
|
||||
* the caller will create dummy rows at image top and bottom by replicating
|
||||
* the first or last real pixel row.
|
||||
*
|
||||
* An excellent reference for image resampling is
|
||||
* Digital Image Warping, George Wolberg, 1990.
|
||||
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
|
||||
*
|
||||
* The downsampling algorithm used here is a simple average of the source
|
||||
* pixels covered by the output pixel. The hi-falutin sampling literature
|
||||
* refers to this as a "box filter". In general the characteristics of a box
|
||||
* filter are not very good, but for the specific cases we normally use (1:1
|
||||
* and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
|
||||
* nearly so bad. If you intend to use other sampling ratios, you'd be well
|
||||
* advised to improve this code.
|
||||
*
|
||||
* A simple input-smoothing capability is provided. This is mainly intended
|
||||
* for cleaning up color-dithered GIF input files (if you find it inadequate,
|
||||
* we suggest using an external filtering program such as pnmconvol). When
|
||||
* enabled, each input pixel P is replaced by a weighted sum of itself and its
|
||||
* eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF,
|
||||
* where SF = (smoothing_factor / 1024).
|
||||
* Currently, smoothing is only supported for 2h2v sampling factors.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Pointer to routine to downsample a single component */
|
||||
typedef JMETHOD(void, downsample1_ptr,
|
||||
(j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data));
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_downsampler pub; /* public fields */
|
||||
|
||||
/* Downsampling method pointers, one per component */
|
||||
downsample1_ptr methods[MAX_COMPONENTS];
|
||||
|
||||
/* Height of an output row group for each component. */
|
||||
int rowgroup_height[MAX_COMPONENTS];
|
||||
|
||||
/* These arrays save pixel expansion factors so that int_downsample need not
|
||||
* recompute them each time. They are unused for other downsampling methods.
|
||||
*/
|
||||
UINT8 h_expand[MAX_COMPONENTS];
|
||||
UINT8 v_expand[MAX_COMPONENTS];
|
||||
} my_downsampler;
|
||||
|
||||
typedef my_downsampler * my_downsample_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a downsampling pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_downsample (j_compress_ptr cinfo)
|
||||
{
|
||||
/* no work for now */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Expand a component horizontally from width input_cols to width output_cols,
|
||||
* by duplicating the rightmost samples.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
expand_right_edge (JSAMPARRAY image_data, int num_rows,
|
||||
JDIMENSION input_cols, JDIMENSION output_cols)
|
||||
{
|
||||
register JSAMPROW ptr;
|
||||
register JSAMPLE pixval;
|
||||
register int count;
|
||||
int row;
|
||||
int numcols = (int) (output_cols - input_cols);
|
||||
|
||||
if (numcols > 0) {
|
||||
for (row = 0; row < num_rows; row++) {
|
||||
ptr = image_data[row] + input_cols;
|
||||
pixval = ptr[-1]; /* don't need GETJSAMPLE() here */
|
||||
for (count = numcols; count > 0; count--)
|
||||
*ptr++ = pixval;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Do downsampling for a whole row group (all components).
|
||||
*
|
||||
* In this version we simply downsample each component independently.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
sep_downsample (j_compress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_index,
|
||||
JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
|
||||
{
|
||||
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
|
||||
int ci;
|
||||
jpeg_component_info * compptr;
|
||||
JSAMPARRAY in_ptr, out_ptr;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
in_ptr = input_buf[ci] + in_row_index;
|
||||
out_ptr = output_buf[ci] +
|
||||
(out_row_group_index * downsample->rowgroup_height[ci]);
|
||||
(*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component.
|
||||
* One row group is processed per call.
|
||||
* This version handles arbitrary integral sampling ratios, without smoothing.
|
||||
* Note that this version is not actually used for customary sampling ratios.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||
{
|
||||
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
|
||||
int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
|
||||
JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */
|
||||
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
|
||||
JSAMPROW inptr, outptr;
|
||||
INT32 outvalue;
|
||||
|
||||
h_expand = downsample->h_expand[compptr->component_index];
|
||||
v_expand = downsample->v_expand[compptr->component_index];
|
||||
numpix = h_expand * v_expand;
|
||||
numpix2 = numpix/2;
|
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more
|
||||
* efficient.
|
||||
*/
|
||||
expand_right_edge(input_data, cinfo->max_v_samp_factor,
|
||||
cinfo->image_width, output_cols * h_expand);
|
||||
|
||||
inrow = outrow = 0;
|
||||
while (inrow < cinfo->max_v_samp_factor) {
|
||||
outptr = output_data[outrow];
|
||||
for (outcol = 0, outcol_h = 0; outcol < output_cols;
|
||||
outcol++, outcol_h += h_expand) {
|
||||
outvalue = 0;
|
||||
for (v = 0; v < v_expand; v++) {
|
||||
inptr = input_data[inrow+v] + outcol_h;
|
||||
for (h = 0; h < h_expand; h++) {
|
||||
outvalue += (INT32) GETJSAMPLE(*inptr++);
|
||||
}
|
||||
}
|
||||
*outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
|
||||
}
|
||||
inrow += v_expand;
|
||||
outrow++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component.
|
||||
* This version handles the special case of a full-size component,
|
||||
* without smoothing.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||
{
|
||||
/* Copy the data */
|
||||
jcopy_sample_rows(input_data, 0, output_data, 0,
|
||||
cinfo->max_v_samp_factor, cinfo->image_width);
|
||||
/* Edge-expand */
|
||||
expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width,
|
||||
compptr->width_in_blocks * compptr->DCT_h_scaled_size);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component.
|
||||
* This version handles the common case of 2:1 horizontal and 1:1 vertical,
|
||||
* without smoothing.
|
||||
*
|
||||
* A note about the "bias" calculations: when rounding fractional values to
|
||||
* integer, we do not want to always round 0.5 up to the next integer.
|
||||
* If we did that, we'd introduce a noticeable bias towards larger values.
|
||||
* Instead, this code is arranged so that 0.5 will be rounded up or down at
|
||||
* alternate pixel locations (a simple ordered dither pattern).
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||
{
|
||||
int inrow;
|
||||
JDIMENSION outcol;
|
||||
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
|
||||
register JSAMPROW inptr, outptr;
|
||||
register int bias;
|
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more
|
||||
* efficient.
|
||||
*/
|
||||
expand_right_edge(input_data, cinfo->max_v_samp_factor,
|
||||
cinfo->image_width, output_cols * 2);
|
||||
|
||||
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
|
||||
outptr = output_data[inrow];
|
||||
inptr = input_data[inrow];
|
||||
bias = 0; /* bias = 0,1,0,1,... for successive samples */
|
||||
for (outcol = 0; outcol < output_cols; outcol++) {
|
||||
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
|
||||
+ bias) >> 1);
|
||||
bias ^= 1; /* 0=>1, 1=>0 */
|
||||
inptr += 2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component.
|
||||
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,
|
||||
* without smoothing.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||
{
|
||||
int inrow, outrow;
|
||||
JDIMENSION outcol;
|
||||
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
|
||||
register JSAMPROW inptr0, inptr1, outptr;
|
||||
register int bias;
|
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more
|
||||
* efficient.
|
||||
*/
|
||||
expand_right_edge(input_data, cinfo->max_v_samp_factor,
|
||||
cinfo->image_width, output_cols * 2);
|
||||
|
||||
inrow = outrow = 0;
|
||||
while (inrow < cinfo->max_v_samp_factor) {
|
||||
outptr = output_data[outrow];
|
||||
inptr0 = input_data[inrow];
|
||||
inptr1 = input_data[inrow+1];
|
||||
bias = 1; /* bias = 1,2,1,2,... for successive samples */
|
||||
for (outcol = 0; outcol < output_cols; outcol++) {
|
||||
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
|
||||
+ bias) >> 2);
|
||||
bias ^= 3; /* 1=>2, 2=>1 */
|
||||
inptr0 += 2; inptr1 += 2;
|
||||
}
|
||||
inrow += 2;
|
||||
outrow++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component.
|
||||
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,
|
||||
* with smoothing. One row of context is required.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||
{
|
||||
int inrow, outrow;
|
||||
JDIMENSION colctr;
|
||||
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
|
||||
register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
|
||||
INT32 membersum, neighsum, memberscale, neighscale;
|
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more
|
||||
* efficient.
|
||||
*/
|
||||
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
|
||||
cinfo->image_width, output_cols * 2);
|
||||
|
||||
/* We don't bother to form the individual "smoothed" input pixel values;
|
||||
* we can directly compute the output which is the average of the four
|
||||
* smoothed values. Each of the four member pixels contributes a fraction
|
||||
* (1-8*SF) to its own smoothed image and a fraction SF to each of the three
|
||||
* other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
|
||||
* output. The four corner-adjacent neighbor pixels contribute a fraction
|
||||
* SF to just one smoothed pixel, or SF/4 to the final output; while the
|
||||
* eight edge-adjacent neighbors contribute SF to each of two smoothed
|
||||
* pixels, or SF/2 overall. In order to use integer arithmetic, these
|
||||
* factors are scaled by 2^16 = 65536.
|
||||
* Also recall that SF = smoothing_factor / 1024.
|
||||
*/
|
||||
|
||||
memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
|
||||
neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
|
||||
|
||||
inrow = outrow = 0;
|
||||
while (inrow < cinfo->max_v_samp_factor) {
|
||||
outptr = output_data[outrow];
|
||||
inptr0 = input_data[inrow];
|
||||
inptr1 = input_data[inrow+1];
|
||||
above_ptr = input_data[inrow-1];
|
||||
below_ptr = input_data[inrow+2];
|
||||
|
||||
/* Special case for first column: pretend column -1 is same as column 0 */
|
||||
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
|
||||
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
|
||||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
|
||||
GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
|
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
|
||||
neighsum += neighsum;
|
||||
neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
|
||||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
|
||||
|
||||
for (colctr = output_cols - 2; colctr > 0; colctr--) {
|
||||
/* sum of pixels directly mapped to this output element */
|
||||
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
|
||||
/* sum of edge-neighbor pixels */
|
||||
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
|
||||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
|
||||
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
|
||||
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
|
||||
/* The edge-neighbors count twice as much as corner-neighbors */
|
||||
neighsum += neighsum;
|
||||
/* Add in the corner-neighbors */
|
||||
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
|
||||
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
|
||||
/* form final output scaled up by 2^16 */
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
/* round, descale and output it */
|
||||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
|
||||
}
|
||||
|
||||
/* Special case for last column */
|
||||
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
|
||||
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
|
||||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
|
||||
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
|
||||
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
|
||||
neighsum += neighsum;
|
||||
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
|
||||
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
*outptr = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||
|
||||
inrow += 2;
|
||||
outrow++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component.
|
||||
* This version handles the special case of a full-size component,
|
||||
* with smoothing. One row of context is required.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||
{
|
||||
int inrow;
|
||||
JDIMENSION colctr;
|
||||
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
|
||||
register JSAMPROW inptr, above_ptr, below_ptr, outptr;
|
||||
INT32 membersum, neighsum, memberscale, neighscale;
|
||||
int colsum, lastcolsum, nextcolsum;
|
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more
|
||||
* efficient.
|
||||
*/
|
||||
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
|
||||
cinfo->image_width, output_cols);
|
||||
|
||||
/* Each of the eight neighbor pixels contributes a fraction SF to the
|
||||
* smoothed pixel, while the main pixel contributes (1-8*SF). In order
|
||||
* to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
|
||||
* Also recall that SF = smoothing_factor / 1024.
|
||||
*/
|
||||
|
||||
memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
|
||||
neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
|
||||
|
||||
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
|
||||
outptr = output_data[inrow];
|
||||
inptr = input_data[inrow];
|
||||
above_ptr = input_data[inrow-1];
|
||||
below_ptr = input_data[inrow+1];
|
||||
|
||||
/* Special case for first column */
|
||||
colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
|
||||
GETJSAMPLE(*inptr);
|
||||
membersum = GETJSAMPLE(*inptr++);
|
||||
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
|
||||
GETJSAMPLE(*inptr);
|
||||
neighsum = colsum + (colsum - membersum) + nextcolsum;
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||
lastcolsum = colsum; colsum = nextcolsum;
|
||||
|
||||
for (colctr = output_cols - 2; colctr > 0; colctr--) {
|
||||
membersum = GETJSAMPLE(*inptr++);
|
||||
above_ptr++; below_ptr++;
|
||||
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
|
||||
GETJSAMPLE(*inptr);
|
||||
neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||
lastcolsum = colsum; colsum = nextcolsum;
|
||||
}
|
||||
|
||||
/* Special case for last column */
|
||||
membersum = GETJSAMPLE(*inptr);
|
||||
neighsum = lastcolsum + (colsum - membersum) + colsum;
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
*outptr = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* INPUT_SMOOTHING_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for downsampling.
|
||||
* Note that we must select a routine for each component.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_downsampler (j_compress_ptr cinfo)
|
||||
{
|
||||
my_downsample_ptr downsample;
|
||||
int ci;
|
||||
jpeg_component_info * compptr;
|
||||
boolean smoothok = TRUE;
|
||||
int h_in_group, v_in_group, h_out_group, v_out_group;
|
||||
|
||||
downsample = (my_downsample_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_downsampler));
|
||||
cinfo->downsample = (struct jpeg_downsampler *) downsample;
|
||||
downsample->pub.start_pass = start_pass_downsample;
|
||||
downsample->pub.downsample = sep_downsample;
|
||||
downsample->pub.need_context_rows = FALSE;
|
||||
|
||||
if (cinfo->CCIR601_sampling)
|
||||
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
|
||||
|
||||
/* Verify we can handle the sampling factors, and set up method pointers */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Compute size of an "output group" for DCT scaling. This many samples
|
||||
* are to be converted from max_h_samp_factor * max_v_samp_factor pixels.
|
||||
*/
|
||||
h_out_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) /
|
||||
cinfo->min_DCT_h_scaled_size;
|
||||
v_out_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
|
||||
cinfo->min_DCT_v_scaled_size;
|
||||
h_in_group = cinfo->max_h_samp_factor;
|
||||
v_in_group = cinfo->max_v_samp_factor;
|
||||
downsample->rowgroup_height[ci] = v_out_group; /* save for use later */
|
||||
if (h_in_group == h_out_group && v_in_group == v_out_group) {
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||
if (cinfo->smoothing_factor) {
|
||||
downsample->methods[ci] = fullsize_smooth_downsample;
|
||||
downsample->pub.need_context_rows = TRUE;
|
||||
} else
|
||||
#endif
|
||||
downsample->methods[ci] = fullsize_downsample;
|
||||
} else if (h_in_group == h_out_group * 2 &&
|
||||
v_in_group == v_out_group) {
|
||||
smoothok = FALSE;
|
||||
downsample->methods[ci] = h2v1_downsample;
|
||||
} else if (h_in_group == h_out_group * 2 &&
|
||||
v_in_group == v_out_group * 2) {
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||
if (cinfo->smoothing_factor) {
|
||||
downsample->methods[ci] = h2v2_smooth_downsample;
|
||||
downsample->pub.need_context_rows = TRUE;
|
||||
} else
|
||||
#endif
|
||||
downsample->methods[ci] = h2v2_downsample;
|
||||
} else if ((h_in_group % h_out_group) == 0 &&
|
||||
(v_in_group % v_out_group) == 0) {
|
||||
smoothok = FALSE;
|
||||
downsample->methods[ci] = int_downsample;
|
||||
downsample->h_expand[ci] = (UINT8) (h_in_group / h_out_group);
|
||||
downsample->v_expand[ci] = (UINT8) (v_in_group / v_out_group);
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
|
||||
}
|
||||
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||
if (cinfo->smoothing_factor && !smoothok)
|
||||
TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
|
||||
#endif
|
||||
}
|
|
@ -0,0 +1,381 @@
|
|||
/*
|
||||
* jctrans.c
|
||||
*
|
||||
* Copyright (C) 1995-1998, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains library routines for transcoding compression,
|
||||
* that is, writing raw DCT coefficient arrays to an output JPEG file.
|
||||
* The routines in jcapimin.c will also be needed by a transcoder.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
LOCAL(void) transencode_master_selection
|
||||
JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
|
||||
LOCAL(void) transencode_coef_controller
|
||||
JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
|
||||
|
||||
|
||||
/*
|
||||
* Compression initialization for writing raw-coefficient data.
|
||||
* Before calling this, all parameters and a data destination must be set up.
|
||||
* Call jpeg_finish_compress() to actually write the data.
|
||||
*
|
||||
* The number of passed virtual arrays must match cinfo->num_components.
|
||||
* Note that the virtual arrays need not be filled or even realized at
|
||||
* the time write_coefficients is called; indeed, if the virtual arrays
|
||||
* were requested from this compression object's memory manager, they
|
||||
* typically will be realized during this routine and filled afterwards.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_write_coefficients (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)
|
||||
{
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
/* Mark all tables to be written */
|
||||
jpeg_suppress_tables(cinfo, FALSE);
|
||||
/* (Re)initialize error mgr and destination modules */
|
||||
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
|
||||
(*cinfo->dest->init_destination) (cinfo);
|
||||
/* Perform master selection of active modules */
|
||||
transencode_master_selection(cinfo, coef_arrays);
|
||||
/* Wait for jpeg_finish_compress() call */
|
||||
cinfo->next_scanline = 0; /* so jpeg_write_marker works */
|
||||
cinfo->global_state = CSTATE_WRCOEFS;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize the compression object with default parameters,
|
||||
* then copy from the source object all parameters needed for lossless
|
||||
* transcoding. Parameters that can be varied without loss (such as
|
||||
* scan script and Huffman optimization) are left in their default states.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_copy_critical_parameters (j_decompress_ptr srcinfo,
|
||||
j_compress_ptr dstinfo)
|
||||
{
|
||||
JQUANT_TBL ** qtblptr;
|
||||
jpeg_component_info *incomp, *outcomp;
|
||||
JQUANT_TBL *c_quant, *slot_quant;
|
||||
int tblno, ci, coefi;
|
||||
|
||||
/* Safety check to ensure start_compress not called yet. */
|
||||
if (dstinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(dstinfo, JERR_BAD_STATE, dstinfo->global_state);
|
||||
/* Copy fundamental image dimensions */
|
||||
dstinfo->image_width = srcinfo->image_width;
|
||||
dstinfo->image_height = srcinfo->image_height;
|
||||
dstinfo->input_components = srcinfo->num_components;
|
||||
dstinfo->in_color_space = srcinfo->jpeg_color_space;
|
||||
/* Initialize all parameters to default values */
|
||||
jpeg_set_defaults(dstinfo);
|
||||
/* jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB.
|
||||
* Fix it to get the right header markers for the image colorspace.
|
||||
*/
|
||||
jpeg_set_colorspace(dstinfo, srcinfo->jpeg_color_space);
|
||||
dstinfo->data_precision = srcinfo->data_precision;
|
||||
dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling;
|
||||
/* Copy the source's quantization tables. */
|
||||
for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
|
||||
if (srcinfo->quant_tbl_ptrs[tblno] != NULL) {
|
||||
qtblptr = & dstinfo->quant_tbl_ptrs[tblno];
|
||||
if (*qtblptr == NULL)
|
||||
*qtblptr = jpeg_alloc_quant_table((j_common_ptr) dstinfo);
|
||||
MEMCOPY((*qtblptr)->quantval,
|
||||
srcinfo->quant_tbl_ptrs[tblno]->quantval,
|
||||
SIZEOF((*qtblptr)->quantval));
|
||||
(*qtblptr)->sent_table = FALSE;
|
||||
}
|
||||
}
|
||||
/* Copy the source's per-component info.
|
||||
* Note we assume jpeg_set_defaults has allocated the dest comp_info array.
|
||||
*/
|
||||
dstinfo->num_components = srcinfo->num_components;
|
||||
if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS)
|
||||
ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components,
|
||||
MAX_COMPONENTS);
|
||||
for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info;
|
||||
ci < dstinfo->num_components; ci++, incomp++, outcomp++) {
|
||||
outcomp->component_id = incomp->component_id;
|
||||
outcomp->h_samp_factor = incomp->h_samp_factor;
|
||||
outcomp->v_samp_factor = incomp->v_samp_factor;
|
||||
outcomp->quant_tbl_no = incomp->quant_tbl_no;
|
||||
/* Make sure saved quantization table for component matches the qtable
|
||||
* slot. If not, the input file re-used this qtable slot.
|
||||
* IJG encoder currently cannot duplicate this.
|
||||
*/
|
||||
tblno = outcomp->quant_tbl_no;
|
||||
if (tblno < 0 || tblno >= NUM_QUANT_TBLS ||
|
||||
srcinfo->quant_tbl_ptrs[tblno] == NULL)
|
||||
ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno);
|
||||
slot_quant = srcinfo->quant_tbl_ptrs[tblno];
|
||||
c_quant = incomp->quant_table;
|
||||
if (c_quant != NULL) {
|
||||
for (coefi = 0; coefi < DCTSIZE2; coefi++) {
|
||||
if (c_quant->quantval[coefi] != slot_quant->quantval[coefi])
|
||||
ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno);
|
||||
}
|
||||
}
|
||||
/* Note: we do not copy the source's Huffman table assignments;
|
||||
* instead we rely on jpeg_set_colorspace to have made a suitable choice.
|
||||
*/
|
||||
}
|
||||
/* Also copy JFIF version and resolution information, if available.
|
||||
* Strictly speaking this isn't "critical" info, but it's nearly
|
||||
* always appropriate to copy it if available. In particular,
|
||||
* if the application chooses to copy JFIF 1.02 extension markers from
|
||||
* the source file, we need to copy the version to make sure we don't
|
||||
* emit a file that has 1.02 extensions but a claimed version of 1.01.
|
||||
* We will *not*, however, copy version info from mislabeled "2.01" files.
|
||||
*/
|
||||
if (srcinfo->saw_JFIF_marker) {
|
||||
if (srcinfo->JFIF_major_version == 1) {
|
||||
dstinfo->JFIF_major_version = srcinfo->JFIF_major_version;
|
||||
dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version;
|
||||
}
|
||||
dstinfo->density_unit = srcinfo->density_unit;
|
||||
dstinfo->X_density = srcinfo->X_density;
|
||||
dstinfo->Y_density = srcinfo->Y_density;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Master selection of compression modules for transcoding.
|
||||
* This substitutes for jcinit.c's initialization of the full compressor.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
transencode_master_selection (j_compress_ptr cinfo,
|
||||
jvirt_barray_ptr * coef_arrays)
|
||||
{
|
||||
/* Although we don't actually use input_components for transcoding,
|
||||
* jcmaster.c's initial_setup will complain if input_components is 0.
|
||||
*/
|
||||
cinfo->input_components = 1;
|
||||
/* Initialize master control (includes parameter checking/processing) */
|
||||
jinit_c_master_control(cinfo, TRUE /* transcode only */);
|
||||
|
||||
/* Entropy encoding: either Huffman or arithmetic coding. */
|
||||
if (cinfo->arith_code) {
|
||||
jinit_arith_encoder(cinfo);
|
||||
} else {
|
||||
jinit_huff_encoder(cinfo);
|
||||
}
|
||||
|
||||
/* We need a special coefficient buffer controller. */
|
||||
transencode_coef_controller(cinfo, coef_arrays);
|
||||
|
||||
jinit_marker_writer(cinfo);
|
||||
|
||||
/* We can now tell the memory manager to allocate virtual arrays. */
|
||||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
|
||||
|
||||
/* Write the datastream header (SOI, JFIF) immediately.
|
||||
* Frame and scan headers are postponed till later.
|
||||
* This lets application insert special markers after the SOI.
|
||||
*/
|
||||
(*cinfo->marker->write_file_header) (cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The rest of this file is a special implementation of the coefficient
|
||||
* buffer controller. This is similar to jccoefct.c, but it handles only
|
||||
* output from presupplied virtual arrays. Furthermore, we generate any
|
||||
* dummy padding blocks on-the-fly rather than expecting them to be present
|
||||
* in the arrays.
|
||||
*/
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_c_coef_controller pub; /* public fields */
|
||||
|
||||
JDIMENSION iMCU_row_num; /* iMCU row # within image */
|
||||
JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
|
||||
int MCU_vert_offset; /* counts MCU rows within iMCU row */
|
||||
int MCU_rows_per_iMCU_row; /* number of such rows needed */
|
||||
|
||||
/* Virtual block array for each component. */
|
||||
jvirt_barray_ptr * whole_image;
|
||||
|
||||
/* Workspace for constructing dummy blocks at right/bottom edges. */
|
||||
JBLOCKROW dummy_buffer[C_MAX_BLOCKS_IN_MCU];
|
||||
} my_coef_controller;
|
||||
|
||||
typedef my_coef_controller * my_coef_ptr;
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
start_iMCU_row (j_compress_ptr cinfo)
|
||||
/* Reset within-iMCU-row counters for a new row */
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
|
||||
/* In an interleaved scan, an MCU row is the same as an iMCU row.
|
||||
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
|
||||
* But at the bottom of the image, process only what's left.
|
||||
*/
|
||||
if (cinfo->comps_in_scan > 1) {
|
||||
coef->MCU_rows_per_iMCU_row = 1;
|
||||
} else {
|
||||
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
|
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
|
||||
else
|
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
|
||||
}
|
||||
|
||||
coef->mcu_ctr = 0;
|
||||
coef->MCU_vert_offset = 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
|
||||
if (pass_mode != JBUF_CRANK_DEST)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
|
||||
coef->iMCU_row_num = 0;
|
||||
start_iMCU_row(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
||||
* per call, ie, v_samp_factor block rows for each component in the scan.
|
||||
* The data is obtained from the virtual arrays and fed to the entropy coder.
|
||||
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
|
||||
*
|
||||
* NB: input_buf is ignored; it is likely to be a NULL pointer.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
||||
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
|
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
||||
int blkn, ci, xindex, yindex, yoffset, blockcnt;
|
||||
JDIMENSION start_col;
|
||||
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
|
||||
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
|
||||
JBLOCKROW buffer_ptr;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
/* Align the virtual buffers for the components used in this scan. */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
buffer[ci] = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
|
||||
coef->iMCU_row_num * compptr->v_samp_factor,
|
||||
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
||||
}
|
||||
|
||||
/* Loop to process one whole iMCU row */
|
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
||||
yoffset++) {
|
||||
for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
|
||||
MCU_col_num++) {
|
||||
/* Construct list of pointers to DCT blocks belonging to this MCU */
|
||||
blkn = 0; /* index of current DCT block within MCU */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
start_col = MCU_col_num * compptr->MCU_width;
|
||||
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
|
||||
: compptr->last_col_width;
|
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
||||
if (coef->iMCU_row_num < last_iMCU_row ||
|
||||
yindex+yoffset < compptr->last_row_height) {
|
||||
/* Fill in pointers to real blocks in this row */
|
||||
buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
|
||||
for (xindex = 0; xindex < blockcnt; xindex++)
|
||||
MCU_buffer[blkn++] = buffer_ptr++;
|
||||
} else {
|
||||
/* At bottom of image, need a whole row of dummy blocks */
|
||||
xindex = 0;
|
||||
}
|
||||
/* Fill in any dummy blocks needed in this row.
|
||||
* Dummy blocks are filled in the same way as in jccoefct.c:
|
||||
* all zeroes in the AC entries, DC entries equal to previous
|
||||
* block's DC value. The init routine has already zeroed the
|
||||
* AC entries, so we need only set the DC entries correctly.
|
||||
*/
|
||||
for (; xindex < compptr->MCU_width; xindex++) {
|
||||
MCU_buffer[blkn] = coef->dummy_buffer[blkn];
|
||||
MCU_buffer[blkn][0][0] = MCU_buffer[blkn-1][0][0];
|
||||
blkn++;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Try to write the MCU. */
|
||||
if (! (*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) {
|
||||
/* Suspension forced; update state counters and exit */
|
||||
coef->MCU_vert_offset = yoffset;
|
||||
coef->mcu_ctr = MCU_col_num;
|
||||
return FALSE;
|
||||
}
|
||||
}
|
||||
/* Completed an MCU row, but perhaps not an iMCU row */
|
||||
coef->mcu_ctr = 0;
|
||||
}
|
||||
/* Completed the iMCU row, advance counters for next one */
|
||||
coef->iMCU_row_num++;
|
||||
start_iMCU_row(cinfo);
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize coefficient buffer controller.
|
||||
*
|
||||
* Each passed coefficient array must be the right size for that
|
||||
* coefficient: width_in_blocks wide and height_in_blocks high,
|
||||
* with unitheight at least v_samp_factor.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
transencode_coef_controller (j_compress_ptr cinfo,
|
||||
jvirt_barray_ptr * coef_arrays)
|
||||
{
|
||||
my_coef_ptr coef;
|
||||
JBLOCKROW buffer;
|
||||
int i;
|
||||
|
||||
coef = (my_coef_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_coef_controller));
|
||||
cinfo->coef = (struct jpeg_c_coef_controller *) coef;
|
||||
coef->pub.start_pass = start_pass_coef;
|
||||
coef->pub.compress_data = compress_output;
|
||||
|
||||
/* Save pointer to virtual arrays */
|
||||
coef->whole_image = coef_arrays;
|
||||
|
||||
/* Allocate and pre-zero space for dummy DCT blocks. */
|
||||
buffer = (JBLOCKROW)
|
||||
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
|
||||
jzero_far((void FAR *) buffer, C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
|
||||
for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
|
||||
coef->dummy_buffer[i] = buffer + i;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,396 @@
|
|||
/*
|
||||
* jdapimin.c
|
||||
*
|
||||
* Copyright (C) 1994-1998, Thomas G. Lane.
|
||||
* Modified 2009 by Guido Vollbeding.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains application interface code for the decompression half
|
||||
* of the JPEG library. These are the "minimum" API routines that may be
|
||||
* needed in either the normal full-decompression case or the
|
||||
* transcoding-only case.
|
||||
*
|
||||
* Most of the routines intended to be called directly by an application
|
||||
* are in this file or in jdapistd.c. But also see jcomapi.c for routines
|
||||
* shared by compression and decompression, and jdtrans.c for the transcoding
|
||||
* case.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* Initialization of a JPEG decompression object.
|
||||
* The error manager must already be set up (in case memory manager fails).
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_CreateDecompress (j_decompress_ptr cinfo, int version, size_t structsize)
|
||||
{
|
||||
int i;
|
||||
|
||||
/* Guard against version mismatches between library and caller. */
|
||||
cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
|
||||
if (version != JPEG_LIB_VERSION)
|
||||
ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
|
||||
if (structsize != SIZEOF(struct jpeg_decompress_struct))
|
||||
ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
|
||||
(int) SIZEOF(struct jpeg_decompress_struct), (int) structsize);
|
||||
|
||||
/* For debugging purposes, we zero the whole master structure.
|
||||
* But the application has already set the err pointer, and may have set
|
||||
* client_data, so we have to save and restore those fields.
|
||||
* Note: if application hasn't set client_data, tools like Purify may
|
||||
* complain here.
|
||||
*/
|
||||
{
|
||||
struct jpeg_error_mgr * err = cinfo->err;
|
||||
void * client_data = cinfo->client_data; /* ignore Purify complaint here */
|
||||
MEMZERO(cinfo, SIZEOF(struct jpeg_decompress_struct));
|
||||
cinfo->err = err;
|
||||
cinfo->client_data = client_data;
|
||||
}
|
||||
cinfo->is_decompressor = TRUE;
|
||||
|
||||
/* Initialize a memory manager instance for this object */
|
||||
jinit_memory_mgr((j_common_ptr) cinfo);
|
||||
|
||||
/* Zero out pointers to permanent structures. */
|
||||
cinfo->progress = NULL;
|
||||
cinfo->src = NULL;
|
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++)
|
||||
cinfo->quant_tbl_ptrs[i] = NULL;
|
||||
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
cinfo->dc_huff_tbl_ptrs[i] = NULL;
|
||||
cinfo->ac_huff_tbl_ptrs[i] = NULL;
|
||||
}
|
||||
|
||||
/* Initialize marker processor so application can override methods
|
||||
* for COM, APPn markers before calling jpeg_read_header.
|
||||
*/
|
||||
cinfo->marker_list = NULL;
|
||||
jinit_marker_reader(cinfo);
|
||||
|
||||
/* And initialize the overall input controller. */
|
||||
jinit_input_controller(cinfo);
|
||||
|
||||
/* OK, I'm ready */
|
||||
cinfo->global_state = DSTATE_START;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Destruction of a JPEG decompression object
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_destroy_decompress (j_decompress_ptr cinfo)
|
||||
{
|
||||
jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Abort processing of a JPEG decompression operation,
|
||||
* but don't destroy the object itself.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_abort_decompress (j_decompress_ptr cinfo)
|
||||
{
|
||||
jpeg_abort((j_common_ptr) cinfo); /* use common routine */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Set default decompression parameters.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
default_decompress_parms (j_decompress_ptr cinfo)
|
||||
{
|
||||
/* Guess the input colorspace, and set output colorspace accordingly. */
|
||||
/* (Wish JPEG committee had provided a real way to specify this...) */
|
||||
/* Note application may override our guesses. */
|
||||
switch (cinfo->num_components) {
|
||||
case 1:
|
||||
cinfo->jpeg_color_space = JCS_GRAYSCALE;
|
||||
cinfo->out_color_space = JCS_GRAYSCALE;
|
||||
break;
|
||||
|
||||
case 3:
|
||||
if (cinfo->saw_JFIF_marker) {
|
||||
cinfo->jpeg_color_space = JCS_YCbCr; /* JFIF implies YCbCr */
|
||||
} else if (cinfo->saw_Adobe_marker) {
|
||||
switch (cinfo->Adobe_transform) {
|
||||
case 0:
|
||||
cinfo->jpeg_color_space = JCS_RGB;
|
||||
break;
|
||||
case 1:
|
||||
cinfo->jpeg_color_space = JCS_YCbCr;
|
||||
break;
|
||||
default:
|
||||
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
|
||||
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
/* Saw no special markers, try to guess from the component IDs */
|
||||
int cid0 = cinfo->comp_info[0].component_id;
|
||||
int cid1 = cinfo->comp_info[1].component_id;
|
||||
int cid2 = cinfo->comp_info[2].component_id;
|
||||
|
||||
if (cid0 == 1 && cid1 == 2 && cid2 == 3)
|
||||
cinfo->jpeg_color_space = JCS_YCbCr; /* assume JFIF w/out marker */
|
||||
else if (cid0 == 82 && cid1 == 71 && cid2 == 66)
|
||||
cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */
|
||||
else {
|
||||
TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2);
|
||||
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
|
||||
}
|
||||
}
|
||||
/* Always guess RGB is proper output colorspace. */
|
||||
cinfo->out_color_space = JCS_RGB;
|
||||
break;
|
||||
|
||||
case 4:
|
||||
if (cinfo->saw_Adobe_marker) {
|
||||
switch (cinfo->Adobe_transform) {
|
||||
case 0:
|
||||
cinfo->jpeg_color_space = JCS_CMYK;
|
||||
break;
|
||||
case 2:
|
||||
cinfo->jpeg_color_space = JCS_YCCK;
|
||||
break;
|
||||
default:
|
||||
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
|
||||
cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
/* No special markers, assume straight CMYK. */
|
||||
cinfo->jpeg_color_space = JCS_CMYK;
|
||||
}
|
||||
cinfo->out_color_space = JCS_CMYK;
|
||||
break;
|
||||
|
||||
default:
|
||||
cinfo->jpeg_color_space = JCS_UNKNOWN;
|
||||
cinfo->out_color_space = JCS_UNKNOWN;
|
||||
break;
|
||||
}
|
||||
|
||||
/* Set defaults for other decompression parameters. */
|
||||
cinfo->scale_num = DCTSIZE; /* 1:1 scaling */
|
||||
cinfo->scale_denom = DCTSIZE;
|
||||
cinfo->output_gamma = 1.0;
|
||||
cinfo->buffered_image = FALSE;
|
||||
cinfo->raw_data_out = FALSE;
|
||||
cinfo->dct_method = JDCT_DEFAULT;
|
||||
cinfo->do_fancy_upsampling = TRUE;
|
||||
cinfo->do_block_smoothing = TRUE;
|
||||
cinfo->quantize_colors = FALSE;
|
||||
/* We set these in case application only sets quantize_colors. */
|
||||
cinfo->dither_mode = JDITHER_FS;
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
cinfo->two_pass_quantize = TRUE;
|
||||
#else
|
||||
cinfo->two_pass_quantize = FALSE;
|
||||
#endif
|
||||
cinfo->desired_number_of_colors = 256;
|
||||
cinfo->colormap = NULL;
|
||||
/* Initialize for no mode change in buffered-image mode. */
|
||||
cinfo->enable_1pass_quant = FALSE;
|
||||
cinfo->enable_external_quant = FALSE;
|
||||
cinfo->enable_2pass_quant = FALSE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Decompression startup: read start of JPEG datastream to see what's there.
|
||||
* Need only initialize JPEG object and supply a data source before calling.
|
||||
*
|
||||
* This routine will read as far as the first SOS marker (ie, actual start of
|
||||
* compressed data), and will save all tables and parameters in the JPEG
|
||||
* object. It will also initialize the decompression parameters to default
|
||||
* values, and finally return JPEG_HEADER_OK. On return, the application may
|
||||
* adjust the decompression parameters and then call jpeg_start_decompress.
|
||||
* (Or, if the application only wanted to determine the image parameters,
|
||||
* the data need not be decompressed. In that case, call jpeg_abort or
|
||||
* jpeg_destroy to release any temporary space.)
|
||||
* If an abbreviated (tables only) datastream is presented, the routine will
|
||||
* return JPEG_HEADER_TABLES_ONLY upon reaching EOI. The application may then
|
||||
* re-use the JPEG object to read the abbreviated image datastream(s).
|
||||
* It is unnecessary (but OK) to call jpeg_abort in this case.
|
||||
* The JPEG_SUSPENDED return code only occurs if the data source module
|
||||
* requests suspension of the decompressor. In this case the application
|
||||
* should load more source data and then re-call jpeg_read_header to resume
|
||||
* processing.
|
||||
* If a non-suspending data source is used and require_image is TRUE, then the
|
||||
* return code need not be inspected since only JPEG_HEADER_OK is possible.
|
||||
*
|
||||
* This routine is now just a front end to jpeg_consume_input, with some
|
||||
* extra error checking.
|
||||
*/
|
||||
|
||||
GLOBAL(int)
|
||||
jpeg_read_header (j_decompress_ptr cinfo, boolean require_image)
|
||||
{
|
||||
int retcode;
|
||||
|
||||
if (cinfo->global_state != DSTATE_START &&
|
||||
cinfo->global_state != DSTATE_INHEADER)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
retcode = jpeg_consume_input(cinfo);
|
||||
|
||||
switch (retcode) {
|
||||
case JPEG_REACHED_SOS:
|
||||
retcode = JPEG_HEADER_OK;
|
||||
break;
|
||||
case JPEG_REACHED_EOI:
|
||||
if (require_image) /* Complain if application wanted an image */
|
||||
ERREXIT(cinfo, JERR_NO_IMAGE);
|
||||
/* Reset to start state; it would be safer to require the application to
|
||||
* call jpeg_abort, but we can't change it now for compatibility reasons.
|
||||
* A side effect is to free any temporary memory (there shouldn't be any).
|
||||
*/
|
||||
jpeg_abort((j_common_ptr) cinfo); /* sets state = DSTATE_START */
|
||||
retcode = JPEG_HEADER_TABLES_ONLY;
|
||||
break;
|
||||
case JPEG_SUSPENDED:
|
||||
/* no work */
|
||||
break;
|
||||
}
|
||||
|
||||
return retcode;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Consume data in advance of what the decompressor requires.
|
||||
* This can be called at any time once the decompressor object has
|
||||
* been created and a data source has been set up.
|
||||
*
|
||||
* This routine is essentially a state machine that handles a couple
|
||||
* of critical state-transition actions, namely initial setup and
|
||||
* transition from header scanning to ready-for-start_decompress.
|
||||
* All the actual input is done via the input controller's consume_input
|
||||
* method.
|
||||
*/
|
||||
|
||||
GLOBAL(int)
|
||||
jpeg_consume_input (j_decompress_ptr cinfo)
|
||||
{
|
||||
int retcode = JPEG_SUSPENDED;
|
||||
|
||||
/* NB: every possible DSTATE value should be listed in this switch */
|
||||
switch (cinfo->global_state) {
|
||||
case DSTATE_START:
|
||||
/* Start-of-datastream actions: reset appropriate modules */
|
||||
(*cinfo->inputctl->reset_input_controller) (cinfo);
|
||||
/* Initialize application's data source module */
|
||||
(*cinfo->src->init_source) (cinfo);
|
||||
cinfo->global_state = DSTATE_INHEADER;
|
||||
/*FALLTHROUGH*/
|
||||
case DSTATE_INHEADER:
|
||||
retcode = (*cinfo->inputctl->consume_input) (cinfo);
|
||||
if (retcode == JPEG_REACHED_SOS) { /* Found SOS, prepare to decompress */
|
||||
/* Set up default parameters based on header data */
|
||||
default_decompress_parms(cinfo);
|
||||
/* Set global state: ready for start_decompress */
|
||||
cinfo->global_state = DSTATE_READY;
|
||||
}
|
||||
break;
|
||||
case DSTATE_READY:
|
||||
/* Can't advance past first SOS until start_decompress is called */
|
||||
retcode = JPEG_REACHED_SOS;
|
||||
break;
|
||||
case DSTATE_PRELOAD:
|
||||
case DSTATE_PRESCAN:
|
||||
case DSTATE_SCANNING:
|
||||
case DSTATE_RAW_OK:
|
||||
case DSTATE_BUFIMAGE:
|
||||
case DSTATE_BUFPOST:
|
||||
case DSTATE_STOPPING:
|
||||
retcode = (*cinfo->inputctl->consume_input) (cinfo);
|
||||
break;
|
||||
default:
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
}
|
||||
return retcode;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Have we finished reading the input file?
|
||||
*/
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_input_complete (j_decompress_ptr cinfo)
|
||||
{
|
||||
/* Check for valid jpeg object */
|
||||
if (cinfo->global_state < DSTATE_START ||
|
||||
cinfo->global_state > DSTATE_STOPPING)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
return cinfo->inputctl->eoi_reached;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Is there more than one scan?
|
||||
*/
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_has_multiple_scans (j_decompress_ptr cinfo)
|
||||
{
|
||||
/* Only valid after jpeg_read_header completes */
|
||||
if (cinfo->global_state < DSTATE_READY ||
|
||||
cinfo->global_state > DSTATE_STOPPING)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
return cinfo->inputctl->has_multiple_scans;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish JPEG decompression.
|
||||
*
|
||||
* This will normally just verify the file trailer and release temp storage.
|
||||
*
|
||||
* Returns FALSE if suspended. The return value need be inspected only if
|
||||
* a suspending data source is used.
|
||||
*/
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_finish_decompress (j_decompress_ptr cinfo)
|
||||
{
|
||||
if ((cinfo->global_state == DSTATE_SCANNING ||
|
||||
cinfo->global_state == DSTATE_RAW_OK) && ! cinfo->buffered_image) {
|
||||
/* Terminate final pass of non-buffered mode */
|
||||
if (cinfo->output_scanline < cinfo->output_height)
|
||||
ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
|
||||
(*cinfo->master->finish_output_pass) (cinfo);
|
||||
cinfo->global_state = DSTATE_STOPPING;
|
||||
} else if (cinfo->global_state == DSTATE_BUFIMAGE) {
|
||||
/* Finishing after a buffered-image operation */
|
||||
cinfo->global_state = DSTATE_STOPPING;
|
||||
} else if (cinfo->global_state != DSTATE_STOPPING) {
|
||||
/* STOPPING = repeat call after a suspension, anything else is error */
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
}
|
||||
/* Read until EOI */
|
||||
while (! cinfo->inputctl->eoi_reached) {
|
||||
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
|
||||
return FALSE; /* Suspend, come back later */
|
||||
}
|
||||
/* Do final cleanup */
|
||||
(*cinfo->src->term_source) (cinfo);
|
||||
/* We can use jpeg_abort to release memory and reset global_state */
|
||||
jpeg_abort((j_common_ptr) cinfo);
|
||||
return TRUE;
|
||||
}
|
|
@ -0,0 +1,275 @@
|
|||
/*
|
||||
* jdapistd.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains application interface code for the decompression half
|
||||
* of the JPEG library. These are the "standard" API routines that are
|
||||
* used in the normal full-decompression case. They are not used by a
|
||||
* transcoding-only application. Note that if an application links in
|
||||
* jpeg_start_decompress, it will end up linking in the entire decompressor.
|
||||
* We thus must separate this file from jdapimin.c to avoid linking the
|
||||
* whole decompression library into a transcoder.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
LOCAL(boolean) output_pass_setup JPP((j_decompress_ptr cinfo));
|
||||
|
||||
|
||||
/*
|
||||
* Decompression initialization.
|
||||
* jpeg_read_header must be completed before calling this.
|
||||
*
|
||||
* If a multipass operating mode was selected, this will do all but the
|
||||
* last pass, and thus may take a great deal of time.
|
||||
*
|
||||
* Returns FALSE if suspended. The return value need be inspected only if
|
||||
* a suspending data source is used.
|
||||
*/
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_start_decompress (j_decompress_ptr cinfo)
|
||||
{
|
||||
if (cinfo->global_state == DSTATE_READY) {
|
||||
/* First call: initialize master control, select active modules */
|
||||
jinit_master_decompress(cinfo);
|
||||
if (cinfo->buffered_image) {
|
||||
/* No more work here; expecting jpeg_start_output next */
|
||||
cinfo->global_state = DSTATE_BUFIMAGE;
|
||||
return TRUE;
|
||||
}
|
||||
cinfo->global_state = DSTATE_PRELOAD;
|
||||
}
|
||||
if (cinfo->global_state == DSTATE_PRELOAD) {
|
||||
/* If file has multiple scans, absorb them all into the coef buffer */
|
||||
if (cinfo->inputctl->has_multiple_scans) {
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
for (;;) {
|
||||
int retcode;
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL)
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
/* Absorb some more input */
|
||||
retcode = (*cinfo->inputctl->consume_input) (cinfo);
|
||||
if (retcode == JPEG_SUSPENDED)
|
||||
return FALSE;
|
||||
if (retcode == JPEG_REACHED_EOI)
|
||||
break;
|
||||
/* Advance progress counter if appropriate */
|
||||
if (cinfo->progress != NULL &&
|
||||
(retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
|
||||
if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
|
||||
/* jdmaster underestimated number of scans; ratchet up one scan */
|
||||
cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
||||
}
|
||||
cinfo->output_scan_number = cinfo->input_scan_number;
|
||||
} else if (cinfo->global_state != DSTATE_PRESCAN)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
/* Perform any dummy output passes, and set up for the final pass */
|
||||
return output_pass_setup(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Set up for an output pass, and perform any dummy pass(es) needed.
|
||||
* Common subroutine for jpeg_start_decompress and jpeg_start_output.
|
||||
* Entry: global_state = DSTATE_PRESCAN only if previously suspended.
|
||||
* Exit: If done, returns TRUE and sets global_state for proper output mode.
|
||||
* If suspended, returns FALSE and sets global_state = DSTATE_PRESCAN.
|
||||
*/
|
||||
|
||||
LOCAL(boolean)
|
||||
output_pass_setup (j_decompress_ptr cinfo)
|
||||
{
|
||||
if (cinfo->global_state != DSTATE_PRESCAN) {
|
||||
/* First call: do pass setup */
|
||||
(*cinfo->master->prepare_for_output_pass) (cinfo);
|
||||
cinfo->output_scanline = 0;
|
||||
cinfo->global_state = DSTATE_PRESCAN;
|
||||
}
|
||||
/* Loop over any required dummy passes */
|
||||
while (cinfo->master->is_dummy_pass) {
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
/* Crank through the dummy pass */
|
||||
while (cinfo->output_scanline < cinfo->output_height) {
|
||||
JDIMENSION last_scanline;
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long) cinfo->output_scanline;
|
||||
cinfo->progress->pass_limit = (long) cinfo->output_height;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
}
|
||||
/* Process some data */
|
||||
last_scanline = cinfo->output_scanline;
|
||||
(*cinfo->main->process_data) (cinfo, (JSAMPARRAY) NULL,
|
||||
&cinfo->output_scanline, (JDIMENSION) 0);
|
||||
if (cinfo->output_scanline == last_scanline)
|
||||
return FALSE; /* No progress made, must suspend */
|
||||
}
|
||||
/* Finish up dummy pass, and set up for another one */
|
||||
(*cinfo->master->finish_output_pass) (cinfo);
|
||||
(*cinfo->master->prepare_for_output_pass) (cinfo);
|
||||
cinfo->output_scanline = 0;
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
}
|
||||
/* Ready for application to drive output pass through
|
||||
* jpeg_read_scanlines or jpeg_read_raw_data.
|
||||
*/
|
||||
cinfo->global_state = cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING;
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Read some scanlines of data from the JPEG decompressor.
|
||||
*
|
||||
* The return value will be the number of lines actually read.
|
||||
* This may be less than the number requested in several cases,
|
||||
* including bottom of image, data source suspension, and operating
|
||||
* modes that emit multiple scanlines at a time.
|
||||
*
|
||||
* Note: we warn about excess calls to jpeg_read_scanlines() since
|
||||
* this likely signals an application programmer error. However,
|
||||
* an oversize buffer (max_lines > scanlines remaining) is not an error.
|
||||
*/
|
||||
|
||||
GLOBAL(JDIMENSION)
|
||||
jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines,
|
||||
JDIMENSION max_lines)
|
||||
{
|
||||
JDIMENSION row_ctr;
|
||||
|
||||
if (cinfo->global_state != DSTATE_SCANNING)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
if (cinfo->output_scanline >= cinfo->output_height) {
|
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long) cinfo->output_scanline;
|
||||
cinfo->progress->pass_limit = (long) cinfo->output_height;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
}
|
||||
|
||||
/* Process some data */
|
||||
row_ctr = 0;
|
||||
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, max_lines);
|
||||
cinfo->output_scanline += row_ctr;
|
||||
return row_ctr;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Alternate entry point to read raw data.
|
||||
* Processes exactly one iMCU row per call, unless suspended.
|
||||
*/
|
||||
|
||||
GLOBAL(JDIMENSION)
|
||||
jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data,
|
||||
JDIMENSION max_lines)
|
||||
{
|
||||
JDIMENSION lines_per_iMCU_row;
|
||||
|
||||
if (cinfo->global_state != DSTATE_RAW_OK)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
if (cinfo->output_scanline >= cinfo->output_height) {
|
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long) cinfo->output_scanline;
|
||||
cinfo->progress->pass_limit = (long) cinfo->output_height;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
}
|
||||
|
||||
/* Verify that at least one iMCU row can be returned. */
|
||||
lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_v_scaled_size;
|
||||
if (max_lines < lines_per_iMCU_row)
|
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE);
|
||||
|
||||
/* Decompress directly into user's buffer. */
|
||||
if (! (*cinfo->coef->decompress_data) (cinfo, data))
|
||||
return 0; /* suspension forced, can do nothing more */
|
||||
|
||||
/* OK, we processed one iMCU row. */
|
||||
cinfo->output_scanline += lines_per_iMCU_row;
|
||||
return lines_per_iMCU_row;
|
||||
}
|
||||
|
||||
|
||||
/* Additional entry points for buffered-image mode. */
|
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
|
||||
/*
|
||||
* Initialize for an output pass in buffered-image mode.
|
||||
*/
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_start_output (j_decompress_ptr cinfo, int scan_number)
|
||||
{
|
||||
if (cinfo->global_state != DSTATE_BUFIMAGE &&
|
||||
cinfo->global_state != DSTATE_PRESCAN)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
/* Limit scan number to valid range */
|
||||
if (scan_number <= 0)
|
||||
scan_number = 1;
|
||||
if (cinfo->inputctl->eoi_reached &&
|
||||
scan_number > cinfo->input_scan_number)
|
||||
scan_number = cinfo->input_scan_number;
|
||||
cinfo->output_scan_number = scan_number;
|
||||
/* Perform any dummy output passes, and set up for the real pass */
|
||||
return output_pass_setup(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up after an output pass in buffered-image mode.
|
||||
*
|
||||
* Returns FALSE if suspended. The return value need be inspected only if
|
||||
* a suspending data source is used.
|
||||
*/
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_finish_output (j_decompress_ptr cinfo)
|
||||
{
|
||||
if ((cinfo->global_state == DSTATE_SCANNING ||
|
||||
cinfo->global_state == DSTATE_RAW_OK) && cinfo->buffered_image) {
|
||||
/* Terminate this pass. */
|
||||
/* We do not require the whole pass to have been completed. */
|
||||
(*cinfo->master->finish_output_pass) (cinfo);
|
||||
cinfo->global_state = DSTATE_BUFPOST;
|
||||
} else if (cinfo->global_state != DSTATE_BUFPOST) {
|
||||
/* BUFPOST = repeat call after a suspension, anything else is error */
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
}
|
||||
/* Read markers looking for SOS or EOI */
|
||||
while (cinfo->input_scan_number <= cinfo->output_scan_number &&
|
||||
! cinfo->inputctl->eoi_reached) {
|
||||
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
|
||||
return FALSE; /* Suspend, come back later */
|
||||
}
|
||||
cinfo->global_state = DSTATE_BUFIMAGE;
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
|
@ -0,0 +1,762 @@
|
|||
/*
|
||||
* jdarith.c
|
||||
*
|
||||
* Developed 1997 by Guido Vollbeding.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains portable arithmetic entropy decoding routines for JPEG
|
||||
* (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
|
||||
*
|
||||
* Both sequential and progressive modes are supported in this single module.
|
||||
*
|
||||
* Suspension is not currently supported in this module.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Expanded entropy decoder object for arithmetic decoding. */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_entropy_decoder pub; /* public fields */
|
||||
|
||||
INT32 c; /* C register, base of coding interval + input bit buffer */
|
||||
INT32 a; /* A register, normalized size of coding interval */
|
||||
int ct; /* bit shift counter, # of bits left in bit buffer part of C */
|
||||
/* init: ct = -16 */
|
||||
/* run: ct = 0..7 */
|
||||
/* error: ct = -1 */
|
||||
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
||||
int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
|
||||
|
||||
unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
||||
|
||||
/* Pointers to statistics areas (these workspaces have image lifespan) */
|
||||
unsigned char * dc_stats[NUM_ARITH_TBLS];
|
||||
unsigned char * ac_stats[NUM_ARITH_TBLS];
|
||||
} arith_entropy_decoder;
|
||||
|
||||
typedef arith_entropy_decoder * arith_entropy_ptr;
|
||||
|
||||
/* The following two definitions specify the allocation chunk size
|
||||
* for the statistics area.
|
||||
* According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
|
||||
* 49 statistics bins for DC, and 245 statistics bins for AC coding.
|
||||
* Note that we use one additional AC bin for codings with fixed
|
||||
* probability (0.5), thus the minimum number for AC is 246.
|
||||
*
|
||||
* We use a compact representation with 1 byte per statistics bin,
|
||||
* thus the numbers directly represent byte sizes.
|
||||
* This 1 byte per statistics bin contains the meaning of the MPS
|
||||
* (more probable symbol) in the highest bit (mask 0x80), and the
|
||||
* index into the probability estimation state machine table
|
||||
* in the lower bits (mask 0x7F).
|
||||
*/
|
||||
|
||||
#define DC_STAT_BINS 64
|
||||
#define AC_STAT_BINS 256
|
||||
|
||||
|
||||
LOCAL(int)
|
||||
get_byte (j_decompress_ptr cinfo)
|
||||
/* Read next input byte; we do not support suspension in this module. */
|
||||
{
|
||||
struct jpeg_source_mgr * src = cinfo->src;
|
||||
|
||||
if (src->bytes_in_buffer == 0)
|
||||
if (! (*src->fill_input_buffer) (cinfo))
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
src->bytes_in_buffer--;
|
||||
return GETJOCTET(*src->next_input_byte++);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The core arithmetic decoding routine (common in JPEG and JBIG).
|
||||
* This needs to go as fast as possible.
|
||||
* Machine-dependent optimization facilities
|
||||
* are not utilized in this portable implementation.
|
||||
* However, this code should be fairly efficient and
|
||||
* may be a good base for further optimizations anyway.
|
||||
*
|
||||
* Return value is 0 or 1 (binary decision).
|
||||
*
|
||||
* Note: I've changed the handling of the code base & bit
|
||||
* buffer register C compared to other implementations
|
||||
* based on the standards layout & procedures.
|
||||
* While it also contains both the actual base of the
|
||||
* coding interval (16 bits) and the next-bits buffer,
|
||||
* the cut-point between these two parts is floating
|
||||
* (instead of fixed) with the bit shift counter CT.
|
||||
* Thus, we also need only one (variable instead of
|
||||
* fixed size) shift for the LPS/MPS decision, and
|
||||
* we can get away with any renormalization update
|
||||
* of C (except for new data insertion, of course).
|
||||
*
|
||||
* I've also introduced a new scheme for accessing
|
||||
* the probability estimation state machine table,
|
||||
* derived from Markus Kuhn's JBIG implementation.
|
||||
*/
|
||||
|
||||
LOCAL(int)
|
||||
arith_decode (j_decompress_ptr cinfo, unsigned char *st)
|
||||
{
|
||||
extern const INT32 jaritab[];
|
||||
register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
|
||||
register unsigned char nl, nm;
|
||||
register INT32 qe, temp;
|
||||
register int sv, data;
|
||||
|
||||
/* Renormalization & data input per section D.2.6 */
|
||||
while (e->a < 0x8000L) {
|
||||
if (--e->ct < 0) {
|
||||
/* Need to fetch next data byte */
|
||||
if (cinfo->unread_marker)
|
||||
data = 0; /* stuff zero data */
|
||||
else {
|
||||
data = get_byte(cinfo); /* read next input byte */
|
||||
if (data == 0xFF) { /* zero stuff or marker code */
|
||||
do data = get_byte(cinfo);
|
||||
while (data == 0xFF); /* swallow extra 0xFF bytes */
|
||||
if (data == 0)
|
||||
data = 0xFF; /* discard stuffed zero byte */
|
||||
else {
|
||||
/* Note: Different from the Huffman decoder, hitting
|
||||
* a marker while processing the compressed data
|
||||
* segment is legal in arithmetic coding.
|
||||
* The convention is to supply zero data
|
||||
* then until decoding is complete.
|
||||
*/
|
||||
cinfo->unread_marker = data;
|
||||
data = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
e->c = (e->c << 8) | data; /* insert data into C register */
|
||||
if ((e->ct += 8) < 0) /* update bit shift counter */
|
||||
/* Need more initial bytes */
|
||||
if (++e->ct == 0)
|
||||
/* Got 2 initial bytes -> re-init A and exit loop */
|
||||
e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
|
||||
}
|
||||
e->a <<= 1;
|
||||
}
|
||||
|
||||
/* Fetch values from our compact representation of Table D.2:
|
||||
* Qe values and probability estimation state machine
|
||||
*/
|
||||
sv = *st;
|
||||
qe = jaritab[sv & 0x7F]; /* => Qe_Value */
|
||||
nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
|
||||
nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
|
||||
|
||||
/* Decode & estimation procedures per sections D.2.4 & D.2.5 */
|
||||
temp = e->a - qe;
|
||||
e->a = temp;
|
||||
temp <<= e->ct;
|
||||
if (e->c >= temp) {
|
||||
e->c -= temp;
|
||||
/* Conditional LPS (less probable symbol) exchange */
|
||||
if (e->a < qe) {
|
||||
e->a = qe;
|
||||
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
|
||||
} else {
|
||||
e->a = qe;
|
||||
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
|
||||
sv ^= 0x80; /* Exchange LPS/MPS */
|
||||
}
|
||||
} else if (e->a < 0x8000L) {
|
||||
/* Conditional MPS (more probable symbol) exchange */
|
||||
if (e->a < qe) {
|
||||
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
|
||||
sv ^= 0x80; /* Exchange LPS/MPS */
|
||||
} else {
|
||||
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
|
||||
}
|
||||
}
|
||||
|
||||
return sv >> 7;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Check for a restart marker & resynchronize decoder.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
process_restart (j_decompress_ptr cinfo)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
int ci;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
/* Advance past the RSTn marker */
|
||||
if (! (*cinfo->marker->read_restart_marker) (cinfo))
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Re-initialize statistics areas */
|
||||
if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
|
||||
MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
|
||||
/* Reset DC predictions to 0 */
|
||||
entropy->last_dc_val[ci] = 0;
|
||||
entropy->dc_context[ci] = 0;
|
||||
}
|
||||
if (cinfo->progressive_mode == 0 || cinfo->Ss) {
|
||||
MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
|
||||
}
|
||||
}
|
||||
|
||||
/* Reset arithmetic decoding variables */
|
||||
entropy->c = 0;
|
||||
entropy->a = 0;
|
||||
entropy->ct = -16; /* force reading 2 initial bytes to fill C */
|
||||
|
||||
/* Reset restart counter */
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Arithmetic MCU decoding.
|
||||
* Each of these routines decodes and returns one MCU's worth of
|
||||
* arithmetic-compressed coefficients.
|
||||
* The coefficients are reordered from zigzag order into natural array order,
|
||||
* but are not dequantized.
|
||||
*
|
||||
* The i'th block of the MCU is stored into the block pointed to by
|
||||
* MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
|
||||
*/
|
||||
|
||||
/*
|
||||
* MCU decoding for DC initial scan (either spectral selection,
|
||||
* or first pass of successive approximation).
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int blkn, ci, tbl, sign;
|
||||
int v, m;
|
||||
|
||||
/* Process restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
process_restart(cinfo);
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
if (entropy->ct == -1) return TRUE; /* if error do nothing */
|
||||
|
||||
/* Outer loop handles each block in the MCU */
|
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
block = MCU_data[blkn];
|
||||
ci = cinfo->MCU_membership[blkn];
|
||||
tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
|
||||
|
||||
/* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
|
||||
|
||||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
|
||||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
|
||||
|
||||
/* Figure F.19: Decode_DC_DIFF */
|
||||
if (arith_decode(cinfo, st) == 0)
|
||||
entropy->dc_context[ci] = 0;
|
||||
else {
|
||||
/* Figure F.21: Decoding nonzero value v */
|
||||
/* Figure F.22: Decoding the sign of v */
|
||||
sign = arith_decode(cinfo, st + 1);
|
||||
st += 2; st += sign;
|
||||
/* Figure F.23: Decoding the magnitude category of v */
|
||||
if ((m = arith_decode(cinfo, st)) != 0) {
|
||||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
|
||||
while (arith_decode(cinfo, st)) {
|
||||
if ((m <<= 1) == 0x8000) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* magnitude overflow */
|
||||
return TRUE;
|
||||
}
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
|
||||
if (m < (int) (((INT32) 1 << cinfo->arith_dc_L[tbl]) >> 1))
|
||||
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||
else if (m > (int) (((INT32) 1 << cinfo->arith_dc_U[tbl]) >> 1))
|
||||
entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
|
||||
else
|
||||
entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
|
||||
v = m;
|
||||
/* Figure F.24: Decoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
if (arith_decode(cinfo, st)) v |= m;
|
||||
v += 1; if (sign) v = -v;
|
||||
entropy->last_dc_val[ci] += v;
|
||||
}
|
||||
|
||||
/* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
|
||||
(*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al);
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU decoding for AC initial scan (either spectral selection,
|
||||
* or first pass of successive approximation).
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int tbl, sign, k;
|
||||
int v, m;
|
||||
|
||||
/* Process restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
process_restart(cinfo);
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
if (entropy->ct == -1) return TRUE; /* if error do nothing */
|
||||
|
||||
/* There is always only one block per MCU */
|
||||
block = MCU_data[0];
|
||||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
|
||||
|
||||
/* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
|
||||
|
||||
/* Figure F.20: Decode_AC_coefficients */
|
||||
for (k = cinfo->Ss; k <= cinfo->Se; k++) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
if (arith_decode(cinfo, st)) break; /* EOB flag */
|
||||
while (arith_decode(cinfo, st + 1) == 0) {
|
||||
st += 3; k++;
|
||||
if (k > cinfo->Se) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* spectral overflow */
|
||||
return TRUE;
|
||||
}
|
||||
}
|
||||
/* Figure F.21: Decoding nonzero value v */
|
||||
/* Figure F.22: Decoding the sign of v */
|
||||
entropy->ac_stats[tbl][245] = 0;
|
||||
sign = arith_decode(cinfo, entropy->ac_stats[tbl] + 245);
|
||||
st += 2;
|
||||
/* Figure F.23: Decoding the magnitude category of v */
|
||||
if ((m = arith_decode(cinfo, st)) != 0) {
|
||||
if (arith_decode(cinfo, st)) {
|
||||
m <<= 1;
|
||||
st = entropy->ac_stats[tbl] +
|
||||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
|
||||
while (arith_decode(cinfo, st)) {
|
||||
if ((m <<= 1) == 0x8000) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* magnitude overflow */
|
||||
return TRUE;
|
||||
}
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
v = m;
|
||||
/* Figure F.24: Decoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
if (arith_decode(cinfo, st)) v |= m;
|
||||
v += 1; if (sign) v = -v;
|
||||
/* Scale and output coefficient in natural (dezigzagged) order */
|
||||
(*block)[jpeg_natural_order[k]] = (JCOEF) (v << cinfo->Al);
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU decoding for DC successive approximation refinement scan.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
unsigned char st[4];
|
||||
int p1, blkn;
|
||||
|
||||
/* Process restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
process_restart(cinfo);
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
|
||||
|
||||
/* Outer loop handles each block in the MCU */
|
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
st[0] = 0; /* use fixed probability estimation */
|
||||
/* Encoded data is simply the next bit of the two's-complement DC value */
|
||||
if (arith_decode(cinfo, st))
|
||||
MCU_data[blkn][0][0] |= p1;
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU decoding for AC successive approximation refinement scan.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
JBLOCKROW block;
|
||||
JCOEFPTR thiscoef;
|
||||
unsigned char *st;
|
||||
int tbl, k, kex;
|
||||
int p1, m1;
|
||||
|
||||
/* Process restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
process_restart(cinfo);
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
if (entropy->ct == -1) return TRUE; /* if error do nothing */
|
||||
|
||||
/* There is always only one block per MCU */
|
||||
block = MCU_data[0];
|
||||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
|
||||
|
||||
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
|
||||
m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */
|
||||
|
||||
/* Establish EOBx (previous stage end-of-block) index */
|
||||
for (kex = cinfo->Se + 1; kex > 1; kex--)
|
||||
if ((*block)[jpeg_natural_order[kex - 1]]) break;
|
||||
|
||||
for (k = cinfo->Ss; k <= cinfo->Se; k++) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
if (k >= kex)
|
||||
if (arith_decode(cinfo, st)) break; /* EOB flag */
|
||||
for (;;) {
|
||||
thiscoef = *block + jpeg_natural_order[k];
|
||||
if (*thiscoef) { /* previously nonzero coef */
|
||||
if (arith_decode(cinfo, st + 2)) {
|
||||
if (*thiscoef < 0)
|
||||
*thiscoef += m1;
|
||||
else
|
||||
*thiscoef += p1;
|
||||
}
|
||||
break;
|
||||
}
|
||||
if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */
|
||||
entropy->ac_stats[tbl][245] = 0;
|
||||
if (arith_decode(cinfo, entropy->ac_stats[tbl] + 245))
|
||||
*thiscoef = m1;
|
||||
else
|
||||
*thiscoef = p1;
|
||||
break;
|
||||
}
|
||||
st += 3; k++;
|
||||
if (k > cinfo->Se) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* spectral overflow */
|
||||
return TRUE;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Decode one MCU's worth of arithmetic-compressed coefficients.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
jpeg_component_info * compptr;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int blkn, ci, tbl, sign, k;
|
||||
int v, m;
|
||||
|
||||
/* Process restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
process_restart(cinfo);
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
if (entropy->ct == -1) return TRUE; /* if error do nothing */
|
||||
|
||||
/* Outer loop handles each block in the MCU */
|
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
block = MCU_data[blkn];
|
||||
ci = cinfo->MCU_membership[blkn];
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
|
||||
/* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
|
||||
|
||||
tbl = compptr->dc_tbl_no;
|
||||
|
||||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
|
||||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
|
||||
|
||||
/* Figure F.19: Decode_DC_DIFF */
|
||||
if (arith_decode(cinfo, st) == 0)
|
||||
entropy->dc_context[ci] = 0;
|
||||
else {
|
||||
/* Figure F.21: Decoding nonzero value v */
|
||||
/* Figure F.22: Decoding the sign of v */
|
||||
sign = arith_decode(cinfo, st + 1);
|
||||
st += 2; st += sign;
|
||||
/* Figure F.23: Decoding the magnitude category of v */
|
||||
if ((m = arith_decode(cinfo, st)) != 0) {
|
||||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
|
||||
while (arith_decode(cinfo, st)) {
|
||||
if ((m <<= 1) == 0x8000) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* magnitude overflow */
|
||||
return TRUE;
|
||||
}
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
|
||||
if (m < (int) (((INT32) 1 << cinfo->arith_dc_L[tbl]) >> 1))
|
||||
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||
else if (m > (int) (((INT32) 1 << cinfo->arith_dc_U[tbl]) >> 1))
|
||||
entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
|
||||
else
|
||||
entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
|
||||
v = m;
|
||||
/* Figure F.24: Decoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
if (arith_decode(cinfo, st)) v |= m;
|
||||
v += 1; if (sign) v = -v;
|
||||
entropy->last_dc_val[ci] += v;
|
||||
}
|
||||
|
||||
(*block)[0] = (JCOEF) entropy->last_dc_val[ci];
|
||||
|
||||
/* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
|
||||
|
||||
tbl = compptr->ac_tbl_no;
|
||||
|
||||
/* Figure F.20: Decode_AC_coefficients */
|
||||
for (k = 1; k < DCTSIZE2; k++) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
if (arith_decode(cinfo, st)) break; /* EOB flag */
|
||||
while (arith_decode(cinfo, st + 1) == 0) {
|
||||
st += 3; k++;
|
||||
if (k >= DCTSIZE2) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* spectral overflow */
|
||||
return TRUE;
|
||||
}
|
||||
}
|
||||
/* Figure F.21: Decoding nonzero value v */
|
||||
/* Figure F.22: Decoding the sign of v */
|
||||
entropy->ac_stats[tbl][245] = 0;
|
||||
sign = arith_decode(cinfo, entropy->ac_stats[tbl] + 245);
|
||||
st += 2;
|
||||
/* Figure F.23: Decoding the magnitude category of v */
|
||||
if ((m = arith_decode(cinfo, st)) != 0) {
|
||||
if (arith_decode(cinfo, st)) {
|
||||
m <<= 1;
|
||||
st = entropy->ac_stats[tbl] +
|
||||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
|
||||
while (arith_decode(cinfo, st)) {
|
||||
if ((m <<= 1) == 0x8000) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* magnitude overflow */
|
||||
return TRUE;
|
||||
}
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
v = m;
|
||||
/* Figure F.24: Decoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
if (arith_decode(cinfo, st)) v |= m;
|
||||
v += 1; if (sign) v = -v;
|
||||
(*block)[jpeg_natural_order[k]] = (JCOEF) v;
|
||||
}
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for an arithmetic-compressed scan.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass (j_decompress_ptr cinfo)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
int ci, tbl;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
if (cinfo->progressive_mode) {
|
||||
/* Validate progressive scan parameters */
|
||||
if (cinfo->Ss == 0) {
|
||||
if (cinfo->Se != 0)
|
||||
goto bad;
|
||||
} else {
|
||||
/* need not check Ss/Se < 0 since they came from unsigned bytes */
|
||||
if (cinfo->Se < cinfo->Ss || cinfo->Se >= DCTSIZE2)
|
||||
goto bad;
|
||||
/* AC scans may have only one component */
|
||||
if (cinfo->comps_in_scan != 1)
|
||||
goto bad;
|
||||
}
|
||||
if (cinfo->Ah != 0) {
|
||||
/* Successive approximation refinement scan: must have Al = Ah-1. */
|
||||
if (cinfo->Ah-1 != cinfo->Al)
|
||||
goto bad;
|
||||
}
|
||||
if (cinfo->Al > 13) { /* need not check for < 0 */
|
||||
bad:
|
||||
ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
|
||||
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
|
||||
}
|
||||
/* Update progression status, and verify that scan order is legal.
|
||||
* Note that inter-scan inconsistencies are treated as warnings
|
||||
* not fatal errors ... not clear if this is right way to behave.
|
||||
*/
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
|
||||
int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
|
||||
if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
|
||||
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
|
||||
for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
|
||||
int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
|
||||
if (cinfo->Ah != expected)
|
||||
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
|
||||
coef_bit_ptr[coefi] = cinfo->Al;
|
||||
}
|
||||
}
|
||||
/* Select MCU decoding routine */
|
||||
if (cinfo->Ah == 0) {
|
||||
if (cinfo->Ss == 0)
|
||||
entropy->pub.decode_mcu = decode_mcu_DC_first;
|
||||
else
|
||||
entropy->pub.decode_mcu = decode_mcu_AC_first;
|
||||
} else {
|
||||
if (cinfo->Ss == 0)
|
||||
entropy->pub.decode_mcu = decode_mcu_DC_refine;
|
||||
else
|
||||
entropy->pub.decode_mcu = decode_mcu_AC_refine;
|
||||
}
|
||||
} else {
|
||||
/* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
|
||||
* This ought to be an error condition, but we make it a warning because
|
||||
* there are some baseline files out there with all zeroes in these bytes.
|
||||
*/
|
||||
if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
|
||||
cinfo->Ah != 0 || cinfo->Al != 0)
|
||||
WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
|
||||
/* Select MCU decoding routine */
|
||||
entropy->pub.decode_mcu = decode_mcu;
|
||||
}
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Allocate & initialize requested statistics areas */
|
||||
if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
|
||||
tbl = compptr->dc_tbl_no;
|
||||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
|
||||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
|
||||
if (entropy->dc_stats[tbl] == NULL)
|
||||
entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
|
||||
MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
|
||||
/* Initialize DC predictions to 0 */
|
||||
entropy->last_dc_val[ci] = 0;
|
||||
entropy->dc_context[ci] = 0;
|
||||
}
|
||||
if (cinfo->progressive_mode == 0 || cinfo->Ss) {
|
||||
tbl = compptr->ac_tbl_no;
|
||||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
|
||||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
|
||||
if (entropy->ac_stats[tbl] == NULL)
|
||||
entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
|
||||
MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
|
||||
}
|
||||
}
|
||||
|
||||
/* Initialize arithmetic decoding variables */
|
||||
entropy->c = 0;
|
||||
entropy->a = 0;
|
||||
entropy->ct = -16; /* force reading 2 initial bytes to fill C */
|
||||
|
||||
/* Initialize restart counter */
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for arithmetic entropy decoding.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_arith_decoder (j_decompress_ptr cinfo)
|
||||
{
|
||||
arith_entropy_ptr entropy;
|
||||
int i;
|
||||
|
||||
entropy = (arith_entropy_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(arith_entropy_decoder));
|
||||
cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
|
||||
entropy->pub.start_pass = start_pass;
|
||||
|
||||
/* Mark tables unallocated */
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) {
|
||||
entropy->dc_stats[i] = NULL;
|
||||
entropy->ac_stats[i] = NULL;
|
||||
}
|
||||
|
||||
if (cinfo->progressive_mode) {
|
||||
/* Create progression status table */
|
||||
int *coef_bit_ptr, ci;
|
||||
cinfo->coef_bits = (int (*)[DCTSIZE2])
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
cinfo->num_components*DCTSIZE2*SIZEOF(int));
|
||||
coef_bit_ptr = & cinfo->coef_bits[0][0];
|
||||
for (ci = 0; ci < cinfo->num_components; ci++)
|
||||
for (i = 0; i < DCTSIZE2; i++)
|
||||
*coef_bit_ptr++ = -1;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,151 @@
|
|||
/*
|
||||
* jdatadst.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains compression data destination routines for the case of
|
||||
* emitting JPEG data to a file (or any stdio stream). While these routines
|
||||
* are sufficient for most applications, some will want to use a different
|
||||
* destination manager.
|
||||
* IMPORTANT: we assume that fwrite() will correctly transcribe an array of
|
||||
* JOCTETs into 8-bit-wide elements on external storage. If char is wider
|
||||
* than 8 bits on your machine, you may need to do some tweaking.
|
||||
*/
|
||||
|
||||
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jerror.h"
|
||||
|
||||
|
||||
/* Expanded data destination object for stdio output */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_destination_mgr pub; /* public fields */
|
||||
|
||||
FILE * outfile; /* target stream */
|
||||
JOCTET * buffer; /* start of buffer */
|
||||
} my_destination_mgr;
|
||||
|
||||
typedef my_destination_mgr * my_dest_ptr;
|
||||
|
||||
#define OUTPUT_BUF_SIZE 4096 /* choose an efficiently fwrite'able size */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize destination --- called by jpeg_start_compress
|
||||
* before any data is actually written.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
init_destination (j_compress_ptr cinfo)
|
||||
{
|
||||
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
|
||||
|
||||
/* Allocate the output buffer --- it will be released when done with image */
|
||||
dest->buffer = (JOCTET *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
OUTPUT_BUF_SIZE * SIZEOF(JOCTET));
|
||||
|
||||
dest->pub.next_output_byte = dest->buffer;
|
||||
dest->pub.free_in_buffer = OUTPUT_BUF_SIZE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Empty the output buffer --- called whenever buffer fills up.
|
||||
*
|
||||
* In typical applications, this should write the entire output buffer
|
||||
* (ignoring the current state of next_output_byte & free_in_buffer),
|
||||
* reset the pointer & count to the start of the buffer, and return TRUE
|
||||
* indicating that the buffer has been dumped.
|
||||
*
|
||||
* In applications that need to be able to suspend compression due to output
|
||||
* overrun, a FALSE return indicates that the buffer cannot be emptied now.
|
||||
* In this situation, the compressor will return to its caller (possibly with
|
||||
* an indication that it has not accepted all the supplied scanlines). The
|
||||
* application should resume compression after it has made more room in the
|
||||
* output buffer. Note that there are substantial restrictions on the use of
|
||||
* suspension --- see the documentation.
|
||||
*
|
||||
* When suspending, the compressor will back up to a convenient restart point
|
||||
* (typically the start of the current MCU). next_output_byte & free_in_buffer
|
||||
* indicate where the restart point will be if the current call returns FALSE.
|
||||
* Data beyond this point will be regenerated after resumption, so do not
|
||||
* write it out when emptying the buffer externally.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
empty_output_buffer (j_compress_ptr cinfo)
|
||||
{
|
||||
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
|
||||
|
||||
if (JFWRITE(dest->outfile, dest->buffer, OUTPUT_BUF_SIZE) !=
|
||||
(size_t) OUTPUT_BUF_SIZE)
|
||||
ERREXIT(cinfo, JERR_FILE_WRITE);
|
||||
|
||||
dest->pub.next_output_byte = dest->buffer;
|
||||
dest->pub.free_in_buffer = OUTPUT_BUF_SIZE;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Terminate destination --- called by jpeg_finish_compress
|
||||
* after all data has been written. Usually needs to flush buffer.
|
||||
*
|
||||
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
|
||||
* application must deal with any cleanup that should happen even
|
||||
* for error exit.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
term_destination (j_compress_ptr cinfo)
|
||||
{
|
||||
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
|
||||
size_t datacount = OUTPUT_BUF_SIZE - dest->pub.free_in_buffer;
|
||||
|
||||
/* Write any data remaining in the buffer */
|
||||
if (datacount > 0) {
|
||||
if (JFWRITE(dest->outfile, dest->buffer, datacount) != datacount)
|
||||
ERREXIT(cinfo, JERR_FILE_WRITE);
|
||||
}
|
||||
fflush(dest->outfile);
|
||||
/* Make sure we wrote the output file OK */
|
||||
if (ferror(dest->outfile))
|
||||
ERREXIT(cinfo, JERR_FILE_WRITE);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Prepare for output to a stdio stream.
|
||||
* The caller must have already opened the stream, and is responsible
|
||||
* for closing it after finishing compression.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_stdio_dest (j_compress_ptr cinfo, FILE * outfile)
|
||||
{
|
||||
my_dest_ptr dest;
|
||||
|
||||
/* The destination object is made permanent so that multiple JPEG images
|
||||
* can be written to the same file without re-executing jpeg_stdio_dest.
|
||||
* This makes it dangerous to use this manager and a different destination
|
||||
* manager serially with the same JPEG object, because their private object
|
||||
* sizes may be different. Caveat programmer.
|
||||
*/
|
||||
if (cinfo->dest == NULL) { /* first time for this JPEG object? */
|
||||
cinfo->dest = (struct jpeg_destination_mgr *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
||||
SIZEOF(my_destination_mgr));
|
||||
}
|
||||
|
||||
dest = (my_dest_ptr) cinfo->dest;
|
||||
dest->pub.init_destination = init_destination;
|
||||
dest->pub.empty_output_buffer = empty_output_buffer;
|
||||
dest->pub.term_destination = term_destination;
|
||||
dest->outfile = outfile;
|
||||
}
|
|
@ -0,0 +1,212 @@
|
|||
/*
|
||||
* jdatasrc.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains decompression data source routines for the case of
|
||||
* reading JPEG data from a file (or any stdio stream). While these routines
|
||||
* are sufficient for most applications, some will want to use a different
|
||||
* source manager.
|
||||
* IMPORTANT: we assume that fread() will correctly transcribe an array of
|
||||
* JOCTETs from 8-bit-wide elements on external storage. If char is wider
|
||||
* than 8 bits on your machine, you may need to do some tweaking.
|
||||
*/
|
||||
|
||||
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jerror.h"
|
||||
|
||||
|
||||
/* Expanded data source object for stdio input */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_source_mgr pub; /* public fields */
|
||||
|
||||
FILE * infile; /* source stream */
|
||||
JOCTET * buffer; /* start of buffer */
|
||||
boolean start_of_file; /* have we gotten any data yet? */
|
||||
} my_source_mgr;
|
||||
|
||||
typedef my_source_mgr * my_src_ptr;
|
||||
|
||||
#define INPUT_BUF_SIZE 4096 /* choose an efficiently fread'able size */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize source --- called by jpeg_read_header
|
||||
* before any data is actually read.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
init_source (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_src_ptr src = (my_src_ptr) cinfo->src;
|
||||
|
||||
/* We reset the empty-input-file flag for each image,
|
||||
* but we don't clear the input buffer.
|
||||
* This is correct behavior for reading a series of images from one source.
|
||||
*/
|
||||
src->start_of_file = TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fill the input buffer --- called whenever buffer is emptied.
|
||||
*
|
||||
* In typical applications, this should read fresh data into the buffer
|
||||
* (ignoring the current state of next_input_byte & bytes_in_buffer),
|
||||
* reset the pointer & count to the start of the buffer, and return TRUE
|
||||
* indicating that the buffer has been reloaded. It is not necessary to
|
||||
* fill the buffer entirely, only to obtain at least one more byte.
|
||||
*
|
||||
* There is no such thing as an EOF return. If the end of the file has been
|
||||
* reached, the routine has a choice of ERREXIT() or inserting fake data into
|
||||
* the buffer. In most cases, generating a warning message and inserting a
|
||||
* fake EOI marker is the best course of action --- this will allow the
|
||||
* decompressor to output however much of the image is there. However,
|
||||
* the resulting error message is misleading if the real problem is an empty
|
||||
* input file, so we handle that case specially.
|
||||
*
|
||||
* In applications that need to be able to suspend compression due to input
|
||||
* not being available yet, a FALSE return indicates that no more data can be
|
||||
* obtained right now, but more may be forthcoming later. In this situation,
|
||||
* the decompressor will return to its caller (with an indication of the
|
||||
* number of scanlines it has read, if any). The application should resume
|
||||
* decompression after it has loaded more data into the input buffer. Note
|
||||
* that there are substantial restrictions on the use of suspension --- see
|
||||
* the documentation.
|
||||
*
|
||||
* When suspending, the decompressor will back up to a convenient restart point
|
||||
* (typically the start of the current MCU). next_input_byte & bytes_in_buffer
|
||||
* indicate where the restart point will be if the current call returns FALSE.
|
||||
* Data beyond this point must be rescanned after resumption, so move it to
|
||||
* the front of the buffer rather than discarding it.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
fill_input_buffer (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_src_ptr src = (my_src_ptr) cinfo->src;
|
||||
size_t nbytes;
|
||||
|
||||
nbytes = JFREAD(src->infile, src->buffer, INPUT_BUF_SIZE);
|
||||
|
||||
if (nbytes <= 0) {
|
||||
if (src->start_of_file) /* Treat empty input file as fatal error */
|
||||
ERREXIT(cinfo, JERR_INPUT_EMPTY);
|
||||
WARNMS(cinfo, JWRN_JPEG_EOF);
|
||||
/* Insert a fake EOI marker */
|
||||
src->buffer[0] = (JOCTET) 0xFF;
|
||||
src->buffer[1] = (JOCTET) JPEG_EOI;
|
||||
nbytes = 2;
|
||||
}
|
||||
|
||||
src->pub.next_input_byte = src->buffer;
|
||||
src->pub.bytes_in_buffer = nbytes;
|
||||
src->start_of_file = FALSE;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Skip data --- used to skip over a potentially large amount of
|
||||
* uninteresting data (such as an APPn marker).
|
||||
*
|
||||
* Writers of suspendable-input applications must note that skip_input_data
|
||||
* is not granted the right to give a suspension return. If the skip extends
|
||||
* beyond the data currently in the buffer, the buffer can be marked empty so
|
||||
* that the next read will cause a fill_input_buffer call that can suspend.
|
||||
* Arranging for additional bytes to be discarded before reloading the input
|
||||
* buffer is the application writer's problem.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
skip_input_data (j_decompress_ptr cinfo, long num_bytes)
|
||||
{
|
||||
my_src_ptr src = (my_src_ptr) cinfo->src;
|
||||
|
||||
/* Just a dumb implementation for now. Could use fseek() except
|
||||
* it doesn't work on pipes. Not clear that being smart is worth
|
||||
* any trouble anyway --- large skips are infrequent.
|
||||
*/
|
||||
if (num_bytes > 0) {
|
||||
while (num_bytes > (long) src->pub.bytes_in_buffer) {
|
||||
num_bytes -= (long) src->pub.bytes_in_buffer;
|
||||
(void) fill_input_buffer(cinfo);
|
||||
/* note we assume that fill_input_buffer will never return FALSE,
|
||||
* so suspension need not be handled.
|
||||
*/
|
||||
}
|
||||
src->pub.next_input_byte += (size_t) num_bytes;
|
||||
src->pub.bytes_in_buffer -= (size_t) num_bytes;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* An additional method that can be provided by data source modules is the
|
||||
* resync_to_restart method for error recovery in the presence of RST markers.
|
||||
* For the moment, this source module just uses the default resync method
|
||||
* provided by the JPEG library. That method assumes that no backtracking
|
||||
* is possible.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* Terminate source --- called by jpeg_finish_decompress
|
||||
* after all data has been read. Often a no-op.
|
||||
*
|
||||
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
|
||||
* application must deal with any cleanup that should happen even
|
||||
* for error exit.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
term_source (j_decompress_ptr cinfo)
|
||||
{
|
||||
/* no work necessary here */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Prepare for input from a stdio stream.
|
||||
* The caller must have already opened the stream, and is responsible
|
||||
* for closing it after finishing decompression.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_stdio_src (j_decompress_ptr cinfo, FILE * infile)
|
||||
{
|
||||
my_src_ptr src;
|
||||
|
||||
/* The source object and input buffer are made permanent so that a series
|
||||
* of JPEG images can be read from the same file by calling jpeg_stdio_src
|
||||
* only before the first one. (If we discarded the buffer at the end of
|
||||
* one image, we'd likely lose the start of the next one.)
|
||||
* This makes it unsafe to use this manager and a different source
|
||||
* manager serially with the same JPEG object. Caveat programmer.
|
||||
*/
|
||||
if (cinfo->src == NULL) { /* first time for this JPEG object? */
|
||||
cinfo->src = (struct jpeg_source_mgr *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
||||
SIZEOF(my_source_mgr));
|
||||
src = (my_src_ptr) cinfo->src;
|
||||
src->buffer = (JOCTET *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
||||
INPUT_BUF_SIZE * SIZEOF(JOCTET));
|
||||
}
|
||||
|
||||
src = (my_src_ptr) cinfo->src;
|
||||
src->pub.init_source = init_source;
|
||||
src->pub.fill_input_buffer = fill_input_buffer;
|
||||
src->pub.skip_input_data = skip_input_data;
|
||||
src->pub.resync_to_restart = jpeg_resync_to_restart; /* use default method */
|
||||
src->pub.term_source = term_source;
|
||||
src->infile = infile;
|
||||
src->pub.bytes_in_buffer = 0; /* forces fill_input_buffer on first read */
|
||||
src->pub.next_input_byte = NULL; /* until buffer loaded */
|
||||
}
|
|
@ -0,0 +1,736 @@
|
|||
/*
|
||||
* jdcoefct.c
|
||||
*
|
||||
* Copyright (C) 1994-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the coefficient buffer controller for decompression.
|
||||
* This controller is the top level of the JPEG decompressor proper.
|
||||
* The coefficient buffer lies between entropy decoding and inverse-DCT steps.
|
||||
*
|
||||
* In buffered-image mode, this controller is the interface between
|
||||
* input-oriented processing and output-oriented processing.
|
||||
* Also, the input side (only) is used when reading a file for transcoding.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
/* Block smoothing is only applicable for progressive JPEG, so: */
|
||||
#ifndef D_PROGRESSIVE_SUPPORTED
|
||||
#undef BLOCK_SMOOTHING_SUPPORTED
|
||||
#endif
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_d_coef_controller pub; /* public fields */
|
||||
|
||||
/* These variables keep track of the current location of the input side. */
|
||||
/* cinfo->input_iMCU_row is also used for this. */
|
||||
JDIMENSION MCU_ctr; /* counts MCUs processed in current row */
|
||||
int MCU_vert_offset; /* counts MCU rows within iMCU row */
|
||||
int MCU_rows_per_iMCU_row; /* number of such rows needed */
|
||||
|
||||
/* The output side's location is represented by cinfo->output_iMCU_row. */
|
||||
|
||||
/* In single-pass modes, it's sufficient to buffer just one MCU.
|
||||
* We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
|
||||
* and let the entropy decoder write into that workspace each time.
|
||||
* (On 80x86, the workspace is FAR even though it's not really very big;
|
||||
* this is to keep the module interfaces unchanged when a large coefficient
|
||||
* buffer is necessary.)
|
||||
* In multi-pass modes, this array points to the current MCU's blocks
|
||||
* within the virtual arrays; it is used only by the input side.
|
||||
*/
|
||||
JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
|
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
/* In multi-pass modes, we need a virtual block array for each component. */
|
||||
jvirt_barray_ptr whole_image[MAX_COMPONENTS];
|
||||
#endif
|
||||
|
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
||||
/* When doing block smoothing, we latch coefficient Al values here */
|
||||
int * coef_bits_latch;
|
||||
#define SAVED_COEFS 6 /* we save coef_bits[0..5] */
|
||||
#endif
|
||||
} my_coef_controller;
|
||||
|
||||
typedef my_coef_controller * my_coef_ptr;
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF(int) decompress_onepass
|
||||
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
METHODDEF(int) decompress_data
|
||||
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
|
||||
#endif
|
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
||||
LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
|
||||
METHODDEF(int) decompress_smooth_data
|
||||
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
|
||||
#endif
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
start_iMCU_row (j_decompress_ptr cinfo)
|
||||
/* Reset within-iMCU-row counters for a new row (input side) */
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
|
||||
/* In an interleaved scan, an MCU row is the same as an iMCU row.
|
||||
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
|
||||
* But at the bottom of the image, process only what's left.
|
||||
*/
|
||||
if (cinfo->comps_in_scan > 1) {
|
||||
coef->MCU_rows_per_iMCU_row = 1;
|
||||
} else {
|
||||
if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
|
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
|
||||
else
|
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
|
||||
}
|
||||
|
||||
coef->MCU_ctr = 0;
|
||||
coef->MCU_vert_offset = 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for an input processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_input_pass (j_decompress_ptr cinfo)
|
||||
{
|
||||
cinfo->input_iMCU_row = 0;
|
||||
start_iMCU_row(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for an output processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_output_pass (j_decompress_ptr cinfo)
|
||||
{
|
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
|
||||
/* If multipass, check to see whether to use block smoothing on this pass */
|
||||
if (coef->pub.coef_arrays != NULL) {
|
||||
if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
|
||||
coef->pub.decompress_data = decompress_smooth_data;
|
||||
else
|
||||
coef->pub.decompress_data = decompress_data;
|
||||
}
|
||||
#endif
|
||||
cinfo->output_iMCU_row = 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Decompress and return some data in the single-pass case.
|
||||
* Always attempts to emit one fully interleaved MCU row ("iMCU" row).
|
||||
* Input and output must run in lockstep since we have only a one-MCU buffer.
|
||||
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
|
||||
*
|
||||
* NB: output_buf contains a plane for each component in image,
|
||||
* which we index according to the component's SOF position.
|
||||
*/
|
||||
|
||||
METHODDEF(int)
|
||||
decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
||||
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
|
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
||||
int blkn, ci, xindex, yindex, yoffset, useful_width;
|
||||
JSAMPARRAY output_ptr;
|
||||
JDIMENSION start_col, output_col;
|
||||
jpeg_component_info *compptr;
|
||||
inverse_DCT_method_ptr inverse_DCT;
|
||||
|
||||
/* Loop to process as much as one whole iMCU row */
|
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
||||
yoffset++) {
|
||||
for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
|
||||
MCU_col_num++) {
|
||||
/* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */
|
||||
jzero_far((void FAR *) coef->MCU_buffer[0],
|
||||
(size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
|
||||
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
|
||||
/* Suspension forced; update state counters and exit */
|
||||
coef->MCU_vert_offset = yoffset;
|
||||
coef->MCU_ctr = MCU_col_num;
|
||||
return JPEG_SUSPENDED;
|
||||
}
|
||||
/* Determine where data should go in output_buf and do the IDCT thing.
|
||||
* We skip dummy blocks at the right and bottom edges (but blkn gets
|
||||
* incremented past them!). Note the inner loop relies on having
|
||||
* allocated the MCU_buffer[] blocks sequentially.
|
||||
*/
|
||||
blkn = 0; /* index of current DCT block within MCU */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Don't bother to IDCT an uninteresting component. */
|
||||
if (! compptr->component_needed) {
|
||||
blkn += compptr->MCU_blocks;
|
||||
continue;
|
||||
}
|
||||
inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
|
||||
useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
|
||||
: compptr->last_col_width;
|
||||
output_ptr = output_buf[compptr->component_index] +
|
||||
yoffset * compptr->DCT_v_scaled_size;
|
||||
start_col = MCU_col_num * compptr->MCU_sample_width;
|
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
||||
if (cinfo->input_iMCU_row < last_iMCU_row ||
|
||||
yoffset+yindex < compptr->last_row_height) {
|
||||
output_col = start_col;
|
||||
for (xindex = 0; xindex < useful_width; xindex++) {
|
||||
(*inverse_DCT) (cinfo, compptr,
|
||||
(JCOEFPTR) coef->MCU_buffer[blkn+xindex],
|
||||
output_ptr, output_col);
|
||||
output_col += compptr->DCT_h_scaled_size;
|
||||
}
|
||||
}
|
||||
blkn += compptr->MCU_width;
|
||||
output_ptr += compptr->DCT_v_scaled_size;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Completed an MCU row, but perhaps not an iMCU row */
|
||||
coef->MCU_ctr = 0;
|
||||
}
|
||||
/* Completed the iMCU row, advance counters for next one */
|
||||
cinfo->output_iMCU_row++;
|
||||
if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
|
||||
start_iMCU_row(cinfo);
|
||||
return JPEG_ROW_COMPLETED;
|
||||
}
|
||||
/* Completed the scan */
|
||||
(*cinfo->inputctl->finish_input_pass) (cinfo);
|
||||
return JPEG_SCAN_COMPLETED;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Dummy consume-input routine for single-pass operation.
|
||||
*/
|
||||
|
||||
METHODDEF(int)
|
||||
dummy_consume_data (j_decompress_ptr cinfo)
|
||||
{
|
||||
return JPEG_SUSPENDED; /* Always indicate nothing was done */
|
||||
}
|
||||
|
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
|
||||
/*
|
||||
* Consume input data and store it in the full-image coefficient buffer.
|
||||
* We read as much as one fully interleaved MCU row ("iMCU" row) per call,
|
||||
* ie, v_samp_factor block rows for each component in the scan.
|
||||
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
|
||||
*/
|
||||
|
||||
METHODDEF(int)
|
||||
consume_data (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
||||
int blkn, ci, xindex, yindex, yoffset;
|
||||
JDIMENSION start_col;
|
||||
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
|
||||
JBLOCKROW buffer_ptr;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
/* Align the virtual buffers for the components used in this scan. */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
buffer[ci] = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
|
||||
cinfo->input_iMCU_row * compptr->v_samp_factor,
|
||||
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
||||
/* Note: entropy decoder expects buffer to be zeroed,
|
||||
* but this is handled automatically by the memory manager
|
||||
* because we requested a pre-zeroed array.
|
||||
*/
|
||||
}
|
||||
|
||||
/* Loop to process one whole iMCU row */
|
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
||||
yoffset++) {
|
||||
for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
|
||||
MCU_col_num++) {
|
||||
/* Construct list of pointers to DCT blocks belonging to this MCU */
|
||||
blkn = 0; /* index of current DCT block within MCU */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
start_col = MCU_col_num * compptr->MCU_width;
|
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
||||
buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
|
||||
for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
|
||||
coef->MCU_buffer[blkn++] = buffer_ptr++;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Try to fetch the MCU. */
|
||||
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
|
||||
/* Suspension forced; update state counters and exit */
|
||||
coef->MCU_vert_offset = yoffset;
|
||||
coef->MCU_ctr = MCU_col_num;
|
||||
return JPEG_SUSPENDED;
|
||||
}
|
||||
}
|
||||
/* Completed an MCU row, but perhaps not an iMCU row */
|
||||
coef->MCU_ctr = 0;
|
||||
}
|
||||
/* Completed the iMCU row, advance counters for next one */
|
||||
if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
|
||||
start_iMCU_row(cinfo);
|
||||
return JPEG_ROW_COMPLETED;
|
||||
}
|
||||
/* Completed the scan */
|
||||
(*cinfo->inputctl->finish_input_pass) (cinfo);
|
||||
return JPEG_SCAN_COMPLETED;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Decompress and return some data in the multi-pass case.
|
||||
* Always attempts to emit one fully interleaved MCU row ("iMCU" row).
|
||||
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
|
||||
*
|
||||
* NB: output_buf contains a plane for each component in image.
|
||||
*/
|
||||
|
||||
METHODDEF(int)
|
||||
decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
||||
JDIMENSION block_num;
|
||||
int ci, block_row, block_rows;
|
||||
JBLOCKARRAY buffer;
|
||||
JBLOCKROW buffer_ptr;
|
||||
JSAMPARRAY output_ptr;
|
||||
JDIMENSION output_col;
|
||||
jpeg_component_info *compptr;
|
||||
inverse_DCT_method_ptr inverse_DCT;
|
||||
|
||||
/* Force some input to be done if we are getting ahead of the input. */
|
||||
while (cinfo->input_scan_number < cinfo->output_scan_number ||
|
||||
(cinfo->input_scan_number == cinfo->output_scan_number &&
|
||||
cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
|
||||
if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
|
||||
return JPEG_SUSPENDED;
|
||||
}
|
||||
|
||||
/* OK, output from the virtual arrays. */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Don't bother to IDCT an uninteresting component. */
|
||||
if (! compptr->component_needed)
|
||||
continue;
|
||||
/* Align the virtual buffer for this component. */
|
||||
buffer = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr) cinfo, coef->whole_image[ci],
|
||||
cinfo->output_iMCU_row * compptr->v_samp_factor,
|
||||
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
||||
/* Count non-dummy DCT block rows in this iMCU row. */
|
||||
if (cinfo->output_iMCU_row < last_iMCU_row)
|
||||
block_rows = compptr->v_samp_factor;
|
||||
else {
|
||||
/* NB: can't use last_row_height here; it is input-side-dependent! */
|
||||
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
|
||||
if (block_rows == 0) block_rows = compptr->v_samp_factor;
|
||||
}
|
||||
inverse_DCT = cinfo->idct->inverse_DCT[ci];
|
||||
output_ptr = output_buf[ci];
|
||||
/* Loop over all DCT blocks to be processed. */
|
||||
for (block_row = 0; block_row < block_rows; block_row++) {
|
||||
buffer_ptr = buffer[block_row];
|
||||
output_col = 0;
|
||||
for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
|
||||
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
|
||||
output_ptr, output_col);
|
||||
buffer_ptr++;
|
||||
output_col += compptr->DCT_h_scaled_size;
|
||||
}
|
||||
output_ptr += compptr->DCT_v_scaled_size;
|
||||
}
|
||||
}
|
||||
|
||||
if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
|
||||
return JPEG_ROW_COMPLETED;
|
||||
return JPEG_SCAN_COMPLETED;
|
||||
}
|
||||
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
||||
|
||||
|
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
||||
|
||||
/*
|
||||
* This code applies interblock smoothing as described by section K.8
|
||||
* of the JPEG standard: the first 5 AC coefficients are estimated from
|
||||
* the DC values of a DCT block and its 8 neighboring blocks.
|
||||
* We apply smoothing only for progressive JPEG decoding, and only if
|
||||
* the coefficients it can estimate are not yet known to full precision.
|
||||
*/
|
||||
|
||||
/* Natural-order array positions of the first 5 zigzag-order coefficients */
|
||||
#define Q01_POS 1
|
||||
#define Q10_POS 8
|
||||
#define Q20_POS 16
|
||||
#define Q11_POS 9
|
||||
#define Q02_POS 2
|
||||
|
||||
/*
|
||||
* Determine whether block smoothing is applicable and safe.
|
||||
* We also latch the current states of the coef_bits[] entries for the
|
||||
* AC coefficients; otherwise, if the input side of the decompressor
|
||||
* advances into a new scan, we might think the coefficients are known
|
||||
* more accurately than they really are.
|
||||
*/
|
||||
|
||||
LOCAL(boolean)
|
||||
smoothing_ok (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
boolean smoothing_useful = FALSE;
|
||||
int ci, coefi;
|
||||
jpeg_component_info *compptr;
|
||||
JQUANT_TBL * qtable;
|
||||
int * coef_bits;
|
||||
int * coef_bits_latch;
|
||||
|
||||
if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
|
||||
return FALSE;
|
||||
|
||||
/* Allocate latch area if not already done */
|
||||
if (coef->coef_bits_latch == NULL)
|
||||
coef->coef_bits_latch = (int *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
cinfo->num_components *
|
||||
(SAVED_COEFS * SIZEOF(int)));
|
||||
coef_bits_latch = coef->coef_bits_latch;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* All components' quantization values must already be latched. */
|
||||
if ((qtable = compptr->quant_table) == NULL)
|
||||
return FALSE;
|
||||
/* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
|
||||
if (qtable->quantval[0] == 0 ||
|
||||
qtable->quantval[Q01_POS] == 0 ||
|
||||
qtable->quantval[Q10_POS] == 0 ||
|
||||
qtable->quantval[Q20_POS] == 0 ||
|
||||
qtable->quantval[Q11_POS] == 0 ||
|
||||
qtable->quantval[Q02_POS] == 0)
|
||||
return FALSE;
|
||||
/* DC values must be at least partly known for all components. */
|
||||
coef_bits = cinfo->coef_bits[ci];
|
||||
if (coef_bits[0] < 0)
|
||||
return FALSE;
|
||||
/* Block smoothing is helpful if some AC coefficients remain inaccurate. */
|
||||
for (coefi = 1; coefi <= 5; coefi++) {
|
||||
coef_bits_latch[coefi] = coef_bits[coefi];
|
||||
if (coef_bits[coefi] != 0)
|
||||
smoothing_useful = TRUE;
|
||||
}
|
||||
coef_bits_latch += SAVED_COEFS;
|
||||
}
|
||||
|
||||
return smoothing_useful;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Variant of decompress_data for use when doing block smoothing.
|
||||
*/
|
||||
|
||||
METHODDEF(int)
|
||||
decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
||||
JDIMENSION block_num, last_block_column;
|
||||
int ci, block_row, block_rows, access_rows;
|
||||
JBLOCKARRAY buffer;
|
||||
JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
|
||||
JSAMPARRAY output_ptr;
|
||||
JDIMENSION output_col;
|
||||
jpeg_component_info *compptr;
|
||||
inverse_DCT_method_ptr inverse_DCT;
|
||||
boolean first_row, last_row;
|
||||
JBLOCK workspace;
|
||||
int *coef_bits;
|
||||
JQUANT_TBL *quanttbl;
|
||||
INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
|
||||
int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
|
||||
int Al, pred;
|
||||
|
||||
/* Force some input to be done if we are getting ahead of the input. */
|
||||
while (cinfo->input_scan_number <= cinfo->output_scan_number &&
|
||||
! cinfo->inputctl->eoi_reached) {
|
||||
if (cinfo->input_scan_number == cinfo->output_scan_number) {
|
||||
/* If input is working on current scan, we ordinarily want it to
|
||||
* have completed the current row. But if input scan is DC,
|
||||
* we want it to keep one row ahead so that next block row's DC
|
||||
* values are up to date.
|
||||
*/
|
||||
JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
|
||||
if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
|
||||
break;
|
||||
}
|
||||
if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
|
||||
return JPEG_SUSPENDED;
|
||||
}
|
||||
|
||||
/* OK, output from the virtual arrays. */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Don't bother to IDCT an uninteresting component. */
|
||||
if (! compptr->component_needed)
|
||||
continue;
|
||||
/* Count non-dummy DCT block rows in this iMCU row. */
|
||||
if (cinfo->output_iMCU_row < last_iMCU_row) {
|
||||
block_rows = compptr->v_samp_factor;
|
||||
access_rows = block_rows * 2; /* this and next iMCU row */
|
||||
last_row = FALSE;
|
||||
} else {
|
||||
/* NB: can't use last_row_height here; it is input-side-dependent! */
|
||||
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
|
||||
if (block_rows == 0) block_rows = compptr->v_samp_factor;
|
||||
access_rows = block_rows; /* this iMCU row only */
|
||||
last_row = TRUE;
|
||||
}
|
||||
/* Align the virtual buffer for this component. */
|
||||
if (cinfo->output_iMCU_row > 0) {
|
||||
access_rows += compptr->v_samp_factor; /* prior iMCU row too */
|
||||
buffer = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr) cinfo, coef->whole_image[ci],
|
||||
(cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
|
||||
(JDIMENSION) access_rows, FALSE);
|
||||
buffer += compptr->v_samp_factor; /* point to current iMCU row */
|
||||
first_row = FALSE;
|
||||
} else {
|
||||
buffer = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr) cinfo, coef->whole_image[ci],
|
||||
(JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
|
||||
first_row = TRUE;
|
||||
}
|
||||
/* Fetch component-dependent info */
|
||||
coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
|
||||
quanttbl = compptr->quant_table;
|
||||
Q00 = quanttbl->quantval[0];
|
||||
Q01 = quanttbl->quantval[Q01_POS];
|
||||
Q10 = quanttbl->quantval[Q10_POS];
|
||||
Q20 = quanttbl->quantval[Q20_POS];
|
||||
Q11 = quanttbl->quantval[Q11_POS];
|
||||
Q02 = quanttbl->quantval[Q02_POS];
|
||||
inverse_DCT = cinfo->idct->inverse_DCT[ci];
|
||||
output_ptr = output_buf[ci];
|
||||
/* Loop over all DCT blocks to be processed. */
|
||||
for (block_row = 0; block_row < block_rows; block_row++) {
|
||||
buffer_ptr = buffer[block_row];
|
||||
if (first_row && block_row == 0)
|
||||
prev_block_row = buffer_ptr;
|
||||
else
|
||||
prev_block_row = buffer[block_row-1];
|
||||
if (last_row && block_row == block_rows-1)
|
||||
next_block_row = buffer_ptr;
|
||||
else
|
||||
next_block_row = buffer[block_row+1];
|
||||
/* We fetch the surrounding DC values using a sliding-register approach.
|
||||
* Initialize all nine here so as to do the right thing on narrow pics.
|
||||
*/
|
||||
DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
|
||||
DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
|
||||
DC7 = DC8 = DC9 = (int) next_block_row[0][0];
|
||||
output_col = 0;
|
||||
last_block_column = compptr->width_in_blocks - 1;
|
||||
for (block_num = 0; block_num <= last_block_column; block_num++) {
|
||||
/* Fetch current DCT block into workspace so we can modify it. */
|
||||
jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
|
||||
/* Update DC values */
|
||||
if (block_num < last_block_column) {
|
||||
DC3 = (int) prev_block_row[1][0];
|
||||
DC6 = (int) buffer_ptr[1][0];
|
||||
DC9 = (int) next_block_row[1][0];
|
||||
}
|
||||
/* Compute coefficient estimates per K.8.
|
||||
* An estimate is applied only if coefficient is still zero,
|
||||
* and is not known to be fully accurate.
|
||||
*/
|
||||
/* AC01 */
|
||||
if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
|
||||
num = 36 * Q00 * (DC4 - DC6);
|
||||
if (num >= 0) {
|
||||
pred = (int) (((Q01<<7) + num) / (Q01<<8));
|
||||
if (Al > 0 && pred >= (1<<Al))
|
||||
pred = (1<<Al)-1;
|
||||
} else {
|
||||
pred = (int) (((Q01<<7) - num) / (Q01<<8));
|
||||
if (Al > 0 && pred >= (1<<Al))
|
||||
pred = (1<<Al)-1;
|
||||
pred = -pred;
|
||||
}
|
||||
workspace[1] = (JCOEF) pred;
|
||||
}
|
||||
/* AC10 */
|
||||
if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
|
||||
num = 36 * Q00 * (DC2 - DC8);
|
||||
if (num >= 0) {
|
||||
pred = (int) (((Q10<<7) + num) / (Q10<<8));
|
||||
if (Al > 0 && pred >= (1<<Al))
|
||||
pred = (1<<Al)-1;
|
||||
} else {
|
||||
pred = (int) (((Q10<<7) - num) / (Q10<<8));
|
||||
if (Al > 0 && pred >= (1<<Al))
|
||||
pred = (1<<Al)-1;
|
||||
pred = -pred;
|
||||
}
|
||||
workspace[8] = (JCOEF) pred;
|
||||
}
|
||||
/* AC20 */
|
||||
if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
|
||||
num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
|
||||
if (num >= 0) {
|
||||
pred = (int) (((Q20<<7) + num) / (Q20<<8));
|
||||
if (Al > 0 && pred >= (1<<Al))
|
||||
pred = (1<<Al)-1;
|
||||
} else {
|
||||
pred = (int) (((Q20<<7) - num) / (Q20<<8));
|
||||
if (Al > 0 && pred >= (1<<Al))
|
||||
pred = (1<<Al)-1;
|
||||
pred = -pred;
|
||||
}
|
||||
workspace[16] = (JCOEF) pred;
|
||||
}
|
||||
/* AC11 */
|
||||
if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
|
||||
num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
|
||||
if (num >= 0) {
|
||||
pred = (int) (((Q11<<7) + num) / (Q11<<8));
|
||||
if (Al > 0 && pred >= (1<<Al))
|
||||
pred = (1<<Al)-1;
|
||||
} else {
|
||||
pred = (int) (((Q11<<7) - num) / (Q11<<8));
|
||||
if (Al > 0 && pred >= (1<<Al))
|
||||
pred = (1<<Al)-1;
|
||||
pred = -pred;
|
||||
}
|
||||
workspace[9] = (JCOEF) pred;
|
||||
}
|
||||
/* AC02 */
|
||||
if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
|
||||
num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
|
||||
if (num >= 0) {
|
||||
pred = (int) (((Q02<<7) + num) / (Q02<<8));
|
||||
if (Al > 0 && pred >= (1<<Al))
|
||||
pred = (1<<Al)-1;
|
||||
} else {
|
||||
pred = (int) (((Q02<<7) - num) / (Q02<<8));
|
||||
if (Al > 0 && pred >= (1<<Al))
|
||||
pred = (1<<Al)-1;
|
||||
pred = -pred;
|
||||
}
|
||||
workspace[2] = (JCOEF) pred;
|
||||
}
|
||||
/* OK, do the IDCT */
|
||||
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
|
||||
output_ptr, output_col);
|
||||
/* Advance for next column */
|
||||
DC1 = DC2; DC2 = DC3;
|
||||
DC4 = DC5; DC5 = DC6;
|
||||
DC7 = DC8; DC8 = DC9;
|
||||
buffer_ptr++, prev_block_row++, next_block_row++;
|
||||
output_col += compptr->DCT_h_scaled_size;
|
||||
}
|
||||
output_ptr += compptr->DCT_v_scaled_size;
|
||||
}
|
||||
}
|
||||
|
||||
if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
|
||||
return JPEG_ROW_COMPLETED;
|
||||
return JPEG_SCAN_COMPLETED;
|
||||
}
|
||||
|
||||
#endif /* BLOCK_SMOOTHING_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize coefficient buffer controller.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_coef_ptr coef;
|
||||
|
||||
coef = (my_coef_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_coef_controller));
|
||||
cinfo->coef = (struct jpeg_d_coef_controller *) coef;
|
||||
coef->pub.start_input_pass = start_input_pass;
|
||||
coef->pub.start_output_pass = start_output_pass;
|
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
||||
coef->coef_bits_latch = NULL;
|
||||
#endif
|
||||
|
||||
/* Create the coefficient buffer. */
|
||||
if (need_full_buffer) {
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
/* Allocate a full-image virtual array for each component, */
|
||||
/* padded to a multiple of samp_factor DCT blocks in each direction. */
|
||||
/* Note we ask for a pre-zeroed array. */
|
||||
int ci, access_rows;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
access_rows = compptr->v_samp_factor;
|
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
||||
/* If block smoothing could be used, need a bigger window */
|
||||
if (cinfo->progressive_mode)
|
||||
access_rows *= 3;
|
||||
#endif
|
||||
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
|
||||
(JDIMENSION) jround_up((long) compptr->width_in_blocks,
|
||||
(long) compptr->h_samp_factor),
|
||||
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
|
||||
(long) compptr->v_samp_factor),
|
||||
(JDIMENSION) access_rows);
|
||||
}
|
||||
coef->pub.consume_data = consume_data;
|
||||
coef->pub.decompress_data = decompress_data;
|
||||
coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else {
|
||||
/* We only need a single-MCU buffer. */
|
||||
JBLOCKROW buffer;
|
||||
int i;
|
||||
|
||||
buffer = (JBLOCKROW)
|
||||
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
|
||||
for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
|
||||
coef->MCU_buffer[i] = buffer + i;
|
||||
}
|
||||
coef->pub.consume_data = dummy_consume_data;
|
||||
coef->pub.decompress_data = decompress_onepass;
|
||||
coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
|
||||
}
|
||||
}
|
|
@ -0,0 +1,396 @@
|
|||
/*
|
||||
* jdcolor.c
|
||||
*
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains output colorspace conversion routines.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_color_deconverter pub; /* public fields */
|
||||
|
||||
/* Private state for YCC->RGB conversion */
|
||||
int * Cr_r_tab; /* => table for Cr to R conversion */
|
||||
int * Cb_b_tab; /* => table for Cb to B conversion */
|
||||
INT32 * Cr_g_tab; /* => table for Cr to G conversion */
|
||||
INT32 * Cb_g_tab; /* => table for Cb to G conversion */
|
||||
} my_color_deconverter;
|
||||
|
||||
typedef my_color_deconverter * my_cconvert_ptr;
|
||||
|
||||
|
||||
/**************** YCbCr -> RGB conversion: most common case **************/
|
||||
|
||||
/*
|
||||
* YCbCr is defined per CCIR 601-1, except that Cb and Cr are
|
||||
* normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
|
||||
* The conversion equations to be implemented are therefore
|
||||
* R = Y + 1.40200 * Cr
|
||||
* G = Y - 0.34414 * Cb - 0.71414 * Cr
|
||||
* B = Y + 1.77200 * Cb
|
||||
* where Cb and Cr represent the incoming values less CENTERJSAMPLE.
|
||||
* (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
|
||||
*
|
||||
* To avoid floating-point arithmetic, we represent the fractional constants
|
||||
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide
|
||||
* the products by 2^16, with appropriate rounding, to get the correct answer.
|
||||
* Notice that Y, being an integral input, does not contribute any fraction
|
||||
* so it need not participate in the rounding.
|
||||
*
|
||||
* For even more speed, we avoid doing any multiplications in the inner loop
|
||||
* by precalculating the constants times Cb and Cr for all possible values.
|
||||
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
|
||||
* for 12-bit samples it is still acceptable. It's not very reasonable for
|
||||
* 16-bit samples, but if you want lossless storage you shouldn't be changing
|
||||
* colorspace anyway.
|
||||
* The Cr=>R and Cb=>B values can be rounded to integers in advance; the
|
||||
* values for the G calculation are left scaled up, since we must add them
|
||||
* together before rounding.
|
||||
*/
|
||||
|
||||
#define SCALEBITS 16 /* speediest right-shift on some machines */
|
||||
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
|
||||
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
|
||||
|
||||
|
||||
/*
|
||||
* Initialize tables for YCC->RGB colorspace conversion.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
build_ycc_rgb_table (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
int i;
|
||||
INT32 x;
|
||||
SHIFT_TEMPS
|
||||
|
||||
cconvert->Cr_r_tab = (int *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(int));
|
||||
cconvert->Cb_b_tab = (int *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(int));
|
||||
cconvert->Cr_g_tab = (INT32 *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||
cconvert->Cb_g_tab = (INT32 *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||
|
||||
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
|
||||
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
|
||||
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
|
||||
/* Cr=>R value is nearest int to 1.40200 * x */
|
||||
cconvert->Cr_r_tab[i] = (int)
|
||||
RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
|
||||
/* Cb=>B value is nearest int to 1.77200 * x */
|
||||
cconvert->Cb_b_tab[i] = (int)
|
||||
RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
|
||||
/* Cr=>G value is scaled-up -0.71414 * x */
|
||||
cconvert->Cr_g_tab[i] = (- FIX(0.71414)) * x;
|
||||
/* Cb=>G value is scaled-up -0.34414 * x */
|
||||
/* We also add in ONE_HALF so that need not do it in inner loop */
|
||||
cconvert->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the output colorspace.
|
||||
*
|
||||
* Note that we change from noninterleaved, one-plane-per-component format
|
||||
* to interleaved-pixel format. The output buffer is therefore three times
|
||||
* as wide as the input buffer.
|
||||
* A starting row offset is provided only for the input buffer. The caller
|
||||
* can easily adjust the passed output_buf value to accommodate any row
|
||||
* offset required on that side.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
ycc_rgb_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
register int y, cb, cr;
|
||||
register JSAMPROW outptr;
|
||||
register JSAMPROW inptr0, inptr1, inptr2;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
/* copy these pointers into registers if possible */
|
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||
register int * Crrtab = cconvert->Cr_r_tab;
|
||||
register int * Cbbtab = cconvert->Cb_b_tab;
|
||||
register INT32 * Crgtab = cconvert->Cr_g_tab;
|
||||
register INT32 * Cbgtab = cconvert->Cb_g_tab;
|
||||
SHIFT_TEMPS
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr0 = input_buf[0][input_row];
|
||||
inptr1 = input_buf[1][input_row];
|
||||
inptr2 = input_buf[2][input_row];
|
||||
input_row++;
|
||||
outptr = *output_buf++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
y = GETJSAMPLE(inptr0[col]);
|
||||
cb = GETJSAMPLE(inptr1[col]);
|
||||
cr = GETJSAMPLE(inptr2[col]);
|
||||
/* Range-limiting is essential due to noise introduced by DCT losses. */
|
||||
outptr[RGB_RED] = range_limit[y + Crrtab[cr]];
|
||||
outptr[RGB_GREEN] = range_limit[y +
|
||||
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
|
||||
SCALEBITS))];
|
||||
outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]];
|
||||
outptr += RGB_PIXELSIZE;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**************** Cases other than YCbCr -> RGB **************/
|
||||
|
||||
|
||||
/*
|
||||
* Color conversion for no colorspace change: just copy the data,
|
||||
* converting from separate-planes to interleaved representation.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
null_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
register JSAMPROW inptr, outptr;
|
||||
register JDIMENSION count;
|
||||
register int num_components = cinfo->num_components;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
int ci;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
for (ci = 0; ci < num_components; ci++) {
|
||||
inptr = input_buf[ci][input_row];
|
||||
outptr = output_buf[0] + ci;
|
||||
for (count = num_cols; count > 0; count--) {
|
||||
*outptr = *inptr++; /* needn't bother with GETJSAMPLE() here */
|
||||
outptr += num_components;
|
||||
}
|
||||
}
|
||||
input_row++;
|
||||
output_buf++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Color conversion for grayscale: just copy the data.
|
||||
* This also works for YCbCr -> grayscale conversion, in which
|
||||
* we just copy the Y (luminance) component and ignore chrominance.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
grayscale_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
jcopy_sample_rows(input_buf[0], (int) input_row, output_buf, 0,
|
||||
num_rows, cinfo->output_width);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert grayscale to RGB: just duplicate the graylevel three times.
|
||||
* This is provided to support applications that don't want to cope
|
||||
* with grayscale as a separate case.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
gray_rgb_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
register JSAMPROW inptr, outptr;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr = input_buf[0][input_row++];
|
||||
outptr = *output_buf++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
/* We can dispense with GETJSAMPLE() here */
|
||||
outptr[RGB_RED] = outptr[RGB_GREEN] = outptr[RGB_BLUE] = inptr[col];
|
||||
outptr += RGB_PIXELSIZE;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Adobe-style YCCK->CMYK conversion.
|
||||
* We convert YCbCr to R=1-C, G=1-M, and B=1-Y using the same
|
||||
* conversion as above, while passing K (black) unchanged.
|
||||
* We assume build_ycc_rgb_table has been called.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
ycck_cmyk_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
register int y, cb, cr;
|
||||
register JSAMPROW outptr;
|
||||
register JSAMPROW inptr0, inptr1, inptr2, inptr3;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
/* copy these pointers into registers if possible */
|
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||
register int * Crrtab = cconvert->Cr_r_tab;
|
||||
register int * Cbbtab = cconvert->Cb_b_tab;
|
||||
register INT32 * Crgtab = cconvert->Cr_g_tab;
|
||||
register INT32 * Cbgtab = cconvert->Cb_g_tab;
|
||||
SHIFT_TEMPS
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr0 = input_buf[0][input_row];
|
||||
inptr1 = input_buf[1][input_row];
|
||||
inptr2 = input_buf[2][input_row];
|
||||
inptr3 = input_buf[3][input_row];
|
||||
input_row++;
|
||||
outptr = *output_buf++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
y = GETJSAMPLE(inptr0[col]);
|
||||
cb = GETJSAMPLE(inptr1[col]);
|
||||
cr = GETJSAMPLE(inptr2[col]);
|
||||
/* Range-limiting is essential due to noise introduced by DCT losses. */
|
||||
outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])]; /* red */
|
||||
outptr[1] = range_limit[MAXJSAMPLE - (y + /* green */
|
||||
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
|
||||
SCALEBITS)))];
|
||||
outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])]; /* blue */
|
||||
/* K passes through unchanged */
|
||||
outptr[3] = inptr3[col]; /* don't need GETJSAMPLE here */
|
||||
outptr += 4;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Empty method for start_pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_dcolor (j_decompress_ptr cinfo)
|
||||
{
|
||||
/* no work needed */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for output colorspace conversion.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_color_deconverter (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_cconvert_ptr cconvert;
|
||||
int ci;
|
||||
|
||||
cconvert = (my_cconvert_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_color_deconverter));
|
||||
cinfo->cconvert = (struct jpeg_color_deconverter *) cconvert;
|
||||
cconvert->pub.start_pass = start_pass_dcolor;
|
||||
|
||||
/* Make sure num_components agrees with jpeg_color_space */
|
||||
switch (cinfo->jpeg_color_space) {
|
||||
case JCS_GRAYSCALE:
|
||||
if (cinfo->num_components != 1)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
break;
|
||||
|
||||
case JCS_RGB:
|
||||
case JCS_YCbCr:
|
||||
if (cinfo->num_components != 3)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
break;
|
||||
|
||||
case JCS_CMYK:
|
||||
case JCS_YCCK:
|
||||
if (cinfo->num_components != 4)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
break;
|
||||
|
||||
default: /* JCS_UNKNOWN can be anything */
|
||||
if (cinfo->num_components < 1)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
break;
|
||||
}
|
||||
|
||||
/* Set out_color_components and conversion method based on requested space.
|
||||
* Also clear the component_needed flags for any unused components,
|
||||
* so that earlier pipeline stages can avoid useless computation.
|
||||
*/
|
||||
|
||||
switch (cinfo->out_color_space) {
|
||||
case JCS_GRAYSCALE:
|
||||
cinfo->out_color_components = 1;
|
||||
if (cinfo->jpeg_color_space == JCS_GRAYSCALE ||
|
||||
cinfo->jpeg_color_space == JCS_YCbCr) {
|
||||
cconvert->pub.color_convert = grayscale_convert;
|
||||
/* For color->grayscale conversion, only the Y (0) component is needed */
|
||||
for (ci = 1; ci < cinfo->num_components; ci++)
|
||||
cinfo->comp_info[ci].component_needed = FALSE;
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case JCS_RGB:
|
||||
cinfo->out_color_components = RGB_PIXELSIZE;
|
||||
if (cinfo->jpeg_color_space == JCS_YCbCr) {
|
||||
cconvert->pub.color_convert = ycc_rgb_convert;
|
||||
build_ycc_rgb_table(cinfo);
|
||||
} else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) {
|
||||
cconvert->pub.color_convert = gray_rgb_convert;
|
||||
} else if (cinfo->jpeg_color_space == JCS_RGB && RGB_PIXELSIZE == 3) {
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case JCS_CMYK:
|
||||
cinfo->out_color_components = 4;
|
||||
if (cinfo->jpeg_color_space == JCS_YCCK) {
|
||||
cconvert->pub.color_convert = ycck_cmyk_convert;
|
||||
build_ycc_rgb_table(cinfo);
|
||||
} else if (cinfo->jpeg_color_space == JCS_CMYK) {
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
default:
|
||||
/* Permit null conversion to same output space */
|
||||
if (cinfo->out_color_space == cinfo->jpeg_color_space) {
|
||||
cinfo->out_color_components = cinfo->num_components;
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
} else /* unsupported non-null conversion */
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
}
|
||||
|
||||
if (cinfo->quantize_colors)
|
||||
cinfo->output_components = 1; /* single colormapped output component */
|
||||
else
|
||||
cinfo->output_components = cinfo->out_color_components;
|
||||
}
|
|
@ -0,0 +1,393 @@
|
|||
/*
|
||||
* jdct.h
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This include file contains common declarations for the forward and
|
||||
* inverse DCT modules. These declarations are private to the DCT managers
|
||||
* (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
|
||||
* The individual DCT algorithms are kept in separate files to ease
|
||||
* machine-dependent tuning (e.g., assembly coding).
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* A forward DCT routine is given a pointer to an input sample array and
|
||||
* a pointer to a work area of type DCTELEM[]; the DCT is to be performed
|
||||
* in-place in that buffer. Type DCTELEM is int for 8-bit samples, INT32
|
||||
* for 12-bit samples. (NOTE: Floating-point DCT implementations use an
|
||||
* array of type FAST_FLOAT, instead.)
|
||||
* The input data is to be fetched from the sample array starting at a
|
||||
* specified column. (Any row offset needed will be applied to the array
|
||||
* pointer before it is passed to the FDCT code.)
|
||||
* Note that the number of samples fetched by the FDCT routine is
|
||||
* DCT_h_scaled_size * DCT_v_scaled_size.
|
||||
* The DCT outputs are returned scaled up by a factor of 8; they therefore
|
||||
* have a range of +-8K for 8-bit data, +-128K for 12-bit data. This
|
||||
* convention improves accuracy in integer implementations and saves some
|
||||
* work in floating-point ones.
|
||||
* Quantization of the output coefficients is done by jcdctmgr.c.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
typedef int DCTELEM; /* 16 or 32 bits is fine */
|
||||
#else
|
||||
typedef INT32 DCTELEM; /* must have 32 bits */
|
||||
#endif
|
||||
|
||||
typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data,
|
||||
JSAMPARRAY sample_data,
|
||||
JDIMENSION start_col));
|
||||
typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data,
|
||||
JSAMPARRAY sample_data,
|
||||
JDIMENSION start_col));
|
||||
|
||||
|
||||
/*
|
||||
* An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
|
||||
* to an output sample array. The routine must dequantize the input data as
|
||||
* well as perform the IDCT; for dequantization, it uses the multiplier table
|
||||
* pointed to by compptr->dct_table. The output data is to be placed into the
|
||||
* sample array starting at a specified column. (Any row offset needed will
|
||||
* be applied to the array pointer before it is passed to the IDCT code.)
|
||||
* Note that the number of samples emitted by the IDCT routine is
|
||||
* DCT_h_scaled_size * DCT_v_scaled_size.
|
||||
*/
|
||||
|
||||
/* typedef inverse_DCT_method_ptr is declared in jpegint.h */
|
||||
|
||||
/*
|
||||
* Each IDCT routine has its own ideas about the best dct_table element type.
|
||||
*/
|
||||
|
||||
typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
|
||||
#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
|
||||
#else
|
||||
typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */
|
||||
#define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */
|
||||
#endif
|
||||
typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
|
||||
|
||||
|
||||
/*
|
||||
* Each IDCT routine is responsible for range-limiting its results and
|
||||
* converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
|
||||
* be quite far out of range if the input data is corrupt, so a bulletproof
|
||||
* range-limiting step is required. We use a mask-and-table-lookup method
|
||||
* to do the combined operations quickly. See the comments with
|
||||
* prepare_range_limit_table (in jdmaster.c) for more info.
|
||||
*/
|
||||
|
||||
#define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE)
|
||||
|
||||
#define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */
|
||||
|
||||
|
||||
/* Short forms of external names for systems with brain-damaged linkers. */
|
||||
|
||||
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
||||
#define jpeg_fdct_islow jFDislow
|
||||
#define jpeg_fdct_ifast jFDifast
|
||||
#define jpeg_fdct_float jFDfloat
|
||||
#define jpeg_fdct_7x7 jFD7x7
|
||||
#define jpeg_fdct_6x6 jFD6x6
|
||||
#define jpeg_fdct_5x5 jFD5x5
|
||||
#define jpeg_fdct_4x4 jFD4x4
|
||||
#define jpeg_fdct_3x3 jFD3x3
|
||||
#define jpeg_fdct_2x2 jFD2x2
|
||||
#define jpeg_fdct_1x1 jFD1x1
|
||||
#define jpeg_fdct_9x9 jFD9x9
|
||||
#define jpeg_fdct_10x10 jFD10x10
|
||||
#define jpeg_fdct_11x11 jFD11x11
|
||||
#define jpeg_fdct_12x12 jFD12x12
|
||||
#define jpeg_fdct_13x13 jFD13x13
|
||||
#define jpeg_fdct_14x14 jFD14x14
|
||||
#define jpeg_fdct_15x15 jFD15x15
|
||||
#define jpeg_fdct_16x16 jFD16x16
|
||||
#define jpeg_fdct_16x8 jFD16x8
|
||||
#define jpeg_fdct_14x7 jFD14x7
|
||||
#define jpeg_fdct_12x6 jFD12x6
|
||||
#define jpeg_fdct_10x5 jFD10x5
|
||||
#define jpeg_fdct_8x4 jFD8x4
|
||||
#define jpeg_fdct_6x3 jFD6x3
|
||||
#define jpeg_fdct_4x2 jFD4x2
|
||||
#define jpeg_fdct_2x1 jFD2x1
|
||||
#define jpeg_fdct_8x16 jFD8x16
|
||||
#define jpeg_fdct_7x14 jFD7x14
|
||||
#define jpeg_fdct_6x12 jFD6x12
|
||||
#define jpeg_fdct_5x10 jFD5x10
|
||||
#define jpeg_fdct_4x8 jFD4x8
|
||||
#define jpeg_fdct_3x6 jFD3x6
|
||||
#define jpeg_fdct_2x4 jFD2x4
|
||||
#define jpeg_fdct_1x2 jFD1x2
|
||||
#define jpeg_idct_islow jRDislow
|
||||
#define jpeg_idct_ifast jRDifast
|
||||
#define jpeg_idct_float jRDfloat
|
||||
#define jpeg_idct_7x7 jRD7x7
|
||||
#define jpeg_idct_6x6 jRD6x6
|
||||
#define jpeg_idct_5x5 jRD5x5
|
||||
#define jpeg_idct_4x4 jRD4x4
|
||||
#define jpeg_idct_3x3 jRD3x3
|
||||
#define jpeg_idct_2x2 jRD2x2
|
||||
#define jpeg_idct_1x1 jRD1x1
|
||||
#define jpeg_idct_9x9 jRD9x9
|
||||
#define jpeg_idct_10x10 jRD10x10
|
||||
#define jpeg_idct_11x11 jRD11x11
|
||||
#define jpeg_idct_12x12 jRD12x12
|
||||
#define jpeg_idct_13x13 jRD13x13
|
||||
#define jpeg_idct_14x14 jRD14x14
|
||||
#define jpeg_idct_15x15 jRD15x15
|
||||
#define jpeg_idct_16x16 jRD16x16
|
||||
#define jpeg_idct_16x8 jRD16x8
|
||||
#define jpeg_idct_14x7 jRD14x7
|
||||
#define jpeg_idct_12x6 jRD12x6
|
||||
#define jpeg_idct_10x5 jRD10x5
|
||||
#define jpeg_idct_8x4 jRD8x4
|
||||
#define jpeg_idct_6x3 jRD6x3
|
||||
#define jpeg_idct_4x2 jRD4x2
|
||||
#define jpeg_idct_2x1 jRD2x1
|
||||
#define jpeg_idct_8x16 jRD8x16
|
||||
#define jpeg_idct_7x14 jRD7x14
|
||||
#define jpeg_idct_6x12 jRD6x12
|
||||
#define jpeg_idct_5x10 jRD5x10
|
||||
#define jpeg_idct_4x8 jRD4x8
|
||||
#define jpeg_idct_3x6 jRD3x8
|
||||
#define jpeg_idct_2x4 jRD2x4
|
||||
#define jpeg_idct_1x2 jRD1x2
|
||||
#endif /* NEED_SHORT_EXTERNAL_NAMES */
|
||||
|
||||
/* Extern declarations for the forward and inverse DCT routines. */
|
||||
|
||||
EXTERN(void) jpeg_fdct_islow
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_ifast
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_float
|
||||
JPP((FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_7x7
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_6x6
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_5x5
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_4x4
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_3x3
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_2x2
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_1x1
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_9x9
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_10x10
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_11x11
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_12x12
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_13x13
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_14x14
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_15x15
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_16x16
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_16x8
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_14x7
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_12x6
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_10x5
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_8x4
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_6x3
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_4x2
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_2x1
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_8x16
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_7x14
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_6x12
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_5x10
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_4x8
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_3x6
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_2x4
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_1x2
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
|
||||
EXTERN(void) jpeg_idct_islow
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_ifast
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_float
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_7x7
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_6x6
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_5x5
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_4x4
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_3x3
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_2x2
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_1x1
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_9x9
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_10x10
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_11x11
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_12x12
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_13x13
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_14x14
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_15x15
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_16x16
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_16x8
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_14x7
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_12x6
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_10x5
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_8x4
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_6x3
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_4x2
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_2x1
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_8x16
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_7x14
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_6x12
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_5x10
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_4x8
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_3x6
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_2x4
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_1x2
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
|
||||
|
||||
/*
|
||||
* Macros for handling fixed-point arithmetic; these are used by many
|
||||
* but not all of the DCT/IDCT modules.
|
||||
*
|
||||
* All values are expected to be of type INT32.
|
||||
* Fractional constants are scaled left by CONST_BITS bits.
|
||||
* CONST_BITS is defined within each module using these macros,
|
||||
* and may differ from one module to the next.
|
||||
*/
|
||||
|
||||
#define ONE ((INT32) 1)
|
||||
#define CONST_SCALE (ONE << CONST_BITS)
|
||||
|
||||
/* Convert a positive real constant to an integer scaled by CONST_SCALE.
|
||||
* Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
|
||||
* thus causing a lot of useless floating-point operations at run time.
|
||||
*/
|
||||
|
||||
#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))
|
||||
|
||||
/* Descale and correctly round an INT32 value that's scaled by N bits.
|
||||
* We assume RIGHT_SHIFT rounds towards minus infinity, so adding
|
||||
* the fudge factor is correct for either sign of X.
|
||||
*/
|
||||
|
||||
#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
|
||||
|
||||
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
|
||||
* This macro is used only when the two inputs will actually be no more than
|
||||
* 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
|
||||
* full 32x32 multiply. This provides a useful speedup on many machines.
|
||||
* Unfortunately there is no way to specify a 16x16->32 multiply portably
|
||||
* in C, but some C compilers will do the right thing if you provide the
|
||||
* correct combination of casts.
|
||||
*/
|
||||
|
||||
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
|
||||
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const)))
|
||||
#endif
|
||||
#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
|
||||
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const)))
|
||||
#endif
|
||||
|
||||
#ifndef MULTIPLY16C16 /* default definition */
|
||||
#define MULTIPLY16C16(var,const) ((var) * (const))
|
||||
#endif
|
||||
|
||||
/* Same except both inputs are variables. */
|
||||
|
||||
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
|
||||
#define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2)))
|
||||
#endif
|
||||
|
||||
#ifndef MULTIPLY16V16 /* default definition */
|
||||
#define MULTIPLY16V16(var1,var2) ((var1) * (var2))
|
||||
#endif
|
|
@ -0,0 +1,382 @@
|
|||
/*
|
||||
* jddctmgr.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the inverse-DCT management logic.
|
||||
* This code selects a particular IDCT implementation to be used,
|
||||
* and it performs related housekeeping chores. No code in this file
|
||||
* is executed per IDCT step, only during output pass setup.
|
||||
*
|
||||
* Note that the IDCT routines are responsible for performing coefficient
|
||||
* dequantization as well as the IDCT proper. This module sets up the
|
||||
* dequantization multiplier table needed by the IDCT routine.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
|
||||
/*
|
||||
* The decompressor input side (jdinput.c) saves away the appropriate
|
||||
* quantization table for each component at the start of the first scan
|
||||
* involving that component. (This is necessary in order to correctly
|
||||
* decode files that reuse Q-table slots.)
|
||||
* When we are ready to make an output pass, the saved Q-table is converted
|
||||
* to a multiplier table that will actually be used by the IDCT routine.
|
||||
* The multiplier table contents are IDCT-method-dependent. To support
|
||||
* application changes in IDCT method between scans, we can remake the
|
||||
* multiplier tables if necessary.
|
||||
* In buffered-image mode, the first output pass may occur before any data
|
||||
* has been seen for some components, and thus before their Q-tables have
|
||||
* been saved away. To handle this case, multiplier tables are preset
|
||||
* to zeroes; the result of the IDCT will be a neutral gray level.
|
||||
*/
|
||||
|
||||
|
||||
/* Private subobject for this module */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_inverse_dct pub; /* public fields */
|
||||
|
||||
/* This array contains the IDCT method code that each multiplier table
|
||||
* is currently set up for, or -1 if it's not yet set up.
|
||||
* The actual multiplier tables are pointed to by dct_table in the
|
||||
* per-component comp_info structures.
|
||||
*/
|
||||
int cur_method[MAX_COMPONENTS];
|
||||
} my_idct_controller;
|
||||
|
||||
typedef my_idct_controller * my_idct_ptr;
|
||||
|
||||
|
||||
/* Allocated multiplier tables: big enough for any supported variant */
|
||||
|
||||
typedef union {
|
||||
ISLOW_MULT_TYPE islow_array[DCTSIZE2];
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
IFAST_MULT_TYPE ifast_array[DCTSIZE2];
|
||||
#endif
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
FLOAT_MULT_TYPE float_array[DCTSIZE2];
|
||||
#endif
|
||||
} multiplier_table;
|
||||
|
||||
|
||||
/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
|
||||
* so be sure to compile that code if either ISLOW or SCALING is requested.
|
||||
*/
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
#define PROVIDE_ISLOW_TABLES
|
||||
#else
|
||||
#ifdef IDCT_SCALING_SUPPORTED
|
||||
#define PROVIDE_ISLOW_TABLES
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Prepare for an output pass.
|
||||
* Here we select the proper IDCT routine for each component and build
|
||||
* a matching multiplier table.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
|
||||
int ci, i;
|
||||
jpeg_component_info *compptr;
|
||||
int method = 0;
|
||||
inverse_DCT_method_ptr method_ptr = NULL;
|
||||
JQUANT_TBL * qtbl;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Select the proper IDCT routine for this component's scaling */
|
||||
switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) {
|
||||
#ifdef IDCT_SCALING_SUPPORTED
|
||||
case ((1 << 8) + 1):
|
||||
method_ptr = jpeg_idct_1x1;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((2 << 8) + 2):
|
||||
method_ptr = jpeg_idct_2x2;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((3 << 8) + 3):
|
||||
method_ptr = jpeg_idct_3x3;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((4 << 8) + 4):
|
||||
method_ptr = jpeg_idct_4x4;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((5 << 8) + 5):
|
||||
method_ptr = jpeg_idct_5x5;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((6 << 8) + 6):
|
||||
method_ptr = jpeg_idct_6x6;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((7 << 8) + 7):
|
||||
method_ptr = jpeg_idct_7x7;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((9 << 8) + 9):
|
||||
method_ptr = jpeg_idct_9x9;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((10 << 8) + 10):
|
||||
method_ptr = jpeg_idct_10x10;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((11 << 8) + 11):
|
||||
method_ptr = jpeg_idct_11x11;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((12 << 8) + 12):
|
||||
method_ptr = jpeg_idct_12x12;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((13 << 8) + 13):
|
||||
method_ptr = jpeg_idct_13x13;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((14 << 8) + 14):
|
||||
method_ptr = jpeg_idct_14x14;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((15 << 8) + 15):
|
||||
method_ptr = jpeg_idct_15x15;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((16 << 8) + 16):
|
||||
method_ptr = jpeg_idct_16x16;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((16 << 8) + 8):
|
||||
method_ptr = jpeg_idct_16x8;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((14 << 8) + 7):
|
||||
method_ptr = jpeg_idct_14x7;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((12 << 8) + 6):
|
||||
method_ptr = jpeg_idct_12x6;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((10 << 8) + 5):
|
||||
method_ptr = jpeg_idct_10x5;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((8 << 8) + 4):
|
||||
method_ptr = jpeg_idct_8x4;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((6 << 8) + 3):
|
||||
method_ptr = jpeg_idct_6x3;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((4 << 8) + 2):
|
||||
method_ptr = jpeg_idct_4x2;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((2 << 8) + 1):
|
||||
method_ptr = jpeg_idct_2x1;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((8 << 8) + 16):
|
||||
method_ptr = jpeg_idct_8x16;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((7 << 8) + 14):
|
||||
method_ptr = jpeg_idct_7x14;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((6 << 8) + 12):
|
||||
method_ptr = jpeg_idct_6x12;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((5 << 8) + 10):
|
||||
method_ptr = jpeg_idct_5x10;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((4 << 8) + 8):
|
||||
method_ptr = jpeg_idct_4x8;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((3 << 8) + 6):
|
||||
method_ptr = jpeg_idct_3x6;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((2 << 8) + 4):
|
||||
method_ptr = jpeg_idct_2x4;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((1 << 8) + 2):
|
||||
method_ptr = jpeg_idct_1x2;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
#endif
|
||||
case ((DCTSIZE << 8) + DCTSIZE):
|
||||
switch (cinfo->dct_method) {
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
case JDCT_ISLOW:
|
||||
method_ptr = jpeg_idct_islow;
|
||||
method = JDCT_ISLOW;
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
case JDCT_IFAST:
|
||||
method_ptr = jpeg_idct_ifast;
|
||||
method = JDCT_IFAST;
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
case JDCT_FLOAT:
|
||||
method_ptr = jpeg_idct_float;
|
||||
method = JDCT_FLOAT;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
break;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
ERREXIT2(cinfo, JERR_BAD_DCTSIZE,
|
||||
compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size);
|
||||
break;
|
||||
}
|
||||
idct->pub.inverse_DCT[ci] = method_ptr;
|
||||
/* Create multiplier table from quant table.
|
||||
* However, we can skip this if the component is uninteresting
|
||||
* or if we already built the table. Also, if no quant table
|
||||
* has yet been saved for the component, we leave the
|
||||
* multiplier table all-zero; we'll be reading zeroes from the
|
||||
* coefficient controller's buffer anyway.
|
||||
*/
|
||||
if (! compptr->component_needed || idct->cur_method[ci] == method)
|
||||
continue;
|
||||
qtbl = compptr->quant_table;
|
||||
if (qtbl == NULL) /* happens if no data yet for component */
|
||||
continue;
|
||||
idct->cur_method[ci] = method;
|
||||
switch (method) {
|
||||
#ifdef PROVIDE_ISLOW_TABLES
|
||||
case JDCT_ISLOW:
|
||||
{
|
||||
/* For LL&M IDCT method, multipliers are equal to raw quantization
|
||||
* coefficients, but are stored as ints to ensure access efficiency.
|
||||
*/
|
||||
ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
|
||||
}
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
case JDCT_IFAST:
|
||||
{
|
||||
/* For AA&N IDCT method, multipliers are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
||||
* scalefactor[0] = 1
|
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
||||
* For integer operation, the multiplier table is to be scaled by
|
||||
* IFAST_SCALE_BITS.
|
||||
*/
|
||||
IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
|
||||
#define CONST_BITS 14
|
||||
static const INT16 aanscales[DCTSIZE2] = {
|
||||
/* precomputed values scaled up by 14 bits */
|
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
||||
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
||||
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
||||
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
||||
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
||||
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
||||
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
||||
};
|
||||
SHIFT_TEMPS
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
ifmtbl[i] = (IFAST_MULT_TYPE)
|
||||
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
|
||||
(INT32) aanscales[i]),
|
||||
CONST_BITS-IFAST_SCALE_BITS);
|
||||
}
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
case JDCT_FLOAT:
|
||||
{
|
||||
/* For float AA&N IDCT method, multipliers are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
||||
* scalefactor[0] = 1
|
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
||||
*/
|
||||
FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
|
||||
int row, col;
|
||||
static const double aanscalefactor[DCTSIZE] = {
|
||||
1.0, 1.387039845, 1.306562965, 1.175875602,
|
||||
1.0, 0.785694958, 0.541196100, 0.275899379
|
||||
};
|
||||
|
||||
i = 0;
|
||||
for (row = 0; row < DCTSIZE; row++) {
|
||||
for (col = 0; col < DCTSIZE; col++) {
|
||||
fmtbl[i] = (FLOAT_MULT_TYPE)
|
||||
((double) qtbl->quantval[i] *
|
||||
aanscalefactor[row] * aanscalefactor[col]);
|
||||
i++;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize IDCT manager.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_inverse_dct (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_idct_ptr idct;
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
idct = (my_idct_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_idct_controller));
|
||||
cinfo->idct = (struct jpeg_inverse_dct *) idct;
|
||||
idct->pub.start_pass = start_pass;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Allocate and pre-zero a multiplier table for each component */
|
||||
compptr->dct_table =
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(multiplier_table));
|
||||
MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
|
||||
/* Mark multiplier table not yet set up for any method */
|
||||
idct->cur_method[ci] = -1;
|
||||
}
|
||||
}
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,384 @@
|
|||
/*
|
||||
* jdinput.c
|
||||
*
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* Modified 2002-2009 by Guido Vollbeding.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains input control logic for the JPEG decompressor.
|
||||
* These routines are concerned with controlling the decompressor's input
|
||||
* processing (marker reading and coefficient decoding). The actual input
|
||||
* reading is done in jdmarker.c, jdhuff.c, and jdarith.c.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Private state */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_input_controller pub; /* public fields */
|
||||
|
||||
boolean inheaders; /* TRUE until first SOS is reached */
|
||||
} my_input_controller;
|
||||
|
||||
typedef my_input_controller * my_inputctl_ptr;
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF(int) consume_markers JPP((j_decompress_ptr cinfo));
|
||||
|
||||
|
||||
/*
|
||||
* Routines to calculate various quantities related to the size of the image.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
initial_setup (j_decompress_ptr cinfo)
|
||||
/* Called once, when first SOS marker is reached */
|
||||
{
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
/* Make sure image isn't bigger than I can handle */
|
||||
if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION ||
|
||||
(long) cinfo->image_width > (long) JPEG_MAX_DIMENSION)
|
||||
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
|
||||
|
||||
/* For now, precision must match compiled-in value... */
|
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
|
||||
/* Check that number of components won't exceed internal array sizes */
|
||||
if (cinfo->num_components > MAX_COMPONENTS)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
|
||||
MAX_COMPONENTS);
|
||||
|
||||
/* Compute maximum sampling factors; check factor validity */
|
||||
cinfo->max_h_samp_factor = 1;
|
||||
cinfo->max_v_samp_factor = 1;
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
|
||||
compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
|
||||
ERREXIT(cinfo, JERR_BAD_SAMPLING);
|
||||
cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
|
||||
compptr->h_samp_factor);
|
||||
cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
|
||||
compptr->v_samp_factor);
|
||||
}
|
||||
|
||||
/* We initialize DCT_scaled_size and min_DCT_scaled_size to DCTSIZE.
|
||||
* In the full decompressor, this will be overridden by jdmaster.c;
|
||||
* but in the transcoder, jdmaster.c is not used, so we must do it here.
|
||||
*/
|
||||
cinfo->min_DCT_h_scaled_size = DCTSIZE;
|
||||
cinfo->min_DCT_v_scaled_size = DCTSIZE;
|
||||
|
||||
/* Compute dimensions of components */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
compptr->DCT_h_scaled_size = DCTSIZE;
|
||||
compptr->DCT_v_scaled_size = DCTSIZE;
|
||||
/* Size in DCT blocks */
|
||||
compptr->width_in_blocks = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
|
||||
(long) (cinfo->max_h_samp_factor * DCTSIZE));
|
||||
compptr->height_in_blocks = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
|
||||
(long) (cinfo->max_v_samp_factor * DCTSIZE));
|
||||
/* downsampled_width and downsampled_height will also be overridden by
|
||||
* jdmaster.c if we are doing full decompression. The transcoder library
|
||||
* doesn't use these values, but the calling application might.
|
||||
*/
|
||||
/* Size in samples */
|
||||
compptr->downsampled_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
|
||||
(long) cinfo->max_h_samp_factor);
|
||||
compptr->downsampled_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
|
||||
(long) cinfo->max_v_samp_factor);
|
||||
/* Mark component needed, until color conversion says otherwise */
|
||||
compptr->component_needed = TRUE;
|
||||
/* Mark no quantization table yet saved for component */
|
||||
compptr->quant_table = NULL;
|
||||
}
|
||||
|
||||
/* Compute number of fully interleaved MCU rows. */
|
||||
cinfo->total_iMCU_rows = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height,
|
||||
(long) (cinfo->max_v_samp_factor*DCTSIZE));
|
||||
|
||||
/* Decide whether file contains multiple scans */
|
||||
if (cinfo->comps_in_scan < cinfo->num_components || cinfo->progressive_mode)
|
||||
cinfo->inputctl->has_multiple_scans = TRUE;
|
||||
else
|
||||
cinfo->inputctl->has_multiple_scans = FALSE;
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
per_scan_setup (j_decompress_ptr cinfo)
|
||||
/* Do computations that are needed before processing a JPEG scan */
|
||||
/* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */
|
||||
{
|
||||
int ci, mcublks, tmp;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
if (cinfo->comps_in_scan == 1) {
|
||||
|
||||
/* Noninterleaved (single-component) scan */
|
||||
compptr = cinfo->cur_comp_info[0];
|
||||
|
||||
/* Overall image size in MCUs */
|
||||
cinfo->MCUs_per_row = compptr->width_in_blocks;
|
||||
cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
|
||||
|
||||
/* For noninterleaved scan, always one block per MCU */
|
||||
compptr->MCU_width = 1;
|
||||
compptr->MCU_height = 1;
|
||||
compptr->MCU_blocks = 1;
|
||||
compptr->MCU_sample_width = compptr->DCT_h_scaled_size;
|
||||
compptr->last_col_width = 1;
|
||||
/* For noninterleaved scans, it is convenient to define last_row_height
|
||||
* as the number of block rows present in the last iMCU row.
|
||||
*/
|
||||
tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
|
||||
if (tmp == 0) tmp = compptr->v_samp_factor;
|
||||
compptr->last_row_height = tmp;
|
||||
|
||||
/* Prepare array describing MCU composition */
|
||||
cinfo->blocks_in_MCU = 1;
|
||||
cinfo->MCU_membership[0] = 0;
|
||||
|
||||
} else {
|
||||
|
||||
/* Interleaved (multi-component) scan */
|
||||
if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
|
||||
MAX_COMPS_IN_SCAN);
|
||||
|
||||
/* Overall image size in MCUs */
|
||||
cinfo->MCUs_per_row = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width,
|
||||
(long) (cinfo->max_h_samp_factor*DCTSIZE));
|
||||
cinfo->MCU_rows_in_scan = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height,
|
||||
(long) (cinfo->max_v_samp_factor*DCTSIZE));
|
||||
|
||||
cinfo->blocks_in_MCU = 0;
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Sampling factors give # of blocks of component in each MCU */
|
||||
compptr->MCU_width = compptr->h_samp_factor;
|
||||
compptr->MCU_height = compptr->v_samp_factor;
|
||||
compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
|
||||
compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_h_scaled_size;
|
||||
/* Figure number of non-dummy blocks in last MCU column & row */
|
||||
tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
|
||||
if (tmp == 0) tmp = compptr->MCU_width;
|
||||
compptr->last_col_width = tmp;
|
||||
tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
|
||||
if (tmp == 0) tmp = compptr->MCU_height;
|
||||
compptr->last_row_height = tmp;
|
||||
/* Prepare array describing MCU composition */
|
||||
mcublks = compptr->MCU_blocks;
|
||||
if (cinfo->blocks_in_MCU + mcublks > D_MAX_BLOCKS_IN_MCU)
|
||||
ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
|
||||
while (mcublks-- > 0) {
|
||||
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Save away a copy of the Q-table referenced by each component present
|
||||
* in the current scan, unless already saved during a prior scan.
|
||||
*
|
||||
* In a multiple-scan JPEG file, the encoder could assign different components
|
||||
* the same Q-table slot number, but change table definitions between scans
|
||||
* so that each component uses a different Q-table. (The IJG encoder is not
|
||||
* currently capable of doing this, but other encoders might.) Since we want
|
||||
* to be able to dequantize all the components at the end of the file, this
|
||||
* means that we have to save away the table actually used for each component.
|
||||
* We do this by copying the table at the start of the first scan containing
|
||||
* the component.
|
||||
* The JPEG spec prohibits the encoder from changing the contents of a Q-table
|
||||
* slot between scans of a component using that slot. If the encoder does so
|
||||
* anyway, this decoder will simply use the Q-table values that were current
|
||||
* at the start of the first scan for the component.
|
||||
*
|
||||
* The decompressor output side looks only at the saved quant tables,
|
||||
* not at the current Q-table slots.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
latch_quant_tables (j_decompress_ptr cinfo)
|
||||
{
|
||||
int ci, qtblno;
|
||||
jpeg_component_info *compptr;
|
||||
JQUANT_TBL * qtbl;
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* No work if we already saved Q-table for this component */
|
||||
if (compptr->quant_table != NULL)
|
||||
continue;
|
||||
/* Make sure specified quantization table is present */
|
||||
qtblno = compptr->quant_tbl_no;
|
||||
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
|
||||
cinfo->quant_tbl_ptrs[qtblno] == NULL)
|
||||
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
|
||||
/* OK, save away the quantization table */
|
||||
qtbl = (JQUANT_TBL *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(JQUANT_TBL));
|
||||
MEMCOPY(qtbl, cinfo->quant_tbl_ptrs[qtblno], SIZEOF(JQUANT_TBL));
|
||||
compptr->quant_table = qtbl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize the input modules to read a scan of compressed data.
|
||||
* The first call to this is done by jdmaster.c after initializing
|
||||
* the entire decompressor (during jpeg_start_decompress).
|
||||
* Subsequent calls come from consume_markers, below.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_input_pass (j_decompress_ptr cinfo)
|
||||
{
|
||||
per_scan_setup(cinfo);
|
||||
latch_quant_tables(cinfo);
|
||||
(*cinfo->entropy->start_pass) (cinfo);
|
||||
(*cinfo->coef->start_input_pass) (cinfo);
|
||||
cinfo->inputctl->consume_input = cinfo->coef->consume_data;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up after inputting a compressed-data scan.
|
||||
* This is called by the coefficient controller after it's read all
|
||||
* the expected data of the scan.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
finish_input_pass (j_decompress_ptr cinfo)
|
||||
{
|
||||
cinfo->inputctl->consume_input = consume_markers;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Read JPEG markers before, between, or after compressed-data scans.
|
||||
* Change state as necessary when a new scan is reached.
|
||||
* Return value is JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
|
||||
*
|
||||
* The consume_input method pointer points either here or to the
|
||||
* coefficient controller's consume_data routine, depending on whether
|
||||
* we are reading a compressed data segment or inter-segment markers.
|
||||
*/
|
||||
|
||||
METHODDEF(int)
|
||||
consume_markers (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
|
||||
int val;
|
||||
|
||||
if (inputctl->pub.eoi_reached) /* After hitting EOI, read no further */
|
||||
return JPEG_REACHED_EOI;
|
||||
|
||||
val = (*cinfo->marker->read_markers) (cinfo);
|
||||
|
||||
switch (val) {
|
||||
case JPEG_REACHED_SOS: /* Found SOS */
|
||||
if (inputctl->inheaders) { /* 1st SOS */
|
||||
initial_setup(cinfo);
|
||||
inputctl->inheaders = FALSE;
|
||||
/* Note: start_input_pass must be called by jdmaster.c
|
||||
* before any more input can be consumed. jdapimin.c is
|
||||
* responsible for enforcing this sequencing.
|
||||
*/
|
||||
} else { /* 2nd or later SOS marker */
|
||||
if (! inputctl->pub.has_multiple_scans)
|
||||
ERREXIT(cinfo, JERR_EOI_EXPECTED); /* Oops, I wasn't expecting this! */
|
||||
start_input_pass(cinfo);
|
||||
}
|
||||
break;
|
||||
case JPEG_REACHED_EOI: /* Found EOI */
|
||||
inputctl->pub.eoi_reached = TRUE;
|
||||
if (inputctl->inheaders) { /* Tables-only datastream, apparently */
|
||||
if (cinfo->marker->saw_SOF)
|
||||
ERREXIT(cinfo, JERR_SOF_NO_SOS);
|
||||
} else {
|
||||
/* Prevent infinite loop in coef ctlr's decompress_data routine
|
||||
* if user set output_scan_number larger than number of scans.
|
||||
*/
|
||||
if (cinfo->output_scan_number > cinfo->input_scan_number)
|
||||
cinfo->output_scan_number = cinfo->input_scan_number;
|
||||
}
|
||||
break;
|
||||
case JPEG_SUSPENDED:
|
||||
break;
|
||||
}
|
||||
|
||||
return val;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Reset state to begin a fresh datastream.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
reset_input_controller (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
|
||||
|
||||
inputctl->pub.consume_input = consume_markers;
|
||||
inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
|
||||
inputctl->pub.eoi_reached = FALSE;
|
||||
inputctl->inheaders = TRUE;
|
||||
/* Reset other modules */
|
||||
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
|
||||
(*cinfo->marker->reset_marker_reader) (cinfo);
|
||||
/* Reset progression state -- would be cleaner if entropy decoder did this */
|
||||
cinfo->coef_bits = NULL;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize the input controller module.
|
||||
* This is called only once, when the decompression object is created.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_input_controller (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_inputctl_ptr inputctl;
|
||||
|
||||
/* Create subobject in permanent pool */
|
||||
inputctl = (my_inputctl_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
||||
SIZEOF(my_input_controller));
|
||||
cinfo->inputctl = (struct jpeg_input_controller *) inputctl;
|
||||
/* Initialize method pointers */
|
||||
inputctl->pub.consume_input = consume_markers;
|
||||
inputctl->pub.reset_input_controller = reset_input_controller;
|
||||
inputctl->pub.start_input_pass = start_input_pass;
|
||||
inputctl->pub.finish_input_pass = finish_input_pass;
|
||||
/* Initialize state: can't use reset_input_controller since we don't
|
||||
* want to try to reset other modules yet.
|
||||
*/
|
||||
inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
|
||||
inputctl->pub.eoi_reached = FALSE;
|
||||
inputctl->inheaders = TRUE;
|
||||
}
|
|
@ -0,0 +1,512 @@
|
|||
/*
|
||||
* jdmainct.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the main buffer controller for decompression.
|
||||
* The main buffer lies between the JPEG decompressor proper and the
|
||||
* post-processor; it holds downsampled data in the JPEG colorspace.
|
||||
*
|
||||
* Note that this code is bypassed in raw-data mode, since the application
|
||||
* supplies the equivalent of the main buffer in that case.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* In the current system design, the main buffer need never be a full-image
|
||||
* buffer; any full-height buffers will be found inside the coefficient or
|
||||
* postprocessing controllers. Nonetheless, the main controller is not
|
||||
* trivial. Its responsibility is to provide context rows for upsampling/
|
||||
* rescaling, and doing this in an efficient fashion is a bit tricky.
|
||||
*
|
||||
* Postprocessor input data is counted in "row groups". A row group
|
||||
* is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
|
||||
* sample rows of each component. (We require DCT_scaled_size values to be
|
||||
* chosen such that these numbers are integers. In practice DCT_scaled_size
|
||||
* values will likely be powers of two, so we actually have the stronger
|
||||
* condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
|
||||
* Upsampling will typically produce max_v_samp_factor pixel rows from each
|
||||
* row group (times any additional scale factor that the upsampler is
|
||||
* applying).
|
||||
*
|
||||
* The coefficient controller will deliver data to us one iMCU row at a time;
|
||||
* each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or
|
||||
* exactly min_DCT_scaled_size row groups. (This amount of data corresponds
|
||||
* to one row of MCUs when the image is fully interleaved.) Note that the
|
||||
* number of sample rows varies across components, but the number of row
|
||||
* groups does not. Some garbage sample rows may be included in the last iMCU
|
||||
* row at the bottom of the image.
|
||||
*
|
||||
* Depending on the vertical scaling algorithm used, the upsampler may need
|
||||
* access to the sample row(s) above and below its current input row group.
|
||||
* The upsampler is required to set need_context_rows TRUE at global selection
|
||||
* time if so. When need_context_rows is FALSE, this controller can simply
|
||||
* obtain one iMCU row at a time from the coefficient controller and dole it
|
||||
* out as row groups to the postprocessor.
|
||||
*
|
||||
* When need_context_rows is TRUE, this controller guarantees that the buffer
|
||||
* passed to postprocessing contains at least one row group's worth of samples
|
||||
* above and below the row group(s) being processed. Note that the context
|
||||
* rows "above" the first passed row group appear at negative row offsets in
|
||||
* the passed buffer. At the top and bottom of the image, the required
|
||||
* context rows are manufactured by duplicating the first or last real sample
|
||||
* row; this avoids having special cases in the upsampling inner loops.
|
||||
*
|
||||
* The amount of context is fixed at one row group just because that's a
|
||||
* convenient number for this controller to work with. The existing
|
||||
* upsamplers really only need one sample row of context. An upsampler
|
||||
* supporting arbitrary output rescaling might wish for more than one row
|
||||
* group of context when shrinking the image; tough, we don't handle that.
|
||||
* (This is justified by the assumption that downsizing will be handled mostly
|
||||
* by adjusting the DCT_scaled_size values, so that the actual scale factor at
|
||||
* the upsample step needn't be much less than one.)
|
||||
*
|
||||
* To provide the desired context, we have to retain the last two row groups
|
||||
* of one iMCU row while reading in the next iMCU row. (The last row group
|
||||
* can't be processed until we have another row group for its below-context,
|
||||
* and so we have to save the next-to-last group too for its above-context.)
|
||||
* We could do this most simply by copying data around in our buffer, but
|
||||
* that'd be very slow. We can avoid copying any data by creating a rather
|
||||
* strange pointer structure. Here's how it works. We allocate a workspace
|
||||
* consisting of M+2 row groups (where M = min_DCT_scaled_size is the number
|
||||
* of row groups per iMCU row). We create two sets of redundant pointers to
|
||||
* the workspace. Labeling the physical row groups 0 to M+1, the synthesized
|
||||
* pointer lists look like this:
|
||||
* M+1 M-1
|
||||
* master pointer --> 0 master pointer --> 0
|
||||
* 1 1
|
||||
* ... ...
|
||||
* M-3 M-3
|
||||
* M-2 M
|
||||
* M-1 M+1
|
||||
* M M-2
|
||||
* M+1 M-1
|
||||
* 0 0
|
||||
* We read alternate iMCU rows using each master pointer; thus the last two
|
||||
* row groups of the previous iMCU row remain un-overwritten in the workspace.
|
||||
* The pointer lists are set up so that the required context rows appear to
|
||||
* be adjacent to the proper places when we pass the pointer lists to the
|
||||
* upsampler.
|
||||
*
|
||||
* The above pictures describe the normal state of the pointer lists.
|
||||
* At top and bottom of the image, we diddle the pointer lists to duplicate
|
||||
* the first or last sample row as necessary (this is cheaper than copying
|
||||
* sample rows around).
|
||||
*
|
||||
* This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1. In that
|
||||
* situation each iMCU row provides only one row group so the buffering logic
|
||||
* must be different (eg, we must read two iMCU rows before we can emit the
|
||||
* first row group). For now, we simply do not support providing context
|
||||
* rows when min_DCT_scaled_size is 1. That combination seems unlikely to
|
||||
* be worth providing --- if someone wants a 1/8th-size preview, they probably
|
||||
* want it quick and dirty, so a context-free upsampler is sufficient.
|
||||
*/
|
||||
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_d_main_controller pub; /* public fields */
|
||||
|
||||
/* Pointer to allocated workspace (M or M+2 row groups). */
|
||||
JSAMPARRAY buffer[MAX_COMPONENTS];
|
||||
|
||||
boolean buffer_full; /* Have we gotten an iMCU row from decoder? */
|
||||
JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */
|
||||
|
||||
/* Remaining fields are only used in the context case. */
|
||||
|
||||
/* These are the master pointers to the funny-order pointer lists. */
|
||||
JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */
|
||||
|
||||
int whichptr; /* indicates which pointer set is now in use */
|
||||
int context_state; /* process_data state machine status */
|
||||
JDIMENSION rowgroups_avail; /* row groups available to postprocessor */
|
||||
JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */
|
||||
} my_main_controller;
|
||||
|
||||
typedef my_main_controller * my_main_ptr;
|
||||
|
||||
/* context_state values: */
|
||||
#define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */
|
||||
#define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */
|
||||
#define CTX_POSTPONED_ROW 2 /* feeding postponed row group */
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF(void) process_data_simple_main
|
||||
JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
|
||||
METHODDEF(void) process_data_context_main
|
||||
JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
METHODDEF(void) process_data_crank_post
|
||||
JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
|
||||
#endif
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
alloc_funny_pointers (j_decompress_ptr cinfo)
|
||||
/* Allocate space for the funny pointer lists.
|
||||
* This is done only once, not once per pass.
|
||||
*/
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
int ci, rgroup;
|
||||
int M = cinfo->min_DCT_v_scaled_size;
|
||||
jpeg_component_info *compptr;
|
||||
JSAMPARRAY xbuf;
|
||||
|
||||
/* Get top-level space for component array pointers.
|
||||
* We alloc both arrays with one call to save a few cycles.
|
||||
*/
|
||||
main->xbuffer[0] = (JSAMPIMAGE)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
cinfo->num_components * 2 * SIZEOF(JSAMPARRAY));
|
||||
main->xbuffer[1] = main->xbuffer[0] + cinfo->num_components;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
|
||||
cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
|
||||
/* Get space for pointer lists --- M+4 row groups in each list.
|
||||
* We alloc both pointer lists with one call to save a few cycles.
|
||||
*/
|
||||
xbuf = (JSAMPARRAY)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW));
|
||||
xbuf += rgroup; /* want one row group at negative offsets */
|
||||
main->xbuffer[0][ci] = xbuf;
|
||||
xbuf += rgroup * (M + 4);
|
||||
main->xbuffer[1][ci] = xbuf;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
make_funny_pointers (j_decompress_ptr cinfo)
|
||||
/* Create the funny pointer lists discussed in the comments above.
|
||||
* The actual workspace is already allocated (in main->buffer),
|
||||
* and the space for the pointer lists is allocated too.
|
||||
* This routine just fills in the curiously ordered lists.
|
||||
* This will be repeated at the beginning of each pass.
|
||||
*/
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
int ci, i, rgroup;
|
||||
int M = cinfo->min_DCT_v_scaled_size;
|
||||
jpeg_component_info *compptr;
|
||||
JSAMPARRAY buf, xbuf0, xbuf1;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
|
||||
cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
|
||||
xbuf0 = main->xbuffer[0][ci];
|
||||
xbuf1 = main->xbuffer[1][ci];
|
||||
/* First copy the workspace pointers as-is */
|
||||
buf = main->buffer[ci];
|
||||
for (i = 0; i < rgroup * (M + 2); i++) {
|
||||
xbuf0[i] = xbuf1[i] = buf[i];
|
||||
}
|
||||
/* In the second list, put the last four row groups in swapped order */
|
||||
for (i = 0; i < rgroup * 2; i++) {
|
||||
xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i];
|
||||
xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i];
|
||||
}
|
||||
/* The wraparound pointers at top and bottom will be filled later
|
||||
* (see set_wraparound_pointers, below). Initially we want the "above"
|
||||
* pointers to duplicate the first actual data line. This only needs
|
||||
* to happen in xbuffer[0].
|
||||
*/
|
||||
for (i = 0; i < rgroup; i++) {
|
||||
xbuf0[i - rgroup] = xbuf0[0];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
set_wraparound_pointers (j_decompress_ptr cinfo)
|
||||
/* Set up the "wraparound" pointers at top and bottom of the pointer lists.
|
||||
* This changes the pointer list state from top-of-image to the normal state.
|
||||
*/
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
int ci, i, rgroup;
|
||||
int M = cinfo->min_DCT_v_scaled_size;
|
||||
jpeg_component_info *compptr;
|
||||
JSAMPARRAY xbuf0, xbuf1;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
|
||||
cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
|
||||
xbuf0 = main->xbuffer[0][ci];
|
||||
xbuf1 = main->xbuffer[1][ci];
|
||||
for (i = 0; i < rgroup; i++) {
|
||||
xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i];
|
||||
xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i];
|
||||
xbuf0[rgroup*(M+2) + i] = xbuf0[i];
|
||||
xbuf1[rgroup*(M+2) + i] = xbuf1[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
set_bottom_pointers (j_decompress_ptr cinfo)
|
||||
/* Change the pointer lists to duplicate the last sample row at the bottom
|
||||
* of the image. whichptr indicates which xbuffer holds the final iMCU row.
|
||||
* Also sets rowgroups_avail to indicate number of nondummy row groups in row.
|
||||
*/
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
int ci, i, rgroup, iMCUheight, rows_left;
|
||||
jpeg_component_info *compptr;
|
||||
JSAMPARRAY xbuf;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Count sample rows in one iMCU row and in one row group */
|
||||
iMCUheight = compptr->v_samp_factor * compptr->DCT_v_scaled_size;
|
||||
rgroup = iMCUheight / cinfo->min_DCT_v_scaled_size;
|
||||
/* Count nondummy sample rows remaining for this component */
|
||||
rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight);
|
||||
if (rows_left == 0) rows_left = iMCUheight;
|
||||
/* Count nondummy row groups. Should get same answer for each component,
|
||||
* so we need only do it once.
|
||||
*/
|
||||
if (ci == 0) {
|
||||
main->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
|
||||
}
|
||||
/* Duplicate the last real sample row rgroup*2 times; this pads out the
|
||||
* last partial rowgroup and ensures at least one full rowgroup of context.
|
||||
*/
|
||||
xbuf = main->xbuffer[main->whichptr][ci];
|
||||
for (i = 0; i < rgroup * 2; i++) {
|
||||
xbuf[rows_left + i] = xbuf[rows_left-1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
|
||||
switch (pass_mode) {
|
||||
case JBUF_PASS_THRU:
|
||||
if (cinfo->upsample->need_context_rows) {
|
||||
main->pub.process_data = process_data_context_main;
|
||||
make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
|
||||
main->whichptr = 0; /* Read first iMCU row into xbuffer[0] */
|
||||
main->context_state = CTX_PREPARE_FOR_IMCU;
|
||||
main->iMCU_row_ctr = 0;
|
||||
} else {
|
||||
/* Simple case with no context needed */
|
||||
main->pub.process_data = process_data_simple_main;
|
||||
}
|
||||
main->buffer_full = FALSE; /* Mark buffer empty */
|
||||
main->rowgroup_ctr = 0;
|
||||
break;
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
case JBUF_CRANK_DEST:
|
||||
/* For last pass of 2-pass quantization, just crank the postprocessor */
|
||||
main->pub.process_data = process_data_crank_post;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* This handles the simple case where no context is required.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
process_data_simple_main (j_decompress_ptr cinfo,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
JDIMENSION rowgroups_avail;
|
||||
|
||||
/* Read input data if we haven't filled the main buffer yet */
|
||||
if (! main->buffer_full) {
|
||||
if (! (*cinfo->coef->decompress_data) (cinfo, main->buffer))
|
||||
return; /* suspension forced, can do nothing more */
|
||||
main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
|
||||
}
|
||||
|
||||
/* There are always min_DCT_scaled_size row groups in an iMCU row. */
|
||||
rowgroups_avail = (JDIMENSION) cinfo->min_DCT_v_scaled_size;
|
||||
/* Note: at the bottom of the image, we may pass extra garbage row groups
|
||||
* to the postprocessor. The postprocessor has to check for bottom
|
||||
* of image anyway (at row resolution), so no point in us doing it too.
|
||||
*/
|
||||
|
||||
/* Feed the postprocessor */
|
||||
(*cinfo->post->post_process_data) (cinfo, main->buffer,
|
||||
&main->rowgroup_ctr, rowgroups_avail,
|
||||
output_buf, out_row_ctr, out_rows_avail);
|
||||
|
||||
/* Has postprocessor consumed all the data yet? If so, mark buffer empty */
|
||||
if (main->rowgroup_ctr >= rowgroups_avail) {
|
||||
main->buffer_full = FALSE;
|
||||
main->rowgroup_ctr = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* This handles the case where context rows must be provided.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
process_data_context_main (j_decompress_ptr cinfo,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
|
||||
/* Read input data if we haven't filled the main buffer yet */
|
||||
if (! main->buffer_full) {
|
||||
if (! (*cinfo->coef->decompress_data) (cinfo,
|
||||
main->xbuffer[main->whichptr]))
|
||||
return; /* suspension forced, can do nothing more */
|
||||
main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
|
||||
main->iMCU_row_ctr++; /* count rows received */
|
||||
}
|
||||
|
||||
/* Postprocessor typically will not swallow all the input data it is handed
|
||||
* in one call (due to filling the output buffer first). Must be prepared
|
||||
* to exit and restart. This switch lets us keep track of how far we got.
|
||||
* Note that each case falls through to the next on successful completion.
|
||||
*/
|
||||
switch (main->context_state) {
|
||||
case CTX_POSTPONED_ROW:
|
||||
/* Call postprocessor using previously set pointers for postponed row */
|
||||
(*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
|
||||
&main->rowgroup_ctr, main->rowgroups_avail,
|
||||
output_buf, out_row_ctr, out_rows_avail);
|
||||
if (main->rowgroup_ctr < main->rowgroups_avail)
|
||||
return; /* Need to suspend */
|
||||
main->context_state = CTX_PREPARE_FOR_IMCU;
|
||||
if (*out_row_ctr >= out_rows_avail)
|
||||
return; /* Postprocessor exactly filled output buf */
|
||||
/*FALLTHROUGH*/
|
||||
case CTX_PREPARE_FOR_IMCU:
|
||||
/* Prepare to process first M-1 row groups of this iMCU row */
|
||||
main->rowgroup_ctr = 0;
|
||||
main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size - 1);
|
||||
/* Check for bottom of image: if so, tweak pointers to "duplicate"
|
||||
* the last sample row, and adjust rowgroups_avail to ignore padding rows.
|
||||
*/
|
||||
if (main->iMCU_row_ctr == cinfo->total_iMCU_rows)
|
||||
set_bottom_pointers(cinfo);
|
||||
main->context_state = CTX_PROCESS_IMCU;
|
||||
/*FALLTHROUGH*/
|
||||
case CTX_PROCESS_IMCU:
|
||||
/* Call postprocessor using previously set pointers */
|
||||
(*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
|
||||
&main->rowgroup_ctr, main->rowgroups_avail,
|
||||
output_buf, out_row_ctr, out_rows_avail);
|
||||
if (main->rowgroup_ctr < main->rowgroups_avail)
|
||||
return; /* Need to suspend */
|
||||
/* After the first iMCU, change wraparound pointers to normal state */
|
||||
if (main->iMCU_row_ctr == 1)
|
||||
set_wraparound_pointers(cinfo);
|
||||
/* Prepare to load new iMCU row using other xbuffer list */
|
||||
main->whichptr ^= 1; /* 0=>1 or 1=>0 */
|
||||
main->buffer_full = FALSE;
|
||||
/* Still need to process last row group of this iMCU row, */
|
||||
/* which is saved at index M+1 of the other xbuffer */
|
||||
main->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 1);
|
||||
main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 2);
|
||||
main->context_state = CTX_POSTPONED_ROW;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* Final pass of two-pass quantization: just call the postprocessor.
|
||||
* Source data will be the postprocessor controller's internal buffer.
|
||||
*/
|
||||
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
|
||||
METHODDEF(void)
|
||||
process_data_crank_post (j_decompress_ptr cinfo,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
(*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL,
|
||||
(JDIMENSION *) NULL, (JDIMENSION) 0,
|
||||
output_buf, out_row_ctr, out_rows_avail);
|
||||
}
|
||||
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize main buffer controller.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_main_ptr main;
|
||||
int ci, rgroup, ngroups;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
main = (my_main_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_main_controller));
|
||||
cinfo->main = (struct jpeg_d_main_controller *) main;
|
||||
main->pub.start_pass = start_pass_main;
|
||||
|
||||
if (need_full_buffer) /* shouldn't happen */
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
|
||||
/* Allocate the workspace.
|
||||
* ngroups is the number of row groups we need.
|
||||
*/
|
||||
if (cinfo->upsample->need_context_rows) {
|
||||
if (cinfo->min_DCT_v_scaled_size < 2) /* unsupported, see comments above */
|
||||
ERREXIT(cinfo, JERR_NOTIMPL);
|
||||
alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */
|
||||
ngroups = cinfo->min_DCT_v_scaled_size + 2;
|
||||
} else {
|
||||
ngroups = cinfo->min_DCT_v_scaled_size;
|
||||
}
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
|
||||
cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
|
||||
main->buffer[ci] = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
compptr->width_in_blocks * compptr->DCT_h_scaled_size,
|
||||
(JDIMENSION) (rgroup * ngroups));
|
||||
}
|
||||
}
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,663 @@
|
|||
/*
|
||||
* jdmaster.c
|
||||
*
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* Modified 2002-2008 by Guido Vollbeding.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains master control logic for the JPEG decompressor.
|
||||
* These routines are concerned with selecting the modules to be executed
|
||||
* and with determining the number of passes and the work to be done in each
|
||||
* pass.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Private state */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_decomp_master pub; /* public fields */
|
||||
|
||||
int pass_number; /* # of passes completed */
|
||||
|
||||
boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */
|
||||
|
||||
/* Saved references to initialized quantizer modules,
|
||||
* in case we need to switch modes.
|
||||
*/
|
||||
struct jpeg_color_quantizer * quantizer_1pass;
|
||||
struct jpeg_color_quantizer * quantizer_2pass;
|
||||
} my_decomp_master;
|
||||
|
||||
typedef my_decomp_master * my_master_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Determine whether merged upsample/color conversion should be used.
|
||||
* CRUCIAL: this must match the actual capabilities of jdmerge.c!
|
||||
*/
|
||||
|
||||
LOCAL(boolean)
|
||||
use_merged_upsample (j_decompress_ptr cinfo)
|
||||
{
|
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED
|
||||
/* Merging is the equivalent of plain box-filter upsampling */
|
||||
if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling)
|
||||
return FALSE;
|
||||
/* jdmerge.c only supports YCC=>RGB color conversion */
|
||||
if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 ||
|
||||
cinfo->out_color_space != JCS_RGB ||
|
||||
cinfo->out_color_components != RGB_PIXELSIZE)
|
||||
return FALSE;
|
||||
/* and it only handles 2h1v or 2h2v sampling ratios */
|
||||
if (cinfo->comp_info[0].h_samp_factor != 2 ||
|
||||
cinfo->comp_info[1].h_samp_factor != 1 ||
|
||||
cinfo->comp_info[2].h_samp_factor != 1 ||
|
||||
cinfo->comp_info[0].v_samp_factor > 2 ||
|
||||
cinfo->comp_info[1].v_samp_factor != 1 ||
|
||||
cinfo->comp_info[2].v_samp_factor != 1)
|
||||
return FALSE;
|
||||
/* furthermore, it doesn't work if we've scaled the IDCTs differently */
|
||||
if (cinfo->comp_info[0].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size ||
|
||||
cinfo->comp_info[1].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size ||
|
||||
cinfo->comp_info[2].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size ||
|
||||
cinfo->comp_info[0].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size ||
|
||||
cinfo->comp_info[1].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size ||
|
||||
cinfo->comp_info[2].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size)
|
||||
return FALSE;
|
||||
/* ??? also need to test for upsample-time rescaling, when & if supported */
|
||||
return TRUE; /* by golly, it'll work... */
|
||||
#else
|
||||
return FALSE;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Compute output image dimensions and related values.
|
||||
* NOTE: this is exported for possible use by application.
|
||||
* Hence it mustn't do anything that can't be done twice.
|
||||
* Also note that it may be called before the master module is initialized!
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_calc_output_dimensions (j_decompress_ptr cinfo)
|
||||
/* Do computations that are needed before master selection phase */
|
||||
{
|
||||
#ifdef IDCT_SCALING_SUPPORTED
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
#endif
|
||||
|
||||
/* Prevent application from calling me at wrong times */
|
||||
if (cinfo->global_state != DSTATE_READY)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
#ifdef IDCT_SCALING_SUPPORTED
|
||||
|
||||
/* Compute actual output image dimensions and DCT scaling choices. */
|
||||
if (cinfo->scale_num * 8 <= cinfo->scale_denom) {
|
||||
/* Provide 1/8 scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width, 8L);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height, 8L);
|
||||
cinfo->min_DCT_h_scaled_size = 1;
|
||||
cinfo->min_DCT_v_scaled_size = 1;
|
||||
} else if (cinfo->scale_num * 4 <= cinfo->scale_denom) {
|
||||
/* Provide 1/4 scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width, 4L);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height, 4L);
|
||||
cinfo->min_DCT_h_scaled_size = 2;
|
||||
cinfo->min_DCT_v_scaled_size = 2;
|
||||
} else if (cinfo->scale_num * 8 <= cinfo->scale_denom * 3) {
|
||||
/* Provide 3/8 scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 3L, 8L);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 3L, 8L);
|
||||
cinfo->min_DCT_h_scaled_size = 3;
|
||||
cinfo->min_DCT_v_scaled_size = 3;
|
||||
} else if (cinfo->scale_num * 2 <= cinfo->scale_denom) {
|
||||
/* Provide 1/2 scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width, 2L);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height, 2L);
|
||||
cinfo->min_DCT_h_scaled_size = 4;
|
||||
cinfo->min_DCT_v_scaled_size = 4;
|
||||
} else if (cinfo->scale_num * 8 <= cinfo->scale_denom * 5) {
|
||||
/* Provide 5/8 scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 5L, 8L);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 5L, 8L);
|
||||
cinfo->min_DCT_h_scaled_size = 5;
|
||||
cinfo->min_DCT_v_scaled_size = 5;
|
||||
} else if (cinfo->scale_num * 4 <= cinfo->scale_denom * 3) {
|
||||
/* Provide 3/4 scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 3L, 4L);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 3L, 4L);
|
||||
cinfo->min_DCT_h_scaled_size = 6;
|
||||
cinfo->min_DCT_v_scaled_size = 6;
|
||||
} else if (cinfo->scale_num * 8 <= cinfo->scale_denom * 7) {
|
||||
/* Provide 7/8 scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 7L, 8L);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 7L, 8L);
|
||||
cinfo->min_DCT_h_scaled_size = 7;
|
||||
cinfo->min_DCT_v_scaled_size = 7;
|
||||
} else if (cinfo->scale_num <= cinfo->scale_denom) {
|
||||
/* Provide 1/1 scaling */
|
||||
cinfo->output_width = cinfo->image_width;
|
||||
cinfo->output_height = cinfo->image_height;
|
||||
cinfo->min_DCT_h_scaled_size = DCTSIZE;
|
||||
cinfo->min_DCT_v_scaled_size = DCTSIZE;
|
||||
} else if (cinfo->scale_num * 8 <= cinfo->scale_denom * 9) {
|
||||
/* Provide 9/8 scaling */
|
||||
cinfo->output_width = cinfo->image_width + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width, 8L);
|
||||
cinfo->output_height = cinfo->image_height + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height, 8L);
|
||||
cinfo->min_DCT_h_scaled_size = 9;
|
||||
cinfo->min_DCT_v_scaled_size = 9;
|
||||
} else if (cinfo->scale_num * 4 <= cinfo->scale_denom * 5) {
|
||||
/* Provide 5/4 scaling */
|
||||
cinfo->output_width = cinfo->image_width + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width, 4L);
|
||||
cinfo->output_height = cinfo->image_height + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height, 4L);
|
||||
cinfo->min_DCT_h_scaled_size = 10;
|
||||
cinfo->min_DCT_v_scaled_size = 10;
|
||||
} else if (cinfo->scale_num * 8 <= cinfo->scale_denom * 11) {
|
||||
/* Provide 11/8 scaling */
|
||||
cinfo->output_width = cinfo->image_width + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 3L, 8L);
|
||||
cinfo->output_height = cinfo->image_height + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 3L, 8L);
|
||||
cinfo->min_DCT_h_scaled_size = 11;
|
||||
cinfo->min_DCT_v_scaled_size = 11;
|
||||
} else if (cinfo->scale_num * 2 <= cinfo->scale_denom * 3) {
|
||||
/* Provide 3/2 scaling */
|
||||
cinfo->output_width = cinfo->image_width + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width, 2L);
|
||||
cinfo->output_height = cinfo->image_height + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height, 2L);
|
||||
cinfo->min_DCT_h_scaled_size = 12;
|
||||
cinfo->min_DCT_v_scaled_size = 12;
|
||||
} else if (cinfo->scale_num * 8 <= cinfo->scale_denom * 13) {
|
||||
/* Provide 13/8 scaling */
|
||||
cinfo->output_width = cinfo->image_width + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 5L, 8L);
|
||||
cinfo->output_height = cinfo->image_height + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 5L, 8L);
|
||||
cinfo->min_DCT_h_scaled_size = 13;
|
||||
cinfo->min_DCT_v_scaled_size = 13;
|
||||
} else if (cinfo->scale_num * 4 <= cinfo->scale_denom * 7) {
|
||||
/* Provide 7/4 scaling */
|
||||
cinfo->output_width = cinfo->image_width + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 3L, 4L);
|
||||
cinfo->output_height = cinfo->image_height + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 3L, 4L);
|
||||
cinfo->min_DCT_h_scaled_size = 14;
|
||||
cinfo->min_DCT_v_scaled_size = 14;
|
||||
} else if (cinfo->scale_num * 8 <= cinfo->scale_denom * 15) {
|
||||
/* Provide 15/8 scaling */
|
||||
cinfo->output_width = cinfo->image_width + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 7L, 8L);
|
||||
cinfo->output_height = cinfo->image_height + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 7L, 8L);
|
||||
cinfo->min_DCT_h_scaled_size = 15;
|
||||
cinfo->min_DCT_v_scaled_size = 15;
|
||||
} else {
|
||||
/* Provide 2/1 scaling */
|
||||
cinfo->output_width = cinfo->image_width << 1;
|
||||
cinfo->output_height = cinfo->image_height << 1;
|
||||
cinfo->min_DCT_h_scaled_size = 16;
|
||||
cinfo->min_DCT_v_scaled_size = 16;
|
||||
}
|
||||
/* In selecting the actual DCT scaling for each component, we try to
|
||||
* scale up the chroma components via IDCT scaling rather than upsampling.
|
||||
* This saves time if the upsampler gets to use 1:1 scaling.
|
||||
* Note this code adapts subsampling ratios which are powers of 2.
|
||||
*/
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
int ssize = 1;
|
||||
while (cinfo->min_DCT_h_scaled_size * ssize <=
|
||||
(cinfo->do_fancy_upsampling ? DCTSIZE : DCTSIZE / 2) &&
|
||||
(cinfo->max_h_samp_factor % (compptr->h_samp_factor * ssize * 2)) == 0) {
|
||||
ssize = ssize * 2;
|
||||
}
|
||||
compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size * ssize;
|
||||
ssize = 1;
|
||||
while (cinfo->min_DCT_v_scaled_size * ssize <=
|
||||
(cinfo->do_fancy_upsampling ? DCTSIZE : DCTSIZE / 2) &&
|
||||
(cinfo->max_v_samp_factor % (compptr->v_samp_factor * ssize * 2)) == 0) {
|
||||
ssize = ssize * 2;
|
||||
}
|
||||
compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size * ssize;
|
||||
|
||||
/* We don't support IDCT ratios larger than 2. */
|
||||
if (compptr->DCT_h_scaled_size > compptr->DCT_v_scaled_size * 2)
|
||||
compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size * 2;
|
||||
else if (compptr->DCT_v_scaled_size > compptr->DCT_h_scaled_size * 2)
|
||||
compptr->DCT_v_scaled_size = compptr->DCT_h_scaled_size * 2;
|
||||
}
|
||||
|
||||
/* Recompute downsampled dimensions of components;
|
||||
* application needs to know these if using raw downsampled data.
|
||||
*/
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Size in samples, after IDCT scaling */
|
||||
compptr->downsampled_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width *
|
||||
(long) (compptr->h_samp_factor * compptr->DCT_h_scaled_size),
|
||||
(long) (cinfo->max_h_samp_factor * DCTSIZE));
|
||||
compptr->downsampled_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height *
|
||||
(long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size),
|
||||
(long) (cinfo->max_v_samp_factor * DCTSIZE));
|
||||
}
|
||||
|
||||
#else /* !IDCT_SCALING_SUPPORTED */
|
||||
|
||||
/* Hardwire it to "no scaling" */
|
||||
cinfo->output_width = cinfo->image_width;
|
||||
cinfo->output_height = cinfo->image_height;
|
||||
/* jdinput.c has already initialized DCT_scaled_size to DCTSIZE,
|
||||
* and has computed unscaled downsampled_width and downsampled_height.
|
||||
*/
|
||||
|
||||
#endif /* IDCT_SCALING_SUPPORTED */
|
||||
|
||||
/* Report number of components in selected colorspace. */
|
||||
/* Probably this should be in the color conversion module... */
|
||||
switch (cinfo->out_color_space) {
|
||||
case JCS_GRAYSCALE:
|
||||
cinfo->out_color_components = 1;
|
||||
break;
|
||||
case JCS_RGB:
|
||||
#if RGB_PIXELSIZE != 3
|
||||
cinfo->out_color_components = RGB_PIXELSIZE;
|
||||
break;
|
||||
#endif /* else share code with YCbCr */
|
||||
case JCS_YCbCr:
|
||||
cinfo->out_color_components = 3;
|
||||
break;
|
||||
case JCS_CMYK:
|
||||
case JCS_YCCK:
|
||||
cinfo->out_color_components = 4;
|
||||
break;
|
||||
default: /* else must be same colorspace as in file */
|
||||
cinfo->out_color_components = cinfo->num_components;
|
||||
break;
|
||||
}
|
||||
cinfo->output_components = (cinfo->quantize_colors ? 1 :
|
||||
cinfo->out_color_components);
|
||||
|
||||
/* See if upsampler will want to emit more than one row at a time */
|
||||
if (use_merged_upsample(cinfo))
|
||||
cinfo->rec_outbuf_height = cinfo->max_v_samp_factor;
|
||||
else
|
||||
cinfo->rec_outbuf_height = 1;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Several decompression processes need to range-limit values to the range
|
||||
* 0..MAXJSAMPLE; the input value may fall somewhat outside this range
|
||||
* due to noise introduced by quantization, roundoff error, etc. These
|
||||
* processes are inner loops and need to be as fast as possible. On most
|
||||
* machines, particularly CPUs with pipelines or instruction prefetch,
|
||||
* a (subscript-check-less) C table lookup
|
||||
* x = sample_range_limit[x];
|
||||
* is faster than explicit tests
|
||||
* if (x < 0) x = 0;
|
||||
* else if (x > MAXJSAMPLE) x = MAXJSAMPLE;
|
||||
* These processes all use a common table prepared by the routine below.
|
||||
*
|
||||
* For most steps we can mathematically guarantee that the initial value
|
||||
* of x is within MAXJSAMPLE+1 of the legal range, so a table running from
|
||||
* -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient. But for the initial
|
||||
* limiting step (just after the IDCT), a wildly out-of-range value is
|
||||
* possible if the input data is corrupt. To avoid any chance of indexing
|
||||
* off the end of memory and getting a bad-pointer trap, we perform the
|
||||
* post-IDCT limiting thus:
|
||||
* x = range_limit[x & MASK];
|
||||
* where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit
|
||||
* samples. Under normal circumstances this is more than enough range and
|
||||
* a correct output will be generated; with bogus input data the mask will
|
||||
* cause wraparound, and we will safely generate a bogus-but-in-range output.
|
||||
* For the post-IDCT step, we want to convert the data from signed to unsigned
|
||||
* representation by adding CENTERJSAMPLE at the same time that we limit it.
|
||||
* So the post-IDCT limiting table ends up looking like this:
|
||||
* CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE,
|
||||
* MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
|
||||
* 0 (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
|
||||
* 0,1,...,CENTERJSAMPLE-1
|
||||
* Negative inputs select values from the upper half of the table after
|
||||
* masking.
|
||||
*
|
||||
* We can save some space by overlapping the start of the post-IDCT table
|
||||
* with the simpler range limiting table. The post-IDCT table begins at
|
||||
* sample_range_limit + CENTERJSAMPLE.
|
||||
*
|
||||
* Note that the table is allocated in near data space on PCs; it's small
|
||||
* enough and used often enough to justify this.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
prepare_range_limit_table (j_decompress_ptr cinfo)
|
||||
/* Allocate and fill in the sample_range_limit table */
|
||||
{
|
||||
JSAMPLE * table;
|
||||
int i;
|
||||
|
||||
table = (JSAMPLE *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * SIZEOF(JSAMPLE));
|
||||
table += (MAXJSAMPLE+1); /* allow negative subscripts of simple table */
|
||||
cinfo->sample_range_limit = table;
|
||||
/* First segment of "simple" table: limit[x] = 0 for x < 0 */
|
||||
MEMZERO(table - (MAXJSAMPLE+1), (MAXJSAMPLE+1) * SIZEOF(JSAMPLE));
|
||||
/* Main part of "simple" table: limit[x] = x */
|
||||
for (i = 0; i <= MAXJSAMPLE; i++)
|
||||
table[i] = (JSAMPLE) i;
|
||||
table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */
|
||||
/* End of simple table, rest of first half of post-IDCT table */
|
||||
for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++)
|
||||
table[i] = MAXJSAMPLE;
|
||||
/* Second half of post-IDCT table */
|
||||
MEMZERO(table + (2 * (MAXJSAMPLE+1)),
|
||||
(2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * SIZEOF(JSAMPLE));
|
||||
MEMCOPY(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE),
|
||||
cinfo->sample_range_limit, CENTERJSAMPLE * SIZEOF(JSAMPLE));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Master selection of decompression modules.
|
||||
* This is done once at jpeg_start_decompress time. We determine
|
||||
* which modules will be used and give them appropriate initialization calls.
|
||||
* We also initialize the decompressor input side to begin consuming data.
|
||||
*
|
||||
* Since jpeg_read_header has finished, we know what is in the SOF
|
||||
* and (first) SOS markers. We also have all the application parameter
|
||||
* settings.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
master_selection (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||
boolean use_c_buffer;
|
||||
long samplesperrow;
|
||||
JDIMENSION jd_samplesperrow;
|
||||
|
||||
/* Initialize dimensions and other stuff */
|
||||
jpeg_calc_output_dimensions(cinfo);
|
||||
prepare_range_limit_table(cinfo);
|
||||
|
||||
/* Width of an output scanline must be representable as JDIMENSION. */
|
||||
samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components;
|
||||
jd_samplesperrow = (JDIMENSION) samplesperrow;
|
||||
if ((long) jd_samplesperrow != samplesperrow)
|
||||
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
|
||||
|
||||
/* Initialize my private state */
|
||||
master->pass_number = 0;
|
||||
master->using_merged_upsample = use_merged_upsample(cinfo);
|
||||
|
||||
/* Color quantizer selection */
|
||||
master->quantizer_1pass = NULL;
|
||||
master->quantizer_2pass = NULL;
|
||||
/* No mode changes if not using buffered-image mode. */
|
||||
if (! cinfo->quantize_colors || ! cinfo->buffered_image) {
|
||||
cinfo->enable_1pass_quant = FALSE;
|
||||
cinfo->enable_external_quant = FALSE;
|
||||
cinfo->enable_2pass_quant = FALSE;
|
||||
}
|
||||
if (cinfo->quantize_colors) {
|
||||
if (cinfo->raw_data_out)
|
||||
ERREXIT(cinfo, JERR_NOTIMPL);
|
||||
/* 2-pass quantizer only works in 3-component color space. */
|
||||
if (cinfo->out_color_components != 3) {
|
||||
cinfo->enable_1pass_quant = TRUE;
|
||||
cinfo->enable_external_quant = FALSE;
|
||||
cinfo->enable_2pass_quant = FALSE;
|
||||
cinfo->colormap = NULL;
|
||||
} else if (cinfo->colormap != NULL) {
|
||||
cinfo->enable_external_quant = TRUE;
|
||||
} else if (cinfo->two_pass_quantize) {
|
||||
cinfo->enable_2pass_quant = TRUE;
|
||||
} else {
|
||||
cinfo->enable_1pass_quant = TRUE;
|
||||
}
|
||||
|
||||
if (cinfo->enable_1pass_quant) {
|
||||
#ifdef QUANT_1PASS_SUPPORTED
|
||||
jinit_1pass_quantizer(cinfo);
|
||||
master->quantizer_1pass = cinfo->cquantize;
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
}
|
||||
|
||||
/* We use the 2-pass code to map to external colormaps. */
|
||||
if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) {
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
jinit_2pass_quantizer(cinfo);
|
||||
master->quantizer_2pass = cinfo->cquantize;
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
}
|
||||
/* If both quantizers are initialized, the 2-pass one is left active;
|
||||
* this is necessary for starting with quantization to an external map.
|
||||
*/
|
||||
}
|
||||
|
||||
/* Post-processing: in particular, color conversion first */
|
||||
if (! cinfo->raw_data_out) {
|
||||
if (master->using_merged_upsample) {
|
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED
|
||||
jinit_merged_upsampler(cinfo); /* does color conversion too */
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else {
|
||||
jinit_color_deconverter(cinfo);
|
||||
jinit_upsampler(cinfo);
|
||||
}
|
||||
jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant);
|
||||
}
|
||||
/* Inverse DCT */
|
||||
jinit_inverse_dct(cinfo);
|
||||
/* Entropy decoding: either Huffman or arithmetic coding. */
|
||||
if (cinfo->arith_code) {
|
||||
jinit_arith_decoder(cinfo);
|
||||
} else {
|
||||
jinit_huff_decoder(cinfo);
|
||||
}
|
||||
|
||||
/* Initialize principal buffer controllers. */
|
||||
use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image;
|
||||
jinit_d_coef_controller(cinfo, use_c_buffer);
|
||||
|
||||
if (! cinfo->raw_data_out)
|
||||
jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */);
|
||||
|
||||
/* We can now tell the memory manager to allocate virtual arrays. */
|
||||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
|
||||
|
||||
/* Initialize input side of decompressor to consume first scan. */
|
||||
(*cinfo->inputctl->start_input_pass) (cinfo);
|
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
/* If jpeg_start_decompress will read the whole file, initialize
|
||||
* progress monitoring appropriately. The input step is counted
|
||||
* as one pass.
|
||||
*/
|
||||
if (cinfo->progress != NULL && ! cinfo->buffered_image &&
|
||||
cinfo->inputctl->has_multiple_scans) {
|
||||
int nscans;
|
||||
/* Estimate number of scans to set pass_limit. */
|
||||
if (cinfo->progressive_mode) {
|
||||
/* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
|
||||
nscans = 2 + 3 * cinfo->num_components;
|
||||
} else {
|
||||
/* For a nonprogressive multiscan file, estimate 1 scan per component. */
|
||||
nscans = cinfo->num_components;
|
||||
}
|
||||
cinfo->progress->pass_counter = 0L;
|
||||
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
|
||||
cinfo->progress->completed_passes = 0;
|
||||
cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2);
|
||||
/* Count the input pass as done */
|
||||
master->pass_number++;
|
||||
}
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Per-pass setup.
|
||||
* This is called at the beginning of each output pass. We determine which
|
||||
* modules will be active during this pass and give them appropriate
|
||||
* start_pass calls. We also set is_dummy_pass to indicate whether this
|
||||
* is a "real" output pass or a dummy pass for color quantization.
|
||||
* (In the latter case, jdapistd.c will crank the pass to completion.)
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
prepare_for_output_pass (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||
|
||||
if (master->pub.is_dummy_pass) {
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
/* Final pass of 2-pass quantization */
|
||||
master->pub.is_dummy_pass = FALSE;
|
||||
(*cinfo->cquantize->start_pass) (cinfo, FALSE);
|
||||
(*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST);
|
||||
(*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
} else {
|
||||
if (cinfo->quantize_colors && cinfo->colormap == NULL) {
|
||||
/* Select new quantization method */
|
||||
if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) {
|
||||
cinfo->cquantize = master->quantizer_2pass;
|
||||
master->pub.is_dummy_pass = TRUE;
|
||||
} else if (cinfo->enable_1pass_quant) {
|
||||
cinfo->cquantize = master->quantizer_1pass;
|
||||
} else {
|
||||
ERREXIT(cinfo, JERR_MODE_CHANGE);
|
||||
}
|
||||
}
|
||||
(*cinfo->idct->start_pass) (cinfo);
|
||||
(*cinfo->coef->start_output_pass) (cinfo);
|
||||
if (! cinfo->raw_data_out) {
|
||||
if (! master->using_merged_upsample)
|
||||
(*cinfo->cconvert->start_pass) (cinfo);
|
||||
(*cinfo->upsample->start_pass) (cinfo);
|
||||
if (cinfo->quantize_colors)
|
||||
(*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass);
|
||||
(*cinfo->post->start_pass) (cinfo,
|
||||
(master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
|
||||
(*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
|
||||
}
|
||||
}
|
||||
|
||||
/* Set up progress monitor's pass info if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->completed_passes = master->pass_number;
|
||||
cinfo->progress->total_passes = master->pass_number +
|
||||
(master->pub.is_dummy_pass ? 2 : 1);
|
||||
/* In buffered-image mode, we assume one more output pass if EOI not
|
||||
* yet reached, but no more passes if EOI has been reached.
|
||||
*/
|
||||
if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) {
|
||||
cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at end of an output pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
finish_output_pass (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||
|
||||
if (cinfo->quantize_colors)
|
||||
(*cinfo->cquantize->finish_pass) (cinfo);
|
||||
master->pass_number++;
|
||||
}
|
||||
|
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
|
||||
/*
|
||||
* Switch to a new external colormap between output passes.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_new_colormap (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||
|
||||
/* Prevent application from calling me at wrong times */
|
||||
if (cinfo->global_state != DSTATE_BUFIMAGE)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
if (cinfo->quantize_colors && cinfo->enable_external_quant &&
|
||||
cinfo->colormap != NULL) {
|
||||
/* Select 2-pass quantizer for external colormap use */
|
||||
cinfo->cquantize = master->quantizer_2pass;
|
||||
/* Notify quantizer of colormap change */
|
||||
(*cinfo->cquantize->new_color_map) (cinfo);
|
||||
master->pub.is_dummy_pass = FALSE; /* just in case */
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_MODE_CHANGE);
|
||||
}
|
||||
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize master decompression control and select active modules.
|
||||
* This is performed at the start of jpeg_start_decompress.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_master_decompress (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master;
|
||||
|
||||
master = (my_master_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_decomp_master));
|
||||
cinfo->master = (struct jpeg_decomp_master *) master;
|
||||
master->pub.prepare_for_output_pass = prepare_for_output_pass;
|
||||
master->pub.finish_output_pass = finish_output_pass;
|
||||
|
||||
master->pub.is_dummy_pass = FALSE;
|
||||
|
||||
master_selection(cinfo);
|
||||
}
|
|
@ -0,0 +1,400 @@
|
|||
/*
|
||||
* jdmerge.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains code for merged upsampling/color conversion.
|
||||
*
|
||||
* This file combines functions from jdsample.c and jdcolor.c;
|
||||
* read those files first to understand what's going on.
|
||||
*
|
||||
* When the chroma components are to be upsampled by simple replication
|
||||
* (ie, box filtering), we can save some work in color conversion by
|
||||
* calculating all the output pixels corresponding to a pair of chroma
|
||||
* samples at one time. In the conversion equations
|
||||
* R = Y + K1 * Cr
|
||||
* G = Y + K2 * Cb + K3 * Cr
|
||||
* B = Y + K4 * Cb
|
||||
* only the Y term varies among the group of pixels corresponding to a pair
|
||||
* of chroma samples, so the rest of the terms can be calculated just once.
|
||||
* At typical sampling ratios, this eliminates half or three-quarters of the
|
||||
* multiplications needed for color conversion.
|
||||
*
|
||||
* This file currently provides implementations for the following cases:
|
||||
* YCbCr => RGB color conversion only.
|
||||
* Sampling ratios of 2h1v or 2h2v.
|
||||
* No scaling needed at upsample time.
|
||||
* Corner-aligned (non-CCIR601) sampling alignment.
|
||||
* Other special cases could be added, but in most applications these are
|
||||
* the only common cases. (For uncommon cases we fall back on the more
|
||||
* general code in jdsample.c and jdcolor.c.)
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED
|
||||
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_upsampler pub; /* public fields */
|
||||
|
||||
/* Pointer to routine to do actual upsampling/conversion of one row group */
|
||||
JMETHOD(void, upmethod, (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
|
||||
JSAMPARRAY output_buf));
|
||||
|
||||
/* Private state for YCC->RGB conversion */
|
||||
int * Cr_r_tab; /* => table for Cr to R conversion */
|
||||
int * Cb_b_tab; /* => table for Cb to B conversion */
|
||||
INT32 * Cr_g_tab; /* => table for Cr to G conversion */
|
||||
INT32 * Cb_g_tab; /* => table for Cb to G conversion */
|
||||
|
||||
/* For 2:1 vertical sampling, we produce two output rows at a time.
|
||||
* We need a "spare" row buffer to hold the second output row if the
|
||||
* application provides just a one-row buffer; we also use the spare
|
||||
* to discard the dummy last row if the image height is odd.
|
||||
*/
|
||||
JSAMPROW spare_row;
|
||||
boolean spare_full; /* T if spare buffer is occupied */
|
||||
|
||||
JDIMENSION out_row_width; /* samples per output row */
|
||||
JDIMENSION rows_to_go; /* counts rows remaining in image */
|
||||
} my_upsampler;
|
||||
|
||||
typedef my_upsampler * my_upsample_ptr;
|
||||
|
||||
#define SCALEBITS 16 /* speediest right-shift on some machines */
|
||||
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
|
||||
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
|
||||
|
||||
|
||||
/*
|
||||
* Initialize tables for YCC->RGB colorspace conversion.
|
||||
* This is taken directly from jdcolor.c; see that file for more info.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
build_ycc_rgb_table (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
int i;
|
||||
INT32 x;
|
||||
SHIFT_TEMPS
|
||||
|
||||
upsample->Cr_r_tab = (int *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(int));
|
||||
upsample->Cb_b_tab = (int *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(int));
|
||||
upsample->Cr_g_tab = (INT32 *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||
upsample->Cb_g_tab = (INT32 *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||
|
||||
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
|
||||
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
|
||||
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
|
||||
/* Cr=>R value is nearest int to 1.40200 * x */
|
||||
upsample->Cr_r_tab[i] = (int)
|
||||
RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
|
||||
/* Cb=>B value is nearest int to 1.77200 * x */
|
||||
upsample->Cb_b_tab[i] = (int)
|
||||
RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
|
||||
/* Cr=>G value is scaled-up -0.71414 * x */
|
||||
upsample->Cr_g_tab[i] = (- FIX(0.71414)) * x;
|
||||
/* Cb=>G value is scaled-up -0.34414 * x */
|
||||
/* We also add in ONE_HALF so that need not do it in inner loop */
|
||||
upsample->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for an upsampling pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_merged_upsample (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
|
||||
/* Mark the spare buffer empty */
|
||||
upsample->spare_full = FALSE;
|
||||
/* Initialize total-height counter for detecting bottom of image */
|
||||
upsample->rows_to_go = cinfo->output_height;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Control routine to do upsampling (and color conversion).
|
||||
*
|
||||
* The control routine just handles the row buffering considerations.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
merged_2v_upsample (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
/* 2:1 vertical sampling case: may need a spare row. */
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
JSAMPROW work_ptrs[2];
|
||||
JDIMENSION num_rows; /* number of rows returned to caller */
|
||||
|
||||
if (upsample->spare_full) {
|
||||
/* If we have a spare row saved from a previous cycle, just return it. */
|
||||
jcopy_sample_rows(& upsample->spare_row, 0, output_buf + *out_row_ctr, 0,
|
||||
1, upsample->out_row_width);
|
||||
num_rows = 1;
|
||||
upsample->spare_full = FALSE;
|
||||
} else {
|
||||
/* Figure number of rows to return to caller. */
|
||||
num_rows = 2;
|
||||
/* Not more than the distance to the end of the image. */
|
||||
if (num_rows > upsample->rows_to_go)
|
||||
num_rows = upsample->rows_to_go;
|
||||
/* And not more than what the client can accept: */
|
||||
out_rows_avail -= *out_row_ctr;
|
||||
if (num_rows > out_rows_avail)
|
||||
num_rows = out_rows_avail;
|
||||
/* Create output pointer array for upsampler. */
|
||||
work_ptrs[0] = output_buf[*out_row_ctr];
|
||||
if (num_rows > 1) {
|
||||
work_ptrs[1] = output_buf[*out_row_ctr + 1];
|
||||
} else {
|
||||
work_ptrs[1] = upsample->spare_row;
|
||||
upsample->spare_full = TRUE;
|
||||
}
|
||||
/* Now do the upsampling. */
|
||||
(*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs);
|
||||
}
|
||||
|
||||
/* Adjust counts */
|
||||
*out_row_ctr += num_rows;
|
||||
upsample->rows_to_go -= num_rows;
|
||||
/* When the buffer is emptied, declare this input row group consumed */
|
||||
if (! upsample->spare_full)
|
||||
(*in_row_group_ctr)++;
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
merged_1v_upsample (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
/* 1:1 vertical sampling case: much easier, never need a spare row. */
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
|
||||
/* Just do the upsampling. */
|
||||
(*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr,
|
||||
output_buf + *out_row_ctr);
|
||||
/* Adjust counts */
|
||||
(*out_row_ctr)++;
|
||||
(*in_row_group_ctr)++;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* These are the routines invoked by the control routines to do
|
||||
* the actual upsampling/conversion. One row group is processed per call.
|
||||
*
|
||||
* Note: since we may be writing directly into application-supplied buffers,
|
||||
* we have to be honest about the output width; we can't assume the buffer
|
||||
* has been rounded up to an even width.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v1_merged_upsample (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
|
||||
JSAMPARRAY output_buf)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
register int y, cred, cgreen, cblue;
|
||||
int cb, cr;
|
||||
register JSAMPROW outptr;
|
||||
JSAMPROW inptr0, inptr1, inptr2;
|
||||
JDIMENSION col;
|
||||
/* copy these pointers into registers if possible */
|
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||
int * Crrtab = upsample->Cr_r_tab;
|
||||
int * Cbbtab = upsample->Cb_b_tab;
|
||||
INT32 * Crgtab = upsample->Cr_g_tab;
|
||||
INT32 * Cbgtab = upsample->Cb_g_tab;
|
||||
SHIFT_TEMPS
|
||||
|
||||
inptr0 = input_buf[0][in_row_group_ctr];
|
||||
inptr1 = input_buf[1][in_row_group_ctr];
|
||||
inptr2 = input_buf[2][in_row_group_ctr];
|
||||
outptr = output_buf[0];
|
||||
/* Loop for each pair of output pixels */
|
||||
for (col = cinfo->output_width >> 1; col > 0; col--) {
|
||||
/* Do the chroma part of the calculation */
|
||||
cb = GETJSAMPLE(*inptr1++);
|
||||
cr = GETJSAMPLE(*inptr2++);
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
/* Fetch 2 Y values and emit 2 pixels */
|
||||
y = GETJSAMPLE(*inptr0++);
|
||||
outptr[RGB_RED] = range_limit[y + cred];
|
||||
outptr[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr[RGB_BLUE] = range_limit[y + cblue];
|
||||
outptr += RGB_PIXELSIZE;
|
||||
y = GETJSAMPLE(*inptr0++);
|
||||
outptr[RGB_RED] = range_limit[y + cred];
|
||||
outptr[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr[RGB_BLUE] = range_limit[y + cblue];
|
||||
outptr += RGB_PIXELSIZE;
|
||||
}
|
||||
/* If image width is odd, do the last output column separately */
|
||||
if (cinfo->output_width & 1) {
|
||||
cb = GETJSAMPLE(*inptr1);
|
||||
cr = GETJSAMPLE(*inptr2);
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
y = GETJSAMPLE(*inptr0);
|
||||
outptr[RGB_RED] = range_limit[y + cred];
|
||||
outptr[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr[RGB_BLUE] = range_limit[y + cblue];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v2_merged_upsample (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
|
||||
JSAMPARRAY output_buf)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
register int y, cred, cgreen, cblue;
|
||||
int cb, cr;
|
||||
register JSAMPROW outptr0, outptr1;
|
||||
JSAMPROW inptr00, inptr01, inptr1, inptr2;
|
||||
JDIMENSION col;
|
||||
/* copy these pointers into registers if possible */
|
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||
int * Crrtab = upsample->Cr_r_tab;
|
||||
int * Cbbtab = upsample->Cb_b_tab;
|
||||
INT32 * Crgtab = upsample->Cr_g_tab;
|
||||
INT32 * Cbgtab = upsample->Cb_g_tab;
|
||||
SHIFT_TEMPS
|
||||
|
||||
inptr00 = input_buf[0][in_row_group_ctr*2];
|
||||
inptr01 = input_buf[0][in_row_group_ctr*2 + 1];
|
||||
inptr1 = input_buf[1][in_row_group_ctr];
|
||||
inptr2 = input_buf[2][in_row_group_ctr];
|
||||
outptr0 = output_buf[0];
|
||||
outptr1 = output_buf[1];
|
||||
/* Loop for each group of output pixels */
|
||||
for (col = cinfo->output_width >> 1; col > 0; col--) {
|
||||
/* Do the chroma part of the calculation */
|
||||
cb = GETJSAMPLE(*inptr1++);
|
||||
cr = GETJSAMPLE(*inptr2++);
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
/* Fetch 4 Y values and emit 4 pixels */
|
||||
y = GETJSAMPLE(*inptr00++);
|
||||
outptr0[RGB_RED] = range_limit[y + cred];
|
||||
outptr0[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr0[RGB_BLUE] = range_limit[y + cblue];
|
||||
outptr0 += RGB_PIXELSIZE;
|
||||
y = GETJSAMPLE(*inptr00++);
|
||||
outptr0[RGB_RED] = range_limit[y + cred];
|
||||
outptr0[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr0[RGB_BLUE] = range_limit[y + cblue];
|
||||
outptr0 += RGB_PIXELSIZE;
|
||||
y = GETJSAMPLE(*inptr01++);
|
||||
outptr1[RGB_RED] = range_limit[y + cred];
|
||||
outptr1[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr1[RGB_BLUE] = range_limit[y + cblue];
|
||||
outptr1 += RGB_PIXELSIZE;
|
||||
y = GETJSAMPLE(*inptr01++);
|
||||
outptr1[RGB_RED] = range_limit[y + cred];
|
||||
outptr1[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr1[RGB_BLUE] = range_limit[y + cblue];
|
||||
outptr1 += RGB_PIXELSIZE;
|
||||
}
|
||||
/* If image width is odd, do the last output column separately */
|
||||
if (cinfo->output_width & 1) {
|
||||
cb = GETJSAMPLE(*inptr1);
|
||||
cr = GETJSAMPLE(*inptr2);
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
y = GETJSAMPLE(*inptr00);
|
||||
outptr0[RGB_RED] = range_limit[y + cred];
|
||||
outptr0[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr0[RGB_BLUE] = range_limit[y + cblue];
|
||||
y = GETJSAMPLE(*inptr01);
|
||||
outptr1[RGB_RED] = range_limit[y + cred];
|
||||
outptr1[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr1[RGB_BLUE] = range_limit[y + cblue];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for merged upsampling/color conversion.
|
||||
*
|
||||
* NB: this is called under the conditions determined by use_merged_upsample()
|
||||
* in jdmaster.c. That routine MUST correspond to the actual capabilities
|
||||
* of this module; no safety checks are made here.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_merged_upsampler (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_upsample_ptr upsample;
|
||||
|
||||
upsample = (my_upsample_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_upsampler));
|
||||
cinfo->upsample = (struct jpeg_upsampler *) upsample;
|
||||
upsample->pub.start_pass = start_pass_merged_upsample;
|
||||
upsample->pub.need_context_rows = FALSE;
|
||||
|
||||
upsample->out_row_width = cinfo->output_width * cinfo->out_color_components;
|
||||
|
||||
if (cinfo->max_v_samp_factor == 2) {
|
||||
upsample->pub.upsample = merged_2v_upsample;
|
||||
upsample->upmethod = h2v2_merged_upsample;
|
||||
/* Allocate a spare row buffer */
|
||||
upsample->spare_row = (JSAMPROW)
|
||||
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(size_t) (upsample->out_row_width * SIZEOF(JSAMPLE)));
|
||||
} else {
|
||||
upsample->pub.upsample = merged_1v_upsample;
|
||||
upsample->upmethod = h2v1_merged_upsample;
|
||||
/* No spare row needed */
|
||||
upsample->spare_row = NULL;
|
||||
}
|
||||
|
||||
build_ycc_rgb_table(cinfo);
|
||||
}
|
||||
|
||||
#endif /* UPSAMPLE_MERGING_SUPPORTED */
|
|
@ -0,0 +1,290 @@
|
|||
/*
|
||||
* jdpostct.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the decompression postprocessing controller.
|
||||
* This controller manages the upsampling, color conversion, and color
|
||||
* quantization/reduction steps; specifically, it controls the buffering
|
||||
* between upsample/color conversion and color quantization/reduction.
|
||||
*
|
||||
* If no color quantization/reduction is required, then this module has no
|
||||
* work to do, and it just hands off to the upsample/color conversion code.
|
||||
* An integrated upsample/convert/quantize process would replace this module
|
||||
* entirely.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_d_post_controller pub; /* public fields */
|
||||
|
||||
/* Color quantization source buffer: this holds output data from
|
||||
* the upsample/color conversion step to be passed to the quantizer.
|
||||
* For two-pass color quantization, we need a full-image buffer;
|
||||
* for one-pass operation, a strip buffer is sufficient.
|
||||
*/
|
||||
jvirt_sarray_ptr whole_image; /* virtual array, or NULL if one-pass */
|
||||
JSAMPARRAY buffer; /* strip buffer, or current strip of virtual */
|
||||
JDIMENSION strip_height; /* buffer size in rows */
|
||||
/* for two-pass mode only: */
|
||||
JDIMENSION starting_row; /* row # of first row in current strip */
|
||||
JDIMENSION next_row; /* index of next row to fill/empty in strip */
|
||||
} my_post_controller;
|
||||
|
||||
typedef my_post_controller * my_post_ptr;
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF(void) post_process_1pass
|
||||
JPP((j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail));
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
METHODDEF(void) post_process_prepass
|
||||
JPP((j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail));
|
||||
METHODDEF(void) post_process_2pass
|
||||
JPP((j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail));
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_dpost (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_post_ptr post = (my_post_ptr) cinfo->post;
|
||||
|
||||
switch (pass_mode) {
|
||||
case JBUF_PASS_THRU:
|
||||
if (cinfo->quantize_colors) {
|
||||
/* Single-pass processing with color quantization. */
|
||||
post->pub.post_process_data = post_process_1pass;
|
||||
/* We could be doing buffered-image output before starting a 2-pass
|
||||
* color quantization; in that case, jinit_d_post_controller did not
|
||||
* allocate a strip buffer. Use the virtual-array buffer as workspace.
|
||||
*/
|
||||
if (post->buffer == NULL) {
|
||||
post->buffer = (*cinfo->mem->access_virt_sarray)
|
||||
((j_common_ptr) cinfo, post->whole_image,
|
||||
(JDIMENSION) 0, post->strip_height, TRUE);
|
||||
}
|
||||
} else {
|
||||
/* For single-pass processing without color quantization,
|
||||
* I have no work to do; just call the upsampler directly.
|
||||
*/
|
||||
post->pub.post_process_data = cinfo->upsample->upsample;
|
||||
}
|
||||
break;
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
case JBUF_SAVE_AND_PASS:
|
||||
/* First pass of 2-pass quantization */
|
||||
if (post->whole_image == NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
post->pub.post_process_data = post_process_prepass;
|
||||
break;
|
||||
case JBUF_CRANK_DEST:
|
||||
/* Second pass of 2-pass quantization */
|
||||
if (post->whole_image == NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
post->pub.post_process_data = post_process_2pass;
|
||||
break;
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
break;
|
||||
}
|
||||
post->starting_row = post->next_row = 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data in the one-pass (strip buffer) case.
|
||||
* This is used for color precision reduction as well as one-pass quantization.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
post_process_1pass (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_post_ptr post = (my_post_ptr) cinfo->post;
|
||||
JDIMENSION num_rows, max_rows;
|
||||
|
||||
/* Fill the buffer, but not more than what we can dump out in one go. */
|
||||
/* Note we rely on the upsampler to detect bottom of image. */
|
||||
max_rows = out_rows_avail - *out_row_ctr;
|
||||
if (max_rows > post->strip_height)
|
||||
max_rows = post->strip_height;
|
||||
num_rows = 0;
|
||||
(*cinfo->upsample->upsample) (cinfo,
|
||||
input_buf, in_row_group_ctr, in_row_groups_avail,
|
||||
post->buffer, &num_rows, max_rows);
|
||||
/* Quantize and emit data. */
|
||||
(*cinfo->cquantize->color_quantize) (cinfo,
|
||||
post->buffer, output_buf + *out_row_ctr, (int) num_rows);
|
||||
*out_row_ctr += num_rows;
|
||||
}
|
||||
|
||||
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
|
||||
/*
|
||||
* Process some data in the first pass of 2-pass quantization.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
post_process_prepass (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_post_ptr post = (my_post_ptr) cinfo->post;
|
||||
JDIMENSION old_next_row, num_rows;
|
||||
|
||||
/* Reposition virtual buffer if at start of strip. */
|
||||
if (post->next_row == 0) {
|
||||
post->buffer = (*cinfo->mem->access_virt_sarray)
|
||||
((j_common_ptr) cinfo, post->whole_image,
|
||||
post->starting_row, post->strip_height, TRUE);
|
||||
}
|
||||
|
||||
/* Upsample some data (up to a strip height's worth). */
|
||||
old_next_row = post->next_row;
|
||||
(*cinfo->upsample->upsample) (cinfo,
|
||||
input_buf, in_row_group_ctr, in_row_groups_avail,
|
||||
post->buffer, &post->next_row, post->strip_height);
|
||||
|
||||
/* Allow quantizer to scan new data. No data is emitted, */
|
||||
/* but we advance out_row_ctr so outer loop can tell when we're done. */
|
||||
if (post->next_row > old_next_row) {
|
||||
num_rows = post->next_row - old_next_row;
|
||||
(*cinfo->cquantize->color_quantize) (cinfo, post->buffer + old_next_row,
|
||||
(JSAMPARRAY) NULL, (int) num_rows);
|
||||
*out_row_ctr += num_rows;
|
||||
}
|
||||
|
||||
/* Advance if we filled the strip. */
|
||||
if (post->next_row >= post->strip_height) {
|
||||
post->starting_row += post->strip_height;
|
||||
post->next_row = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data in the second pass of 2-pass quantization.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
post_process_2pass (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_post_ptr post = (my_post_ptr) cinfo->post;
|
||||
JDIMENSION num_rows, max_rows;
|
||||
|
||||
/* Reposition virtual buffer if at start of strip. */
|
||||
if (post->next_row == 0) {
|
||||
post->buffer = (*cinfo->mem->access_virt_sarray)
|
||||
((j_common_ptr) cinfo, post->whole_image,
|
||||
post->starting_row, post->strip_height, FALSE);
|
||||
}
|
||||
|
||||
/* Determine number of rows to emit. */
|
||||
num_rows = post->strip_height - post->next_row; /* available in strip */
|
||||
max_rows = out_rows_avail - *out_row_ctr; /* available in output area */
|
||||
if (num_rows > max_rows)
|
||||
num_rows = max_rows;
|
||||
/* We have to check bottom of image here, can't depend on upsampler. */
|
||||
max_rows = cinfo->output_height - post->starting_row;
|
||||
if (num_rows > max_rows)
|
||||
num_rows = max_rows;
|
||||
|
||||
/* Quantize and emit data. */
|
||||
(*cinfo->cquantize->color_quantize) (cinfo,
|
||||
post->buffer + post->next_row, output_buf + *out_row_ctr,
|
||||
(int) num_rows);
|
||||
*out_row_ctr += num_rows;
|
||||
|
||||
/* Advance if we filled the strip. */
|
||||
post->next_row += num_rows;
|
||||
if (post->next_row >= post->strip_height) {
|
||||
post->starting_row += post->strip_height;
|
||||
post->next_row = 0;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize postprocessing controller.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_d_post_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_post_ptr post;
|
||||
|
||||
post = (my_post_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_post_controller));
|
||||
cinfo->post = (struct jpeg_d_post_controller *) post;
|
||||
post->pub.start_pass = start_pass_dpost;
|
||||
post->whole_image = NULL; /* flag for no virtual arrays */
|
||||
post->buffer = NULL; /* flag for no strip buffer */
|
||||
|
||||
/* Create the quantization buffer, if needed */
|
||||
if (cinfo->quantize_colors) {
|
||||
/* The buffer strip height is max_v_samp_factor, which is typically
|
||||
* an efficient number of rows for upsampling to return.
|
||||
* (In the presence of output rescaling, we might want to be smarter?)
|
||||
*/
|
||||
post->strip_height = (JDIMENSION) cinfo->max_v_samp_factor;
|
||||
if (need_full_buffer) {
|
||||
/* Two-pass color quantization: need full-image storage. */
|
||||
/* We round up the number of rows to a multiple of the strip height. */
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
post->whole_image = (*cinfo->mem->request_virt_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
|
||||
cinfo->output_width * cinfo->out_color_components,
|
||||
(JDIMENSION) jround_up((long) cinfo->output_height,
|
||||
(long) post->strip_height),
|
||||
post->strip_height);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
} else {
|
||||
/* One-pass color quantization: just make a strip buffer. */
|
||||
post->buffer = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
cinfo->output_width * cinfo->out_color_components,
|
||||
post->strip_height);
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,361 @@
|
|||
/*
|
||||
* jdsample.c
|
||||
*
|
||||
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||
* Modified 2002-2008 by Guido Vollbeding.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains upsampling routines.
|
||||
*
|
||||
* Upsampling input data is counted in "row groups". A row group
|
||||
* is defined to be (v_samp_factor * DCT_v_scaled_size / min_DCT_v_scaled_size)
|
||||
* sample rows of each component. Upsampling will normally produce
|
||||
* max_v_samp_factor pixel rows from each row group (but this could vary
|
||||
* if the upsampler is applying a scale factor of its own).
|
||||
*
|
||||
* An excellent reference for image resampling is
|
||||
* Digital Image Warping, George Wolberg, 1990.
|
||||
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Pointer to routine to upsample a single component */
|
||||
typedef JMETHOD(void, upsample1_ptr,
|
||||
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_upsampler pub; /* public fields */
|
||||
|
||||
/* Color conversion buffer. When using separate upsampling and color
|
||||
* conversion steps, this buffer holds one upsampled row group until it
|
||||
* has been color converted and output.
|
||||
* Note: we do not allocate any storage for component(s) which are full-size,
|
||||
* ie do not need rescaling. The corresponding entry of color_buf[] is
|
||||
* simply set to point to the input data array, thereby avoiding copying.
|
||||
*/
|
||||
JSAMPARRAY color_buf[MAX_COMPONENTS];
|
||||
|
||||
/* Per-component upsampling method pointers */
|
||||
upsample1_ptr methods[MAX_COMPONENTS];
|
||||
|
||||
int next_row_out; /* counts rows emitted from color_buf */
|
||||
JDIMENSION rows_to_go; /* counts rows remaining in image */
|
||||
|
||||
/* Height of an input row group for each component. */
|
||||
int rowgroup_height[MAX_COMPONENTS];
|
||||
|
||||
/* These arrays save pixel expansion factors so that int_expand need not
|
||||
* recompute them each time. They are unused for other upsampling methods.
|
||||
*/
|
||||
UINT8 h_expand[MAX_COMPONENTS];
|
||||
UINT8 v_expand[MAX_COMPONENTS];
|
||||
} my_upsampler;
|
||||
|
||||
typedef my_upsampler * my_upsample_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for an upsampling pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_upsample (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
|
||||
/* Mark the conversion buffer empty */
|
||||
upsample->next_row_out = cinfo->max_v_samp_factor;
|
||||
/* Initialize total-height counter for detecting bottom of image */
|
||||
upsample->rows_to_go = cinfo->output_height;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Control routine to do upsampling (and color conversion).
|
||||
*
|
||||
* In this version we upsample each component independently.
|
||||
* We upsample one row group into the conversion buffer, then apply
|
||||
* color conversion a row at a time.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
sep_upsample (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
int ci;
|
||||
jpeg_component_info * compptr;
|
||||
JDIMENSION num_rows;
|
||||
|
||||
/* Fill the conversion buffer, if it's empty */
|
||||
if (upsample->next_row_out >= cinfo->max_v_samp_factor) {
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Invoke per-component upsample method. Notice we pass a POINTER
|
||||
* to color_buf[ci], so that fullsize_upsample can change it.
|
||||
*/
|
||||
(*upsample->methods[ci]) (cinfo, compptr,
|
||||
input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]),
|
||||
upsample->color_buf + ci);
|
||||
}
|
||||
upsample->next_row_out = 0;
|
||||
}
|
||||
|
||||
/* Color-convert and emit rows */
|
||||
|
||||
/* How many we have in the buffer: */
|
||||
num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out);
|
||||
/* Not more than the distance to the end of the image. Need this test
|
||||
* in case the image height is not a multiple of max_v_samp_factor:
|
||||
*/
|
||||
if (num_rows > upsample->rows_to_go)
|
||||
num_rows = upsample->rows_to_go;
|
||||
/* And not more than what the client can accept: */
|
||||
out_rows_avail -= *out_row_ctr;
|
||||
if (num_rows > out_rows_avail)
|
||||
num_rows = out_rows_avail;
|
||||
|
||||
(*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf,
|
||||
(JDIMENSION) upsample->next_row_out,
|
||||
output_buf + *out_row_ctr,
|
||||
(int) num_rows);
|
||||
|
||||
/* Adjust counts */
|
||||
*out_row_ctr += num_rows;
|
||||
upsample->rows_to_go -= num_rows;
|
||||
upsample->next_row_out += num_rows;
|
||||
/* When the buffer is emptied, declare this input row group consumed */
|
||||
if (upsample->next_row_out >= cinfo->max_v_samp_factor)
|
||||
(*in_row_group_ctr)++;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* These are the routines invoked by sep_upsample to upsample pixel values
|
||||
* of a single component. One row group is processed per call.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* For full-size components, we just make color_buf[ci] point at the
|
||||
* input buffer, and thus avoid copying any data. Note that this is
|
||||
* safe only because sep_upsample doesn't declare the input row group
|
||||
* "consumed" until we are done color converting and emitting it.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
||||
{
|
||||
*output_data_ptr = input_data;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This is a no-op version used for "uninteresting" components.
|
||||
* These components will not be referenced by color conversion.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
||||
{
|
||||
*output_data_ptr = NULL; /* safety check */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This version handles any integral sampling ratios.
|
||||
* This is not used for typical JPEG files, so it need not be fast.
|
||||
* Nor, for that matter, is it particularly accurate: the algorithm is
|
||||
* simple replication of the input pixel onto the corresponding output
|
||||
* pixels. The hi-falutin sampling literature refers to this as a
|
||||
* "box filter". A box filter tends to introduce visible artifacts,
|
||||
* so if you are actually going to use 3:1 or 4:1 sampling ratios
|
||||
* you would be well advised to improve this code.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
JSAMPARRAY output_data = *output_data_ptr;
|
||||
register JSAMPROW inptr, outptr;
|
||||
register JSAMPLE invalue;
|
||||
register int h;
|
||||
JSAMPROW outend;
|
||||
int h_expand, v_expand;
|
||||
int inrow, outrow;
|
||||
|
||||
h_expand = upsample->h_expand[compptr->component_index];
|
||||
v_expand = upsample->v_expand[compptr->component_index];
|
||||
|
||||
inrow = outrow = 0;
|
||||
while (outrow < cinfo->max_v_samp_factor) {
|
||||
/* Generate one output row with proper horizontal expansion */
|
||||
inptr = input_data[inrow];
|
||||
outptr = output_data[outrow];
|
||||
outend = outptr + cinfo->output_width;
|
||||
while (outptr < outend) {
|
||||
invalue = *inptr++; /* don't need GETJSAMPLE() here */
|
||||
for (h = h_expand; h > 0; h--) {
|
||||
*outptr++ = invalue;
|
||||
}
|
||||
}
|
||||
/* Generate any additional output rows by duplicating the first one */
|
||||
if (v_expand > 1) {
|
||||
jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
|
||||
v_expand-1, cinfo->output_width);
|
||||
}
|
||||
inrow++;
|
||||
outrow += v_expand;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
|
||||
* It's still a box filter.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
||||
{
|
||||
JSAMPARRAY output_data = *output_data_ptr;
|
||||
register JSAMPROW inptr, outptr;
|
||||
register JSAMPLE invalue;
|
||||
JSAMPROW outend;
|
||||
int outrow;
|
||||
|
||||
for (outrow = 0; outrow < cinfo->max_v_samp_factor; outrow++) {
|
||||
inptr = input_data[outrow];
|
||||
outptr = output_data[outrow];
|
||||
outend = outptr + cinfo->output_width;
|
||||
while (outptr < outend) {
|
||||
invalue = *inptr++; /* don't need GETJSAMPLE() here */
|
||||
*outptr++ = invalue;
|
||||
*outptr++ = invalue;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
|
||||
* It's still a box filter.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
||||
{
|
||||
JSAMPARRAY output_data = *output_data_ptr;
|
||||
register JSAMPROW inptr, outptr;
|
||||
register JSAMPLE invalue;
|
||||
JSAMPROW outend;
|
||||
int inrow, outrow;
|
||||
|
||||
inrow = outrow = 0;
|
||||
while (outrow < cinfo->max_v_samp_factor) {
|
||||
inptr = input_data[inrow];
|
||||
outptr = output_data[outrow];
|
||||
outend = outptr + cinfo->output_width;
|
||||
while (outptr < outend) {
|
||||
invalue = *inptr++; /* don't need GETJSAMPLE() here */
|
||||
*outptr++ = invalue;
|
||||
*outptr++ = invalue;
|
||||
}
|
||||
jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
|
||||
1, cinfo->output_width);
|
||||
inrow++;
|
||||
outrow += 2;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for upsampling.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_upsampler (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_upsample_ptr upsample;
|
||||
int ci;
|
||||
jpeg_component_info * compptr;
|
||||
boolean need_buffer;
|
||||
int h_in_group, v_in_group, h_out_group, v_out_group;
|
||||
|
||||
upsample = (my_upsample_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_upsampler));
|
||||
cinfo->upsample = (struct jpeg_upsampler *) upsample;
|
||||
upsample->pub.start_pass = start_pass_upsample;
|
||||
upsample->pub.upsample = sep_upsample;
|
||||
upsample->pub.need_context_rows = FALSE; /* until we find out differently */
|
||||
|
||||
if (cinfo->CCIR601_sampling) /* this isn't supported */
|
||||
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
|
||||
|
||||
/* Verify we can handle the sampling factors, select per-component methods,
|
||||
* and create storage as needed.
|
||||
*/
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Compute size of an "input group" after IDCT scaling. This many samples
|
||||
* are to be converted to max_h_samp_factor * max_v_samp_factor pixels.
|
||||
*/
|
||||
h_in_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) /
|
||||
cinfo->min_DCT_h_scaled_size;
|
||||
v_in_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
|
||||
cinfo->min_DCT_v_scaled_size;
|
||||
h_out_group = cinfo->max_h_samp_factor;
|
||||
v_out_group = cinfo->max_v_samp_factor;
|
||||
upsample->rowgroup_height[ci] = v_in_group; /* save for use later */
|
||||
need_buffer = TRUE;
|
||||
if (! compptr->component_needed) {
|
||||
/* Don't bother to upsample an uninteresting component. */
|
||||
upsample->methods[ci] = noop_upsample;
|
||||
need_buffer = FALSE;
|
||||
} else if (h_in_group == h_out_group && v_in_group == v_out_group) {
|
||||
/* Fullsize components can be processed without any work. */
|
||||
upsample->methods[ci] = fullsize_upsample;
|
||||
need_buffer = FALSE;
|
||||
} else if (h_in_group * 2 == h_out_group &&
|
||||
v_in_group == v_out_group) {
|
||||
/* Special case for 2h1v upsampling */
|
||||
upsample->methods[ci] = h2v1_upsample;
|
||||
} else if (h_in_group * 2 == h_out_group &&
|
||||
v_in_group * 2 == v_out_group) {
|
||||
/* Special case for 2h2v upsampling */
|
||||
upsample->methods[ci] = h2v2_upsample;
|
||||
} else if ((h_out_group % h_in_group) == 0 &&
|
||||
(v_out_group % v_in_group) == 0) {
|
||||
/* Generic integral-factors upsampling method */
|
||||
upsample->methods[ci] = int_upsample;
|
||||
upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group);
|
||||
upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group);
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
|
||||
if (need_buffer) {
|
||||
upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(JDIMENSION) jround_up((long) cinfo->output_width,
|
||||
(long) cinfo->max_h_samp_factor),
|
||||
(JDIMENSION) cinfo->max_v_samp_factor);
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,136 @@
|
|||
/*
|
||||
* jdtrans.c
|
||||
*
|
||||
* Copyright (C) 1995-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains library routines for transcoding decompression,
|
||||
* that is, reading raw DCT coefficient arrays from an input JPEG file.
|
||||
* The routines in jdapimin.c will also be needed by a transcoder.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
LOCAL(void) transdecode_master_selection JPP((j_decompress_ptr cinfo));
|
||||
|
||||
|
||||
/*
|
||||
* Read the coefficient arrays from a JPEG file.
|
||||
* jpeg_read_header must be completed before calling this.
|
||||
*
|
||||
* The entire image is read into a set of virtual coefficient-block arrays,
|
||||
* one per component. The return value is a pointer to the array of
|
||||
* virtual-array descriptors. These can be manipulated directly via the
|
||||
* JPEG memory manager, or handed off to jpeg_write_coefficients().
|
||||
* To release the memory occupied by the virtual arrays, call
|
||||
* jpeg_finish_decompress() when done with the data.
|
||||
*
|
||||
* An alternative usage is to simply obtain access to the coefficient arrays
|
||||
* during a buffered-image-mode decompression operation. This is allowed
|
||||
* after any jpeg_finish_output() call. The arrays can be accessed until
|
||||
* jpeg_finish_decompress() is called. (Note that any call to the library
|
||||
* may reposition the arrays, so don't rely on access_virt_barray() results
|
||||
* to stay valid across library calls.)
|
||||
*
|
||||
* Returns NULL if suspended. This case need be checked only if
|
||||
* a suspending data source is used.
|
||||
*/
|
||||
|
||||
GLOBAL(jvirt_barray_ptr *)
|
||||
jpeg_read_coefficients (j_decompress_ptr cinfo)
|
||||
{
|
||||
if (cinfo->global_state == DSTATE_READY) {
|
||||
/* First call: initialize active modules */
|
||||
transdecode_master_selection(cinfo);
|
||||
cinfo->global_state = DSTATE_RDCOEFS;
|
||||
}
|
||||
if (cinfo->global_state == DSTATE_RDCOEFS) {
|
||||
/* Absorb whole file into the coef buffer */
|
||||
for (;;) {
|
||||
int retcode;
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL)
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
/* Absorb some more input */
|
||||
retcode = (*cinfo->inputctl->consume_input) (cinfo);
|
||||
if (retcode == JPEG_SUSPENDED)
|
||||
return NULL;
|
||||
if (retcode == JPEG_REACHED_EOI)
|
||||
break;
|
||||
/* Advance progress counter if appropriate */
|
||||
if (cinfo->progress != NULL &&
|
||||
(retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
|
||||
if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
|
||||
/* startup underestimated number of scans; ratchet up one scan */
|
||||
cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Set state so that jpeg_finish_decompress does the right thing */
|
||||
cinfo->global_state = DSTATE_STOPPING;
|
||||
}
|
||||
/* At this point we should be in state DSTATE_STOPPING if being used
|
||||
* standalone, or in state DSTATE_BUFIMAGE if being invoked to get access
|
||||
* to the coefficients during a full buffered-image-mode decompression.
|
||||
*/
|
||||
if ((cinfo->global_state == DSTATE_STOPPING ||
|
||||
cinfo->global_state == DSTATE_BUFIMAGE) && cinfo->buffered_image) {
|
||||
return cinfo->coef->coef_arrays;
|
||||
}
|
||||
/* Oops, improper usage */
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
return NULL; /* keep compiler happy */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Master selection of decompression modules for transcoding.
|
||||
* This substitutes for jdmaster.c's initialization of the full decompressor.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
transdecode_master_selection (j_decompress_ptr cinfo)
|
||||
{
|
||||
/* This is effectively a buffered-image operation. */
|
||||
cinfo->buffered_image = TRUE;
|
||||
|
||||
/* Entropy decoding: either Huffman or arithmetic coding. */
|
||||
if (cinfo->arith_code)
|
||||
jinit_arith_decoder(cinfo);
|
||||
else {
|
||||
jinit_huff_decoder(cinfo);
|
||||
}
|
||||
|
||||
/* Always get a full-image coefficient buffer. */
|
||||
jinit_d_coef_controller(cinfo, TRUE);
|
||||
|
||||
/* We can now tell the memory manager to allocate virtual arrays. */
|
||||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
|
||||
|
||||
/* Initialize input side of decompressor to consume first scan. */
|
||||
(*cinfo->inputctl->start_input_pass) (cinfo);
|
||||
|
||||
/* Initialize progress monitoring. */
|
||||
if (cinfo->progress != NULL) {
|
||||
int nscans;
|
||||
/* Estimate number of scans to set pass_limit. */
|
||||
if (cinfo->progressive_mode) {
|
||||
/* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
|
||||
nscans = 2 + 3 * cinfo->num_components;
|
||||
} else if (cinfo->inputctl->has_multiple_scans) {
|
||||
/* For a nonprogressive multiscan file, estimate 1 scan per component. */
|
||||
nscans = cinfo->num_components;
|
||||
} else {
|
||||
nscans = 1;
|
||||
}
|
||||
cinfo->progress->pass_counter = 0L;
|
||||
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
|
||||
cinfo->progress->completed_passes = 0;
|
||||
cinfo->progress->total_passes = 1;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,252 @@
|
|||
/*
|
||||
* jerror.c
|
||||
*
|
||||
* Copyright (C) 1991-1998, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains simple error-reporting and trace-message routines.
|
||||
* These are suitable for Unix-like systems and others where writing to
|
||||
* stderr is the right thing to do. Many applications will want to replace
|
||||
* some or all of these routines.
|
||||
*
|
||||
* If you define USE_WINDOWS_MESSAGEBOX in jconfig.h or in the makefile,
|
||||
* you get a Windows-specific hack to display error messages in a dialog box.
|
||||
* It ain't much, but it beats dropping error messages into the bit bucket,
|
||||
* which is what happens to output to stderr under most Windows C compilers.
|
||||
*
|
||||
* These routines are used by both the compression and decompression code.
|
||||
*/
|
||||
|
||||
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jversion.h"
|
||||
#include "jerror.h"
|
||||
|
||||
#ifdef USE_WINDOWS_MESSAGEBOX
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
#ifndef EXIT_FAILURE /* define exit() codes if not provided */
|
||||
#define EXIT_FAILURE 1
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Create the message string table.
|
||||
* We do this from the master message list in jerror.h by re-reading
|
||||
* jerror.h with a suitable definition for macro JMESSAGE.
|
||||
* The message table is made an external symbol just in case any applications
|
||||
* want to refer to it directly.
|
||||
*/
|
||||
|
||||
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
||||
#define jpeg_std_message_table jMsgTable
|
||||
#endif
|
||||
|
||||
#define JMESSAGE(code,string) string ,
|
||||
|
||||
const char * const jpeg_std_message_table[] = {
|
||||
#include "jerror.h"
|
||||
NULL
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
* Error exit handler: must not return to caller.
|
||||
*
|
||||
* Applications may override this if they want to get control back after
|
||||
* an error. Typically one would longjmp somewhere instead of exiting.
|
||||
* The setjmp buffer can be made a private field within an expanded error
|
||||
* handler object. Note that the info needed to generate an error message
|
||||
* is stored in the error object, so you can generate the message now or
|
||||
* later, at your convenience.
|
||||
* You should make sure that the JPEG object is cleaned up (with jpeg_abort
|
||||
* or jpeg_destroy) at some point.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
error_exit (j_common_ptr cinfo)
|
||||
{
|
||||
/* Always display the message */
|
||||
(*cinfo->err->output_message) (cinfo);
|
||||
|
||||
/* Let the memory manager delete any temp files before we die */
|
||||
jpeg_destroy(cinfo);
|
||||
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Actual output of an error or trace message.
|
||||
* Applications may override this method to send JPEG messages somewhere
|
||||
* other than stderr.
|
||||
*
|
||||
* On Windows, printing to stderr is generally completely useless,
|
||||
* so we provide optional code to produce an error-dialog popup.
|
||||
* Most Windows applications will still prefer to override this routine,
|
||||
* but if they don't, it'll do something at least marginally useful.
|
||||
*
|
||||
* NOTE: to use the library in an environment that doesn't support the
|
||||
* C stdio library, you may have to delete the call to fprintf() entirely,
|
||||
* not just not use this routine.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
output_message (j_common_ptr cinfo)
|
||||
{
|
||||
char buffer[JMSG_LENGTH_MAX];
|
||||
|
||||
/* Create the message */
|
||||
(*cinfo->err->format_message) (cinfo, buffer);
|
||||
|
||||
#ifdef USE_WINDOWS_MESSAGEBOX
|
||||
/* Display it in a message dialog box */
|
||||
MessageBox(GetActiveWindow(), buffer, "JPEG Library Error",
|
||||
MB_OK | MB_ICONERROR);
|
||||
#else
|
||||
/* Send it to stderr, adding a newline */
|
||||
fprintf(stderr, "%s\n", buffer);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Decide whether to emit a trace or warning message.
|
||||
* msg_level is one of:
|
||||
* -1: recoverable corrupt-data warning, may want to abort.
|
||||
* 0: important advisory messages (always display to user).
|
||||
* 1: first level of tracing detail.
|
||||
* 2,3,...: successively more detailed tracing messages.
|
||||
* An application might override this method if it wanted to abort on warnings
|
||||
* or change the policy about which messages to display.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
emit_message (j_common_ptr cinfo, int msg_level)
|
||||
{
|
||||
struct jpeg_error_mgr * err = cinfo->err;
|
||||
|
||||
if (msg_level < 0) {
|
||||
/* It's a warning message. Since corrupt files may generate many warnings,
|
||||
* the policy implemented here is to show only the first warning,
|
||||
* unless trace_level >= 3.
|
||||
*/
|
||||
if (err->num_warnings == 0 || err->trace_level >= 3)
|
||||
(*err->output_message) (cinfo);
|
||||
/* Always count warnings in num_warnings. */
|
||||
err->num_warnings++;
|
||||
} else {
|
||||
/* It's a trace message. Show it if trace_level >= msg_level. */
|
||||
if (err->trace_level >= msg_level)
|
||||
(*err->output_message) (cinfo);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Format a message string for the most recent JPEG error or message.
|
||||
* The message is stored into buffer, which should be at least JMSG_LENGTH_MAX
|
||||
* characters. Note that no '\n' character is added to the string.
|
||||
* Few applications should need to override this method.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
format_message (j_common_ptr cinfo, char * buffer)
|
||||
{
|
||||
struct jpeg_error_mgr * err = cinfo->err;
|
||||
int msg_code = err->msg_code;
|
||||
const char * msgtext = NULL;
|
||||
const char * msgptr;
|
||||
char ch;
|
||||
boolean isstring;
|
||||
|
||||
/* Look up message string in proper table */
|
||||
if (msg_code > 0 && msg_code <= err->last_jpeg_message) {
|
||||
msgtext = err->jpeg_message_table[msg_code];
|
||||
} else if (err->addon_message_table != NULL &&
|
||||
msg_code >= err->first_addon_message &&
|
||||
msg_code <= err->last_addon_message) {
|
||||
msgtext = err->addon_message_table[msg_code - err->first_addon_message];
|
||||
}
|
||||
|
||||
/* Defend against bogus message number */
|
||||
if (msgtext == NULL) {
|
||||
err->msg_parm.i[0] = msg_code;
|
||||
msgtext = err->jpeg_message_table[0];
|
||||
}
|
||||
|
||||
/* Check for string parameter, as indicated by %s in the message text */
|
||||
isstring = FALSE;
|
||||
msgptr = msgtext;
|
||||
while ((ch = *msgptr++) != '\0') {
|
||||
if (ch == '%') {
|
||||
if (*msgptr == 's') isstring = TRUE;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* Format the message into the passed buffer */
|
||||
if (isstring)
|
||||
sprintf(buffer, msgtext, err->msg_parm.s);
|
||||
else
|
||||
sprintf(buffer, msgtext,
|
||||
err->msg_parm.i[0], err->msg_parm.i[1],
|
||||
err->msg_parm.i[2], err->msg_parm.i[3],
|
||||
err->msg_parm.i[4], err->msg_parm.i[5],
|
||||
err->msg_parm.i[6], err->msg_parm.i[7]);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Reset error state variables at start of a new image.
|
||||
* This is called during compression startup to reset trace/error
|
||||
* processing to default state, without losing any application-specific
|
||||
* method pointers. An application might possibly want to override
|
||||
* this method if it has additional error processing state.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
reset_error_mgr (j_common_ptr cinfo)
|
||||
{
|
||||
cinfo->err->num_warnings = 0;
|
||||
/* trace_level is not reset since it is an application-supplied parameter */
|
||||
cinfo->err->msg_code = 0; /* may be useful as a flag for "no error" */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fill in the standard error-handling methods in a jpeg_error_mgr object.
|
||||
* Typical call is:
|
||||
* struct jpeg_compress_struct cinfo;
|
||||
* struct jpeg_error_mgr err;
|
||||
*
|
||||
* cinfo.err = jpeg_std_error(&err);
|
||||
* after which the application may override some of the methods.
|
||||
*/
|
||||
|
||||
GLOBAL(struct jpeg_error_mgr *)
|
||||
jpeg_std_error (struct jpeg_error_mgr * err)
|
||||
{
|
||||
err->error_exit = error_exit;
|
||||
err->emit_message = emit_message;
|
||||
err->output_message = output_message;
|
||||
err->format_message = format_message;
|
||||
err->reset_error_mgr = reset_error_mgr;
|
||||
|
||||
err->trace_level = 0; /* default = no tracing */
|
||||
err->num_warnings = 0; /* no warnings emitted yet */
|
||||
err->msg_code = 0; /* may be useful as a flag for "no error" */
|
||||
|
||||
/* Initialize message table pointers */
|
||||
err->jpeg_message_table = jpeg_std_message_table;
|
||||
err->last_jpeg_message = (int) JMSG_LASTMSGCODE - 1;
|
||||
|
||||
err->addon_message_table = NULL;
|
||||
err->first_addon_message = 0; /* for safety */
|
||||
err->last_addon_message = 0;
|
||||
|
||||
return err;
|
||||
}
|
|
@ -0,0 +1,304 @@
|
|||
/*
|
||||
* jerror.h
|
||||
*
|
||||
* Copyright (C) 1994-1997, Thomas G. Lane.
|
||||
* Modified 1997-2009 by Guido Vollbeding.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file defines the error and message codes for the JPEG library.
|
||||
* Edit this file to add new codes, or to translate the message strings to
|
||||
* some other language.
|
||||
* A set of error-reporting macros are defined too. Some applications using
|
||||
* the JPEG library may wish to include this file to get the error codes
|
||||
* and/or the macros.
|
||||
*/
|
||||
|
||||
/*
|
||||
* To define the enum list of message codes, include this file without
|
||||
* defining macro JMESSAGE. To create a message string table, include it
|
||||
* again with a suitable JMESSAGE definition (see jerror.c for an example).
|
||||
*/
|
||||
#ifndef JMESSAGE
|
||||
#ifndef JERROR_H
|
||||
/* First time through, define the enum list */
|
||||
#define JMAKE_ENUM_LIST
|
||||
#else
|
||||
/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */
|
||||
#define JMESSAGE(code,string)
|
||||
#endif /* JERROR_H */
|
||||
#endif /* JMESSAGE */
|
||||
|
||||
#ifdef JMAKE_ENUM_LIST
|
||||
|
||||
typedef enum {
|
||||
|
||||
#define JMESSAGE(code,string) code ,
|
||||
|
||||
#endif /* JMAKE_ENUM_LIST */
|
||||
|
||||
JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */
|
||||
|
||||
/* For maintenance convenience, list is alphabetical by message code name */
|
||||
JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix")
|
||||
JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix")
|
||||
JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode")
|
||||
JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS")
|
||||
JMESSAGE(JERR_BAD_CROP_SPEC, "Invalid crop request")
|
||||
JMESSAGE(JERR_BAD_DCT_COEF, "DCT coefficient out of range")
|
||||
JMESSAGE(JERR_BAD_DCTSIZE, "DCT scaled block size %dx%d not supported")
|
||||
JMESSAGE(JERR_BAD_DROP_SAMPLING,
|
||||
"Component index %d: mismatching sampling ratio %d:%d, %d:%d, %c")
|
||||
JMESSAGE(JERR_BAD_HUFF_TABLE, "Bogus Huffman table definition")
|
||||
JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace")
|
||||
JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace")
|
||||
JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length")
|
||||
JMESSAGE(JERR_BAD_LIB_VERSION,
|
||||
"Wrong JPEG library version: library is %d, caller expects %d")
|
||||
JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan")
|
||||
JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d")
|
||||
JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d")
|
||||
JMESSAGE(JERR_BAD_PROGRESSION,
|
||||
"Invalid progressive parameters Ss=%d Se=%d Ah=%d Al=%d")
|
||||
JMESSAGE(JERR_BAD_PROG_SCRIPT,
|
||||
"Invalid progressive parameters at scan script entry %d")
|
||||
JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors")
|
||||
JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d")
|
||||
JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d")
|
||||
JMESSAGE(JERR_BAD_STRUCT_SIZE,
|
||||
"JPEG parameter struct mismatch: library thinks size is %u, caller expects %u")
|
||||
JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access")
|
||||
JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small")
|
||||
JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here")
|
||||
JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet")
|
||||
JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d")
|
||||
JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request")
|
||||
JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d")
|
||||
JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x")
|
||||
JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d")
|
||||
JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d")
|
||||
JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)")
|
||||
JMESSAGE(JERR_EMS_READ, "Read from EMS failed")
|
||||
JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed")
|
||||
JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan")
|
||||
JMESSAGE(JERR_FILE_READ, "Input file read error")
|
||||
JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?")
|
||||
JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet")
|
||||
JMESSAGE(JERR_HUFF_CLEN_OVERFLOW, "Huffman code size table overflow")
|
||||
JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry")
|
||||
JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels")
|
||||
JMESSAGE(JERR_INPUT_EMPTY, "Empty input file")
|
||||
JMESSAGE(JERR_INPUT_EOF, "Premature end of input file")
|
||||
JMESSAGE(JERR_MISMATCHED_QUANT_TABLE,
|
||||
"Cannot transcode due to multiple use of quantization table %d")
|
||||
JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data")
|
||||
JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change")
|
||||
JMESSAGE(JERR_NOTIMPL, "Not implemented yet")
|
||||
JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time")
|
||||
JMESSAGE(JERR_NO_ARITH_TABLE, "Arithmetic table 0x%02x was not defined")
|
||||
JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported")
|
||||
JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined")
|
||||
JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image")
|
||||
JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined")
|
||||
JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x")
|
||||
JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)")
|
||||
JMESSAGE(JERR_QUANT_COMPONENTS,
|
||||
"Cannot quantize more than %d color components")
|
||||
JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors")
|
||||
JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors")
|
||||
JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers")
|
||||
JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker")
|
||||
JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x")
|
||||
JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers")
|
||||
JMESSAGE(JERR_SOS_NO_SOF, "Invalid JPEG file structure: SOS before SOF")
|
||||
JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s")
|
||||
JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file")
|
||||
JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file")
|
||||
JMESSAGE(JERR_TFILE_WRITE,
|
||||
"Write failed on temporary file --- out of disk space?")
|
||||
JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines")
|
||||
JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x")
|
||||
JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up")
|
||||
JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation")
|
||||
JMESSAGE(JERR_XMS_READ, "Read from XMS failed")
|
||||
JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed")
|
||||
JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT)
|
||||
JMESSAGE(JMSG_VERSION, JVERSION)
|
||||
JMESSAGE(JTRC_16BIT_TABLES,
|
||||
"Caution: quantization tables are too coarse for baseline JPEG")
|
||||
JMESSAGE(JTRC_ADOBE,
|
||||
"Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d")
|
||||
JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u")
|
||||
JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u")
|
||||
JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x")
|
||||
JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x")
|
||||
JMESSAGE(JTRC_DQT, "Define Quantization Table %d precision %d")
|
||||
JMESSAGE(JTRC_DRI, "Define Restart Interval %u")
|
||||
JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u")
|
||||
JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u")
|
||||
JMESSAGE(JTRC_EOI, "End Of Image")
|
||||
JMESSAGE(JTRC_HUFFBITS, " %3d %3d %3d %3d %3d %3d %3d %3d")
|
||||
JMESSAGE(JTRC_JFIF, "JFIF APP0 marker: version %d.%02d, density %dx%d %d")
|
||||
JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE,
|
||||
"Warning: thumbnail image size does not match data length %u")
|
||||
JMESSAGE(JTRC_JFIF_EXTENSION,
|
||||
"JFIF extension marker: type 0x%02x, length %u")
|
||||
JMESSAGE(JTRC_JFIF_THUMBNAIL, " with %d x %d thumbnail image")
|
||||
JMESSAGE(JTRC_MISC_MARKER, "Miscellaneous marker 0x%02x, length %u")
|
||||
JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x")
|
||||
JMESSAGE(JTRC_QUANTVALS, " %4u %4u %4u %4u %4u %4u %4u %4u")
|
||||
JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors")
|
||||
JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors")
|
||||
JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization")
|
||||
JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d")
|
||||
JMESSAGE(JTRC_RST, "RST%d")
|
||||
JMESSAGE(JTRC_SMOOTH_NOTIMPL,
|
||||
"Smoothing not supported with nonstandard sampling ratios")
|
||||
JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d")
|
||||
JMESSAGE(JTRC_SOF_COMPONENT, " Component %d: %dhx%dv q=%d")
|
||||
JMESSAGE(JTRC_SOI, "Start of Image")
|
||||
JMESSAGE(JTRC_SOS, "Start Of Scan: %d components")
|
||||
JMESSAGE(JTRC_SOS_COMPONENT, " Component %d: dc=%d ac=%d")
|
||||
JMESSAGE(JTRC_SOS_PARAMS, " Ss=%d, Se=%d, Ah=%d, Al=%d")
|
||||
JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s")
|
||||
JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s")
|
||||
JMESSAGE(JTRC_THUMB_JPEG,
|
||||
"JFIF extension marker: JPEG-compressed thumbnail image, length %u")
|
||||
JMESSAGE(JTRC_THUMB_PALETTE,
|
||||
"JFIF extension marker: palette thumbnail image, length %u")
|
||||
JMESSAGE(JTRC_THUMB_RGB,
|
||||
"JFIF extension marker: RGB thumbnail image, length %u")
|
||||
JMESSAGE(JTRC_UNKNOWN_IDS,
|
||||
"Unrecognized component IDs %d %d %d, assuming YCbCr")
|
||||
JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u")
|
||||
JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u")
|
||||
JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d")
|
||||
JMESSAGE(JWRN_ARITH_BAD_CODE, "Corrupt JPEG data: bad arithmetic code")
|
||||
JMESSAGE(JWRN_BOGUS_PROGRESSION,
|
||||
"Inconsistent progression sequence for component %d coefficient %d")
|
||||
JMESSAGE(JWRN_EXTRANEOUS_DATA,
|
||||
"Corrupt JPEG data: %u extraneous bytes before marker 0x%02x")
|
||||
JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment")
|
||||
JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code")
|
||||
JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d")
|
||||
JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file")
|
||||
JMESSAGE(JWRN_MUST_RESYNC,
|
||||
"Corrupt JPEG data: found marker 0x%02x instead of RST%d")
|
||||
JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG")
|
||||
JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines")
|
||||
|
||||
#ifdef JMAKE_ENUM_LIST
|
||||
|
||||
JMSG_LASTMSGCODE
|
||||
} J_MESSAGE_CODE;
|
||||
|
||||
#undef JMAKE_ENUM_LIST
|
||||
#endif /* JMAKE_ENUM_LIST */
|
||||
|
||||
/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */
|
||||
#undef JMESSAGE
|
||||
|
||||
|
||||
#ifndef JERROR_H
|
||||
#define JERROR_H
|
||||
|
||||
/* Macros to simplify using the error and trace message stuff */
|
||||
/* The first parameter is either type of cinfo pointer */
|
||||
|
||||
/* Fatal errors (print message and exit) */
|
||||
#define ERREXIT(cinfo,code) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||
#define ERREXIT1(cinfo,code,p1) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||
#define ERREXIT2(cinfo,code,p1,p2) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||
#define ERREXIT3(cinfo,code,p1,p2,p3) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(cinfo)->err->msg_parm.i[2] = (p3), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||
#define ERREXIT4(cinfo,code,p1,p2,p3,p4) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(cinfo)->err->msg_parm.i[2] = (p3), \
|
||||
(cinfo)->err->msg_parm.i[3] = (p4), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||
#define ERREXIT6(cinfo,code,p1,p2,p3,p4,p5,p6) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(cinfo)->err->msg_parm.i[2] = (p3), \
|
||||
(cinfo)->err->msg_parm.i[3] = (p4), \
|
||||
(cinfo)->err->msg_parm.i[4] = (p5), \
|
||||
(cinfo)->err->msg_parm.i[5] = (p6), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||
#define ERREXITS(cinfo,code,str) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||
|
||||
#define MAKESTMT(stuff) do { stuff } while (0)
|
||||
|
||||
/* Nonfatal errors (we can keep going, but the data is probably corrupt) */
|
||||
#define WARNMS(cinfo,code) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
|
||||
#define WARNMS1(cinfo,code,p1) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
|
||||
#define WARNMS2(cinfo,code,p1,p2) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
|
||||
|
||||
/* Informational/debugging messages */
|
||||
#define TRACEMS(cinfo,lvl,code) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
|
||||
#define TRACEMS1(cinfo,lvl,code,p1) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
|
||||
#define TRACEMS2(cinfo,lvl,code,p1,p2) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
|
||||
#define TRACEMS3(cinfo,lvl,code,p1,p2,p3) \
|
||||
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
|
||||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \
|
||||
(cinfo)->err->msg_code = (code); \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
|
||||
#define TRACEMS4(cinfo,lvl,code,p1,p2,p3,p4) \
|
||||
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
|
||||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
|
||||
(cinfo)->err->msg_code = (code); \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
|
||||
#define TRACEMS5(cinfo,lvl,code,p1,p2,p3,p4,p5) \
|
||||
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
|
||||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
|
||||
_mp[4] = (p5); \
|
||||
(cinfo)->err->msg_code = (code); \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
|
||||
#define TRACEMS8(cinfo,lvl,code,p1,p2,p3,p4,p5,p6,p7,p8) \
|
||||
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
|
||||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
|
||||
_mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \
|
||||
(cinfo)->err->msg_code = (code); \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
|
||||
#define TRACEMSS(cinfo,lvl,code,str) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
|
||||
|
||||
#endif /* JERROR_H */
|
|
@ -0,0 +1,174 @@
|
|||
/*
|
||||
* jfdctflt.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* Modified 2003-2009 by Guido Vollbeding.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains a floating-point implementation of the
|
||||
* forward DCT (Discrete Cosine Transform).
|
||||
*
|
||||
* This implementation should be more accurate than either of the integer
|
||||
* DCT implementations. However, it may not give the same results on all
|
||||
* machines because of differences in roundoff behavior. Speed will depend
|
||||
* on the hardware's floating point capacity.
|
||||
*
|
||||
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
||||
* on each column. Direct algorithms are also available, but they are
|
||||
* much more complex and seem not to be any faster when reduced to code.
|
||||
*
|
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
||||
* JPEG textbook (see REFERENCES section in file README). The following code
|
||||
* is based directly on figure 4-8 in P&M.
|
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
||||
* possible to arrange the computation so that many of the multiplies are
|
||||
* simple scalings of the final outputs. These multiplies can then be
|
||||
* folded into the multiplications or divisions by the JPEG quantization
|
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
||||
* to be done in the DCT itself.
|
||||
* The primary disadvantage of this method is that with a fixed-point
|
||||
* implementation, accuracy is lost due to imprecise representation of the
|
||||
* scaled quantization values. However, that problem does not arise if
|
||||
* we use floating point arithmetic.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Perform the forward DCT on one block of samples.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_fdct_float (FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col)
|
||||
{
|
||||
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||
FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
|
||||
FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
|
||||
FAST_FLOAT *dataptr;
|
||||
JSAMPROW elemptr;
|
||||
int ctr;
|
||||
|
||||
/* Pass 1: process rows. */
|
||||
|
||||
dataptr = data;
|
||||
for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
||||
elemptr = sample_data[ctr] + start_col;
|
||||
|
||||
/* Load data into workspace */
|
||||
tmp0 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]));
|
||||
tmp7 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]));
|
||||
tmp1 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]));
|
||||
tmp6 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]));
|
||||
tmp2 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]));
|
||||
tmp5 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]));
|
||||
tmp3 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]));
|
||||
tmp4 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]));
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
/* Apply unsigned->signed conversion */
|
||||
dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */
|
||||
dataptr[4] = tmp10 - tmp11;
|
||||
|
||||
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
|
||||
dataptr[2] = tmp13 + z1; /* phase 5 */
|
||||
dataptr[6] = tmp13 - z1;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */
|
||||
tmp11 = tmp5 + tmp6;
|
||||
tmp12 = tmp6 + tmp7;
|
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
||||
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
|
||||
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
|
||||
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
|
||||
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
|
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */
|
||||
z13 = tmp7 - z3;
|
||||
|
||||
dataptr[5] = z13 + z2; /* phase 6 */
|
||||
dataptr[3] = z13 - z2;
|
||||
dataptr[1] = z11 + z4;
|
||||
dataptr[7] = z11 - z4;
|
||||
|
||||
dataptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
|
||||
/* Pass 2: process columns. */
|
||||
|
||||
dataptr = data;
|
||||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
||||
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
|
||||
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
|
||||
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
|
||||
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
|
||||
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
|
||||
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
|
||||
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
|
||||
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
|
||||
dataptr[DCTSIZE*4] = tmp10 - tmp11;
|
||||
|
||||
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
|
||||
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
|
||||
dataptr[DCTSIZE*6] = tmp13 - z1;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */
|
||||
tmp11 = tmp5 + tmp6;
|
||||
tmp12 = tmp6 + tmp7;
|
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
||||
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
|
||||
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
|
||||
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
|
||||
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
|
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */
|
||||
z13 = tmp7 - z3;
|
||||
|
||||
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
|
||||
dataptr[DCTSIZE*3] = z13 - z2;
|
||||
dataptr[DCTSIZE*1] = z11 + z4;
|
||||
dataptr[DCTSIZE*7] = z11 - z4;
|
||||
|
||||
dataptr++; /* advance pointer to next column */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_FLOAT_SUPPORTED */
|
|
@ -0,0 +1,230 @@
|
|||
/*
|
||||
* jfdctfst.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* Modified 2003-2009 by Guido Vollbeding.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains a fast, not so accurate integer implementation of the
|
||||
* forward DCT (Discrete Cosine Transform).
|
||||
*
|
||||
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
||||
* on each column. Direct algorithms are also available, but they are
|
||||
* much more complex and seem not to be any faster when reduced to code.
|
||||
*
|
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
||||
* JPEG textbook (see REFERENCES section in file README). The following code
|
||||
* is based directly on figure 4-8 in P&M.
|
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
||||
* possible to arrange the computation so that many of the multiplies are
|
||||
* simple scalings of the final outputs. These multiplies can then be
|
||||
* folded into the multiplications or divisions by the JPEG quantization
|
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
||||
* to be done in the DCT itself.
|
||||
* The primary disadvantage of this method is that with fixed-point math,
|
||||
* accuracy is lost due to imprecise representation of the scaled
|
||||
* quantization values. The smaller the quantization table entry, the less
|
||||
* precise the scaled value, so this implementation does worse with high-
|
||||
* quality-setting files than with low-quality ones.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/* Scaling decisions are generally the same as in the LL&M algorithm;
|
||||
* see jfdctint.c for more details. However, we choose to descale
|
||||
* (right shift) multiplication products as soon as they are formed,
|
||||
* rather than carrying additional fractional bits into subsequent additions.
|
||||
* This compromises accuracy slightly, but it lets us save a few shifts.
|
||||
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
|
||||
* everywhere except in the multiplications proper; this saves a good deal
|
||||
* of work on 16-bit-int machines.
|
||||
*
|
||||
* Again to save a few shifts, the intermediate results between pass 1 and
|
||||
* pass 2 are not upscaled, but are represented only to integral precision.
|
||||
*
|
||||
* A final compromise is to represent the multiplicative constants to only
|
||||
* 8 fractional bits, rather than 13. This saves some shifting work on some
|
||||
* machines, and may also reduce the cost of multiplication (since there
|
||||
* are fewer one-bits in the constants).
|
||||
*/
|
||||
|
||||
#define CONST_BITS 8
|
||||
|
||||
|
||||
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
||||
* causing a lot of useless floating-point operations at run time.
|
||||
* To get around this we use the following pre-calculated constants.
|
||||
* If you change CONST_BITS you may want to add appropriate values.
|
||||
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
||||
*/
|
||||
|
||||
#if CONST_BITS == 8
|
||||
#define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */
|
||||
#define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */
|
||||
#define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */
|
||||
#define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */
|
||||
#else
|
||||
#define FIX_0_382683433 FIX(0.382683433)
|
||||
#define FIX_0_541196100 FIX(0.541196100)
|
||||
#define FIX_0_707106781 FIX(0.707106781)
|
||||
#define FIX_1_306562965 FIX(1.306562965)
|
||||
#endif
|
||||
|
||||
|
||||
/* We can gain a little more speed, with a further compromise in accuracy,
|
||||
* by omitting the addition in a descaling shift. This yields an incorrectly
|
||||
* rounded result half the time...
|
||||
*/
|
||||
|
||||
#ifndef USE_ACCURATE_ROUNDING
|
||||
#undef DESCALE
|
||||
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
|
||||
#endif
|
||||
|
||||
|
||||
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
|
||||
* descale to yield a DCTELEM result.
|
||||
*/
|
||||
|
||||
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
|
||||
|
||||
|
||||
/*
|
||||
* Perform the forward DCT on one block of samples.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_fdct_ifast (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
|
||||
{
|
||||
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||
DCTELEM tmp10, tmp11, tmp12, tmp13;
|
||||
DCTELEM z1, z2, z3, z4, z5, z11, z13;
|
||||
DCTELEM *dataptr;
|
||||
JSAMPROW elemptr;
|
||||
int ctr;
|
||||
SHIFT_TEMPS
|
||||
|
||||
/* Pass 1: process rows. */
|
||||
|
||||
dataptr = data;
|
||||
for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
||||
elemptr = sample_data[ctr] + start_col;
|
||||
|
||||
/* Load data into workspace */
|
||||
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
|
||||
tmp7 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
|
||||
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
|
||||
tmp6 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
|
||||
tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
|
||||
tmp5 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
|
||||
tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
|
||||
tmp4 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
/* Apply unsigned->signed conversion */
|
||||
dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */
|
||||
dataptr[4] = tmp10 - tmp11;
|
||||
|
||||
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
|
||||
dataptr[2] = tmp13 + z1; /* phase 5 */
|
||||
dataptr[6] = tmp13 - z1;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */
|
||||
tmp11 = tmp5 + tmp6;
|
||||
tmp12 = tmp6 + tmp7;
|
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
||||
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
|
||||
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
|
||||
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
|
||||
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
|
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */
|
||||
z13 = tmp7 - z3;
|
||||
|
||||
dataptr[5] = z13 + z2; /* phase 6 */
|
||||
dataptr[3] = z13 - z2;
|
||||
dataptr[1] = z11 + z4;
|
||||
dataptr[7] = z11 - z4;
|
||||
|
||||
dataptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
|
||||
/* Pass 2: process columns. */
|
||||
|
||||
dataptr = data;
|
||||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
||||
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
|
||||
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
|
||||
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
|
||||
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
|
||||
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
|
||||
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
|
||||
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
|
||||
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
|
||||
dataptr[DCTSIZE*4] = tmp10 - tmp11;
|
||||
|
||||
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
|
||||
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
|
||||
dataptr[DCTSIZE*6] = tmp13 - z1;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */
|
||||
tmp11 = tmp5 + tmp6;
|
||||
tmp12 = tmp6 + tmp7;
|
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
||||
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
|
||||
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
|
||||
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
|
||||
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
|
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */
|
||||
z13 = tmp7 - z3;
|
||||
|
||||
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
|
||||
dataptr[DCTSIZE*3] = z13 - z2;
|
||||
dataptr[DCTSIZE*1] = z11 + z4;
|
||||
dataptr[DCTSIZE*7] = z11 - z4;
|
||||
|
||||
dataptr++; /* advance pointer to next column */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_IFAST_SUPPORTED */
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,242 @@
|
|||
/*
|
||||
* jidctflt.c
|
||||
*
|
||||
* Copyright (C) 1994-1998, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains a floating-point implementation of the
|
||||
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
||||
* must also perform dequantization of the input coefficients.
|
||||
*
|
||||
* This implementation should be more accurate than either of the integer
|
||||
* IDCT implementations. However, it may not give the same results on all
|
||||
* machines because of differences in roundoff behavior. Speed will depend
|
||||
* on the hardware's floating point capacity.
|
||||
*
|
||||
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
|
||||
* on each row (or vice versa, but it's more convenient to emit a row at
|
||||
* a time). Direct algorithms are also available, but they are much more
|
||||
* complex and seem not to be any faster when reduced to code.
|
||||
*
|
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
||||
* JPEG textbook (see REFERENCES section in file README). The following code
|
||||
* is based directly on figure 4-8 in P&M.
|
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
||||
* possible to arrange the computation so that many of the multiplies are
|
||||
* simple scalings of the final outputs. These multiplies can then be
|
||||
* folded into the multiplications or divisions by the JPEG quantization
|
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
||||
* to be done in the DCT itself.
|
||||
* The primary disadvantage of this method is that with a fixed-point
|
||||
* implementation, accuracy is lost due to imprecise representation of the
|
||||
* scaled quantization values. However, that problem does not arise if
|
||||
* we use floating point arithmetic.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
||||
* entry; produce a float result.
|
||||
*/
|
||||
|
||||
#define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval))
|
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block,
|
||||
JSAMPARRAY output_buf, JDIMENSION output_col)
|
||||
{
|
||||
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||
FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
|
||||
FAST_FLOAT z5, z10, z11, z12, z13;
|
||||
JCOEFPTR inptr;
|
||||
FLOAT_MULT_TYPE * quantptr;
|
||||
FAST_FLOAT * wsptr;
|
||||
JSAMPROW outptr;
|
||||
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
||||
int ctr;
|
||||
FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
|
||||
SHIFT_TEMPS
|
||||
|
||||
/* Pass 1: process columns from input, store into work array. */
|
||||
|
||||
inptr = coef_block;
|
||||
quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
|
||||
wsptr = workspace;
|
||||
for (ctr = DCTSIZE; ctr > 0; ctr--) {
|
||||
/* Due to quantization, we will usually find that many of the input
|
||||
* coefficients are zero, especially the AC terms. We can exploit this
|
||||
* by short-circuiting the IDCT calculation for any column in which all
|
||||
* the AC terms are zero. In that case each output is equal to the
|
||||
* DC coefficient (with scale factor as needed).
|
||||
* With typical images and quantization tables, half or more of the
|
||||
* column DCT calculations can be simplified this way.
|
||||
*/
|
||||
|
||||
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
|
||||
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
|
||||
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
|
||||
inptr[DCTSIZE*7] == 0) {
|
||||
/* AC terms all zero */
|
||||
FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||
|
||||
wsptr[DCTSIZE*0] = dcval;
|
||||
wsptr[DCTSIZE*1] = dcval;
|
||||
wsptr[DCTSIZE*2] = dcval;
|
||||
wsptr[DCTSIZE*3] = dcval;
|
||||
wsptr[DCTSIZE*4] = dcval;
|
||||
wsptr[DCTSIZE*5] = dcval;
|
||||
wsptr[DCTSIZE*6] = dcval;
|
||||
wsptr[DCTSIZE*7] = dcval;
|
||||
|
||||
inptr++; /* advance pointers to next column */
|
||||
quantptr++;
|
||||
wsptr++;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
||||
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
||||
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
||||
|
||||
tmp10 = tmp0 + tmp2; /* phase 3 */
|
||||
tmp11 = tmp0 - tmp2;
|
||||
|
||||
tmp13 = tmp1 + tmp3; /* phases 5-3 */
|
||||
tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
|
||||
|
||||
tmp0 = tmp10 + tmp13; /* phase 2 */
|
||||
tmp3 = tmp10 - tmp13;
|
||||
tmp1 = tmp11 + tmp12;
|
||||
tmp2 = tmp11 - tmp12;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
||||
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
||||
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
||||
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
||||
|
||||
z13 = tmp6 + tmp5; /* phase 6 */
|
||||
z10 = tmp6 - tmp5;
|
||||
z11 = tmp4 + tmp7;
|
||||
z12 = tmp4 - tmp7;
|
||||
|
||||
tmp7 = z11 + z13; /* phase 5 */
|
||||
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
|
||||
|
||||
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
|
||||
tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
|
||||
tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
|
||||
|
||||
tmp6 = tmp12 - tmp7; /* phase 2 */
|
||||
tmp5 = tmp11 - tmp6;
|
||||
tmp4 = tmp10 + tmp5;
|
||||
|
||||
wsptr[DCTSIZE*0] = tmp0 + tmp7;
|
||||
wsptr[DCTSIZE*7] = tmp0 - tmp7;
|
||||
wsptr[DCTSIZE*1] = tmp1 + tmp6;
|
||||
wsptr[DCTSIZE*6] = tmp1 - tmp6;
|
||||
wsptr[DCTSIZE*2] = tmp2 + tmp5;
|
||||
wsptr[DCTSIZE*5] = tmp2 - tmp5;
|
||||
wsptr[DCTSIZE*4] = tmp3 + tmp4;
|
||||
wsptr[DCTSIZE*3] = tmp3 - tmp4;
|
||||
|
||||
inptr++; /* advance pointers to next column */
|
||||
quantptr++;
|
||||
wsptr++;
|
||||
}
|
||||
|
||||
/* Pass 2: process rows from work array, store into output array. */
|
||||
/* Note that we must descale the results by a factor of 8 == 2**3. */
|
||||
|
||||
wsptr = workspace;
|
||||
for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
||||
outptr = output_buf[ctr] + output_col;
|
||||
/* Rows of zeroes can be exploited in the same way as we did with columns.
|
||||
* However, the column calculation has created many nonzero AC terms, so
|
||||
* the simplification applies less often (typically 5% to 10% of the time).
|
||||
* And testing floats for zero is relatively expensive, so we don't bother.
|
||||
*/
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = wsptr[0] + wsptr[4];
|
||||
tmp11 = wsptr[0] - wsptr[4];
|
||||
|
||||
tmp13 = wsptr[2] + wsptr[6];
|
||||
tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
|
||||
|
||||
tmp0 = tmp10 + tmp13;
|
||||
tmp3 = tmp10 - tmp13;
|
||||
tmp1 = tmp11 + tmp12;
|
||||
tmp2 = tmp11 - tmp12;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
z13 = wsptr[5] + wsptr[3];
|
||||
z10 = wsptr[5] - wsptr[3];
|
||||
z11 = wsptr[1] + wsptr[7];
|
||||
z12 = wsptr[1] - wsptr[7];
|
||||
|
||||
tmp7 = z11 + z13;
|
||||
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
|
||||
|
||||
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
|
||||
tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
|
||||
tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
|
||||
|
||||
tmp6 = tmp12 - tmp7;
|
||||
tmp5 = tmp11 - tmp6;
|
||||
tmp4 = tmp10 + tmp5;
|
||||
|
||||
/* Final output stage: scale down by a factor of 8 and range-limit */
|
||||
|
||||
outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
|
||||
& RANGE_MASK];
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_FLOAT_SUPPORTED */
|
|
@ -0,0 +1,368 @@
|
|||
/*
|
||||
* jidctfst.c
|
||||
*
|
||||
* Copyright (C) 1994-1998, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains a fast, not so accurate integer implementation of the
|
||||
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
||||
* must also perform dequantization of the input coefficients.
|
||||
*
|
||||
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
|
||||
* on each row (or vice versa, but it's more convenient to emit a row at
|
||||
* a time). Direct algorithms are also available, but they are much more
|
||||
* complex and seem not to be any faster when reduced to code.
|
||||
*
|
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
||||
* JPEG textbook (see REFERENCES section in file README). The following code
|
||||
* is based directly on figure 4-8 in P&M.
|
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
||||
* possible to arrange the computation so that many of the multiplies are
|
||||
* simple scalings of the final outputs. These multiplies can then be
|
||||
* folded into the multiplications or divisions by the JPEG quantization
|
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
||||
* to be done in the DCT itself.
|
||||
* The primary disadvantage of this method is that with fixed-point math,
|
||||
* accuracy is lost due to imprecise representation of the scaled
|
||||
* quantization values. The smaller the quantization table entry, the less
|
||||
* precise the scaled value, so this implementation does worse with high-
|
||||
* quality-setting files than with low-quality ones.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/* Scaling decisions are generally the same as in the LL&M algorithm;
|
||||
* see jidctint.c for more details. However, we choose to descale
|
||||
* (right shift) multiplication products as soon as they are formed,
|
||||
* rather than carrying additional fractional bits into subsequent additions.
|
||||
* This compromises accuracy slightly, but it lets us save a few shifts.
|
||||
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
|
||||
* everywhere except in the multiplications proper; this saves a good deal
|
||||
* of work on 16-bit-int machines.
|
||||
*
|
||||
* The dequantized coefficients are not integers because the AA&N scaling
|
||||
* factors have been incorporated. We represent them scaled up by PASS1_BITS,
|
||||
* so that the first and second IDCT rounds have the same input scaling.
|
||||
* For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
|
||||
* avoid a descaling shift; this compromises accuracy rather drastically
|
||||
* for small quantization table entries, but it saves a lot of shifts.
|
||||
* For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
|
||||
* so we use a much larger scaling factor to preserve accuracy.
|
||||
*
|
||||
* A final compromise is to represent the multiplicative constants to only
|
||||
* 8 fractional bits, rather than 13. This saves some shifting work on some
|
||||
* machines, and may also reduce the cost of multiplication (since there
|
||||
* are fewer one-bits in the constants).
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define CONST_BITS 8
|
||||
#define PASS1_BITS 2
|
||||
#else
|
||||
#define CONST_BITS 8
|
||||
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
|
||||
#endif
|
||||
|
||||
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
||||
* causing a lot of useless floating-point operations at run time.
|
||||
* To get around this we use the following pre-calculated constants.
|
||||
* If you change CONST_BITS you may want to add appropriate values.
|
||||
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
||||
*/
|
||||
|
||||
#if CONST_BITS == 8
|
||||
#define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */
|
||||
#define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */
|
||||
#define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */
|
||||
#define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */
|
||||
#else
|
||||
#define FIX_1_082392200 FIX(1.082392200)
|
||||
#define FIX_1_414213562 FIX(1.414213562)
|
||||
#define FIX_1_847759065 FIX(1.847759065)
|
||||
#define FIX_2_613125930 FIX(2.613125930)
|
||||
#endif
|
||||
|
||||
|
||||
/* We can gain a little more speed, with a further compromise in accuracy,
|
||||
* by omitting the addition in a descaling shift. This yields an incorrectly
|
||||
* rounded result half the time...
|
||||
*/
|
||||
|
||||
#ifndef USE_ACCURATE_ROUNDING
|
||||
#undef DESCALE
|
||||
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
|
||||
#endif
|
||||
|
||||
|
||||
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
|
||||
* descale to yield a DCTELEM result.
|
||||
*/
|
||||
|
||||
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
|
||||
|
||||
|
||||
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
||||
* entry; produce a DCTELEM result. For 8-bit data a 16x16->16
|
||||
* multiplication will do. For 12-bit data, the multiplier table is
|
||||
* declared INT32, so a 32-bit multiply will be used.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval))
|
||||
#else
|
||||
#define DEQUANTIZE(coef,quantval) \
|
||||
DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
|
||||
#endif
|
||||
|
||||
|
||||
/* Like DESCALE, but applies to a DCTELEM and produces an int.
|
||||
* We assume that int right shift is unsigned if INT32 right shift is.
|
||||
*/
|
||||
|
||||
#ifdef RIGHT_SHIFT_IS_UNSIGNED
|
||||
#define ISHIFT_TEMPS DCTELEM ishift_temp;
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */
|
||||
#else
|
||||
#define DCTELEMBITS 32 /* DCTELEM must be 32 bits */
|
||||
#endif
|
||||
#define IRIGHT_SHIFT(x,shft) \
|
||||
((ishift_temp = (x)) < 0 ? \
|
||||
(ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
|
||||
(ishift_temp >> (shft)))
|
||||
#else
|
||||
#define ISHIFT_TEMPS
|
||||
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
|
||||
#endif
|
||||
|
||||
#ifdef USE_ACCURATE_ROUNDING
|
||||
#define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
|
||||
#else
|
||||
#define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n))
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block,
|
||||
JSAMPARRAY output_buf, JDIMENSION output_col)
|
||||
{
|
||||
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||
DCTELEM tmp10, tmp11, tmp12, tmp13;
|
||||
DCTELEM z5, z10, z11, z12, z13;
|
||||
JCOEFPTR inptr;
|
||||
IFAST_MULT_TYPE * quantptr;
|
||||
int * wsptr;
|
||||
JSAMPROW outptr;
|
||||
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
||||
int ctr;
|
||||
int workspace[DCTSIZE2]; /* buffers data between passes */
|
||||
SHIFT_TEMPS /* for DESCALE */
|
||||
ISHIFT_TEMPS /* for IDESCALE */
|
||||
|
||||
/* Pass 1: process columns from input, store into work array. */
|
||||
|
||||
inptr = coef_block;
|
||||
quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
|
||||
wsptr = workspace;
|
||||
for (ctr = DCTSIZE; ctr > 0; ctr--) {
|
||||
/* Due to quantization, we will usually find that many of the input
|
||||
* coefficients are zero, especially the AC terms. We can exploit this
|
||||
* by short-circuiting the IDCT calculation for any column in which all
|
||||
* the AC terms are zero. In that case each output is equal to the
|
||||
* DC coefficient (with scale factor as needed).
|
||||
* With typical images and quantization tables, half or more of the
|
||||
* column DCT calculations can be simplified this way.
|
||||
*/
|
||||
|
||||
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
|
||||
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
|
||||
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
|
||||
inptr[DCTSIZE*7] == 0) {
|
||||
/* AC terms all zero */
|
||||
int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||
|
||||
wsptr[DCTSIZE*0] = dcval;
|
||||
wsptr[DCTSIZE*1] = dcval;
|
||||
wsptr[DCTSIZE*2] = dcval;
|
||||
wsptr[DCTSIZE*3] = dcval;
|
||||
wsptr[DCTSIZE*4] = dcval;
|
||||
wsptr[DCTSIZE*5] = dcval;
|
||||
wsptr[DCTSIZE*6] = dcval;
|
||||
wsptr[DCTSIZE*7] = dcval;
|
||||
|
||||
inptr++; /* advance pointers to next column */
|
||||
quantptr++;
|
||||
wsptr++;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
||||
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
||||
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
||||
|
||||
tmp10 = tmp0 + tmp2; /* phase 3 */
|
||||
tmp11 = tmp0 - tmp2;
|
||||
|
||||
tmp13 = tmp1 + tmp3; /* phases 5-3 */
|
||||
tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
|
||||
|
||||
tmp0 = tmp10 + tmp13; /* phase 2 */
|
||||
tmp3 = tmp10 - tmp13;
|
||||
tmp1 = tmp11 + tmp12;
|
||||
tmp2 = tmp11 - tmp12;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
||||
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
||||
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
||||
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
||||
|
||||
z13 = tmp6 + tmp5; /* phase 6 */
|
||||
z10 = tmp6 - tmp5;
|
||||
z11 = tmp4 + tmp7;
|
||||
z12 = tmp4 - tmp7;
|
||||
|
||||
tmp7 = z11 + z13; /* phase 5 */
|
||||
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
|
||||
|
||||
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
|
||||
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
|
||||
tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
|
||||
|
||||
tmp6 = tmp12 - tmp7; /* phase 2 */
|
||||
tmp5 = tmp11 - tmp6;
|
||||
tmp4 = tmp10 + tmp5;
|
||||
|
||||
wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
|
||||
wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
|
||||
wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
|
||||
wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
|
||||
wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
|
||||
wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
|
||||
wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
|
||||
wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
|
||||
|
||||
inptr++; /* advance pointers to next column */
|
||||
quantptr++;
|
||||
wsptr++;
|
||||
}
|
||||
|
||||
/* Pass 2: process rows from work array, store into output array. */
|
||||
/* Note that we must descale the results by a factor of 8 == 2**3, */
|
||||
/* and also undo the PASS1_BITS scaling. */
|
||||
|
||||
wsptr = workspace;
|
||||
for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
||||
outptr = output_buf[ctr] + output_col;
|
||||
/* Rows of zeroes can be exploited in the same way as we did with columns.
|
||||
* However, the column calculation has created many nonzero AC terms, so
|
||||
* the simplification applies less often (typically 5% to 10% of the time).
|
||||
* On machines with very fast multiplication, it's possible that the
|
||||
* test takes more time than it's worth. In that case this section
|
||||
* may be commented out.
|
||||
*/
|
||||
|
||||
#ifndef NO_ZERO_ROW_TEST
|
||||
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
|
||||
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
|
||||
/* AC terms all zero */
|
||||
JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
|
||||
outptr[0] = dcval;
|
||||
outptr[1] = dcval;
|
||||
outptr[2] = dcval;
|
||||
outptr[3] = dcval;
|
||||
outptr[4] = dcval;
|
||||
outptr[5] = dcval;
|
||||
outptr[6] = dcval;
|
||||
outptr[7] = dcval;
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
continue;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
|
||||
tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
|
||||
|
||||
tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
|
||||
tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
|
||||
- tmp13;
|
||||
|
||||
tmp0 = tmp10 + tmp13;
|
||||
tmp3 = tmp10 - tmp13;
|
||||
tmp1 = tmp11 + tmp12;
|
||||
tmp2 = tmp11 - tmp12;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
|
||||
z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
|
||||
z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
|
||||
z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
|
||||
|
||||
tmp7 = z11 + z13; /* phase 5 */
|
||||
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
|
||||
|
||||
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
|
||||
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
|
||||
tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
|
||||
|
||||
tmp6 = tmp12 - tmp7; /* phase 2 */
|
||||
tmp5 = tmp11 - tmp6;
|
||||
tmp4 = tmp10 + tmp5;
|
||||
|
||||
/* Final output stage: scale down by a factor of 8 and range-limit */
|
||||
|
||||
outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_IFAST_SUPPORTED */
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,91 @@
|
|||
/*
|
||||
* jinclude.h
|
||||
*
|
||||
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file exists to provide a single place to fix any problems with
|
||||
* including the wrong system include files. (Common problems are taken
|
||||
* care of by the standard jconfig symbols, but on really weird systems
|
||||
* you may have to edit this file.)
|
||||
*
|
||||
* NOTE: this file is NOT intended to be included by applications using the
|
||||
* JPEG library. Most applications need only include jpeglib.h.
|
||||
*/
|
||||
|
||||
|
||||
/* Include auto-config file to find out which system include files we need. */
|
||||
|
||||
#include "jconfig.h" /* auto configuration options */
|
||||
#define JCONFIG_INCLUDED /* so that jpeglib.h doesn't do it again */
|
||||
|
||||
/*
|
||||
* We need the NULL macro and size_t typedef.
|
||||
* On an ANSI-conforming system it is sufficient to include <stddef.h>.
|
||||
* Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to
|
||||
* pull in <sys/types.h> as well.
|
||||
* Note that the core JPEG library does not require <stdio.h>;
|
||||
* only the default error handler and data source/destination modules do.
|
||||
* But we must pull it in because of the references to FILE in jpeglib.h.
|
||||
* You can remove those references if you want to compile without <stdio.h>.
|
||||
*/
|
||||
|
||||
#ifdef HAVE_STDDEF_H
|
||||
#include <stddef.h>
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_STDLIB_H
|
||||
#include <stdlib.h>
|
||||
#endif
|
||||
|
||||
#ifdef NEED_SYS_TYPES_H
|
||||
#include <sys/types.h>
|
||||
#endif
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
/*
|
||||
* We need memory copying and zeroing functions, plus strncpy().
|
||||
* ANSI and System V implementations declare these in <string.h>.
|
||||
* BSD doesn't have the mem() functions, but it does have bcopy()/bzero().
|
||||
* Some systems may declare memset and memcpy in <memory.h>.
|
||||
*
|
||||
* NOTE: we assume the size parameters to these functions are of type size_t.
|
||||
* Change the casts in these macros if not!
|
||||
*/
|
||||
|
||||
#ifdef NEED_BSD_STRINGS
|
||||
|
||||
#include <strings.h>
|
||||
#define MEMZERO(target,size) bzero((void *)(target), (size_t)(size))
|
||||
#define MEMCOPY(dest,src,size) bcopy((const void *)(src), (void *)(dest), (size_t)(size))
|
||||
|
||||
#else /* not BSD, assume ANSI/SysV string lib */
|
||||
|
||||
#include <string.h>
|
||||
#define MEMZERO(target,size) memset((void *)(target), 0, (size_t)(size))
|
||||
#define MEMCOPY(dest,src,size) memcpy((void *)(dest), (const void *)(src), (size_t)(size))
|
||||
|
||||
#endif
|
||||
|
||||
/*
|
||||
* In ANSI C, and indeed any rational implementation, size_t is also the
|
||||
* type returned by sizeof(). However, it seems there are some irrational
|
||||
* implementations out there, in which sizeof() returns an int even though
|
||||
* size_t is defined as long or unsigned long. To ensure consistent results
|
||||
* we always use this SIZEOF() macro in place of using sizeof() directly.
|
||||
*/
|
||||
|
||||
#define SIZEOF(object) ((size_t) sizeof(object))
|
||||
|
||||
/*
|
||||
* The modules that use fread() and fwrite() always invoke them through
|
||||
* these macros. On some systems you may need to twiddle the argument casts.
|
||||
* CAUTION: argument order is different from underlying functions!
|
||||
*/
|
||||
|
||||
#define JFREAD(file,buf,sizeofbuf) \
|
||||
((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
|
||||
#define JFWRITE(file,buf,sizeofbuf) \
|
||||
((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
|
|
@ -0,0 +1,167 @@
|
|||
/*
|
||||
* jmemansi.c
|
||||
*
|
||||
* Copyright (C) 1992-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file provides a simple generic implementation of the system-
|
||||
* dependent portion of the JPEG memory manager. This implementation
|
||||
* assumes that you have the ANSI-standard library routine tmpfile().
|
||||
* Also, the problem of determining the amount of memory available
|
||||
* is shoved onto the user.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jmemsys.h" /* import the system-dependent declarations */
|
||||
|
||||
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
|
||||
extern void * malloc JPP((size_t size));
|
||||
extern void free JPP((void *ptr));
|
||||
#endif
|
||||
|
||||
#ifndef SEEK_SET /* pre-ANSI systems may not define this; */
|
||||
#define SEEK_SET 0 /* if not, assume 0 is correct */
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Memory allocation and freeing are controlled by the regular library
|
||||
* routines malloc() and free().
|
||||
*/
|
||||
|
||||
GLOBAL(void *)
|
||||
jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
return (void *) malloc(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
|
||||
{
|
||||
free(object);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* "Large" objects are treated the same as "small" ones.
|
||||
* NB: although we include FAR keywords in the routine declarations,
|
||||
* this file won't actually work in 80x86 small/medium model; at least,
|
||||
* you probably won't be able to process useful-size images in only 64KB.
|
||||
*/
|
||||
|
||||
GLOBAL(void FAR *)
|
||||
jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
return (void FAR *) malloc(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
|
||||
{
|
||||
free(object);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This routine computes the total memory space available for allocation.
|
||||
* It's impossible to do this in a portable way; our current solution is
|
||||
* to make the user tell us (with a default value set at compile time).
|
||||
* If you can actually get the available space, it's a good idea to subtract
|
||||
* a slop factor of 5% or so.
|
||||
*/
|
||||
|
||||
#ifndef DEFAULT_MAX_MEM /* so can override from makefile */
|
||||
#define DEFAULT_MAX_MEM 1000000L /* default: one megabyte */
|
||||
#endif
|
||||
|
||||
GLOBAL(long)
|
||||
jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
|
||||
long max_bytes_needed, long already_allocated)
|
||||
{
|
||||
return cinfo->mem->max_memory_to_use - already_allocated;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Backing store (temporary file) management.
|
||||
* Backing store objects are only used when the value returned by
|
||||
* jpeg_mem_available is less than the total space needed. You can dispense
|
||||
* with these routines if you have plenty of virtual memory; see jmemnobs.c.
|
||||
*/
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
read_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count)
|
||||
{
|
||||
if (fseek(info->temp_file, file_offset, SEEK_SET))
|
||||
ERREXIT(cinfo, JERR_TFILE_SEEK);
|
||||
if (JFREAD(info->temp_file, buffer_address, byte_count)
|
||||
!= (size_t) byte_count)
|
||||
ERREXIT(cinfo, JERR_TFILE_READ);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
write_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count)
|
||||
{
|
||||
if (fseek(info->temp_file, file_offset, SEEK_SET))
|
||||
ERREXIT(cinfo, JERR_TFILE_SEEK);
|
||||
if (JFWRITE(info->temp_file, buffer_address, byte_count)
|
||||
!= (size_t) byte_count)
|
||||
ERREXIT(cinfo, JERR_TFILE_WRITE);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
close_backing_store (j_common_ptr cinfo, backing_store_ptr info)
|
||||
{
|
||||
fclose(info->temp_file);
|
||||
/* Since this implementation uses tmpfile() to create the file,
|
||||
* no explicit file deletion is needed.
|
||||
*/
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initial opening of a backing-store object.
|
||||
*
|
||||
* This version uses tmpfile(), which constructs a suitable file name
|
||||
* behind the scenes. We don't have to use info->temp_name[] at all;
|
||||
* indeed, we can't even find out the actual name of the temp file.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
long total_bytes_needed)
|
||||
{
|
||||
if ((info->temp_file = tmpfile()) == NULL)
|
||||
ERREXITS(cinfo, JERR_TFILE_CREATE, "");
|
||||
info->read_backing_store = read_backing_store;
|
||||
info->write_backing_store = write_backing_store;
|
||||
info->close_backing_store = close_backing_store;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* These routines take care of any system-dependent initialization and
|
||||
* cleanup required.
|
||||
*/
|
||||
|
||||
GLOBAL(long)
|
||||
jpeg_mem_init (j_common_ptr cinfo)
|
||||
{
|
||||
return DEFAULT_MAX_MEM; /* default for max_memory_to_use */
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_mem_term (j_common_ptr cinfo)
|
||||
{
|
||||
/* no work */
|
||||
}
|
|
@ -0,0 +1,289 @@
|
|||
/*
|
||||
* jmemmac.c
|
||||
*
|
||||
* Copyright (C) 1992-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* jmemmac.c provides an Apple Macintosh implementation of the system-
|
||||
* dependent portion of the JPEG memory manager.
|
||||
*
|
||||
* If you use jmemmac.c, then you must define USE_MAC_MEMMGR in the
|
||||
* JPEG_INTERNALS part of jconfig.h.
|
||||
*
|
||||
* jmemmac.c uses the Macintosh toolbox routines NewPtr and DisposePtr
|
||||
* instead of malloc and free. It accurately determines the amount of
|
||||
* memory available by using CompactMem. Notice that if left to its
|
||||
* own devices, this code can chew up all available space in the
|
||||
* application's zone, with the exception of the rather small "slop"
|
||||
* factor computed in jpeg_mem_available(). The application can ensure
|
||||
* that more space is left over by reducing max_memory_to_use.
|
||||
*
|
||||
* Large images are swapped to disk using temporary files and System 7.0+'s
|
||||
* temporary folder functionality.
|
||||
*
|
||||
* Note that jmemmac.c depends on two features of MacOS that were first
|
||||
* introduced in System 7: FindFolder and the FSSpec-based calls.
|
||||
* If your application uses jmemmac.c and is run under System 6 or earlier,
|
||||
* and the jpeg library decides it needs a temporary file, it will abort,
|
||||
* printing error messages about requiring System 7. (If no temporary files
|
||||
* are created, it will run fine.)
|
||||
*
|
||||
* If you want to use jmemmac.c in an application that might be used with
|
||||
* System 6 or earlier, then you should remove dependencies on FindFolder
|
||||
* and the FSSpec calls. You will need to replace FindFolder with some
|
||||
* other mechanism for finding a place to put temporary files, and you
|
||||
* should replace the FSSpec calls with their HFS equivalents:
|
||||
*
|
||||
* FSpDelete -> HDelete
|
||||
* FSpGetFInfo -> HGetFInfo
|
||||
* FSpCreate -> HCreate
|
||||
* FSpOpenDF -> HOpen *** Note: not HOpenDF ***
|
||||
* FSMakeFSSpec -> (fill in spec by hand.)
|
||||
*
|
||||
* (Use HOpen instead of HOpenDF. HOpen is just a glue-interface to PBHOpen,
|
||||
* which is on all HFS macs. HOpenDF is a System 7 addition which avoids the
|
||||
* ages-old problem of names starting with a period.)
|
||||
*
|
||||
* Contributed by Sam Bushell (jsam@iagu.on.net) and
|
||||
* Dan Gildor (gyld@in-touch.com).
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jmemsys.h" /* import the system-dependent declarations */
|
||||
|
||||
#ifndef USE_MAC_MEMMGR /* make sure user got configuration right */
|
||||
You forgot to define USE_MAC_MEMMGR in jconfig.h. /* deliberate syntax error */
|
||||
#endif
|
||||
|
||||
#include <Memory.h> /* we use the MacOS memory manager */
|
||||
#include <Files.h> /* we use the MacOS File stuff */
|
||||
#include <Folders.h> /* we use the MacOS HFS stuff */
|
||||
#include <Script.h> /* for smSystemScript */
|
||||
#include <Gestalt.h> /* we use Gestalt to test for specific functionality */
|
||||
|
||||
#ifndef TEMP_FILE_NAME /* can override from jconfig.h or Makefile */
|
||||
#define TEMP_FILE_NAME "JPG%03d.TMP"
|
||||
#endif
|
||||
|
||||
static int next_file_num; /* to distinguish among several temp files */
|
||||
|
||||
|
||||
/*
|
||||
* Memory allocation and freeing are controlled by the MacOS library
|
||||
* routines NewPtr() and DisposePtr(), which allocate fixed-address
|
||||
* storage. Unfortunately, the IJG library isn't smart enough to cope
|
||||
* with relocatable storage.
|
||||
*/
|
||||
|
||||
GLOBAL(void *)
|
||||
jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
return (void *) NewPtr(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
|
||||
{
|
||||
DisposePtr((Ptr) object);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* "Large" objects are treated the same as "small" ones.
|
||||
* NB: we include FAR keywords in the routine declarations simply for
|
||||
* consistency with the rest of the IJG code; FAR should expand to empty
|
||||
* on rational architectures like the Mac.
|
||||
*/
|
||||
|
||||
GLOBAL(void FAR *)
|
||||
jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
return (void FAR *) NewPtr(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
|
||||
{
|
||||
DisposePtr((Ptr) object);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This routine computes the total memory space available for allocation.
|
||||
*/
|
||||
|
||||
GLOBAL(long)
|
||||
jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
|
||||
long max_bytes_needed, long already_allocated)
|
||||
{
|
||||
long limit = cinfo->mem->max_memory_to_use - already_allocated;
|
||||
long slop, mem;
|
||||
|
||||
/* Don't ask for more than what application has told us we may use */
|
||||
if (max_bytes_needed > limit && limit > 0)
|
||||
max_bytes_needed = limit;
|
||||
/* Find whether there's a big enough free block in the heap.
|
||||
* CompactMem tries to create a contiguous block of the requested size,
|
||||
* and then returns the size of the largest free block (which could be
|
||||
* much more or much less than we asked for).
|
||||
* We add some slop to ensure we don't use up all available memory.
|
||||
*/
|
||||
slop = max_bytes_needed / 16 + 32768L;
|
||||
mem = CompactMem(max_bytes_needed + slop) - slop;
|
||||
if (mem < 0)
|
||||
mem = 0; /* sigh, couldn't even get the slop */
|
||||
/* Don't take more than the application says we can have */
|
||||
if (mem > limit && limit > 0)
|
||||
mem = limit;
|
||||
return mem;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Backing store (temporary file) management.
|
||||
* Backing store objects are only used when the value returned by
|
||||
* jpeg_mem_available is less than the total space needed. You can dispense
|
||||
* with these routines if you have plenty of virtual memory; see jmemnobs.c.
|
||||
*/
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
read_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count)
|
||||
{
|
||||
long bytes = byte_count;
|
||||
long retVal;
|
||||
|
||||
if ( SetFPos ( info->temp_file, fsFromStart, file_offset ) != noErr )
|
||||
ERREXIT(cinfo, JERR_TFILE_SEEK);
|
||||
|
||||
retVal = FSRead ( info->temp_file, &bytes,
|
||||
(unsigned char *) buffer_address );
|
||||
if ( retVal != noErr || bytes != byte_count )
|
||||
ERREXIT(cinfo, JERR_TFILE_READ);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
write_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count)
|
||||
{
|
||||
long bytes = byte_count;
|
||||
long retVal;
|
||||
|
||||
if ( SetFPos ( info->temp_file, fsFromStart, file_offset ) != noErr )
|
||||
ERREXIT(cinfo, JERR_TFILE_SEEK);
|
||||
|
||||
retVal = FSWrite ( info->temp_file, &bytes,
|
||||
(unsigned char *) buffer_address );
|
||||
if ( retVal != noErr || bytes != byte_count )
|
||||
ERREXIT(cinfo, JERR_TFILE_WRITE);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
close_backing_store (j_common_ptr cinfo, backing_store_ptr info)
|
||||
{
|
||||
FSClose ( info->temp_file );
|
||||
FSpDelete ( &(info->tempSpec) );
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initial opening of a backing-store object.
|
||||
*
|
||||
* This version uses FindFolder to find the Temporary Items folder,
|
||||
* and puts the temporary file in there.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
long total_bytes_needed)
|
||||
{
|
||||
short tmpRef, vRefNum;
|
||||
long dirID;
|
||||
FInfo finderInfo;
|
||||
FSSpec theSpec;
|
||||
Str255 fName;
|
||||
OSErr osErr;
|
||||
long gestaltResponse = 0;
|
||||
|
||||
/* Check that FSSpec calls are available. */
|
||||
osErr = Gestalt( gestaltFSAttr, &gestaltResponse );
|
||||
if ( ( osErr != noErr )
|
||||
|| !( gestaltResponse & (1<<gestaltHasFSSpecCalls) ) )
|
||||
ERREXITS(cinfo, JERR_TFILE_CREATE, "- System 7.0 or later required");
|
||||
/* TO DO: add a proper error message to jerror.h. */
|
||||
|
||||
/* Check that FindFolder is available. */
|
||||
osErr = Gestalt( gestaltFindFolderAttr, &gestaltResponse );
|
||||
if ( ( osErr != noErr )
|
||||
|| !( gestaltResponse & (1<<gestaltFindFolderPresent) ) )
|
||||
ERREXITS(cinfo, JERR_TFILE_CREATE, "- System 7.0 or later required.");
|
||||
/* TO DO: add a proper error message to jerror.h. */
|
||||
|
||||
osErr = FindFolder ( kOnSystemDisk, kTemporaryFolderType, kCreateFolder,
|
||||
&vRefNum, &dirID );
|
||||
if ( osErr != noErr )
|
||||
ERREXITS(cinfo, JERR_TFILE_CREATE, "- temporary items folder unavailable");
|
||||
/* TO DO: Try putting the temp files somewhere else. */
|
||||
|
||||
/* Keep generating file names till we find one that's not in use */
|
||||
for (;;) {
|
||||
next_file_num++; /* advance counter */
|
||||
|
||||
sprintf(info->temp_name, TEMP_FILE_NAME, next_file_num);
|
||||
strcpy ( (Ptr)fName+1, info->temp_name );
|
||||
*fName = strlen (info->temp_name);
|
||||
osErr = FSMakeFSSpec ( vRefNum, dirID, fName, &theSpec );
|
||||
|
||||
if ( (osErr = FSpGetFInfo ( &theSpec, &finderInfo ) ) != noErr )
|
||||
break;
|
||||
}
|
||||
|
||||
osErr = FSpCreate ( &theSpec, '????', '????', smSystemScript );
|
||||
if ( osErr != noErr )
|
||||
ERREXITS(cinfo, JERR_TFILE_CREATE, info->temp_name);
|
||||
|
||||
osErr = FSpOpenDF ( &theSpec, fsRdWrPerm, &(info->temp_file) );
|
||||
if ( osErr != noErr )
|
||||
ERREXITS(cinfo, JERR_TFILE_CREATE, info->temp_name);
|
||||
|
||||
info->tempSpec = theSpec;
|
||||
|
||||
info->read_backing_store = read_backing_store;
|
||||
info->write_backing_store = write_backing_store;
|
||||
info->close_backing_store = close_backing_store;
|
||||
TRACEMSS(cinfo, 1, JTRC_TFILE_OPEN, info->temp_name);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* These routines take care of any system-dependent initialization and
|
||||
* cleanup required.
|
||||
*/
|
||||
|
||||
GLOBAL(long)
|
||||
jpeg_mem_init (j_common_ptr cinfo)
|
||||
{
|
||||
next_file_num = 0;
|
||||
|
||||
/* max_memory_to_use will be initialized to FreeMem()'s result;
|
||||
* the calling application might later reduce it, for example
|
||||
* to leave room to invoke multiple JPEG objects.
|
||||
* Note that FreeMem returns the total number of free bytes;
|
||||
* it may not be possible to allocate a single block of this size.
|
||||
*/
|
||||
return FreeMem();
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_mem_term (j_common_ptr cinfo)
|
||||
{
|
||||
/* no work */
|
||||
}
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,276 @@
|
|||
/*
|
||||
* jmemname.c
|
||||
*
|
||||
* Copyright (C) 1992-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file provides a generic implementation of the system-dependent
|
||||
* portion of the JPEG memory manager. This implementation assumes that
|
||||
* you must explicitly construct a name for each temp file.
|
||||
* Also, the problem of determining the amount of memory available
|
||||
* is shoved onto the user.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jmemsys.h" /* import the system-dependent declarations */
|
||||
|
||||
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
|
||||
extern void * malloc JPP((size_t size));
|
||||
extern void free JPP((void *ptr));
|
||||
#endif
|
||||
|
||||
#ifndef SEEK_SET /* pre-ANSI systems may not define this; */
|
||||
#define SEEK_SET 0 /* if not, assume 0 is correct */
|
||||
#endif
|
||||
|
||||
#ifdef DONT_USE_B_MODE /* define mode parameters for fopen() */
|
||||
#define READ_BINARY "r"
|
||||
#define RW_BINARY "w+"
|
||||
#else
|
||||
#ifdef VMS /* VMS is very nonstandard */
|
||||
#define READ_BINARY "rb", "ctx=stm"
|
||||
#define RW_BINARY "w+b", "ctx=stm"
|
||||
#else /* standard ANSI-compliant case */
|
||||
#define READ_BINARY "rb"
|
||||
#define RW_BINARY "w+b"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Selection of a file name for a temporary file.
|
||||
* This is system-dependent!
|
||||
*
|
||||
* The code as given is suitable for most Unix systems, and it is easily
|
||||
* modified for most non-Unix systems. Some notes:
|
||||
* 1. The temp file is created in the directory named by TEMP_DIRECTORY.
|
||||
* The default value is /usr/tmp, which is the conventional place for
|
||||
* creating large temp files on Unix. On other systems you'll probably
|
||||
* want to change the file location. You can do this by editing the
|
||||
* #define, or (preferred) by defining TEMP_DIRECTORY in jconfig.h.
|
||||
*
|
||||
* 2. If you need to change the file name as well as its location,
|
||||
* you can override the TEMP_FILE_NAME macro. (Note that this is
|
||||
* actually a printf format string; it must contain %s and %d.)
|
||||
* Few people should need to do this.
|
||||
*
|
||||
* 3. mktemp() is used to ensure that multiple processes running
|
||||
* simultaneously won't select the same file names. If your system
|
||||
* doesn't have mktemp(), define NO_MKTEMP to do it the hard way.
|
||||
* (If you don't have <errno.h>, also define NO_ERRNO_H.)
|
||||
*
|
||||
* 4. You probably want to define NEED_SIGNAL_CATCHER so that cjpeg.c/djpeg.c
|
||||
* will cause the temp files to be removed if you stop the program early.
|
||||
*/
|
||||
|
||||
#ifndef TEMP_DIRECTORY /* can override from jconfig.h or Makefile */
|
||||
#define TEMP_DIRECTORY "/usr/tmp/" /* recommended setting for Unix */
|
||||
#endif
|
||||
|
||||
static int next_file_num; /* to distinguish among several temp files */
|
||||
|
||||
#ifdef NO_MKTEMP
|
||||
|
||||
#ifndef TEMP_FILE_NAME /* can override from jconfig.h or Makefile */
|
||||
#define TEMP_FILE_NAME "%sJPG%03d.TMP"
|
||||
#endif
|
||||
|
||||
#ifndef NO_ERRNO_H
|
||||
#include <errno.h> /* to define ENOENT */
|
||||
#endif
|
||||
|
||||
/* ANSI C specifies that errno is a macro, but on older systems it's more
|
||||
* likely to be a plain int variable. And not all versions of errno.h
|
||||
* bother to declare it, so we have to in order to be most portable. Thus:
|
||||
*/
|
||||
#ifndef errno
|
||||
extern int errno;
|
||||
#endif
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
select_file_name (char * fname)
|
||||
{
|
||||
FILE * tfile;
|
||||
|
||||
/* Keep generating file names till we find one that's not in use */
|
||||
for (;;) {
|
||||
next_file_num++; /* advance counter */
|
||||
sprintf(fname, TEMP_FILE_NAME, TEMP_DIRECTORY, next_file_num);
|
||||
if ((tfile = fopen(fname, READ_BINARY)) == NULL) {
|
||||
/* fopen could have failed for a reason other than the file not
|
||||
* being there; for example, file there but unreadable.
|
||||
* If <errno.h> isn't available, then we cannot test the cause.
|
||||
*/
|
||||
#ifdef ENOENT
|
||||
if (errno != ENOENT)
|
||||
continue;
|
||||
#endif
|
||||
break;
|
||||
}
|
||||
fclose(tfile); /* oops, it's there; close tfile & try again */
|
||||
}
|
||||
}
|
||||
|
||||
#else /* ! NO_MKTEMP */
|
||||
|
||||
/* Note that mktemp() requires the initial filename to end in six X's */
|
||||
#ifndef TEMP_FILE_NAME /* can override from jconfig.h or Makefile */
|
||||
#define TEMP_FILE_NAME "%sJPG%dXXXXXX"
|
||||
#endif
|
||||
|
||||
LOCAL(void)
|
||||
select_file_name (char * fname)
|
||||
{
|
||||
next_file_num++; /* advance counter */
|
||||
sprintf(fname, TEMP_FILE_NAME, TEMP_DIRECTORY, next_file_num);
|
||||
mktemp(fname); /* make sure file name is unique */
|
||||
/* mktemp replaces the trailing XXXXXX with a unique string of characters */
|
||||
}
|
||||
|
||||
#endif /* NO_MKTEMP */
|
||||
|
||||
|
||||
/*
|
||||
* Memory allocation and freeing are controlled by the regular library
|
||||
* routines malloc() and free().
|
||||
*/
|
||||
|
||||
GLOBAL(void *)
|
||||
jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
return (void *) malloc(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
|
||||
{
|
||||
free(object);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* "Large" objects are treated the same as "small" ones.
|
||||
* NB: although we include FAR keywords in the routine declarations,
|
||||
* this file won't actually work in 80x86 small/medium model; at least,
|
||||
* you probably won't be able to process useful-size images in only 64KB.
|
||||
*/
|
||||
|
||||
GLOBAL(void FAR *)
|
||||
jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
return (void FAR *) malloc(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
|
||||
{
|
||||
free(object);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This routine computes the total memory space available for allocation.
|
||||
* It's impossible to do this in a portable way; our current solution is
|
||||
* to make the user tell us (with a default value set at compile time).
|
||||
* If you can actually get the available space, it's a good idea to subtract
|
||||
* a slop factor of 5% or so.
|
||||
*/
|
||||
|
||||
#ifndef DEFAULT_MAX_MEM /* so can override from makefile */
|
||||
#define DEFAULT_MAX_MEM 1000000L /* default: one megabyte */
|
||||
#endif
|
||||
|
||||
GLOBAL(long)
|
||||
jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
|
||||
long max_bytes_needed, long already_allocated)
|
||||
{
|
||||
return cinfo->mem->max_memory_to_use - already_allocated;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Backing store (temporary file) management.
|
||||
* Backing store objects are only used when the value returned by
|
||||
* jpeg_mem_available is less than the total space needed. You can dispense
|
||||
* with these routines if you have plenty of virtual memory; see jmemnobs.c.
|
||||
*/
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
read_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count)
|
||||
{
|
||||
if (fseek(info->temp_file, file_offset, SEEK_SET))
|
||||
ERREXIT(cinfo, JERR_TFILE_SEEK);
|
||||
if (JFREAD(info->temp_file, buffer_address, byte_count)
|
||||
!= (size_t) byte_count)
|
||||
ERREXIT(cinfo, JERR_TFILE_READ);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
write_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count)
|
||||
{
|
||||
if (fseek(info->temp_file, file_offset, SEEK_SET))
|
||||
ERREXIT(cinfo, JERR_TFILE_SEEK);
|
||||
if (JFWRITE(info->temp_file, buffer_address, byte_count)
|
||||
!= (size_t) byte_count)
|
||||
ERREXIT(cinfo, JERR_TFILE_WRITE);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
close_backing_store (j_common_ptr cinfo, backing_store_ptr info)
|
||||
{
|
||||
fclose(info->temp_file); /* close the file */
|
||||
unlink(info->temp_name); /* delete the file */
|
||||
/* If your system doesn't have unlink(), use remove() instead.
|
||||
* remove() is the ANSI-standard name for this function, but if
|
||||
* your system was ANSI you'd be using jmemansi.c, right?
|
||||
*/
|
||||
TRACEMSS(cinfo, 1, JTRC_TFILE_CLOSE, info->temp_name);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initial opening of a backing-store object.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
long total_bytes_needed)
|
||||
{
|
||||
select_file_name(info->temp_name);
|
||||
if ((info->temp_file = fopen(info->temp_name, RW_BINARY)) == NULL)
|
||||
ERREXITS(cinfo, JERR_TFILE_CREATE, info->temp_name);
|
||||
info->read_backing_store = read_backing_store;
|
||||
info->write_backing_store = write_backing_store;
|
||||
info->close_backing_store = close_backing_store;
|
||||
TRACEMSS(cinfo, 1, JTRC_TFILE_OPEN, info->temp_name);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* These routines take care of any system-dependent initialization and
|
||||
* cleanup required.
|
||||
*/
|
||||
|
||||
GLOBAL(long)
|
||||
jpeg_mem_init (j_common_ptr cinfo)
|
||||
{
|
||||
next_file_num = 0; /* initialize temp file name generator */
|
||||
return DEFAULT_MAX_MEM; /* default for max_memory_to_use */
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_mem_term (j_common_ptr cinfo)
|
||||
{
|
||||
/* no work */
|
||||
}
|
|
@ -0,0 +1,109 @@
|
|||
/*
|
||||
* jmemnobs.c
|
||||
*
|
||||
* Copyright (C) 1992-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file provides a really simple implementation of the system-
|
||||
* dependent portion of the JPEG memory manager. This implementation
|
||||
* assumes that no backing-store files are needed: all required space
|
||||
* can be obtained from malloc().
|
||||
* This is very portable in the sense that it'll compile on almost anything,
|
||||
* but you'd better have lots of main memory (or virtual memory) if you want
|
||||
* to process big images.
|
||||
* Note that the max_memory_to_use option is ignored by this implementation.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jmemsys.h" /* import the system-dependent declarations */
|
||||
|
||||
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
|
||||
extern void * malloc JPP((size_t size));
|
||||
extern void free JPP((void *ptr));
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Memory allocation and freeing are controlled by the regular library
|
||||
* routines malloc() and free().
|
||||
*/
|
||||
|
||||
GLOBAL(void *)
|
||||
jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
return (void *) malloc(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
|
||||
{
|
||||
free(object);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* "Large" objects are treated the same as "small" ones.
|
||||
* NB: although we include FAR keywords in the routine declarations,
|
||||
* this file won't actually work in 80x86 small/medium model; at least,
|
||||
* you probably won't be able to process useful-size images in only 64KB.
|
||||
*/
|
||||
|
||||
GLOBAL(void FAR *)
|
||||
jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
return (void FAR *) malloc(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
|
||||
{
|
||||
free(object);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This routine computes the total memory space available for allocation.
|
||||
* Here we always say, "we got all you want bud!"
|
||||
*/
|
||||
|
||||
GLOBAL(long)
|
||||
jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
|
||||
long max_bytes_needed, long already_allocated)
|
||||
{
|
||||
return max_bytes_needed;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Backing store (temporary file) management.
|
||||
* Since jpeg_mem_available always promised the moon,
|
||||
* this should never be called and we can just error out.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
long total_bytes_needed)
|
||||
{
|
||||
ERREXIT(cinfo, JERR_NO_BACKING_STORE);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* These routines take care of any system-dependent initialization and
|
||||
* cleanup required. Here, there isn't any.
|
||||
*/
|
||||
|
||||
GLOBAL(long)
|
||||
jpeg_mem_init (j_common_ptr cinfo)
|
||||
{
|
||||
return 0; /* just set max_memory_to_use to 0 */
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_mem_term (j_common_ptr cinfo)
|
||||
{
|
||||
/* no work */
|
||||
}
|
|
@ -0,0 +1,198 @@
|
|||
/*
|
||||
* jmemsys.h
|
||||
*
|
||||
* Copyright (C) 1992-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This include file defines the interface between the system-independent
|
||||
* and system-dependent portions of the JPEG memory manager. No other
|
||||
* modules need include it. (The system-independent portion is jmemmgr.c;
|
||||
* there are several different versions of the system-dependent portion.)
|
||||
*
|
||||
* This file works as-is for the system-dependent memory managers supplied
|
||||
* in the IJG distribution. You may need to modify it if you write a
|
||||
* custom memory manager. If system-dependent changes are needed in
|
||||
* this file, the best method is to #ifdef them based on a configuration
|
||||
* symbol supplied in jconfig.h, as we have done with USE_MSDOS_MEMMGR
|
||||
* and USE_MAC_MEMMGR.
|
||||
*/
|
||||
|
||||
|
||||
/* Short forms of external names for systems with brain-damaged linkers. */
|
||||
|
||||
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
||||
#define jpeg_get_small jGetSmall
|
||||
#define jpeg_free_small jFreeSmall
|
||||
#define jpeg_get_large jGetLarge
|
||||
#define jpeg_free_large jFreeLarge
|
||||
#define jpeg_mem_available jMemAvail
|
||||
#define jpeg_open_backing_store jOpenBackStore
|
||||
#define jpeg_mem_init jMemInit
|
||||
#define jpeg_mem_term jMemTerm
|
||||
#endif /* NEED_SHORT_EXTERNAL_NAMES */
|
||||
|
||||
|
||||
/*
|
||||
* These two functions are used to allocate and release small chunks of
|
||||
* memory. (Typically the total amount requested through jpeg_get_small is
|
||||
* no more than 20K or so; this will be requested in chunks of a few K each.)
|
||||
* Behavior should be the same as for the standard library functions malloc
|
||||
* and free; in particular, jpeg_get_small must return NULL on failure.
|
||||
* On most systems, these ARE malloc and free. jpeg_free_small is passed the
|
||||
* size of the object being freed, just in case it's needed.
|
||||
* On an 80x86 machine using small-data memory model, these manage near heap.
|
||||
*/
|
||||
|
||||
EXTERN(void *) jpeg_get_small JPP((j_common_ptr cinfo, size_t sizeofobject));
|
||||
EXTERN(void) jpeg_free_small JPP((j_common_ptr cinfo, void * object,
|
||||
size_t sizeofobject));
|
||||
|
||||
/*
|
||||
* These two functions are used to allocate and release large chunks of
|
||||
* memory (up to the total free space designated by jpeg_mem_available).
|
||||
* The interface is the same as above, except that on an 80x86 machine,
|
||||
* far pointers are used. On most other machines these are identical to
|
||||
* the jpeg_get/free_small routines; but we keep them separate anyway,
|
||||
* in case a different allocation strategy is desirable for large chunks.
|
||||
*/
|
||||
|
||||
EXTERN(void FAR *) jpeg_get_large JPP((j_common_ptr cinfo,
|
||||
size_t sizeofobject));
|
||||
EXTERN(void) jpeg_free_large JPP((j_common_ptr cinfo, void FAR * object,
|
||||
size_t sizeofobject));
|
||||
|
||||
/*
|
||||
* The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may
|
||||
* be requested in a single call to jpeg_get_large (and jpeg_get_small for that
|
||||
* matter, but that case should never come into play). This macro is needed
|
||||
* to model the 64Kb-segment-size limit of far addressing on 80x86 machines.
|
||||
* On those machines, we expect that jconfig.h will provide a proper value.
|
||||
* On machines with 32-bit flat address spaces, any large constant may be used.
|
||||
*
|
||||
* NB: jmemmgr.c expects that MAX_ALLOC_CHUNK will be representable as type
|
||||
* size_t and will be a multiple of sizeof(align_type).
|
||||
*/
|
||||
|
||||
#ifndef MAX_ALLOC_CHUNK /* may be overridden in jconfig.h */
|
||||
#define MAX_ALLOC_CHUNK 1000000000L
|
||||
#endif
|
||||
|
||||
/*
|
||||
* This routine computes the total space still available for allocation by
|
||||
* jpeg_get_large. If more space than this is needed, backing store will be
|
||||
* used. NOTE: any memory already allocated must not be counted.
|
||||
*
|
||||
* There is a minimum space requirement, corresponding to the minimum
|
||||
* feasible buffer sizes; jmemmgr.c will request that much space even if
|
||||
* jpeg_mem_available returns zero. The maximum space needed, enough to hold
|
||||
* all working storage in memory, is also passed in case it is useful.
|
||||
* Finally, the total space already allocated is passed. If no better
|
||||
* method is available, cinfo->mem->max_memory_to_use - already_allocated
|
||||
* is often a suitable calculation.
|
||||
*
|
||||
* It is OK for jpeg_mem_available to underestimate the space available
|
||||
* (that'll just lead to more backing-store access than is really necessary).
|
||||
* However, an overestimate will lead to failure. Hence it's wise to subtract
|
||||
* a slop factor from the true available space. 5% should be enough.
|
||||
*
|
||||
* On machines with lots of virtual memory, any large constant may be returned.
|
||||
* Conversely, zero may be returned to always use the minimum amount of memory.
|
||||
*/
|
||||
|
||||
EXTERN(long) jpeg_mem_available JPP((j_common_ptr cinfo,
|
||||
long min_bytes_needed,
|
||||
long max_bytes_needed,
|
||||
long already_allocated));
|
||||
|
||||
|
||||
/*
|
||||
* This structure holds whatever state is needed to access a single
|
||||
* backing-store object. The read/write/close method pointers are called
|
||||
* by jmemmgr.c to manipulate the backing-store object; all other fields
|
||||
* are private to the system-dependent backing store routines.
|
||||
*/
|
||||
|
||||
#define TEMP_NAME_LENGTH 64 /* max length of a temporary file's name */
|
||||
|
||||
|
||||
#ifdef USE_MSDOS_MEMMGR /* DOS-specific junk */
|
||||
|
||||
typedef unsigned short XMSH; /* type of extended-memory handles */
|
||||
typedef unsigned short EMSH; /* type of expanded-memory handles */
|
||||
|
||||
typedef union {
|
||||
short file_handle; /* DOS file handle if it's a temp file */
|
||||
XMSH xms_handle; /* handle if it's a chunk of XMS */
|
||||
EMSH ems_handle; /* handle if it's a chunk of EMS */
|
||||
} handle_union;
|
||||
|
||||
#endif /* USE_MSDOS_MEMMGR */
|
||||
|
||||
#ifdef USE_MAC_MEMMGR /* Mac-specific junk */
|
||||
#include <Files.h>
|
||||
#endif /* USE_MAC_MEMMGR */
|
||||
|
||||
|
||||
typedef struct backing_store_struct * backing_store_ptr;
|
||||
|
||||
typedef struct backing_store_struct {
|
||||
/* Methods for reading/writing/closing this backing-store object */
|
||||
JMETHOD(void, read_backing_store, (j_common_ptr cinfo,
|
||||
backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count));
|
||||
JMETHOD(void, write_backing_store, (j_common_ptr cinfo,
|
||||
backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count));
|
||||
JMETHOD(void, close_backing_store, (j_common_ptr cinfo,
|
||||
backing_store_ptr info));
|
||||
|
||||
/* Private fields for system-dependent backing-store management */
|
||||
#ifdef USE_MSDOS_MEMMGR
|
||||
/* For the MS-DOS manager (jmemdos.c), we need: */
|
||||
handle_union handle; /* reference to backing-store storage object */
|
||||
char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
|
||||
#else
|
||||
#ifdef USE_MAC_MEMMGR
|
||||
/* For the Mac manager (jmemmac.c), we need: */
|
||||
short temp_file; /* file reference number to temp file */
|
||||
FSSpec tempSpec; /* the FSSpec for the temp file */
|
||||
char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
|
||||
#else
|
||||
/* For a typical implementation with temp files, we need: */
|
||||
FILE * temp_file; /* stdio reference to temp file */
|
||||
char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */
|
||||
#endif
|
||||
#endif
|
||||
} backing_store_info;
|
||||
|
||||
|
||||
/*
|
||||
* Initial opening of a backing-store object. This must fill in the
|
||||
* read/write/close pointers in the object. The read/write routines
|
||||
* may take an error exit if the specified maximum file size is exceeded.
|
||||
* (If jpeg_mem_available always returns a large value, this routine can
|
||||
* just take an error exit.)
|
||||
*/
|
||||
|
||||
EXTERN(void) jpeg_open_backing_store JPP((j_common_ptr cinfo,
|
||||
backing_store_ptr info,
|
||||
long total_bytes_needed));
|
||||
|
||||
|
||||
/*
|
||||
* These routines take care of any system-dependent initialization and
|
||||
* cleanup required. jpeg_mem_init will be called before anything is
|
||||
* allocated (and, therefore, nothing in cinfo is of use except the error
|
||||
* manager pointer). It should return a suitable default value for
|
||||
* max_memory_to_use; this may subsequently be overridden by the surrounding
|
||||
* application. (Note that max_memory_to_use is only important if
|
||||
* jpeg_mem_available chooses to consult it ... no one else will.)
|
||||
* jpeg_mem_term may assume that all requested memory has been freed and that
|
||||
* all opened backing-store objects have been closed.
|
||||
*/
|
||||
|
||||
EXTERN(long) jpeg_mem_init JPP((j_common_ptr cinfo));
|
||||
EXTERN(void) jpeg_mem_term JPP((j_common_ptr cinfo));
|
|
@ -0,0 +1,369 @@
|
|||
/*
|
||||
* jmorecfg.h
|
||||
*
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* Modified 1997-2009 by Guido Vollbeding.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains additional configuration options that customize the
|
||||
* JPEG software for special applications or support machine-dependent
|
||||
* optimizations. Most users will not need to touch this file.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* Define BITS_IN_JSAMPLE as either
|
||||
* 8 for 8-bit sample values (the usual setting)
|
||||
* 12 for 12-bit sample values
|
||||
* Only 8 and 12 are legal data precisions for lossy JPEG according to the
|
||||
* JPEG standard, and the IJG code does not support anything else!
|
||||
* We do not support run-time selection of data precision, sorry.
|
||||
*/
|
||||
|
||||
#define BITS_IN_JSAMPLE 8 /* use 8 or 12 */
|
||||
|
||||
|
||||
/*
|
||||
* Maximum number of components (color channels) allowed in JPEG image.
|
||||
* To meet the letter of the JPEG spec, set this to 255. However, darn
|
||||
* few applications need more than 4 channels (maybe 5 for CMYK + alpha
|
||||
* mask). We recommend 10 as a reasonable compromise; use 4 if you are
|
||||
* really short on memory. (Each allowed component costs a hundred or so
|
||||
* bytes of storage, whether actually used in an image or not.)
|
||||
*/
|
||||
|
||||
#define MAX_COMPONENTS 10 /* maximum number of image components */
|
||||
|
||||
|
||||
/*
|
||||
* Basic data types.
|
||||
* You may need to change these if you have a machine with unusual data
|
||||
* type sizes; for example, "char" not 8 bits, "short" not 16 bits,
|
||||
* or "long" not 32 bits. We don't care whether "int" is 16 or 32 bits,
|
||||
* but it had better be at least 16.
|
||||
*/
|
||||
|
||||
/* Representation of a single sample (pixel element value).
|
||||
* We frequently allocate large arrays of these, so it's important to keep
|
||||
* them small. But if you have memory to burn and access to char or short
|
||||
* arrays is very slow on your hardware, you might want to change these.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
/* JSAMPLE should be the smallest type that will hold the values 0..255.
|
||||
* You can use a signed char by having GETJSAMPLE mask it with 0xFF.
|
||||
*/
|
||||
|
||||
#ifdef HAVE_UNSIGNED_CHAR
|
||||
|
||||
typedef unsigned char JSAMPLE;
|
||||
#define GETJSAMPLE(value) ((int) (value))
|
||||
|
||||
#else /* not HAVE_UNSIGNED_CHAR */
|
||||
|
||||
typedef char JSAMPLE;
|
||||
#ifdef CHAR_IS_UNSIGNED
|
||||
#define GETJSAMPLE(value) ((int) (value))
|
||||
#else
|
||||
#define GETJSAMPLE(value) ((int) (value) & 0xFF)
|
||||
#endif /* CHAR_IS_UNSIGNED */
|
||||
|
||||
#endif /* HAVE_UNSIGNED_CHAR */
|
||||
|
||||
#define MAXJSAMPLE 255
|
||||
#define CENTERJSAMPLE 128
|
||||
|
||||
#endif /* BITS_IN_JSAMPLE == 8 */
|
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE == 12
|
||||
/* JSAMPLE should be the smallest type that will hold the values 0..4095.
|
||||
* On nearly all machines "short" will do nicely.
|
||||
*/
|
||||
|
||||
typedef short JSAMPLE;
|
||||
#define GETJSAMPLE(value) ((int) (value))
|
||||
|
||||
#define MAXJSAMPLE 4095
|
||||
#define CENTERJSAMPLE 2048
|
||||
|
||||
#endif /* BITS_IN_JSAMPLE == 12 */
|
||||
|
||||
|
||||
/* Representation of a DCT frequency coefficient.
|
||||
* This should be a signed value of at least 16 bits; "short" is usually OK.
|
||||
* Again, we allocate large arrays of these, but you can change to int
|
||||
* if you have memory to burn and "short" is really slow.
|
||||
*/
|
||||
|
||||
typedef short JCOEF;
|
||||
|
||||
|
||||
/* Compressed datastreams are represented as arrays of JOCTET.
|
||||
* These must be EXACTLY 8 bits wide, at least once they are written to
|
||||
* external storage. Note that when using the stdio data source/destination
|
||||
* managers, this is also the data type passed to fread/fwrite.
|
||||
*/
|
||||
|
||||
#ifdef HAVE_UNSIGNED_CHAR
|
||||
|
||||
typedef unsigned char JOCTET;
|
||||
#define GETJOCTET(value) (value)
|
||||
|
||||
#else /* not HAVE_UNSIGNED_CHAR */
|
||||
|
||||
typedef char JOCTET;
|
||||
#ifdef CHAR_IS_UNSIGNED
|
||||
#define GETJOCTET(value) (value)
|
||||
#else
|
||||
#define GETJOCTET(value) ((value) & 0xFF)
|
||||
#endif /* CHAR_IS_UNSIGNED */
|
||||
|
||||
#endif /* HAVE_UNSIGNED_CHAR */
|
||||
|
||||
|
||||
/* These typedefs are used for various table entries and so forth.
|
||||
* They must be at least as wide as specified; but making them too big
|
||||
* won't cost a huge amount of memory, so we don't provide special
|
||||
* extraction code like we did for JSAMPLE. (In other words, these
|
||||
* typedefs live at a different point on the speed/space tradeoff curve.)
|
||||
*/
|
||||
|
||||
/* UINT8 must hold at least the values 0..255. */
|
||||
|
||||
#ifdef HAVE_UNSIGNED_CHAR
|
||||
typedef unsigned char UINT8;
|
||||
#else /* not HAVE_UNSIGNED_CHAR */
|
||||
#ifdef CHAR_IS_UNSIGNED
|
||||
typedef char UINT8;
|
||||
#else /* not CHAR_IS_UNSIGNED */
|
||||
typedef short UINT8;
|
||||
#endif /* CHAR_IS_UNSIGNED */
|
||||
#endif /* HAVE_UNSIGNED_CHAR */
|
||||
|
||||
/* UINT16 must hold at least the values 0..65535. */
|
||||
|
||||
#ifdef HAVE_UNSIGNED_SHORT
|
||||
typedef unsigned short UINT16;
|
||||
#else /* not HAVE_UNSIGNED_SHORT */
|
||||
typedef unsigned int UINT16;
|
||||
#endif /* HAVE_UNSIGNED_SHORT */
|
||||
|
||||
/* INT16 must hold at least the values -32768..32767. */
|
||||
|
||||
#ifndef XMD_H /* X11/xmd.h correctly defines INT16 */
|
||||
typedef short INT16;
|
||||
#endif
|
||||
|
||||
/* INT32 must hold at least signed 32-bit values. */
|
||||
|
||||
#ifndef XMD_H /* X11/xmd.h correctly defines INT32 */
|
||||
#ifndef _BASETSD_H_ /* Microsoft defines it in basetsd.h */
|
||||
#ifndef QGLOBAL_H /* Qt defines it in qglobal.h */
|
||||
typedef long INT32;
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* Datatype used for image dimensions. The JPEG standard only supports
|
||||
* images up to 64K*64K due to 16-bit fields in SOF markers. Therefore
|
||||
* "unsigned int" is sufficient on all machines. However, if you need to
|
||||
* handle larger images and you don't mind deviating from the spec, you
|
||||
* can change this datatype.
|
||||
*/
|
||||
|
||||
typedef unsigned int JDIMENSION;
|
||||
|
||||
#define JPEG_MAX_DIMENSION 65500L /* a tad under 64K to prevent overflows */
|
||||
|
||||
|
||||
/* These macros are used in all function definitions and extern declarations.
|
||||
* You could modify them if you need to change function linkage conventions;
|
||||
* in particular, you'll need to do that to make the library a Windows DLL.
|
||||
* Another application is to make all functions global for use with debuggers
|
||||
* or code profilers that require it.
|
||||
*/
|
||||
|
||||
/* a function called through method pointers: */
|
||||
#define METHODDEF(type) static type
|
||||
/* a function used only in its module: */
|
||||
#define LOCAL(type) static type
|
||||
/* a function referenced thru EXTERNs: */
|
||||
#define GLOBAL(type) type
|
||||
/* a reference to a GLOBAL function: */
|
||||
#define EXTERN(type) extern type
|
||||
|
||||
|
||||
/* This macro is used to declare a "method", that is, a function pointer.
|
||||
* We want to supply prototype parameters if the compiler can cope.
|
||||
* Note that the arglist parameter must be parenthesized!
|
||||
* Again, you can customize this if you need special linkage keywords.
|
||||
*/
|
||||
|
||||
#ifdef HAVE_PROTOTYPES
|
||||
#define JMETHOD(type,methodname,arglist) type (*methodname) arglist
|
||||
#else
|
||||
#define JMETHOD(type,methodname,arglist) type (*methodname) ()
|
||||
#endif
|
||||
|
||||
|
||||
/* Here is the pseudo-keyword for declaring pointers that must be "far"
|
||||
* on 80x86 machines. Most of the specialized coding for 80x86 is handled
|
||||
* by just saying "FAR *" where such a pointer is needed. In a few places
|
||||
* explicit coding is needed; see uses of the NEED_FAR_POINTERS symbol.
|
||||
*/
|
||||
|
||||
#ifndef FAR
|
||||
#ifdef NEED_FAR_POINTERS
|
||||
#define FAR far
|
||||
#else
|
||||
#define FAR
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* On a few systems, type boolean and/or its values FALSE, TRUE may appear
|
||||
* in standard header files. Or you may have conflicts with application-
|
||||
* specific header files that you want to include together with these files.
|
||||
* Defining HAVE_BOOLEAN before including jpeglib.h should make it work.
|
||||
*/
|
||||
|
||||
#ifndef HAVE_BOOLEAN
|
||||
typedef int boolean;
|
||||
#endif
|
||||
#ifndef FALSE /* in case these macros already exist */
|
||||
#define FALSE 0 /* values of boolean */
|
||||
#endif
|
||||
#ifndef TRUE
|
||||
#define TRUE 1
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* The remaining options affect code selection within the JPEG library,
|
||||
* but they don't need to be visible to most applications using the library.
|
||||
* To minimize application namespace pollution, the symbols won't be
|
||||
* defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined.
|
||||
*/
|
||||
|
||||
#ifdef JPEG_INTERNALS
|
||||
#define JPEG_INTERNAL_OPTIONS
|
||||
#endif
|
||||
|
||||
#ifdef JPEG_INTERNAL_OPTIONS
|
||||
|
||||
|
||||
/*
|
||||
* These defines indicate whether to include various optional functions.
|
||||
* Undefining some of these symbols will produce a smaller but less capable
|
||||
* library. Note that you can leave certain source files out of the
|
||||
* compilation/linking process if you've #undef'd the corresponding symbols.
|
||||
* (You may HAVE to do that if your compiler doesn't like null source files.)
|
||||
*/
|
||||
|
||||
/* Capability options common to encoder and decoder: */
|
||||
|
||||
#define DCT_ISLOW_SUPPORTED /* slow but accurate integer algorithm */
|
||||
#define DCT_IFAST_SUPPORTED /* faster, less accurate integer method */
|
||||
#define DCT_FLOAT_SUPPORTED /* floating-point: accurate, fast on fast HW */
|
||||
|
||||
/* Encoder capability options: */
|
||||
|
||||
#define C_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
|
||||
#define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
|
||||
#define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
|
||||
#define DCT_SCALING_SUPPORTED /* Input rescaling via DCT? (Requires DCT_ISLOW)*/
|
||||
#define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */
|
||||
/* Note: if you selected 12-bit data precision, it is dangerous to turn off
|
||||
* ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only good for 8-bit
|
||||
* precision, so jchuff.c normally uses entropy optimization to compute
|
||||
* usable tables for higher precision. If you don't want to do optimization,
|
||||
* you'll have to supply different default Huffman tables.
|
||||
* The exact same statements apply for progressive JPEG: the default tables
|
||||
* don't work for progressive mode. (This may get fixed, however.)
|
||||
*/
|
||||
#define INPUT_SMOOTHING_SUPPORTED /* Input image smoothing option? */
|
||||
|
||||
/* Decoder capability options: */
|
||||
|
||||
#define D_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
|
||||
#define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
|
||||
#define D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
|
||||
#define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? */
|
||||
#define SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */
|
||||
#define BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */
|
||||
#undef UPSAMPLE_SCALING_SUPPORTED /* Output rescaling at upsample stage? */
|
||||
#define UPSAMPLE_MERGING_SUPPORTED /* Fast path for sloppy upsampling? */
|
||||
#define QUANT_1PASS_SUPPORTED /* 1-pass color quantization? */
|
||||
#define QUANT_2PASS_SUPPORTED /* 2-pass color quantization? */
|
||||
|
||||
/* more capability options later, no doubt */
|
||||
|
||||
|
||||
/*
|
||||
* Ordering of RGB data in scanlines passed to or from the application.
|
||||
* If your application wants to deal with data in the order B,G,R, just
|
||||
* change these macros. You can also deal with formats such as R,G,B,X
|
||||
* (one extra byte per pixel) by changing RGB_PIXELSIZE. Note that changing
|
||||
* the offsets will also change the order in which colormap data is organized.
|
||||
* RESTRICTIONS:
|
||||
* 1. The sample applications cjpeg,djpeg do NOT support modified RGB formats.
|
||||
* 2. These macros only affect RGB<=>YCbCr color conversion, so they are not
|
||||
* useful if you are using JPEG color spaces other than YCbCr or grayscale.
|
||||
* 3. The color quantizer modules will not behave desirably if RGB_PIXELSIZE
|
||||
* is not 3 (they don't understand about dummy color components!). So you
|
||||
* can't use color quantization if you change that value.
|
||||
*/
|
||||
|
||||
#define RGB_RED 0 /* Offset of Red in an RGB scanline element */
|
||||
#define RGB_GREEN 1 /* Offset of Green */
|
||||
#define RGB_BLUE 2 /* Offset of Blue */
|
||||
#define RGB_PIXELSIZE 3 /* JSAMPLEs per RGB scanline element */
|
||||
|
||||
|
||||
/* Definitions for speed-related optimizations. */
|
||||
|
||||
|
||||
/* If your compiler supports inline functions, define INLINE
|
||||
* as the inline keyword; otherwise define it as empty.
|
||||
*/
|
||||
|
||||
#ifndef INLINE
|
||||
#ifdef __GNUC__ /* for instance, GNU C knows about inline */
|
||||
#define INLINE __inline__
|
||||
#endif
|
||||
#ifndef INLINE
|
||||
#define INLINE /* default is to define it as empty */
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/* On some machines (notably 68000 series) "int" is 32 bits, but multiplying
|
||||
* two 16-bit shorts is faster than multiplying two ints. Define MULTIPLIER
|
||||
* as short on such a machine. MULTIPLIER must be at least 16 bits wide.
|
||||
*/
|
||||
|
||||
#ifndef MULTIPLIER
|
||||
#define MULTIPLIER int /* type for fastest integer multiply */
|
||||
#endif
|
||||
|
||||
|
||||
/* FAST_FLOAT should be either float or double, whichever is done faster
|
||||
* by your compiler. (Note that this type is only used in the floating point
|
||||
* DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.)
|
||||
* Typically, float is faster in ANSI C compilers, while double is faster in
|
||||
* pre-ANSI compilers (because they insist on converting to double anyway).
|
||||
* The code below therefore chooses float if we have ANSI-style prototypes.
|
||||
*/
|
||||
|
||||
#ifndef FAST_FLOAT
|
||||
#ifdef HAVE_PROTOTYPES
|
||||
#define FAST_FLOAT float
|
||||
#else
|
||||
#define FAST_FLOAT double
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#endif /* JPEG_INTERNAL_OPTIONS */
|
|
@ -0,0 +1,395 @@
|
|||
/*
|
||||
* jpegint.h
|
||||
*
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* Modified 1997-2009 by Guido Vollbeding.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file provides common declarations for the various JPEG modules.
|
||||
* These declarations are considered internal to the JPEG library; most
|
||||
* applications using the library shouldn't need to include this file.
|
||||
*/
|
||||
|
||||
|
||||
/* Declarations for both compression & decompression */
|
||||
|
||||
typedef enum { /* Operating modes for buffer controllers */
|
||||
JBUF_PASS_THRU, /* Plain stripwise operation */
|
||||
/* Remaining modes require a full-image buffer to have been created */
|
||||
JBUF_SAVE_SOURCE, /* Run source subobject only, save output */
|
||||
JBUF_CRANK_DEST, /* Run dest subobject only, using saved data */
|
||||
JBUF_SAVE_AND_PASS /* Run both subobjects, save output */
|
||||
} J_BUF_MODE;
|
||||
|
||||
/* Values of global_state field (jdapi.c has some dependencies on ordering!) */
|
||||
#define CSTATE_START 100 /* after create_compress */
|
||||
#define CSTATE_SCANNING 101 /* start_compress done, write_scanlines OK */
|
||||
#define CSTATE_RAW_OK 102 /* start_compress done, write_raw_data OK */
|
||||
#define CSTATE_WRCOEFS 103 /* jpeg_write_coefficients done */
|
||||
#define DSTATE_START 200 /* after create_decompress */
|
||||
#define DSTATE_INHEADER 201 /* reading header markers, no SOS yet */
|
||||
#define DSTATE_READY 202 /* found SOS, ready for start_decompress */
|
||||
#define DSTATE_PRELOAD 203 /* reading multiscan file in start_decompress*/
|
||||
#define DSTATE_PRESCAN 204 /* performing dummy pass for 2-pass quant */
|
||||
#define DSTATE_SCANNING 205 /* start_decompress done, read_scanlines OK */
|
||||
#define DSTATE_RAW_OK 206 /* start_decompress done, read_raw_data OK */
|
||||
#define DSTATE_BUFIMAGE 207 /* expecting jpeg_start_output */
|
||||
#define DSTATE_BUFPOST 208 /* looking for SOS/EOI in jpeg_finish_output */
|
||||
#define DSTATE_RDCOEFS 209 /* reading file in jpeg_read_coefficients */
|
||||
#define DSTATE_STOPPING 210 /* looking for EOI in jpeg_finish_decompress */
|
||||
|
||||
|
||||
/* Declarations for compression modules */
|
||||
|
||||
/* Master control module */
|
||||
struct jpeg_comp_master {
|
||||
JMETHOD(void, prepare_for_pass, (j_compress_ptr cinfo));
|
||||
JMETHOD(void, pass_startup, (j_compress_ptr cinfo));
|
||||
JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
|
||||
|
||||
/* State variables made visible to other modules */
|
||||
boolean call_pass_startup; /* True if pass_startup must be called */
|
||||
boolean is_last_pass; /* True during last pass */
|
||||
};
|
||||
|
||||
/* Main buffer control (downsampled-data buffer) */
|
||||
struct jpeg_c_main_controller {
|
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
|
||||
JMETHOD(void, process_data, (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
|
||||
JDIMENSION in_rows_avail));
|
||||
};
|
||||
|
||||
/* Compression preprocessing (downsampling input buffer control) */
|
||||
struct jpeg_c_prep_controller {
|
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
|
||||
JMETHOD(void, pre_process_data, (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf,
|
||||
JDIMENSION *in_row_ctr,
|
||||
JDIMENSION in_rows_avail,
|
||||
JSAMPIMAGE output_buf,
|
||||
JDIMENSION *out_row_group_ctr,
|
||||
JDIMENSION out_row_groups_avail));
|
||||
};
|
||||
|
||||
/* Coefficient buffer control */
|
||||
struct jpeg_c_coef_controller {
|
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
|
||||
JMETHOD(boolean, compress_data, (j_compress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf));
|
||||
};
|
||||
|
||||
/* Colorspace conversion */
|
||||
struct jpeg_color_converter {
|
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo));
|
||||
JMETHOD(void, color_convert, (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||
JDIMENSION output_row, int num_rows));
|
||||
};
|
||||
|
||||
/* Downsampling */
|
||||
struct jpeg_downsampler {
|
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo));
|
||||
JMETHOD(void, downsample, (j_compress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_index,
|
||||
JSAMPIMAGE output_buf,
|
||||
JDIMENSION out_row_group_index));
|
||||
|
||||
boolean need_context_rows; /* TRUE if need rows above & below */
|
||||
};
|
||||
|
||||
/* Forward DCT (also controls coefficient quantization) */
|
||||
typedef JMETHOD(void, forward_DCT_ptr,
|
||||
(j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
||||
JDIMENSION start_row, JDIMENSION start_col,
|
||||
JDIMENSION num_blocks));
|
||||
|
||||
struct jpeg_forward_dct {
|
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo));
|
||||
/* It is useful to allow each component to have a separate FDCT method. */
|
||||
forward_DCT_ptr forward_DCT[MAX_COMPONENTS];
|
||||
};
|
||||
|
||||
/* Entropy encoding */
|
||||
struct jpeg_entropy_encoder {
|
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo, boolean gather_statistics));
|
||||
JMETHOD(boolean, encode_mcu, (j_compress_ptr cinfo, JBLOCKROW *MCU_data));
|
||||
JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
|
||||
};
|
||||
|
||||
/* Marker writing */
|
||||
struct jpeg_marker_writer {
|
||||
JMETHOD(void, write_file_header, (j_compress_ptr cinfo));
|
||||
JMETHOD(void, write_frame_header, (j_compress_ptr cinfo));
|
||||
JMETHOD(void, write_scan_header, (j_compress_ptr cinfo));
|
||||
JMETHOD(void, write_file_trailer, (j_compress_ptr cinfo));
|
||||
JMETHOD(void, write_tables_only, (j_compress_ptr cinfo));
|
||||
/* These routines are exported to allow insertion of extra markers */
|
||||
/* Probably only COM and APPn markers should be written this way */
|
||||
JMETHOD(void, write_marker_header, (j_compress_ptr cinfo, int marker,
|
||||
unsigned int datalen));
|
||||
JMETHOD(void, write_marker_byte, (j_compress_ptr cinfo, int val));
|
||||
};
|
||||
|
||||
|
||||
/* Declarations for decompression modules */
|
||||
|
||||
/* Master control module */
|
||||
struct jpeg_decomp_master {
|
||||
JMETHOD(void, prepare_for_output_pass, (j_decompress_ptr cinfo));
|
||||
JMETHOD(void, finish_output_pass, (j_decompress_ptr cinfo));
|
||||
|
||||
/* State variables made visible to other modules */
|
||||
boolean is_dummy_pass; /* True during 1st pass for 2-pass quant */
|
||||
};
|
||||
|
||||
/* Input control module */
|
||||
struct jpeg_input_controller {
|
||||
JMETHOD(int, consume_input, (j_decompress_ptr cinfo));
|
||||
JMETHOD(void, reset_input_controller, (j_decompress_ptr cinfo));
|
||||
JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
|
||||
JMETHOD(void, finish_input_pass, (j_decompress_ptr cinfo));
|
||||
|
||||
/* State variables made visible to other modules */
|
||||
boolean has_multiple_scans; /* True if file has multiple scans */
|
||||
boolean eoi_reached; /* True when EOI has been consumed */
|
||||
};
|
||||
|
||||
/* Main buffer control (downsampled-data buffer) */
|
||||
struct jpeg_d_main_controller {
|
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
|
||||
JMETHOD(void, process_data, (j_decompress_ptr cinfo,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail));
|
||||
};
|
||||
|
||||
/* Coefficient buffer control */
|
||||
struct jpeg_d_coef_controller {
|
||||
JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
|
||||
JMETHOD(int, consume_data, (j_decompress_ptr cinfo));
|
||||
JMETHOD(void, start_output_pass, (j_decompress_ptr cinfo));
|
||||
JMETHOD(int, decompress_data, (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE output_buf));
|
||||
/* Pointer to array of coefficient virtual arrays, or NULL if none */
|
||||
jvirt_barray_ptr *coef_arrays;
|
||||
};
|
||||
|
||||
/* Decompression postprocessing (color quantization buffer control) */
|
||||
struct jpeg_d_post_controller {
|
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
|
||||
JMETHOD(void, post_process_data, (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf,
|
||||
JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail));
|
||||
};
|
||||
|
||||
/* Marker reading & parsing */
|
||||
struct jpeg_marker_reader {
|
||||
JMETHOD(void, reset_marker_reader, (j_decompress_ptr cinfo));
|
||||
/* Read markers until SOS or EOI.
|
||||
* Returns same codes as are defined for jpeg_consume_input:
|
||||
* JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
|
||||
*/
|
||||
JMETHOD(int, read_markers, (j_decompress_ptr cinfo));
|
||||
/* Read a restart marker --- exported for use by entropy decoder only */
|
||||
jpeg_marker_parser_method read_restart_marker;
|
||||
|
||||
/* State of marker reader --- nominally internal, but applications
|
||||
* supplying COM or APPn handlers might like to know the state.
|
||||
*/
|
||||
boolean saw_SOI; /* found SOI? */
|
||||
boolean saw_SOF; /* found SOF? */
|
||||
int next_restart_num; /* next restart number expected (0-7) */
|
||||
unsigned int discarded_bytes; /* # of bytes skipped looking for a marker */
|
||||
};
|
||||
|
||||
/* Entropy decoding */
|
||||
struct jpeg_entropy_decoder {
|
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
|
||||
JMETHOD(boolean, decode_mcu, (j_decompress_ptr cinfo,
|
||||
JBLOCKROW *MCU_data));
|
||||
|
||||
/* This is here to share code between baseline and progressive decoders; */
|
||||
/* other modules probably should not use it */
|
||||
boolean insufficient_data; /* set TRUE after emitting warning */
|
||||
};
|
||||
|
||||
/* Inverse DCT (also performs dequantization) */
|
||||
typedef JMETHOD(void, inverse_DCT_method_ptr,
|
||||
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block,
|
||||
JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
|
||||
struct jpeg_inverse_dct {
|
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
|
||||
/* It is useful to allow each component to have a separate IDCT method. */
|
||||
inverse_DCT_method_ptr inverse_DCT[MAX_COMPONENTS];
|
||||
};
|
||||
|
||||
/* Upsampling (note that upsampler must also call color converter) */
|
||||
struct jpeg_upsampler {
|
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
|
||||
JMETHOD(void, upsample, (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf,
|
||||
JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail));
|
||||
|
||||
boolean need_context_rows; /* TRUE if need rows above & below */
|
||||
};
|
||||
|
||||
/* Colorspace conversion */
|
||||
struct jpeg_color_deconverter {
|
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
|
||||
JMETHOD(void, color_convert, (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows));
|
||||
};
|
||||
|
||||
/* Color quantization or color precision reduction */
|
||||
struct jpeg_color_quantizer {
|
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo, boolean is_pre_scan));
|
||||
JMETHOD(void, color_quantize, (j_decompress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JSAMPARRAY output_buf,
|
||||
int num_rows));
|
||||
JMETHOD(void, finish_pass, (j_decompress_ptr cinfo));
|
||||
JMETHOD(void, new_color_map, (j_decompress_ptr cinfo));
|
||||
};
|
||||
|
||||
|
||||
/* Miscellaneous useful macros */
|
||||
|
||||
#undef MAX
|
||||
#define MAX(a,b) ((a) > (b) ? (a) : (b))
|
||||
#undef MIN
|
||||
#define MIN(a,b) ((a) < (b) ? (a) : (b))
|
||||
|
||||
|
||||
/* We assume that right shift corresponds to signed division by 2 with
|
||||
* rounding towards minus infinity. This is correct for typical "arithmetic
|
||||
* shift" instructions that shift in copies of the sign bit. But some
|
||||
* C compilers implement >> with an unsigned shift. For these machines you
|
||||
* must define RIGHT_SHIFT_IS_UNSIGNED.
|
||||
* RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity.
|
||||
* It is only applied with constant shift counts. SHIFT_TEMPS must be
|
||||
* included in the variables of any routine using RIGHT_SHIFT.
|
||||
*/
|
||||
|
||||
#ifdef RIGHT_SHIFT_IS_UNSIGNED
|
||||
#define SHIFT_TEMPS INT32 shift_temp;
|
||||
#define RIGHT_SHIFT(x,shft) \
|
||||
((shift_temp = (x)) < 0 ? \
|
||||
(shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \
|
||||
(shift_temp >> (shft)))
|
||||
#else
|
||||
#define SHIFT_TEMPS
|
||||
#define RIGHT_SHIFT(x,shft) ((x) >> (shft))
|
||||
#endif
|
||||
|
||||
|
||||
/* Short forms of external names for systems with brain-damaged linkers. */
|
||||
|
||||
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
||||
#define jinit_compress_master jICompress
|
||||
#define jinit_c_master_control jICMaster
|
||||
#define jinit_c_main_controller jICMainC
|
||||
#define jinit_c_prep_controller jICPrepC
|
||||
#define jinit_c_coef_controller jICCoefC
|
||||
#define jinit_color_converter jICColor
|
||||
#define jinit_downsampler jIDownsampler
|
||||
#define jinit_forward_dct jIFDCT
|
||||
#define jinit_huff_encoder jIHEncoder
|
||||
#define jinit_arith_encoder jIAEncoder
|
||||
#define jinit_marker_writer jIMWriter
|
||||
#define jinit_master_decompress jIDMaster
|
||||
#define jinit_d_main_controller jIDMainC
|
||||
#define jinit_d_coef_controller jIDCoefC
|
||||
#define jinit_d_post_controller jIDPostC
|
||||
#define jinit_input_controller jIInCtlr
|
||||
#define jinit_marker_reader jIMReader
|
||||
#define jinit_huff_decoder jIHDecoder
|
||||
#define jinit_arith_decoder jIADecoder
|
||||
#define jinit_inverse_dct jIIDCT
|
||||
#define jinit_upsampler jIUpsampler
|
||||
#define jinit_color_deconverter jIDColor
|
||||
#define jinit_1pass_quantizer jI1Quant
|
||||
#define jinit_2pass_quantizer jI2Quant
|
||||
#define jinit_merged_upsampler jIMUpsampler
|
||||
#define jinit_memory_mgr jIMemMgr
|
||||
#define jdiv_round_up jDivRound
|
||||
#define jround_up jRound
|
||||
#define jcopy_sample_rows jCopySamples
|
||||
#define jcopy_block_row jCopyBlocks
|
||||
#define jzero_far jZeroFar
|
||||
#define jpeg_zigzag_order jZIGTable
|
||||
#define jpeg_natural_order jZAGTable
|
||||
#endif /* NEED_SHORT_EXTERNAL_NAMES */
|
||||
|
||||
|
||||
/* Compression module initialization routines */
|
||||
EXTERN(void) jinit_compress_master JPP((j_compress_ptr cinfo));
|
||||
EXTERN(void) jinit_c_master_control JPP((j_compress_ptr cinfo,
|
||||
boolean transcode_only));
|
||||
EXTERN(void) jinit_c_main_controller JPP((j_compress_ptr cinfo,
|
||||
boolean need_full_buffer));
|
||||
EXTERN(void) jinit_c_prep_controller JPP((j_compress_ptr cinfo,
|
||||
boolean need_full_buffer));
|
||||
EXTERN(void) jinit_c_coef_controller JPP((j_compress_ptr cinfo,
|
||||
boolean need_full_buffer));
|
||||
EXTERN(void) jinit_color_converter JPP((j_compress_ptr cinfo));
|
||||
EXTERN(void) jinit_downsampler JPP((j_compress_ptr cinfo));
|
||||
EXTERN(void) jinit_forward_dct JPP((j_compress_ptr cinfo));
|
||||
EXTERN(void) jinit_huff_encoder JPP((j_compress_ptr cinfo));
|
||||
EXTERN(void) jinit_arith_encoder JPP((j_compress_ptr cinfo));
|
||||
EXTERN(void) jinit_marker_writer JPP((j_compress_ptr cinfo));
|
||||
/* Decompression module initialization routines */
|
||||
EXTERN(void) jinit_master_decompress JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_d_main_controller JPP((j_decompress_ptr cinfo,
|
||||
boolean need_full_buffer));
|
||||
EXTERN(void) jinit_d_coef_controller JPP((j_decompress_ptr cinfo,
|
||||
boolean need_full_buffer));
|
||||
EXTERN(void) jinit_d_post_controller JPP((j_decompress_ptr cinfo,
|
||||
boolean need_full_buffer));
|
||||
EXTERN(void) jinit_input_controller JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_marker_reader JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_huff_decoder JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_arith_decoder JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_inverse_dct JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_upsampler JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_color_deconverter JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_1pass_quantizer JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_2pass_quantizer JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_merged_upsampler JPP((j_decompress_ptr cinfo));
|
||||
/* Memory manager initialization */
|
||||
EXTERN(void) jinit_memory_mgr JPP((j_common_ptr cinfo));
|
||||
|
||||
/* Utility routines in jutils.c */
|
||||
EXTERN(long) jdiv_round_up JPP((long a, long b));
|
||||
EXTERN(long) jround_up JPP((long a, long b));
|
||||
EXTERN(void) jcopy_sample_rows JPP((JSAMPARRAY input_array, int source_row,
|
||||
JSAMPARRAY output_array, int dest_row,
|
||||
int num_rows, JDIMENSION num_cols));
|
||||
EXTERN(void) jcopy_block_row JPP((JBLOCKROW input_row, JBLOCKROW output_row,
|
||||
JDIMENSION num_blocks));
|
||||
EXTERN(void) jzero_far JPP((void FAR * target, size_t bytestozero));
|
||||
/* Constant tables in jutils.c */
|
||||
#if 0 /* This table is not actually needed in v6a */
|
||||
extern const int jpeg_zigzag_order[]; /* natural coef order to zigzag order */
|
||||
#endif
|
||||
extern const int jpeg_natural_order[]; /* zigzag coef order to natural order */
|
||||
|
||||
/* Suppress undefined-structure complaints if necessary. */
|
||||
|
||||
#ifdef INCOMPLETE_TYPES_BROKEN
|
||||
#ifndef AM_MEMORY_MANAGER /* only jmemmgr.c defines these */
|
||||
struct jvirt_sarray_control { long dummy; };
|
||||
struct jvirt_barray_control { long dummy; };
|
||||
#endif
|
||||
#endif /* INCOMPLETE_TYPES_BROKEN */
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,856 @@
|
|||
/*
|
||||
* jquant1.c
|
||||
*
|
||||
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains 1-pass color quantization (color mapping) routines.
|
||||
* These routines provide mapping to a fixed color map using equally spaced
|
||||
* color values. Optional Floyd-Steinberg or ordered dithering is available.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
#ifdef QUANT_1PASS_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* The main purpose of 1-pass quantization is to provide a fast, if not very
|
||||
* high quality, colormapped output capability. A 2-pass quantizer usually
|
||||
* gives better visual quality; however, for quantized grayscale output this
|
||||
* quantizer is perfectly adequate. Dithering is highly recommended with this
|
||||
* quantizer, though you can turn it off if you really want to.
|
||||
*
|
||||
* In 1-pass quantization the colormap must be chosen in advance of seeing the
|
||||
* image. We use a map consisting of all combinations of Ncolors[i] color
|
||||
* values for the i'th component. The Ncolors[] values are chosen so that
|
||||
* their product, the total number of colors, is no more than that requested.
|
||||
* (In most cases, the product will be somewhat less.)
|
||||
*
|
||||
* Since the colormap is orthogonal, the representative value for each color
|
||||
* component can be determined without considering the other components;
|
||||
* then these indexes can be combined into a colormap index by a standard
|
||||
* N-dimensional-array-subscript calculation. Most of the arithmetic involved
|
||||
* can be precalculated and stored in the lookup table colorindex[].
|
||||
* colorindex[i][j] maps pixel value j in component i to the nearest
|
||||
* representative value (grid plane) for that component; this index is
|
||||
* multiplied by the array stride for component i, so that the
|
||||
* index of the colormap entry closest to a given pixel value is just
|
||||
* sum( colorindex[component-number][pixel-component-value] )
|
||||
* Aside from being fast, this scheme allows for variable spacing between
|
||||
* representative values with no additional lookup cost.
|
||||
*
|
||||
* If gamma correction has been applied in color conversion, it might be wise
|
||||
* to adjust the color grid spacing so that the representative colors are
|
||||
* equidistant in linear space. At this writing, gamma correction is not
|
||||
* implemented by jdcolor, so nothing is done here.
|
||||
*/
|
||||
|
||||
|
||||
/* Declarations for ordered dithering.
|
||||
*
|
||||
* We use a standard 16x16 ordered dither array. The basic concept of ordered
|
||||
* dithering is described in many references, for instance Dale Schumacher's
|
||||
* chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
|
||||
* In place of Schumacher's comparisons against a "threshold" value, we add a
|
||||
* "dither" value to the input pixel and then round the result to the nearest
|
||||
* output value. The dither value is equivalent to (0.5 - threshold) times
|
||||
* the distance between output values. For ordered dithering, we assume that
|
||||
* the output colors are equally spaced; if not, results will probably be
|
||||
* worse, since the dither may be too much or too little at a given point.
|
||||
*
|
||||
* The normal calculation would be to form pixel value + dither, range-limit
|
||||
* this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
|
||||
* We can skip the separate range-limiting step by extending the colorindex
|
||||
* table in both directions.
|
||||
*/
|
||||
|
||||
#define ODITHER_SIZE 16 /* dimension of dither matrix */
|
||||
/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
|
||||
#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */
|
||||
#define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */
|
||||
|
||||
typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
|
||||
typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
|
||||
|
||||
static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
|
||||
/* Bayer's order-4 dither array. Generated by the code given in
|
||||
* Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
|
||||
* The values in this array must range from 0 to ODITHER_CELLS-1.
|
||||
*/
|
||||
{ 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 },
|
||||
{ 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
|
||||
{ 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
|
||||
{ 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
|
||||
{ 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 },
|
||||
{ 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
|
||||
{ 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
|
||||
{ 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
|
||||
{ 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 },
|
||||
{ 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
|
||||
{ 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
|
||||
{ 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
|
||||
{ 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 },
|
||||
{ 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
|
||||
{ 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
|
||||
{ 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
|
||||
};
|
||||
|
||||
|
||||
/* Declarations for Floyd-Steinberg dithering.
|
||||
*
|
||||
* Errors are accumulated into the array fserrors[], at a resolution of
|
||||
* 1/16th of a pixel count. The error at a given pixel is propagated
|
||||
* to its not-yet-processed neighbors using the standard F-S fractions,
|
||||
* ... (here) 7/16
|
||||
* 3/16 5/16 1/16
|
||||
* We work left-to-right on even rows, right-to-left on odd rows.
|
||||
*
|
||||
* We can get away with a single array (holding one row's worth of errors)
|
||||
* by using it to store the current row's errors at pixel columns not yet
|
||||
* processed, but the next row's errors at columns already processed. We
|
||||
* need only a few extra variables to hold the errors immediately around the
|
||||
* current column. (If we are lucky, those variables are in registers, but
|
||||
* even if not, they're probably cheaper to access than array elements are.)
|
||||
*
|
||||
* The fserrors[] array is indexed [component#][position].
|
||||
* We provide (#columns + 2) entries per component; the extra entry at each
|
||||
* end saves us from special-casing the first and last pixels.
|
||||
*
|
||||
* Note: on a wide image, we might not have enough room in a PC's near data
|
||||
* segment to hold the error array; so it is allocated with alloc_large.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
typedef INT16 FSERROR; /* 16 bits should be enough */
|
||||
typedef int LOCFSERROR; /* use 'int' for calculation temps */
|
||||
#else
|
||||
typedef INT32 FSERROR; /* may need more than 16 bits */
|
||||
typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
|
||||
#endif
|
||||
|
||||
typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
|
||||
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
#define MAX_Q_COMPS 4 /* max components I can handle */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_color_quantizer pub; /* public fields */
|
||||
|
||||
/* Initially allocated colormap is saved here */
|
||||
JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */
|
||||
int sv_actual; /* number of entries in use */
|
||||
|
||||
JSAMPARRAY colorindex; /* Precomputed mapping for speed */
|
||||
/* colorindex[i][j] = index of color closest to pixel value j in component i,
|
||||
* premultiplied as described above. Since colormap indexes must fit into
|
||||
* JSAMPLEs, the entries of this array will too.
|
||||
*/
|
||||
boolean is_padded; /* is the colorindex padded for odither? */
|
||||
|
||||
int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */
|
||||
|
||||
/* Variables for ordered dithering */
|
||||
int row_index; /* cur row's vertical index in dither matrix */
|
||||
ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
|
||||
|
||||
/* Variables for Floyd-Steinberg dithering */
|
||||
FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
|
||||
boolean on_odd_row; /* flag to remember which row we are on */
|
||||
} my_cquantizer;
|
||||
|
||||
typedef my_cquantizer * my_cquantize_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Policy-making subroutines for create_colormap and create_colorindex.
|
||||
* These routines determine the colormap to be used. The rest of the module
|
||||
* only assumes that the colormap is orthogonal.
|
||||
*
|
||||
* * select_ncolors decides how to divvy up the available colors
|
||||
* among the components.
|
||||
* * output_value defines the set of representative values for a component.
|
||||
* * largest_input_value defines the mapping from input values to
|
||||
* representative values for a component.
|
||||
* Note that the latter two routines may impose different policies for
|
||||
* different components, though this is not currently done.
|
||||
*/
|
||||
|
||||
|
||||
LOCAL(int)
|
||||
select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
|
||||
/* Determine allocation of desired colors to components, */
|
||||
/* and fill in Ncolors[] array to indicate choice. */
|
||||
/* Return value is total number of colors (product of Ncolors[] values). */
|
||||
{
|
||||
int nc = cinfo->out_color_components; /* number of color components */
|
||||
int max_colors = cinfo->desired_number_of_colors;
|
||||
int total_colors, iroot, i, j;
|
||||
boolean changed;
|
||||
long temp;
|
||||
static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
|
||||
|
||||
/* We can allocate at least the nc'th root of max_colors per component. */
|
||||
/* Compute floor(nc'th root of max_colors). */
|
||||
iroot = 1;
|
||||
do {
|
||||
iroot++;
|
||||
temp = iroot; /* set temp = iroot ** nc */
|
||||
for (i = 1; i < nc; i++)
|
||||
temp *= iroot;
|
||||
} while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
|
||||
iroot--; /* now iroot = floor(root) */
|
||||
|
||||
/* Must have at least 2 color values per component */
|
||||
if (iroot < 2)
|
||||
ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
|
||||
|
||||
/* Initialize to iroot color values for each component */
|
||||
total_colors = 1;
|
||||
for (i = 0; i < nc; i++) {
|
||||
Ncolors[i] = iroot;
|
||||
total_colors *= iroot;
|
||||
}
|
||||
/* We may be able to increment the count for one or more components without
|
||||
* exceeding max_colors, though we know not all can be incremented.
|
||||
* Sometimes, the first component can be incremented more than once!
|
||||
* (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
|
||||
* In RGB colorspace, try to increment G first, then R, then B.
|
||||
*/
|
||||
do {
|
||||
changed = FALSE;
|
||||
for (i = 0; i < nc; i++) {
|
||||
j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
|
||||
/* calculate new total_colors if Ncolors[j] is incremented */
|
||||
temp = total_colors / Ncolors[j];
|
||||
temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */
|
||||
if (temp > (long) max_colors)
|
||||
break; /* won't fit, done with this pass */
|
||||
Ncolors[j]++; /* OK, apply the increment */
|
||||
total_colors = (int) temp;
|
||||
changed = TRUE;
|
||||
}
|
||||
} while (changed);
|
||||
|
||||
return total_colors;
|
||||
}
|
||||
|
||||
|
||||
LOCAL(int)
|
||||
output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
|
||||
/* Return j'th output value, where j will range from 0 to maxj */
|
||||
/* The output values must fall in 0..MAXJSAMPLE in increasing order */
|
||||
{
|
||||
/* We always provide values 0 and MAXJSAMPLE for each component;
|
||||
* any additional values are equally spaced between these limits.
|
||||
* (Forcing the upper and lower values to the limits ensures that
|
||||
* dithering can't produce a color outside the selected gamut.)
|
||||
*/
|
||||
return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
|
||||
}
|
||||
|
||||
|
||||
LOCAL(int)
|
||||
largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
|
||||
/* Return largest input value that should map to j'th output value */
|
||||
/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
|
||||
{
|
||||
/* Breakpoints are halfway between values returned by output_value */
|
||||
return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Create the colormap.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
create_colormap (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||
JSAMPARRAY colormap; /* Created colormap */
|
||||
int total_colors; /* Number of distinct output colors */
|
||||
int i,j,k, nci, blksize, blkdist, ptr, val;
|
||||
|
||||
/* Select number of colors for each component */
|
||||
total_colors = select_ncolors(cinfo, cquantize->Ncolors);
|
||||
|
||||
/* Report selected color counts */
|
||||
if (cinfo->out_color_components == 3)
|
||||
TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
|
||||
total_colors, cquantize->Ncolors[0],
|
||||
cquantize->Ncolors[1], cquantize->Ncolors[2]);
|
||||
else
|
||||
TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
|
||||
|
||||
/* Allocate and fill in the colormap. */
|
||||
/* The colors are ordered in the map in standard row-major order, */
|
||||
/* i.e. rightmost (highest-indexed) color changes most rapidly. */
|
||||
|
||||
colormap = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
|
||||
|
||||
/* blksize is number of adjacent repeated entries for a component */
|
||||
/* blkdist is distance between groups of identical entries for a component */
|
||||
blkdist = total_colors;
|
||||
|
||||
for (i = 0; i < cinfo->out_color_components; i++) {
|
||||
/* fill in colormap entries for i'th color component */
|
||||
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
|
||||
blksize = blkdist / nci;
|
||||
for (j = 0; j < nci; j++) {
|
||||
/* Compute j'th output value (out of nci) for component */
|
||||
val = output_value(cinfo, i, j, nci-1);
|
||||
/* Fill in all colormap entries that have this value of this component */
|
||||
for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
|
||||
/* fill in blksize entries beginning at ptr */
|
||||
for (k = 0; k < blksize; k++)
|
||||
colormap[i][ptr+k] = (JSAMPLE) val;
|
||||
}
|
||||
}
|
||||
blkdist = blksize; /* blksize of this color is blkdist of next */
|
||||
}
|
||||
|
||||
/* Save the colormap in private storage,
|
||||
* where it will survive color quantization mode changes.
|
||||
*/
|
||||
cquantize->sv_colormap = colormap;
|
||||
cquantize->sv_actual = total_colors;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Create the color index table.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
create_colorindex (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||
JSAMPROW indexptr;
|
||||
int i,j,k, nci, blksize, val, pad;
|
||||
|
||||
/* For ordered dither, we pad the color index tables by MAXJSAMPLE in
|
||||
* each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
|
||||
* This is not necessary in the other dithering modes. However, we
|
||||
* flag whether it was done in case user changes dithering mode.
|
||||
*/
|
||||
if (cinfo->dither_mode == JDITHER_ORDERED) {
|
||||
pad = MAXJSAMPLE*2;
|
||||
cquantize->is_padded = TRUE;
|
||||
} else {
|
||||
pad = 0;
|
||||
cquantize->is_padded = FALSE;
|
||||
}
|
||||
|
||||
cquantize->colorindex = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(JDIMENSION) (MAXJSAMPLE+1 + pad),
|
||||
(JDIMENSION) cinfo->out_color_components);
|
||||
|
||||
/* blksize is number of adjacent repeated entries for a component */
|
||||
blksize = cquantize->sv_actual;
|
||||
|
||||
for (i = 0; i < cinfo->out_color_components; i++) {
|
||||
/* fill in colorindex entries for i'th color component */
|
||||
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
|
||||
blksize = blksize / nci;
|
||||
|
||||
/* adjust colorindex pointers to provide padding at negative indexes. */
|
||||
if (pad)
|
||||
cquantize->colorindex[i] += MAXJSAMPLE;
|
||||
|
||||
/* in loop, val = index of current output value, */
|
||||
/* and k = largest j that maps to current val */
|
||||
indexptr = cquantize->colorindex[i];
|
||||
val = 0;
|
||||
k = largest_input_value(cinfo, i, 0, nci-1);
|
||||
for (j = 0; j <= MAXJSAMPLE; j++) {
|
||||
while (j > k) /* advance val if past boundary */
|
||||
k = largest_input_value(cinfo, i, ++val, nci-1);
|
||||
/* premultiply so that no multiplication needed in main processing */
|
||||
indexptr[j] = (JSAMPLE) (val * blksize);
|
||||
}
|
||||
/* Pad at both ends if necessary */
|
||||
if (pad)
|
||||
for (j = 1; j <= MAXJSAMPLE; j++) {
|
||||
indexptr[-j] = indexptr[0];
|
||||
indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Create an ordered-dither array for a component having ncolors
|
||||
* distinct output values.
|
||||
*/
|
||||
|
||||
LOCAL(ODITHER_MATRIX_PTR)
|
||||
make_odither_array (j_decompress_ptr cinfo, int ncolors)
|
||||
{
|
||||
ODITHER_MATRIX_PTR odither;
|
||||
int j,k;
|
||||
INT32 num,den;
|
||||
|
||||
odither = (ODITHER_MATRIX_PTR)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(ODITHER_MATRIX));
|
||||
/* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
|
||||
* Hence the dither value for the matrix cell with fill order f
|
||||
* (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
|
||||
* On 16-bit-int machine, be careful to avoid overflow.
|
||||
*/
|
||||
den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
|
||||
for (j = 0; j < ODITHER_SIZE; j++) {
|
||||
for (k = 0; k < ODITHER_SIZE; k++) {
|
||||
num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
|
||||
* MAXJSAMPLE;
|
||||
/* Ensure round towards zero despite C's lack of consistency
|
||||
* about rounding negative values in integer division...
|
||||
*/
|
||||
odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
|
||||
}
|
||||
}
|
||||
return odither;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Create the ordered-dither tables.
|
||||
* Components having the same number of representative colors may
|
||||
* share a dither table.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
create_odither_tables (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||
ODITHER_MATRIX_PTR odither;
|
||||
int i, j, nci;
|
||||
|
||||
for (i = 0; i < cinfo->out_color_components; i++) {
|
||||
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
|
||||
odither = NULL; /* search for matching prior component */
|
||||
for (j = 0; j < i; j++) {
|
||||
if (nci == cquantize->Ncolors[j]) {
|
||||
odither = cquantize->odither[j];
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (odither == NULL) /* need a new table? */
|
||||
odither = make_odither_array(cinfo, nci);
|
||||
cquantize->odither[i] = odither;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Map some rows of pixels to the output colormapped representation.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
/* General case, no dithering */
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||
JSAMPARRAY colorindex = cquantize->colorindex;
|
||||
register int pixcode, ci;
|
||||
register JSAMPROW ptrin, ptrout;
|
||||
int row;
|
||||
JDIMENSION col;
|
||||
JDIMENSION width = cinfo->output_width;
|
||||
register int nc = cinfo->out_color_components;
|
||||
|
||||
for (row = 0; row < num_rows; row++) {
|
||||
ptrin = input_buf[row];
|
||||
ptrout = output_buf[row];
|
||||
for (col = width; col > 0; col--) {
|
||||
pixcode = 0;
|
||||
for (ci = 0; ci < nc; ci++) {
|
||||
pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
|
||||
}
|
||||
*ptrout++ = (JSAMPLE) pixcode;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
/* Fast path for out_color_components==3, no dithering */
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||
register int pixcode;
|
||||
register JSAMPROW ptrin, ptrout;
|
||||
JSAMPROW colorindex0 = cquantize->colorindex[0];
|
||||
JSAMPROW colorindex1 = cquantize->colorindex[1];
|
||||
JSAMPROW colorindex2 = cquantize->colorindex[2];
|
||||
int row;
|
||||
JDIMENSION col;
|
||||
JDIMENSION width = cinfo->output_width;
|
||||
|
||||
for (row = 0; row < num_rows; row++) {
|
||||
ptrin = input_buf[row];
|
||||
ptrout = output_buf[row];
|
||||
for (col = width; col > 0; col--) {
|
||||
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
|
||||
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
|
||||
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
|
||||
*ptrout++ = (JSAMPLE) pixcode;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
/* General case, with ordered dithering */
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||
register JSAMPROW input_ptr;
|
||||
register JSAMPROW output_ptr;
|
||||
JSAMPROW colorindex_ci;
|
||||
int * dither; /* points to active row of dither matrix */
|
||||
int row_index, col_index; /* current indexes into dither matrix */
|
||||
int nc = cinfo->out_color_components;
|
||||
int ci;
|
||||
int row;
|
||||
JDIMENSION col;
|
||||
JDIMENSION width = cinfo->output_width;
|
||||
|
||||
for (row = 0; row < num_rows; row++) {
|
||||
/* Initialize output values to 0 so can process components separately */
|
||||
jzero_far((void FAR *) output_buf[row],
|
||||
(size_t) (width * SIZEOF(JSAMPLE)));
|
||||
row_index = cquantize->row_index;
|
||||
for (ci = 0; ci < nc; ci++) {
|
||||
input_ptr = input_buf[row] + ci;
|
||||
output_ptr = output_buf[row];
|
||||
colorindex_ci = cquantize->colorindex[ci];
|
||||
dither = cquantize->odither[ci][row_index];
|
||||
col_index = 0;
|
||||
|
||||
for (col = width; col > 0; col--) {
|
||||
/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
|
||||
* select output value, accumulate into output code for this pixel.
|
||||
* Range-limiting need not be done explicitly, as we have extended
|
||||
* the colorindex table to produce the right answers for out-of-range
|
||||
* inputs. The maximum dither is +- MAXJSAMPLE; this sets the
|
||||
* required amount of padding.
|
||||
*/
|
||||
*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
|
||||
input_ptr += nc;
|
||||
output_ptr++;
|
||||
col_index = (col_index + 1) & ODITHER_MASK;
|
||||
}
|
||||
}
|
||||
/* Advance row index for next row */
|
||||
row_index = (row_index + 1) & ODITHER_MASK;
|
||||
cquantize->row_index = row_index;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
/* Fast path for out_color_components==3, with ordered dithering */
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||
register int pixcode;
|
||||
register JSAMPROW input_ptr;
|
||||
register JSAMPROW output_ptr;
|
||||
JSAMPROW colorindex0 = cquantize->colorindex[0];
|
||||
JSAMPROW colorindex1 = cquantize->colorindex[1];
|
||||
JSAMPROW colorindex2 = cquantize->colorindex[2];
|
||||
int * dither0; /* points to active row of dither matrix */
|
||||
int * dither1;
|
||||
int * dither2;
|
||||
int row_index, col_index; /* current indexes into dither matrix */
|
||||
int row;
|
||||
JDIMENSION col;
|
||||
JDIMENSION width = cinfo->output_width;
|
||||
|
||||
for (row = 0; row < num_rows; row++) {
|
||||
row_index = cquantize->row_index;
|
||||
input_ptr = input_buf[row];
|
||||
output_ptr = output_buf[row];
|
||||
dither0 = cquantize->odither[0][row_index];
|
||||
dither1 = cquantize->odither[1][row_index];
|
||||
dither2 = cquantize->odither[2][row_index];
|
||||
col_index = 0;
|
||||
|
||||
for (col = width; col > 0; col--) {
|
||||
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
|
||||
dither0[col_index]]);
|
||||
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
|
||||
dither1[col_index]]);
|
||||
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
|
||||
dither2[col_index]]);
|
||||
*output_ptr++ = (JSAMPLE) pixcode;
|
||||
col_index = (col_index + 1) & ODITHER_MASK;
|
||||
}
|
||||
row_index = (row_index + 1) & ODITHER_MASK;
|
||||
cquantize->row_index = row_index;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
/* General case, with Floyd-Steinberg dithering */
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||
register LOCFSERROR cur; /* current error or pixel value */
|
||||
LOCFSERROR belowerr; /* error for pixel below cur */
|
||||
LOCFSERROR bpreverr; /* error for below/prev col */
|
||||
LOCFSERROR bnexterr; /* error for below/next col */
|
||||
LOCFSERROR delta;
|
||||
register FSERRPTR errorptr; /* => fserrors[] at column before current */
|
||||
register JSAMPROW input_ptr;
|
||||
register JSAMPROW output_ptr;
|
||||
JSAMPROW colorindex_ci;
|
||||
JSAMPROW colormap_ci;
|
||||
int pixcode;
|
||||
int nc = cinfo->out_color_components;
|
||||
int dir; /* 1 for left-to-right, -1 for right-to-left */
|
||||
int dirnc; /* dir * nc */
|
||||
int ci;
|
||||
int row;
|
||||
JDIMENSION col;
|
||||
JDIMENSION width = cinfo->output_width;
|
||||
JSAMPLE *range_limit = cinfo->sample_range_limit;
|
||||
SHIFT_TEMPS
|
||||
|
||||
for (row = 0; row < num_rows; row++) {
|
||||
/* Initialize output values to 0 so can process components separately */
|
||||
jzero_far((void FAR *) output_buf[row],
|
||||
(size_t) (width * SIZEOF(JSAMPLE)));
|
||||
for (ci = 0; ci < nc; ci++) {
|
||||
input_ptr = input_buf[row] + ci;
|
||||
output_ptr = output_buf[row];
|
||||
if (cquantize->on_odd_row) {
|
||||
/* work right to left in this row */
|
||||
input_ptr += (width-1) * nc; /* so point to rightmost pixel */
|
||||
output_ptr += width-1;
|
||||
dir = -1;
|
||||
dirnc = -nc;
|
||||
errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
|
||||
} else {
|
||||
/* work left to right in this row */
|
||||
dir = 1;
|
||||
dirnc = nc;
|
||||
errorptr = cquantize->fserrors[ci]; /* => entry before first column */
|
||||
}
|
||||
colorindex_ci = cquantize->colorindex[ci];
|
||||
colormap_ci = cquantize->sv_colormap[ci];
|
||||
/* Preset error values: no error propagated to first pixel from left */
|
||||
cur = 0;
|
||||
/* and no error propagated to row below yet */
|
||||
belowerr = bpreverr = 0;
|
||||
|
||||
for (col = width; col > 0; col--) {
|
||||
/* cur holds the error propagated from the previous pixel on the
|
||||
* current line. Add the error propagated from the previous line
|
||||
* to form the complete error correction term for this pixel, and
|
||||
* round the error term (which is expressed * 16) to an integer.
|
||||
* RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
|
||||
* for either sign of the error value.
|
||||
* Note: errorptr points to *previous* column's array entry.
|
||||
*/
|
||||
cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
|
||||
/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
|
||||
* The maximum error is +- MAXJSAMPLE; this sets the required size
|
||||
* of the range_limit array.
|
||||
*/
|
||||
cur += GETJSAMPLE(*input_ptr);
|
||||
cur = GETJSAMPLE(range_limit[cur]);
|
||||
/* Select output value, accumulate into output code for this pixel */
|
||||
pixcode = GETJSAMPLE(colorindex_ci[cur]);
|
||||
*output_ptr += (JSAMPLE) pixcode;
|
||||
/* Compute actual representation error at this pixel */
|
||||
/* Note: we can do this even though we don't have the final */
|
||||
/* pixel code, because the colormap is orthogonal. */
|
||||
cur -= GETJSAMPLE(colormap_ci[pixcode]);
|
||||
/* Compute error fractions to be propagated to adjacent pixels.
|
||||
* Add these into the running sums, and simultaneously shift the
|
||||
* next-line error sums left by 1 column.
|
||||
*/
|
||||
bnexterr = cur;
|
||||
delta = cur * 2;
|
||||
cur += delta; /* form error * 3 */
|
||||
errorptr[0] = (FSERROR) (bpreverr + cur);
|
||||
cur += delta; /* form error * 5 */
|
||||
bpreverr = belowerr + cur;
|
||||
belowerr = bnexterr;
|
||||
cur += delta; /* form error * 7 */
|
||||
/* At this point cur contains the 7/16 error value to be propagated
|
||||
* to the next pixel on the current line, and all the errors for the
|
||||
* next line have been shifted over. We are therefore ready to move on.
|
||||
*/
|
||||
input_ptr += dirnc; /* advance input ptr to next column */
|
||||
output_ptr += dir; /* advance output ptr to next column */
|
||||
errorptr += dir; /* advance errorptr to current column */
|
||||
}
|
||||
/* Post-loop cleanup: we must unload the final error value into the
|
||||
* final fserrors[] entry. Note we need not unload belowerr because
|
||||
* it is for the dummy column before or after the actual array.
|
||||
*/
|
||||
errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
|
||||
}
|
||||
cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Allocate workspace for Floyd-Steinberg errors.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
alloc_fs_workspace (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||
size_t arraysize;
|
||||
int i;
|
||||
|
||||
arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
|
||||
for (i = 0; i < cinfo->out_color_components; i++) {
|
||||
cquantize->fserrors[i] = (FSERRPTR)
|
||||
(*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for one-pass color quantization.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||
size_t arraysize;
|
||||
int i;
|
||||
|
||||
/* Install my colormap. */
|
||||
cinfo->colormap = cquantize->sv_colormap;
|
||||
cinfo->actual_number_of_colors = cquantize->sv_actual;
|
||||
|
||||
/* Initialize for desired dithering mode. */
|
||||
switch (cinfo->dither_mode) {
|
||||
case JDITHER_NONE:
|
||||
if (cinfo->out_color_components == 3)
|
||||
cquantize->pub.color_quantize = color_quantize3;
|
||||
else
|
||||
cquantize->pub.color_quantize = color_quantize;
|
||||
break;
|
||||
case JDITHER_ORDERED:
|
||||
if (cinfo->out_color_components == 3)
|
||||
cquantize->pub.color_quantize = quantize3_ord_dither;
|
||||
else
|
||||
cquantize->pub.color_quantize = quantize_ord_dither;
|
||||
cquantize->row_index = 0; /* initialize state for ordered dither */
|
||||
/* If user changed to ordered dither from another mode,
|
||||
* we must recreate the color index table with padding.
|
||||
* This will cost extra space, but probably isn't very likely.
|
||||
*/
|
||||
if (! cquantize->is_padded)
|
||||
create_colorindex(cinfo);
|
||||
/* Create ordered-dither tables if we didn't already. */
|
||||
if (cquantize->odither[0] == NULL)
|
||||
create_odither_tables(cinfo);
|
||||
break;
|
||||
case JDITHER_FS:
|
||||
cquantize->pub.color_quantize = quantize_fs_dither;
|
||||
cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
|
||||
/* Allocate Floyd-Steinberg workspace if didn't already. */
|
||||
if (cquantize->fserrors[0] == NULL)
|
||||
alloc_fs_workspace(cinfo);
|
||||
/* Initialize the propagated errors to zero. */
|
||||
arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
|
||||
for (i = 0; i < cinfo->out_color_components; i++)
|
||||
jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
|
||||
break;
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at the end of the pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
finish_pass_1_quant (j_decompress_ptr cinfo)
|
||||
{
|
||||
/* no work in 1-pass case */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Switch to a new external colormap between output passes.
|
||||
* Shouldn't get to this module!
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
new_color_map_1_quant (j_decompress_ptr cinfo)
|
||||
{
|
||||
ERREXIT(cinfo, JERR_MODE_CHANGE);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for 1-pass color quantization.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_1pass_quantizer (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_cquantize_ptr cquantize;
|
||||
|
||||
cquantize = (my_cquantize_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_cquantizer));
|
||||
cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
|
||||
cquantize->pub.start_pass = start_pass_1_quant;
|
||||
cquantize->pub.finish_pass = finish_pass_1_quant;
|
||||
cquantize->pub.new_color_map = new_color_map_1_quant;
|
||||
cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
|
||||
cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
|
||||
|
||||
/* Make sure my internal arrays won't overflow */
|
||||
if (cinfo->out_color_components > MAX_Q_COMPS)
|
||||
ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
|
||||
/* Make sure colormap indexes can be represented by JSAMPLEs */
|
||||
if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
|
||||
ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
|
||||
|
||||
/* Create the colormap and color index table. */
|
||||
create_colormap(cinfo);
|
||||
create_colorindex(cinfo);
|
||||
|
||||
/* Allocate Floyd-Steinberg workspace now if requested.
|
||||
* We do this now since it is FAR storage and may affect the memory
|
||||
* manager's space calculations. If the user changes to FS dither
|
||||
* mode in a later pass, we will allocate the space then, and will
|
||||
* possibly overrun the max_memory_to_use setting.
|
||||
*/
|
||||
if (cinfo->dither_mode == JDITHER_FS)
|
||||
alloc_fs_workspace(cinfo);
|
||||
}
|
||||
|
||||
#endif /* QUANT_1PASS_SUPPORTED */
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,179 @@
|
|||
/*
|
||||
* jutils.c
|
||||
*
|
||||
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains tables and miscellaneous utility routines needed
|
||||
* for both compression and decompression.
|
||||
* Note we prefix all global names with "j" to minimize conflicts with
|
||||
* a surrounding application.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* jpeg_zigzag_order[i] is the zigzag-order position of the i'th element
|
||||
* of a DCT block read in natural order (left to right, top to bottom).
|
||||
*/
|
||||
|
||||
#if 0 /* This table is not actually needed in v6a */
|
||||
|
||||
const int jpeg_zigzag_order[DCTSIZE2] = {
|
||||
0, 1, 5, 6, 14, 15, 27, 28,
|
||||
2, 4, 7, 13, 16, 26, 29, 42,
|
||||
3, 8, 12, 17, 25, 30, 41, 43,
|
||||
9, 11, 18, 24, 31, 40, 44, 53,
|
||||
10, 19, 23, 32, 39, 45, 52, 54,
|
||||
20, 22, 33, 38, 46, 51, 55, 60,
|
||||
21, 34, 37, 47, 50, 56, 59, 61,
|
||||
35, 36, 48, 49, 57, 58, 62, 63
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
/*
|
||||
* jpeg_natural_order[i] is the natural-order position of the i'th element
|
||||
* of zigzag order.
|
||||
*
|
||||
* When reading corrupted data, the Huffman decoders could attempt
|
||||
* to reference an entry beyond the end of this array (if the decoded
|
||||
* zero run length reaches past the end of the block). To prevent
|
||||
* wild stores without adding an inner-loop test, we put some extra
|
||||
* "63"s after the real entries. This will cause the extra coefficient
|
||||
* to be stored in location 63 of the block, not somewhere random.
|
||||
* The worst case would be a run-length of 15, which means we need 16
|
||||
* fake entries.
|
||||
*/
|
||||
|
||||
const int jpeg_natural_order[DCTSIZE2+16] = {
|
||||
0, 1, 8, 16, 9, 2, 3, 10,
|
||||
17, 24, 32, 25, 18, 11, 4, 5,
|
||||
12, 19, 26, 33, 40, 48, 41, 34,
|
||||
27, 20, 13, 6, 7, 14, 21, 28,
|
||||
35, 42, 49, 56, 57, 50, 43, 36,
|
||||
29, 22, 15, 23, 30, 37, 44, 51,
|
||||
58, 59, 52, 45, 38, 31, 39, 46,
|
||||
53, 60, 61, 54, 47, 55, 62, 63,
|
||||
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
|
||||
63, 63, 63, 63, 63, 63, 63, 63
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
* Arithmetic utilities
|
||||
*/
|
||||
|
||||
GLOBAL(long)
|
||||
jdiv_round_up (long a, long b)
|
||||
/* Compute a/b rounded up to next integer, ie, ceil(a/b) */
|
||||
/* Assumes a >= 0, b > 0 */
|
||||
{
|
||||
return (a + b - 1L) / b;
|
||||
}
|
||||
|
||||
|
||||
GLOBAL(long)
|
||||
jround_up (long a, long b)
|
||||
/* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */
|
||||
/* Assumes a >= 0, b > 0 */
|
||||
{
|
||||
a += b - 1L;
|
||||
return a - (a % b);
|
||||
}
|
||||
|
||||
|
||||
/* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays
|
||||
* and coefficient-block arrays. This won't work on 80x86 because the arrays
|
||||
* are FAR and we're assuming a small-pointer memory model. However, some
|
||||
* DOS compilers provide far-pointer versions of memcpy() and memset() even
|
||||
* in the small-model libraries. These will be used if USE_FMEM is defined.
|
||||
* Otherwise, the routines below do it the hard way. (The performance cost
|
||||
* is not all that great, because these routines aren't very heavily used.)
|
||||
*/
|
||||
|
||||
#ifndef NEED_FAR_POINTERS /* normal case, same as regular macros */
|
||||
#define FMEMCOPY(dest,src,size) MEMCOPY(dest,src,size)
|
||||
#define FMEMZERO(target,size) MEMZERO(target,size)
|
||||
#else /* 80x86 case, define if we can */
|
||||
#ifdef USE_FMEM
|
||||
#define FMEMCOPY(dest,src,size) _fmemcpy((void FAR *)(dest), (const void FAR *)(src), (size_t)(size))
|
||||
#define FMEMZERO(target,size) _fmemset((void FAR *)(target), 0, (size_t)(size))
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
GLOBAL(void)
|
||||
jcopy_sample_rows (JSAMPARRAY input_array, int source_row,
|
||||
JSAMPARRAY output_array, int dest_row,
|
||||
int num_rows, JDIMENSION num_cols)
|
||||
/* Copy some rows of samples from one place to another.
|
||||
* num_rows rows are copied from input_array[source_row++]
|
||||
* to output_array[dest_row++]; these areas may overlap for duplication.
|
||||
* The source and destination arrays must be at least as wide as num_cols.
|
||||
*/
|
||||
{
|
||||
register JSAMPROW inptr, outptr;
|
||||
#ifdef FMEMCOPY
|
||||
register size_t count = (size_t) (num_cols * SIZEOF(JSAMPLE));
|
||||
#else
|
||||
register JDIMENSION count;
|
||||
#endif
|
||||
register int row;
|
||||
|
||||
input_array += source_row;
|
||||
output_array += dest_row;
|
||||
|
||||
for (row = num_rows; row > 0; row--) {
|
||||
inptr = *input_array++;
|
||||
outptr = *output_array++;
|
||||
#ifdef FMEMCOPY
|
||||
FMEMCOPY(outptr, inptr, count);
|
||||
#else
|
||||
for (count = num_cols; count > 0; count--)
|
||||
*outptr++ = *inptr++; /* needn't bother with GETJSAMPLE() here */
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
GLOBAL(void)
|
||||
jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row,
|
||||
JDIMENSION num_blocks)
|
||||
/* Copy a row of coefficient blocks from one place to another. */
|
||||
{
|
||||
#ifdef FMEMCOPY
|
||||
FMEMCOPY(output_row, input_row, num_blocks * (DCTSIZE2 * SIZEOF(JCOEF)));
|
||||
#else
|
||||
register JCOEFPTR inptr, outptr;
|
||||
register long count;
|
||||
|
||||
inptr = (JCOEFPTR) input_row;
|
||||
outptr = (JCOEFPTR) output_row;
|
||||
for (count = (long) num_blocks * DCTSIZE2; count > 0; count--) {
|
||||
*outptr++ = *inptr++;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
GLOBAL(void)
|
||||
jzero_far (void FAR * target, size_t bytestozero)
|
||||
/* Zero out a chunk of FAR memory. */
|
||||
/* This might be sample-array data, block-array data, or alloc_large data. */
|
||||
{
|
||||
#ifdef FMEMZERO
|
||||
FMEMZERO(target, bytestozero);
|
||||
#else
|
||||
register char FAR * ptr = (char FAR *) target;
|
||||
register size_t count;
|
||||
|
||||
for (count = bytestozero; count > 0; count--) {
|
||||
*ptr++ = 0;
|
||||
}
|
||||
#endif
|
||||
}
|
|
@ -0,0 +1,14 @@
|
|||
/*
|
||||
* jversion.h
|
||||
*
|
||||
* Copyright (C) 1991-2009, Thomas G. Lane, Guido Vollbeding.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains software version identification.
|
||||
*/
|
||||
|
||||
|
||||
#define JVERSION "7 27-Jun-2009"
|
||||
|
||||
#define JCOPYRIGHT "Copyright (C) 2009, Thomas G. Lane, Guido Vollbeding"
|
|
@ -0,0 +1,384 @@
|
|||
<?xml version="1.0" encoding="Windows-1252"?>
|
||||
<VisualStudioProject
|
||||
ProjectType="Visual C++"
|
||||
Version="9.00"
|
||||
Name="libjpeg"
|
||||
ProjectGUID="{BC236261-77E8-4567-8D09-45CD02965EB6}"
|
||||
RootNamespace="libjpeg"
|
||||
Keyword="Win32Proj"
|
||||
TargetFrameworkVersion="196613"
|
||||
>
|
||||
<Platforms>
|
||||
<Platform
|
||||
Name="Win32"
|
||||
/>
|
||||
</Platforms>
|
||||
<ToolFiles>
|
||||
<DefaultToolFile
|
||||
FileName="masm.rules"
|
||||
/>
|
||||
</ToolFiles>
|
||||
<Configurations>
|
||||
<Configuration
|
||||
Name="Debug|Win32"
|
||||
ConfigurationType="4"
|
||||
InheritedPropertySheets="..\3rdparty.vsprops;..\..\common\vsprops\CodeGen_Debug.vsprops;..\..\common\vsprops\IncrementalLinking.vsprops"
|
||||
CharacterSet="1"
|
||||
>
|
||||
<Tool
|
||||
Name="VCPreBuildEventTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCCustomBuildTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="MASM"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCXMLDataGeneratorTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCWebServiceProxyGeneratorTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCMIDLTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCCLCompilerTool"
|
||||
UsePrecompiledHeader="0"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCManagedResourceCompilerTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCResourceCompilerTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCPreLinkEventTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCLibrarianTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCALinkTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCXDCMakeTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCBscMakeTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCFxCopTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCPostBuildEventTool"
|
||||
/>
|
||||
</Configuration>
|
||||
<Configuration
|
||||
Name="Release|Win32"
|
||||
ConfigurationType="4"
|
||||
InheritedPropertySheets="..\3rdparty.vsprops;..\..\common\vsprops\CodeGen_Release.vsprops"
|
||||
CharacterSet="1"
|
||||
WholeProgramOptimization="1"
|
||||
>
|
||||
<Tool
|
||||
Name="VCPreBuildEventTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCCustomBuildTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="MASM"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCXMLDataGeneratorTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCWebServiceProxyGeneratorTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCMIDLTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCCLCompilerTool"
|
||||
UsePrecompiledHeader="0"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCManagedResourceCompilerTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCResourceCompilerTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCPreLinkEventTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCLibrarianTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCALinkTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCXDCMakeTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCBscMakeTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCFxCopTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCPostBuildEventTool"
|
||||
/>
|
||||
</Configuration>
|
||||
</Configurations>
|
||||
<References>
|
||||
</References>
|
||||
<Files>
|
||||
<Filter
|
||||
Name="Source Files"
|
||||
Filter="cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx"
|
||||
UniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}"
|
||||
>
|
||||
<File
|
||||
RelativePath=".\jaricom.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jcapimin.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jcapistd.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jcarith.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jccoefct.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jccolor.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jcdctmgr.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jchuff.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jcinit.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jcmainct.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jcmarker.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jcmaster.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jcomapi.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jconfig.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jcparam.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jcprepct.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jcsample.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jctrans.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jdapimin.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jdapistd.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jdarith.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jdatadst.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jdatasrc.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jdcoefct.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jdcolor.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jdct.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jddctmgr.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jdhuff.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jdinput.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jdmainct.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jdmarker.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jdmaster.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jdmerge.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jdpostct.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jdsample.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jdtrans.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jerror.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jerror.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jfdctflt.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jfdctfst.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jfdctint.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jidctflt.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jidctfst.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jidctint.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jinclude.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jmemansi.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jmemmgr.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jmemsys.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jmorecfg.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jpegint.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jpeglib.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jquant1.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jquant2.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jutils.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\jversion.h"
|
||||
>
|
||||
</File>
|
||||
</Filter>
|
||||
<File
|
||||
RelativePath=".\change.log"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\filelist.txt"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\README"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\readme.pcsx2.txt"
|
||||
>
|
||||
</File>
|
||||
</Files>
|
||||
<Globals>
|
||||
</Globals>
|
||||
</VisualStudioProject>
|
|
@ -40,7 +40,7 @@
|
|||
/>
|
||||
<Tool
|
||||
Name="VCCLCompilerTool"
|
||||
AdditionalIncludeDirectories=""$(ProjectRootDir)\include";"$(ProjectRootDir)\include\msvc";"$(SvnRootDir)\3rdparty\zlib";"$(ProjectRootDir)\src\png""
|
||||
AdditionalIncludeDirectories=""$(ProjectRootDir)\include";"$(ProjectRootDir)\include\msvc";"$(SvnRootDir)\3rdparty\zlib";"$(ProjectRootDir)\src\png";"$(SvnRootDir)\3rdparty\libjpeg""
|
||||
PreprocessorDefinitions="_DEBUG;__WXDEBUG__;wxUSE_BASE=0;wxUSE_GUI=1"
|
||||
UsePrecompiledHeader="2"
|
||||
PrecompiledHeaderThrough="wx/wxprec.h"
|
||||
|
|
|
@ -1155,7 +1155,7 @@
|
|||
#define wxUSE_LIBPNG 1
|
||||
|
||||
// Set to 1 for JPEG format support (requires libjpeg)
|
||||
#define wxUSE_LIBJPEG 0
|
||||
#define wxUSE_LIBJPEG 1
|
||||
|
||||
// Set to 1 for TIFF format support (requires libtiff)
|
||||
#define wxUSE_LIBTIFF 0
|
||||
|
|
|
@ -1155,7 +1155,7 @@
|
|||
#define wxUSE_LIBPNG 1
|
||||
|
||||
// Set to 1 for JPEG format support (requires libjpeg)
|
||||
#define wxUSE_LIBJPEG 0
|
||||
#define wxUSE_LIBJPEG 1
|
||||
|
||||
// Set to 1 for TIFF format support (requires libtiff)
|
||||
#define wxUSE_LIBTIFF 0
|
||||
|
|
Binary file not shown.
Before Width: | Height: | Size: 37 KiB |
|
@ -100,6 +100,7 @@ Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "wxBase28", "3rdparty\wxWidg
|
|||
EndProject
|
||||
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "wxCore28", "3rdparty\wxWidgets\build\msw\wx_core_2008.vcproj", "{0318BA30-EF48-441A-9E10-DC85EFAE39F0}"
|
||||
ProjectSection(ProjectDependencies) = postProject
|
||||
{BC236261-77E8-4567-8D09-45CD02965EB6} = {BC236261-77E8-4567-8D09-45CD02965EB6}
|
||||
{C34487AF-228A-4D11-8E50-27803DF76873} = {C34487AF-228A-4D11-8E50-27803DF76873}
|
||||
EndProjectSection
|
||||
EndProject
|
||||
|
@ -128,6 +129,8 @@ Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "bin2cpp", "tools\bin2cpp\bi
|
|||
EndProject
|
||||
Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "Tools", "Tools", "{2D6F0A62-A247-4CCF-947F-FCD54BE16103}"
|
||||
EndProject
|
||||
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "libjpeg", "3rdparty\libjpeg\libjpeg.vcproj", "{BC236261-77E8-4567-8D09-45CD02965EB6}"
|
||||
EndProject
|
||||
Global
|
||||
GlobalSection(SolutionConfigurationPlatforms) = preSolution
|
||||
Debug|Win32 = Debug|Win32
|
||||
|
@ -594,6 +597,24 @@ Global
|
|||
{677B7D11-D5E1-40B3-88B1-9A4DF83D2213}.Release|Win32.ActiveCfg = Release|Win32
|
||||
{677B7D11-D5E1-40B3-88B1-9A4DF83D2213}.Release|Win32.Build.0 = Release|Win32
|
||||
{677B7D11-D5E1-40B3-88B1-9A4DF83D2213}.Release|x64.ActiveCfg = Release|Win32
|
||||
{BC236261-77E8-4567-8D09-45CD02965EB6}.Debug|Win32.ActiveCfg = Debug|Win32
|
||||
{BC236261-77E8-4567-8D09-45CD02965EB6}.Debug|Win32.Build.0 = Debug|Win32
|
||||
{BC236261-77E8-4567-8D09-45CD02965EB6}.Debug|x64.ActiveCfg = Debug|Win32
|
||||
{BC236261-77E8-4567-8D09-45CD02965EB6}.Devel|Win32.ActiveCfg = Debug|Win32
|
||||
{BC236261-77E8-4567-8D09-45CD02965EB6}.Devel|Win32.Build.0 = Debug|Win32
|
||||
{BC236261-77E8-4567-8D09-45CD02965EB6}.Devel|x64.ActiveCfg = Debug|Win32
|
||||
{BC236261-77E8-4567-8D09-45CD02965EB6}.Release SSE2|Win32.ActiveCfg = Release|Win32
|
||||
{BC236261-77E8-4567-8D09-45CD02965EB6}.Release SSE2|Win32.Build.0 = Release|Win32
|
||||
{BC236261-77E8-4567-8D09-45CD02965EB6}.Release SSE2|x64.ActiveCfg = Release|Win32
|
||||
{BC236261-77E8-4567-8D09-45CD02965EB6}.Release SSE4|Win32.ActiveCfg = Release|Win32
|
||||
{BC236261-77E8-4567-8D09-45CD02965EB6}.Release SSE4|Win32.Build.0 = Release|Win32
|
||||
{BC236261-77E8-4567-8D09-45CD02965EB6}.Release SSE4|x64.ActiveCfg = Release|Win32
|
||||
{BC236261-77E8-4567-8D09-45CD02965EB6}.Release SSSE3|Win32.ActiveCfg = Release|Win32
|
||||
{BC236261-77E8-4567-8D09-45CD02965EB6}.Release SSSE3|Win32.Build.0 = Release|Win32
|
||||
{BC236261-77E8-4567-8D09-45CD02965EB6}.Release SSSE3|x64.ActiveCfg = Release|Win32
|
||||
{BC236261-77E8-4567-8D09-45CD02965EB6}.Release|Win32.ActiveCfg = Release|Win32
|
||||
{BC236261-77E8-4567-8D09-45CD02965EB6}.Release|Win32.Build.0 = Release|Win32
|
||||
{BC236261-77E8-4567-8D09-45CD02965EB6}.Release|x64.ActiveCfg = Release|Win32
|
||||
EndGlobalSection
|
||||
GlobalSection(SolutionProperties) = preSolution
|
||||
HideSolutionNode = FALSE
|
||||
|
@ -615,6 +636,7 @@ Global
|
|||
{0318BA30-EF48-441A-9E10-DC85EFAE39F0} = {78EBE642-7A4D-4EA7-86BE-5639C6646C38}
|
||||
{C34487AF-228A-4D11-8E50-27803DF76873} = {78EBE642-7A4D-4EA7-86BE-5639C6646C38}
|
||||
{0E231FB1-F3C9-4724-ACCB-DE8BCB3C089E} = {78EBE642-7A4D-4EA7-86BE-5639C6646C38}
|
||||
{BC236261-77E8-4567-8D09-45CD02965EB6} = {78EBE642-7A4D-4EA7-86BE-5639C6646C38}
|
||||
{7F059854-568D-4E08-9D00-1E78E203E4DC} = {4CFBEFA8-2D4F-4B62-99D4-7E54F95B3FD9}
|
||||
{CDD9DB83-3BD9-4ED8-BB83-399A2F65F022} = {4CFBEFA8-2D4F-4B62-99D4-7E54F95B3FD9}
|
||||
{5C6B7D28-E73D-4F71-8FC0-17ADA640EBD8} = {4CFBEFA8-2D4F-4B62-99D4-7E54F95B3FD9}
|
||||
|
|
Loading…
Reference in New Issue