Using this as a base now, it works very well for me. Thanks to Jake.Stine's patch the plugin got a bit faster ;)

I made a small mistake in the last 2 commits, its fine again.

git-svn-id: http://pcsx2-playground.googlecode.com/svn/trunk@204 a6443dda-0b58-4228-96e9-037be469359c
This commit is contained in:
ramapcsx2 2008-10-16 14:12:40 +00:00 committed by Gregory Hainaut
parent a6eba17dfa
commit e1381992e5
9 changed files with 533 additions and 318 deletions

View File

@ -58,7 +58,7 @@ int state=0;
FILE *fSpdifDump; FILE *fSpdifDump;
extern u32 core; extern u32 core;
void __fastcall ReadInput(s32& PDataL,s32& PDataR); void __fastcall ReadInput(V_Core& thiscore, s32& PDataL,s32& PDataR);
union spdif_frame { // total size: 32bits union spdif_frame { // total size: 32bits
struct { struct {
@ -134,10 +134,11 @@ void spdif_update()
{ {
s32 Data,Zero; s32 Data,Zero;
core=0;
V_Core& thiscore( Cores[core] );
for(int i=0;i<data_rate;i++) for(int i=0;i<data_rate;i++)
{ {
core=0; ReadInput(thiscore, Data,Zero);
ReadInput(Data,Zero);
if(fSpdifDump) if(fSpdifDump)
{ {

View File

@ -55,6 +55,7 @@ typedef struct {
u8 Releasing; u8 Releasing;
} V_ADSR; } V_ADSR;
typedef struct { typedef struct {
// SPU2 cycle where the Playing started // SPU2 cycle where the Playing started
u32 PlayCycle; u32 PlayCycle;
@ -107,7 +108,12 @@ typedef struct {
s32 PeakX; s32 PeakX;
s32 SampleData; s32 SampleData;
s32 SBuffer[32]; // [Air]: Changed SBuffer from 32-bit to 16-bit. (this breaks old savestates)
// Everything stored in SBuffer is 16-bit values, and on modern CPUs the benefit
// of reduced data cache clutter out-weighs the benefit of using 'cpu native' 32-bit
// values. (doesn't apply to SIMD of course, but no SIMD here anyway)
// Because this breaks savestates it might not be worth the bother though.
s16 SBuffer[32];
s32 SCurrent; s32 SCurrent;
s32 displayPeak; s32 displayPeak;

View File

@ -119,6 +119,7 @@ private:
DWORD CALLBACK Thread() DWORD CALLBACK Thread()
{ {
while( dsound_running ) while( dsound_running )
{ {
u32 rv = WaitForMultipleObjects(MAX_BUFFER_COUNT,buffer_events,FALSE,400); u32 rv = WaitForMultipleObjects(MAX_BUFFER_COUNT,buffer_events,FALSE,400);
@ -126,25 +127,31 @@ private:
LPVOID p1,p2; LPVOID p1,p2;
DWORD s1,s2; DWORD s1,s2;
for(int i=0;i<MAX_BUFFER_COUNT;i++) u32 poffset=BufferSizeBytes * rv;
{
if (rv==WAIT_OBJECT_0+i) //DWORD play, write;
{ //buffer->GetCurrentPosition( &play, &write );
u32 poffset=BufferSizeBytes * i; //ConLog( " * SPU2 > Play: %d Write: %d poffset: %d\n", play, write, poffset );
buff->ReadSamples(tbuffer,BufferSize); buff->ReadSamples(tbuffer,BufferSize);
verifyc(buffer->Lock(poffset,BufferSizeBytes,&p1,&s1,&p2,&s2,0)); verifyc(buffer->Lock(poffset,BufferSizeBytes,&p1,&s1,&p2,&s2,0));
{
s16 *t = (s16*)p1; s16 *t = (s16*)p1;
s32 *s = (s32*)tbuffer; s32 *s = (s32*)tbuffer;
for(int j=0;j<BufferSize;j++) for(int j=0;j<BufferSize;j++)
{ {
*(t++) = (s16)((*(s++))>>8); *(t++) = (s16)((*(s++))>>8);
} }
verifyc(buffer->Unlock(p1,s1,p2,s2)); }
} /*if( p2 != NULL )
} {
ConLog( " * SPU2 > DSound Driver Loop-Around Occured. Length: %d", s2 );
}*/
verifyc(buffer->Unlock(p1,s1,p2,s2));
} }
return 0; return 0;
} }

View File

@ -15,6 +15,14 @@
//License along with this library; if not, write to the Free Software //License along with this library; if not, write to the Free Software
//Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA //Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// //
// [Air] Notes ----->
// Adding 'static' to the __forceinline methods hints to the linker that it need not
// actually include procedural versions of the methods in the DLL. Under normal circumstances
// the compiler will still generate the procedures even though they are never used (the inline
// code is used instead). Using static reduced the size of my generated .DLL by a few KB.
// (doesn't really make anything faster, but eh... whatever :)
//
#include "spu2.h" #include "spu2.h"
#include <assert.h> #include <assert.h>
@ -42,6 +50,7 @@ double srate_pv=1.0;
extern u32 PsxRates[160]; extern u32 PsxRates[160];
void InitADSR() // INIT ADSR void InitADSR() // INIT ADSR
{ {
for (int i=0; i<(32+128); i++) for (int i=0; i<(32+128); i++)
@ -71,18 +80,18 @@ const s32 f[5][2] ={{ 0, 0 },
{ 98, -55 }, { 98, -55 },
{ 122, -60 }}; { 122, -60 }};
s32 __forceinline XA_decode(s32 pred1, s32 pred2, s32 shift, s32& prev1, s32& prev2, s32 data) static s16 __forceinline XA_decode(s32 pred1, s32 pred2, s32 shift, s32& prev1, s32& prev2, s32 data)
{ {
s32 pcm =data>>shift; s32 pcm = data>>shift;
pcm+=((pred1*prev1)+(pred2*prev2))>>6; pcm+=((pred1*prev1)+(pred2*prev2))>>6;
if(pcm> 32767) pcm= 32767; if(pcm> 32767) pcm= 32767;
if(pcm<-32768) pcm=-32768; if(pcm<-32768) pcm=-32768;
prev2=prev1; prev2=prev1;
prev1=pcm; prev1=pcm;
return pcm; return (s16)pcm;
} }
s32 __forceinline XA_decode_block(s32* buffer, s16* block, s32& prev1, s32& prev2) static s16 __forceinline XA_decode_block(s16* buffer, const s16* block, s32& prev1, s32& prev2)
{ {
s32 data=*block; s32 data=*block;
s32 Shift = ((data>> 0)&0xF)+16; s32 Shift = ((data>> 0)&0xF)+16;
@ -102,11 +111,84 @@ s32 __forceinline XA_decode_block(s32* buffer, s16* block, s32& prev1, s32& prev
return data; return data;
} }
void __forceinline IncrementNextA() static s16 __forceinline XA_decode_block_fast(s16* buffer, const s16* block, s32& prev1, s32& prev2)
{ {
V_Voice& vc(Cores[core].Voices[voice]); s32 header = *block;
s32 shift = ((header>> 0)&0xF)+16;
s32 pred1 = f[(header>> 4)&0xF][0];
s32 pred2 = f[(header>> 4)&0xF][1];
if((vc.NextA==Cores[core].IRQA)&&(Cores[core].IRQEnable)) { const s8* blockbytes = (s8*)&block[1];
for(int i=0; i<14; i++, blockbytes++)
{
s32 pcm, pcm2;
{
s32 data = ((*blockbytes)<<28) & 0xF0000000;
pcm = data>>shift;
pcm+=((pred1*prev1)+(pred2*prev2))>>6;
if(pcm> 32767) pcm= 32767;
if(pcm<-32768) pcm=-32768;
*(buffer++) = pcm;
}
//prev2=prev1;
//prev1=pcm;
{
s32 data = ((*blockbytes)<<24) & 0xF0000000;
pcm2 = data>>shift;
pcm2+=((pred1*pcm)+(pred2*prev1))>>6;
if(pcm2> 32767) pcm2= 32767;
if(pcm2<-32768) pcm2=-32768;
*(buffer++) = pcm2;
}
prev2=pcm;
prev1=pcm2;
}
return header;
}
static s16 __forceinline XA_decode_block_unsaturated(s16* buffer, const s16* block, s32& prev1, s32& prev2)
{
s32 header = *block;
s32 shift = ((header>> 0)&0xF)+16;
s32 pred1 = f[(header>> 4)&0xF][0];
s32 pred2 = f[(header>> 4)&0xF][1];
const s8* blockbytes = (s8*)&block[1];
for(int i=0; i<14; i++, blockbytes++)
{
s32 pcm, pcm2;
{
s32 data = ((*blockbytes)<<28) & 0xF0000000;
pcm = data>>shift;
pcm+=((pred1*prev1)+(pred2*prev2))>>6;
// [Air] : Fast method, no saturation is performed.
*(buffer++) = pcm;
}
{
s32 data = ((*blockbytes)<<24) & 0xF0000000;
pcm2 = data>>shift;
pcm2+=((pred1*pcm)+(pred2*prev1))>>6;
// [Air] : Fast method, no saturation is performed.
*(buffer++) = pcm2;
}
prev2=pcm;
prev1=pcm2;
}
return header;
}
static void __forceinline IncrementNextA( const V_Core& thiscore, V_Voice& vc )
{
if((vc.NextA==thiscore.IRQA)&&(thiscore.IRQEnable)) {
ConLog(" * SPU2: IRQ Called (IRQ passed).\n"); ConLog(" * SPU2: IRQ Called (IRQ passed).\n");
Spdif.Info=4<<core; Spdif.Info=4<<core;
SetIrqCall(); SetIrqCall();
@ -116,12 +198,11 @@ void __forceinline IncrementNextA()
vc.NextA&=0xFFFFF; vc.NextA&=0xFFFFF;
} }
void __fastcall GetNextDataBuffered(s32& Data)
{
static s32 pcm=0;
static s32 data=0;
V_Voice& vc(Cores[core].Voices[voice]); static void __fastcall GetNextDataBuffered( V_Core& thiscore, V_Voice& vc, s32& Data)
{
//static s32 pcm=0;
s16 data=0;
if (vc.SCurrent>=28) if (vc.SCurrent>=28)
{ {
@ -135,31 +216,48 @@ void __fastcall GetNextDataBuffered(s32& Data)
{ {
if(MsgVoiceOff) ConLog(" * SPU2: Voice Off by EndPoint: %d \n", voice); if(MsgVoiceOff) ConLog(" * SPU2: Voice Off by EndPoint: %d \n", voice);
VoiceStop(core,voice); VoiceStop(core,voice);
Cores[core].Regs.ENDX|=1<<voice; thiscore.Regs.ENDX|=1<<voice;
vc.lastStopReason = 1; vc.lastStopReason = 1;
} }
} }
data = XA_decode_block(vc.SBuffer,GetMemPtr(vc.NextA&0xFFFFF), vc.Prev1, vc.Prev2); // [Air]: Original ADPCM decoder.
//data = XA_decode_block(vc.SBuffer,GetMemPtr(vc.NextA&0xFFFFF), vc.Prev1, vc.Prev2);
// [Air]: Testing of a new saturated decoder. (benchmark needed)
// My gut tells me that this should be faster, but you never can tell with these types
// of things. Benchmark it against the original and see what you think.
//data = XA_decode_block_fast(vc.SBuffer,GetMemPtr(vc.NextA&0xFFFFF), vc.Prev1, vc.Prev2);
// [Air]: Testing use of a new unsaturated decoder. (benchmark needed)
// Chances are the saturation isn't needed, but for a very few exception games.
// This is definitely faster than either of the above versions, but the question is by how
// much (biggest impact will be on games like Xenosaga2, which use lots of SPU2 voices).
// If the speed boost is worth it then maybe it should be added as a speedhack option
// in the spu2ghz config.
data = XA_decode_block_unsaturated(vc.SBuffer,GetMemPtr(vc.NextA&0xFFFFF), vc.Prev1, vc.Prev2);
vc.LoopEnd = (data>> 8)&1; vc.LoopEnd = (data>> 8)&1;
vc.Loop = (data>> 9)&1; vc.Loop = (data>> 9)&1;
vc.LoopStart= (data>>10)&1; vc.LoopStart= (data>>10)&1;
vc.FirstBlock=0;
vc.SCurrent = 0; vc.SCurrent = 0;
vc.FirstBlock = 0;
if (vc.LoopStart&&!vc.LoopMode) if( vc.LoopStart && !vc.LoopMode )
{ {
vc.LoopStartA=vc.NextA; vc.LoopStartA=vc.NextA;
} }
IncrementNextA(); IncrementNextA( thiscore, vc );
} }
Data=vc.SBuffer[vc.SCurrent]; Data=vc.SBuffer[vc.SCurrent];
if((vc.SCurrent&3)==3) if((vc.SCurrent&3)==3)
{ {
IncrementNextA(); IncrementNextA( thiscore, vc );
} }
vc.SCurrent++; vc.SCurrent++;
} }
@ -170,9 +268,9 @@ void __fastcall GetNextDataBuffered(s32& Data)
const int InvExpOffsets[] = { 0,4,6,8,9,10,11,12 }; const int InvExpOffsets[] = { 0,4,6,8,9,10,11,12 };
void __forceinline CalculateADSR() static void __forceinline CalculateADSR( V_Voice& vc )
{ {
V_ADSR& env(Cores[core].Voices[voice].ADSR); V_ADSR& env(vc.ADSR);
u32 SLevel=((u32)env.Sl)<<27; u32 SLevel=((u32)env.Sl)<<27;
u32 off=InvExpOffsets[(env.Value>>28)&7]; u32 off=InvExpOffsets[(env.Value>>28)&7];
@ -293,6 +391,8 @@ void __forceinline CalculateADSR()
case 6: // release end case 6: // release end
env.Value=0; env.Value=0;
break; break;
//jNO_DEFAULT
} }
if (env.Phase==6) { if (env.Phase==6) {
@ -300,17 +400,17 @@ void __forceinline CalculateADSR()
VoiceStop(core,voice); VoiceStop(core,voice);
Cores[core].Regs.ENDX|=(1<<voice); Cores[core].Regs.ENDX|=(1<<voice);
env.Phase=0; env.Phase=0;
Cores[core].Voices[voice].lastStopReason = 2; vc.lastStopReason = 2;
} }
} }
///////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////
// // // //
s32 Seed = 0x41595321; static void __forceinline GetNoiseValues(s32& VD)
void __forceinline GetNoiseValues(s32& VD)
{ {
static s32 Seed = 0x41595321;
if(Seed&0x100) VD =(s32)((Seed&0xff)<<8); if(Seed&0x100) VD =(s32)((Seed&0xff)<<8);
else if(!(Seed&0xffff)) VD = (s32)0x8000; else if(!(Seed&0xffff)) VD = (s32)0x8000;
else VD = (s32)0x7fff; else VD = (s32)0x7fff;
@ -348,27 +448,31 @@ void LowPass(s32& VL, s32& VR)
///////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////
// // // //
void GetVoiceValues(s32& Value) { static void __fastcall GetVoiceValues(V_Core& thiscore, V_Voice& vc, s32& Value)
{
s64 Data=0; s64 Data=0;
s32 DT=0; s32 DT=0;
// [Air] : Put a scope on the pitch variable, which should help it get optimized to a
// register.
{
s32 pitch; s32 pitch;
V_Voice& vc(Cores[core].Voices[voice]); // [Air] : re-ordered comparisons: Modulated is much more likely to be zero than voice,
// and so the way it was before it's have to check both voice and modulated values
if((voice==0)||(vc.Modulated==0)) // most of the time. Now it'll just check Modulated and short-circut past the voice
// check (not that it amounts to much, but eh every little bit helps).
if( (vc.Modulated==0) || (voice==0) )
pitch=vc.Pitch; pitch=vc.Pitch;
else else
pitch=(vc.Pitch*(32768 + Cores[core].Voices[voice-1].OutX))>>15; pitch=(vc.Pitch*(32768 + abs(thiscore.Voices[voice-1].OutX)))>>15;
vc.SP+=pitch; vc.SP+=pitch;
}
while(vc.SP>=4096) while(vc.SP>=4096)
{ {
DT=0; GetNextDataBuffered( thiscore, vc, DT );
if(vc.Noise)
GetNoiseValues(DT);
else
GetNextDataBuffered(DT);
vc.PV4=vc.PV3; vc.PV4=vc.PV3;
vc.PV3=vc.PV2; vc.PV3=vc.PV2;
@ -378,8 +482,7 @@ void GetVoiceValues(s32& Value) {
vc.SP-=4096; vc.SP-=4096;
} }
CalculateADSR(); CalculateADSR( vc );
// CalculateADSR();
if(vc.ADSR.Phase==0) if(vc.ADSR.Phase==0)
{ {
@ -388,26 +491,33 @@ void GetVoiceValues(s32& Value) {
} }
else else
{ {
if(Interpolation==0) { // [Air]: if SP is zero then we landed perfectly on a sample source, no
// interpolation necessary (besides being a little faster this is important
// too, since the interpolator will pick the wrong sample to mix otherwise).
if(Interpolation==0 || vc.SP == 0)
{
Data = vc.PV1; Data = vc.PV1;
} }
else if(Interpolation==1) //linear else if(Interpolation==1) //linear
{ {
s64 t0 = vc.PV1 - vc.PV2; // [Air]: Inverted the interpolation delta. The old way was generating
// inverted waveforms.
s64 t0 = vc.PV2 - vc.PV1;
s64 t1 = vc.PV1; s64 t1 = vc.PV1;
Data = (((t0*vc.SP)>>12) + t1); Data = (((t0*vc.SP)>>12) + t1);
} }
else if(Interpolation==2) //cubic else // if(Interpolation==2) //must be cubic
{ {
s64 a0 = vc.PV1 - vc.PV2 - vc.PV4 + vc.PV3; s64 a0 = vc.PV1 - vc.PV2 - vc.PV4 + vc.PV3;
s64 a1 = vc.PV4 - vc.PV3 - a0; s64 a1 = vc.PV4 - vc.PV3 - a0;
s64 a2 = vc.PV1 - vc.PV4; s64 a2 = vc.PV1 - vc.PV4;
s64 a3 = vc.PV2; s64 a3 = vc.PV2;
s64 mu = vc.SP; s64 mu = 4096-vc.SP;
s64 t0 = ((a0 )*mu)>>12; s64 t0 = ((a0 )*mu)>>18;
s64 t1 = ((t0+a1)*mu)>>12; s64 t1 = ((t0+a1)*mu)>>18;
s64 t2 = ((t1+a2)*mu)>>12; s64 t2 = ((t1+a2)*mu)>>18;
s64 t3 = ((t2+a3)); s64 t3 = ((t2+a3));
Data = t3; Data = t3;
@ -415,32 +525,73 @@ void GetVoiceValues(s32& Value) {
Value=(s32)((Data*vc.ADSR.Value)>>48); //32bit ADSR + convert to 16bit Value=(s32)((Data*vc.ADSR.Value)>>48); //32bit ADSR + convert to 16bit
vc.OutX=abs(Value); // [Air]: Moved abs() to the modulation code above, so that the abs conditionals are
// only run in select cases where modulation is active.
vc.OutX=Value;
}
}
// [Air]: Noise values need to be mixed without going through interpolation, since it
// can wreak havoc on the noise (causing muffling or popping)
static void __fastcall GetNoiseValues(V_Core& thiscore, V_Voice& vc, s32& Value)
{
s64 Data=0;
s32 DT=0;
{
s32 pitch;
if( (vc.Modulated==0) || (voice==0) )
pitch=vc.Pitch;
else
pitch=(vc.Pitch*(32768 + abs(thiscore.Voices[voice-1].OutX)))>>15;
vc.SP+=pitch;
}
while(vc.SP>=4096)
{
GetNoiseValues(DT);
vc.SP-=4096;
}
Data = DT<<16; //32bit processing
CalculateADSR( vc );
if(vc.ADSR.Phase==0)
{
Value=0;
vc.OutX=0;
}
else
{
Value=(s32)((Data*vc.ADSR.Value)>>48); //32bit ADSR + convert to 16bit
vc.OutX=Value;
} }
if(vc.PeakX<vc.OutX) vc.PeakX=vc.OutX;
} }
///////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////
// // // //
void __fastcall ReadInput(s32& PDataL,s32& PDataR) void __fastcall ReadInput(V_Core& thiscore, s32& PDataL,s32& PDataR)
{ {
if((Cores[core].AutoDMACtrl&(core+1))==(core+1)) if((thiscore.AutoDMACtrl&(core+1))==(core+1))
{ {
s32 tl,tr; s32 tl,tr;
if((core==1)&&((PlayMode&8)==8)) if((core==1)&&((PlayMode&8)==8))
{ {
Cores[core].InputPos&=~1; thiscore.InputPos&=~1;
//CDDA mode //CDDA mode
#ifdef PCM24_S1_INTERLEAVE #ifdef PCM24_S1_INTERLEAVE
*PDataL=*(((s32*)(Cores[core].ADMATempBuffer+(Cores[core].InputPos<<1)))); *PDataL=*(((s32*)(thiscore.ADMATempBuffer+(thiscore.InputPos<<1))));
*PDataR=*(((s32*)(Cores[core].ADMATempBuffer+(Cores[core].InputPos<<1)+2))); *PDataR=*(((s32*)(thiscore.ADMATempBuffer+(thiscore.InputPos<<1)+2)));
#else #else
s32 *pl=(s32*)&(Cores[core].ADMATempBuffer[Cores[core].InputPos]); s32 *pl=(s32*)&(thiscore.ADMATempBuffer[thiscore.InputPos]);
s32 *pr=(s32*)&(Cores[core].ADMATempBuffer[Cores[core].InputPos+0x200]); s32 *pr=(s32*)&(thiscore.ADMATempBuffer[thiscore.InputPos+0x200]);
PDataL=*pl; PDataL=*pl;
PDataR=*pr; PDataR=*pr;
#endif #endif
@ -448,73 +599,73 @@ void __fastcall ReadInput(s32& PDataL,s32& PDataR)
PDataL>>=4; //give 16.8 data PDataL>>=4; //give 16.8 data
PDataR>>=4; PDataR>>=4;
Cores[core].InputPos+=2; thiscore.InputPos+=2;
if((Cores[core].InputPos==0x100)||(Cores[core].InputPos>=0x200)) { if((thiscore.InputPos==0x100)||(thiscore.InputPos>=0x200)) {
Cores[core].AdmaInProgress=0; thiscore.AdmaInProgress=0;
if(Cores[core].InputDataLeft>=0x200) if(thiscore.InputDataLeft>=0x200)
{ {
u8 k=Cores[core].InputDataLeft>=Cores[core].InputDataProgress; u8 k=thiscore.InputDataLeft>=thiscore.InputDataProgress;
#ifdef PCM24_S1_INTERLEAVE #ifdef PCM24_S1_INTERLEAVE
AutoDMAReadBuffer(core,1); AutoDMAReadBuffer(core,1);
#else #else
AutoDMAReadBuffer(core,0); AutoDMAReadBuffer(core,0);
#endif #endif
Cores[core].AdmaInProgress=1; thiscore.AdmaInProgress=1;
Cores[core].TSA=(core<<10)+Cores[core].InputPos; thiscore.TSA=(core<<10)+thiscore.InputPos;
if (Cores[core].InputDataLeft<0x200) if (thiscore.InputDataLeft<0x200)
{ {
FileLog("[%10d] AutoDMA%c block end.\n",Cycles, (core==0)?'4':'7'); FileLog("[%10d] AutoDMA%c block end.\n",Cycles, (core==0)?'4':'7');
if(Cores[core].InputDataLeft>0) if(thiscore.InputDataLeft>0)
{ {
if(MsgAutoDMA) ConLog("WARNING: adma buffer didn't finish with a whole block!!\n"); if(MsgAutoDMA) ConLog("WARNING: adma buffer didn't finish with a whole block!!\n");
} }
Cores[core].InputDataLeft=0; thiscore.InputDataLeft=0;
Cores[core].DMAICounter=1; thiscore.DMAICounter=1;
} }
} }
Cores[core].InputPos&=0x1ff; thiscore.InputPos&=0x1ff;
} }
} }
else if((core==0)&&((PlayMode&4)==4)) else if((core==0)&&((PlayMode&4)==4))
{ {
Cores[core].InputPos&=~1; thiscore.InputPos&=~1;
s32 *pl=(s32*)&(Cores[core].ADMATempBuffer[Cores[core].InputPos]); s32 *pl=(s32*)&(thiscore.ADMATempBuffer[thiscore.InputPos]);
s32 *pr=(s32*)&(Cores[core].ADMATempBuffer[Cores[core].InputPos+0x200]); s32 *pr=(s32*)&(thiscore.ADMATempBuffer[thiscore.InputPos+0x200]);
PDataL=*pl; PDataL=*pl;
PDataR=*pr; PDataR=*pr;
Cores[core].InputPos+=2; thiscore.InputPos+=2;
if(Cores[core].InputPos>=0x200) { if(thiscore.InputPos>=0x200) {
Cores[core].AdmaInProgress=0; thiscore.AdmaInProgress=0;
if(Cores[core].InputDataLeft>=0x200) if(thiscore.InputDataLeft>=0x200)
{ {
u8 k=Cores[core].InputDataLeft>=Cores[core].InputDataProgress; u8 k=thiscore.InputDataLeft>=thiscore.InputDataProgress;
AutoDMAReadBuffer(core,0); AutoDMAReadBuffer(core,0);
Cores[core].AdmaInProgress=1; thiscore.AdmaInProgress=1;
Cores[core].TSA=(core<<10)+Cores[core].InputPos; thiscore.TSA=(core<<10)+thiscore.InputPos;
if (Cores[core].InputDataLeft<0x200) if (thiscore.InputDataLeft<0x200)
{ {
FileLog("[%10d] Spdif AutoDMA%c block end.\n",Cycles, (core==0)?'4':'7'); FileLog("[%10d] Spdif AutoDMA%c block end.\n",Cycles, (core==0)?'4':'7');
if(Cores[core].InputDataLeft>0) if(thiscore.InputDataLeft>0)
{ {
if(MsgAutoDMA) ConLog("WARNING: adma buffer didn't finish with a whole block!!\n"); if(MsgAutoDMA) ConLog("WARNING: adma buffer didn't finish with a whole block!!\n");
} }
Cores[core].InputDataLeft=0; thiscore.InputDataLeft=0;
Cores[core].DMAICounter=1; thiscore.DMAICounter=1;
} }
} }
Cores[core].InputPos&=0x1ff; thiscore.InputPos&=0x1ff;
} }
} }
@ -528,45 +679,45 @@ void __fastcall ReadInput(s32& PDataL,s32& PDataR)
else else
{ {
// Using the temporary buffer because this area gets overwritten by some other code. // Using the temporary buffer because this area gets overwritten by some other code.
//*PDataL=(s32)*(s16*)(spu2mem+0x2000+(core<<10)+Cores[core].InputPos); //*PDataL=(s32)*(s16*)(spu2mem+0x2000+(core<<10)+thiscore.InputPos);
//*PDataR=(s32)*(s16*)(spu2mem+0x2200+(core<<10)+Cores[core].InputPos); //*PDataR=(s32)*(s16*)(spu2mem+0x2200+(core<<10)+thiscore.InputPos);
tl=(s32)Cores[core].ADMATempBuffer[Cores[core].InputPos]; tl=(s32)thiscore.ADMATempBuffer[thiscore.InputPos];
tr=(s32)Cores[core].ADMATempBuffer[Cores[core].InputPos+0x200]; tr=(s32)thiscore.ADMATempBuffer[thiscore.InputPos+0x200];
} }
PDataL=tl; PDataL=tl;
PDataR=tr; PDataR=tr;
Cores[core].InputPos++; thiscore.InputPos++;
if((Cores[core].InputPos==0x100)||(Cores[core].InputPos>=0x200)) { if((thiscore.InputPos==0x100)||(thiscore.InputPos>=0x200)) {
Cores[core].AdmaInProgress=0; thiscore.AdmaInProgress=0;
if(Cores[core].InputDataLeft>=0x200) if(thiscore.InputDataLeft>=0x200)
{ {
u8 k=Cores[core].InputDataLeft>=Cores[core].InputDataProgress; u8 k=thiscore.InputDataLeft>=thiscore.InputDataProgress;
AutoDMAReadBuffer(core,0); AutoDMAReadBuffer(core,0);
Cores[core].AdmaInProgress=1; thiscore.AdmaInProgress=1;
Cores[core].TSA=(core<<10)+Cores[core].InputPos; thiscore.TSA=(core<<10)+thiscore.InputPos;
if (Cores[core].InputDataLeft<0x200) if (thiscore.InputDataLeft<0x200)
{ {
FileLog("[%10d] AutoDMA%c block end.\n",Cycles, (core==0)?'4':'7'); FileLog("[%10d] AutoDMA%c block end.\n",Cycles, (core==0)?'4':'7');
Cores[core].AutoDMACtrl |=~3; thiscore.AutoDMACtrl |=~3;
if(Cores[core].InputDataLeft>0) if(thiscore.InputDataLeft>0)
{ {
if(MsgAutoDMA) ConLog("WARNING: adma buffer didn't finish with a whole block!!\n"); if(MsgAutoDMA) ConLog("WARNING: adma buffer didn't finish with a whole block!!\n");
} }
Cores[core].InputDataLeft=0; thiscore.InputDataLeft=0;
Cores[core].DMAICounter=1; thiscore.DMAICounter=1;
} }
} }
Cores[core].InputPos&=0x1ff; thiscore.InputPos&=0x1ff;
} }
} }
} }
@ -580,7 +731,7 @@ void __fastcall ReadInput(s32& PDataL,s32& PDataR)
///////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////
// // // //
void ReadInputPV(s32& ValL,s32& ValR) void __fastcall ReadInputPV(V_Core& thiscore, s32& ValL,s32& ValR)
{ {
s32 DL=0, DR=0; s32 DL=0, DR=0;
@ -588,24 +739,25 @@ void ReadInputPV(s32& ValL,s32& ValR)
if(pitch==0) pitch=48000; if(pitch==0) pitch=48000;
Cores[core].ADMAPV+=pitch; thiscore.ADMAPV+=pitch;
while(Cores[core].ADMAPV>=48000) while(thiscore.ADMAPV>=48000)
{ {
ReadInput(DL,DR); ReadInput(thiscore, DL,DR);
Cores[core].ADMAPV-=48000; thiscore.ADMAPV-=48000;
Cores[core].ADMAPL=DL; thiscore.ADMAPL=DL;
Cores[core].ADMAPR=DR; thiscore.ADMAPR=DR;
} }
ValL=Cores[core].ADMAPL; ValL=thiscore.ADMAPL;
ValR=Cores[core].ADMAPR; ValR=thiscore.ADMAPR;
} }
///////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////
// // // //
void __forceinline UpdateVolume(V_Volume& Vol) { static void __forceinline UpdateVolume(V_Volume& Vol)
{
s32 NVal; s32 NVal;
// TIMINGS ARE FAKE!!! Need to investigate. // TIMINGS ARE FAKE!!! Need to investigate.
@ -664,7 +816,7 @@ void __forceinline UpdateVolume(V_Volume& Vol) {
///////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////
// // // //
s32 __forceinline clamp(s32 x) static s32 __forceinline clamp(s32 x)
{ {
if (x>0x00ffffff) return 0x00ffffff; if (x>0x00ffffff) return 0x00ffffff;
if (x<0xff000000) return 0xff000000; if (x<0xff000000) return 0xff000000;
@ -675,12 +827,12 @@ s32 __forceinline clamp(s32 x)
///////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////
// // // //
void DoReverb(s32& OutL, s32& OutR, s32 InL, s32 InR) static void DoReverb( V_Core& thiscore, s32& OutL, s32& OutR, s32 InL, s32 InR)
{ {
static s32 INPUT_SAMPLE_L,INPUT_SAMPLE_R; static s32 INPUT_SAMPLE_L,INPUT_SAMPLE_R;
static s32 OUTPUT_SAMPLE_L,OUTPUT_SAMPLE_R; static s32 OUTPUT_SAMPLE_L,OUTPUT_SAMPLE_R;
if(!(Cores[core].FxEnable&&EffectsEnabled)) if(!(thiscore.FxEnable&&EffectsEnabled))
{ {
OUTPUT_SAMPLE_L=0; OUTPUT_SAMPLE_L=0;
OUTPUT_SAMPLE_R=0; OUTPUT_SAMPLE_R=0;
@ -698,14 +850,14 @@ void DoReverb(s32& OutL, s32& OutR, s32 InL, s32 InR)
s32 IIR_INPUT_A0,IIR_INPUT_A1,IIR_INPUT_B0,IIR_INPUT_B1; s32 IIR_INPUT_A0,IIR_INPUT_A1,IIR_INPUT_B0,IIR_INPUT_B1;
s32 ACC0,ACC1; s32 ACC0,ACC1;
s32 FB_A0,FB_A1,FB_B0,FB_B1; s32 FB_A0,FB_A1,FB_B0,FB_B1;
s32 buffsize=Cores[core].EffectsEndA-Cores[core].EffectsStartA+1; s32 buffsize=thiscore.EffectsEndA-thiscore.EffectsStartA+1;
if(buffsize<0) if(buffsize<0)
{ {
buffsize = Cores[core].EffectsEndA; buffsize = thiscore.EffectsEndA;
Cores[core].EffectsEndA=Cores[core].EffectsStartA; thiscore.EffectsEndA=thiscore.EffectsStartA;
Cores[core].EffectsStartA=buffsize; thiscore.EffectsStartA=buffsize;
buffsize=Cores[core].EffectsEndA-Cores[core].EffectsStartA+1; buffsize=thiscore.EffectsEndA-thiscore.EffectsStartA+1;
} }
//filter the 2 samples (prev then current) //filter the 2 samples (prev then current)
@ -715,42 +867,42 @@ void DoReverb(s32& OutL, s32& OutR, s32 InL, s32 InR)
INPUT_SAMPLE_L=(INPUT_SAMPLE_L+InL)>>9; INPUT_SAMPLE_L=(INPUT_SAMPLE_L+InL)>>9;
INPUT_SAMPLE_R=(INPUT_SAMPLE_R+InR)>>9; INPUT_SAMPLE_R=(INPUT_SAMPLE_R+InR)>>9;
#define BUFFER(x) ((s32)(*GetMemPtr(Cores[core].EffectsStartA + ((Cores[core].ReverbX + buffsize-((x)<<2))%buffsize)))) #define BUFFER(x) ((s32)(*GetMemPtr(thiscore.EffectsStartA + ((thiscore.ReverbX + buffsize-((x)<<2))%buffsize))))
#define SBUFFER(x) (*GetMemPtr(Cores[core].EffectsStartA + ((Cores[core].ReverbX + buffsize-((x)<<2))%buffsize))) #define SBUFFER(x) (*GetMemPtr(thiscore.EffectsStartA + ((thiscore.ReverbX + buffsize-((x)<<2))%buffsize)))
Cores[core].ReverbX=((Cores[core].ReverbX + 4)%buffsize); thiscore.ReverbX=((thiscore.ReverbX + 4)%buffsize);
IIR_INPUT_A0 = (BUFFER(Cores[core].Revb.IIR_SRC_A0) * Cores[core].Revb.IIR_COEF + INPUT_SAMPLE_L * Cores[core].Revb.IN_COEF_L)>>16; IIR_INPUT_A0 = (BUFFER(thiscore.Revb.IIR_SRC_A0) * thiscore.Revb.IIR_COEF + INPUT_SAMPLE_L * thiscore.Revb.IN_COEF_L)>>16;
IIR_INPUT_A1 = (BUFFER(Cores[core].Revb.IIR_SRC_A1) * Cores[core].Revb.IIR_COEF + INPUT_SAMPLE_R * Cores[core].Revb.IN_COEF_R)>>16; IIR_INPUT_A1 = (BUFFER(thiscore.Revb.IIR_SRC_A1) * thiscore.Revb.IIR_COEF + INPUT_SAMPLE_R * thiscore.Revb.IN_COEF_R)>>16;
IIR_INPUT_B0 = (BUFFER(Cores[core].Revb.IIR_SRC_B0) * Cores[core].Revb.IIR_COEF + INPUT_SAMPLE_L * Cores[core].Revb.IN_COEF_L)>>16; IIR_INPUT_B0 = (BUFFER(thiscore.Revb.IIR_SRC_B0) * thiscore.Revb.IIR_COEF + INPUT_SAMPLE_L * thiscore.Revb.IN_COEF_L)>>16;
IIR_INPUT_B1 = (BUFFER(Cores[core].Revb.IIR_SRC_B1) * Cores[core].Revb.IIR_COEF + INPUT_SAMPLE_R * Cores[core].Revb.IN_COEF_R)>>16; IIR_INPUT_B1 = (BUFFER(thiscore.Revb.IIR_SRC_B1) * thiscore.Revb.IIR_COEF + INPUT_SAMPLE_R * thiscore.Revb.IN_COEF_R)>>16;
SBUFFER(Cores[core].Revb.IIR_DEST_A0 + 4) = clamp((IIR_INPUT_A0 * Cores[core].Revb.IIR_ALPHA + BUFFER(Cores[core].Revb.IIR_DEST_A0) * (65535 - Cores[core].Revb.IIR_ALPHA))>>16); SBUFFER(thiscore.Revb.IIR_DEST_A0 + 4) = clamp((IIR_INPUT_A0 * thiscore.Revb.IIR_ALPHA + BUFFER(thiscore.Revb.IIR_DEST_A0) * (65535 - thiscore.Revb.IIR_ALPHA))>>16);
SBUFFER(Cores[core].Revb.IIR_DEST_A1 + 4) = clamp((IIR_INPUT_A1 * Cores[core].Revb.IIR_ALPHA + BUFFER(Cores[core].Revb.IIR_DEST_A1) * (65535 - Cores[core].Revb.IIR_ALPHA))>>16); SBUFFER(thiscore.Revb.IIR_DEST_A1 + 4) = clamp((IIR_INPUT_A1 * thiscore.Revb.IIR_ALPHA + BUFFER(thiscore.Revb.IIR_DEST_A1) * (65535 - thiscore.Revb.IIR_ALPHA))>>16);
SBUFFER(Cores[core].Revb.IIR_DEST_B0 + 4) = clamp((IIR_INPUT_B0 * Cores[core].Revb.IIR_ALPHA + BUFFER(Cores[core].Revb.IIR_DEST_B0) * (65535 - Cores[core].Revb.IIR_ALPHA))>>16); SBUFFER(thiscore.Revb.IIR_DEST_B0 + 4) = clamp((IIR_INPUT_B0 * thiscore.Revb.IIR_ALPHA + BUFFER(thiscore.Revb.IIR_DEST_B0) * (65535 - thiscore.Revb.IIR_ALPHA))>>16);
SBUFFER(Cores[core].Revb.IIR_DEST_B1 + 4) = clamp((IIR_INPUT_B1 * Cores[core].Revb.IIR_ALPHA + BUFFER(Cores[core].Revb.IIR_DEST_B1) * (65535 - Cores[core].Revb.IIR_ALPHA))>>16); SBUFFER(thiscore.Revb.IIR_DEST_B1 + 4) = clamp((IIR_INPUT_B1 * thiscore.Revb.IIR_ALPHA + BUFFER(thiscore.Revb.IIR_DEST_B1) * (65535 - thiscore.Revb.IIR_ALPHA))>>16);
ACC0 = (s32)(BUFFER(Cores[core].Revb.ACC_SRC_A0) * Cores[core].Revb.ACC_COEF_A + ACC0 = (s32)(BUFFER(thiscore.Revb.ACC_SRC_A0) * thiscore.Revb.ACC_COEF_A +
BUFFER(Cores[core].Revb.ACC_SRC_B0) * Cores[core].Revb.ACC_COEF_B + BUFFER(thiscore.Revb.ACC_SRC_B0) * thiscore.Revb.ACC_COEF_B +
BUFFER(Cores[core].Revb.ACC_SRC_C0) * Cores[core].Revb.ACC_COEF_C + BUFFER(thiscore.Revb.ACC_SRC_C0) * thiscore.Revb.ACC_COEF_C +
BUFFER(Cores[core].Revb.ACC_SRC_D0) * Cores[core].Revb.ACC_COEF_D)>>16; BUFFER(thiscore.Revb.ACC_SRC_D0) * thiscore.Revb.ACC_COEF_D)>>16;
ACC1 = (s32)(BUFFER(Cores[core].Revb.ACC_SRC_A1) * Cores[core].Revb.ACC_COEF_A + ACC1 = (s32)(BUFFER(thiscore.Revb.ACC_SRC_A1) * thiscore.Revb.ACC_COEF_A +
BUFFER(Cores[core].Revb.ACC_SRC_B1) * Cores[core].Revb.ACC_COEF_B + BUFFER(thiscore.Revb.ACC_SRC_B1) * thiscore.Revb.ACC_COEF_B +
BUFFER(Cores[core].Revb.ACC_SRC_C1) * Cores[core].Revb.ACC_COEF_C + BUFFER(thiscore.Revb.ACC_SRC_C1) * thiscore.Revb.ACC_COEF_C +
BUFFER(Cores[core].Revb.ACC_SRC_D1) * Cores[core].Revb.ACC_COEF_D)>>16; BUFFER(thiscore.Revb.ACC_SRC_D1) * thiscore.Revb.ACC_COEF_D)>>16;
FB_A0 = BUFFER(Cores[core].Revb.MIX_DEST_A0 - Cores[core].Revb.FB_SRC_A); FB_A0 = BUFFER(thiscore.Revb.MIX_DEST_A0 - thiscore.Revb.FB_SRC_A);
FB_A1 = BUFFER(Cores[core].Revb.MIX_DEST_A1 - Cores[core].Revb.FB_SRC_A); FB_A1 = BUFFER(thiscore.Revb.MIX_DEST_A1 - thiscore.Revb.FB_SRC_A);
FB_B0 = BUFFER(Cores[core].Revb.MIX_DEST_B0 - Cores[core].Revb.FB_SRC_B); FB_B0 = BUFFER(thiscore.Revb.MIX_DEST_B0 - thiscore.Revb.FB_SRC_B);
FB_B1 = BUFFER(Cores[core].Revb.MIX_DEST_B1 - Cores[core].Revb.FB_SRC_B); FB_B1 = BUFFER(thiscore.Revb.MIX_DEST_B1 - thiscore.Revb.FB_SRC_B);
SBUFFER(Cores[core].Revb.MIX_DEST_A0) = clamp((ACC0 - FB_A0 * Cores[core].Revb.FB_ALPHA)>>16); SBUFFER(thiscore.Revb.MIX_DEST_A0) = clamp((ACC0 - FB_A0 * thiscore.Revb.FB_ALPHA)>>16);
SBUFFER(Cores[core].Revb.MIX_DEST_A1) = clamp((ACC1 - FB_A1 * Cores[core].Revb.FB_ALPHA)>>16); SBUFFER(thiscore.Revb.MIX_DEST_A1) = clamp((ACC1 - FB_A1 * thiscore.Revb.FB_ALPHA)>>16);
SBUFFER(Cores[core].Revb.MIX_DEST_B0) = clamp(((Cores[core].Revb.FB_ALPHA * ACC0) - FB_A0 * (65535 - Cores[core].Revb.FB_ALPHA) - FB_B0 * Cores[core].Revb.FB_X)>>16); SBUFFER(thiscore.Revb.MIX_DEST_B0) = clamp(((thiscore.Revb.FB_ALPHA * ACC0) - FB_A0 * (65535 - thiscore.Revb.FB_ALPHA) - FB_B0 * thiscore.Revb.FB_X)>>16);
SBUFFER(Cores[core].Revb.MIX_DEST_B1) = clamp(((Cores[core].Revb.FB_ALPHA * ACC1) - FB_A1 * (65535 - Cores[core].Revb.FB_ALPHA) - FB_B1 * Cores[core].Revb.FB_X)>>16); SBUFFER(thiscore.Revb.MIX_DEST_B1) = clamp(((thiscore.Revb.FB_ALPHA * ACC1) - FB_A1 * (65535 - thiscore.Revb.FB_ALPHA) - FB_B1 * thiscore.Revb.FB_X)>>16);
OUTPUT_SAMPLE_L=clamp((BUFFER(Cores[core].Revb.MIX_DEST_A0)+BUFFER(Cores[core].Revb.MIX_DEST_B0))>>2); OUTPUT_SAMPLE_L=clamp((BUFFER(thiscore.Revb.MIX_DEST_A0)+BUFFER(thiscore.Revb.MIX_DEST_B0))>>2);
OUTPUT_SAMPLE_R=clamp((BUFFER(Cores[core].Revb.MIX_DEST_B1)+BUFFER(Cores[core].Revb.MIX_DEST_B1))>>2); OUTPUT_SAMPLE_R=clamp((BUFFER(thiscore.Revb.MIX_DEST_B1)+BUFFER(thiscore.Revb.MIX_DEST_B1))>>2);
} }
OutL=OUTPUT_SAMPLE_L; OutL=OUTPUT_SAMPLE_L;
OutR=OUTPUT_SAMPLE_R; OutR=OUTPUT_SAMPLE_R;
@ -766,15 +918,13 @@ double rfactor=1;
double cfactor=1; double cfactor=1;
double diff=0; double diff=0;
s32 __forceinline ApplyVolume(s32 data, s32 volume) static s32 __forceinline ApplyVolume(s32 data, s32 volume)
{ {
return (volume * data); return (volume * data);
} }
void __forceinline MixVoice(s32& VValL, s32& VValR) static void __forceinline MixVoice(V_Voice& vc, s32& VValL, s32& VValR)
{ {
V_Voice& vc(Cores[core].Voices[voice]);
s32 Value=0; s32 Value=0;
VValL=0; VValL=0;
@ -783,11 +933,16 @@ void __forceinline MixVoice(s32& VValL, s32& VValR)
UpdateVolume(vc.VolumeL); UpdateVolume(vc.VolumeL);
UpdateVolume(vc.VolumeR); UpdateVolume(vc.VolumeR);
if (Cores[core].Voices[voice].ADSR.Phase>0) if (vc.ADSR.Phase>0)
{ {
GetVoiceValues(Value); if( vc.Noise )
GetNoiseValues( Cores[core], vc, Value );
else
GetVoiceValues( Cores[core], vc, Value );
#ifdef _DEBUG
vc.displayPeak = max(vc.displayPeak,abs(Value)); vc.displayPeak = max(vc.displayPeak,abs(Value));
#endif
VValL=ApplyVolume(Value,(vc.VolumeL.Value)); VValL=ApplyVolume(Value,(vc.VolumeL.Value));
VValR=ApplyVolume(Value,(vc.VolumeR.Value)); VValR=ApplyVolume(Value,(vc.VolumeR.Value));
@ -798,7 +953,7 @@ void __forceinline MixVoice(s32& VValL, s32& VValR)
} }
__forceinline void MixCore(s32& OutL, s32& OutR, s32 ExtL, s32 ExtR) static void __fastcall MixCore(s32& OutL, s32& OutR, s32 ExtL, s32 ExtR)
{ {
s32 InpL=0, InpR=0; s32 InpL=0, InpR=0;
@ -813,23 +968,25 @@ __forceinline void MixCore(s32& OutL, s32& OutR, s32 ExtL, s32 ExtR)
spu2Ms16(0xA00 + OutPos)=(s16)(ExtR>>16); spu2Ms16(0xA00 + OutPos)=(s16)(ExtR>>16);
} }
V_Core& thiscore( Cores[core] );
if((core==0)&&((PlayMode&4)!=4)) if((core==0)&&((PlayMode&4)!=4))
{ {
ReadInputPV(InpL,InpR); // get input data from input buffers ReadInputPV(thiscore, InpL,InpR); // get input data from input buffers
} }
if((core==1)&&((PlayMode&8)!=8)) if((core==1)&&((PlayMode&8)!=8))
{ {
ReadInputPV(InpL,InpR); // get input data from input buffers ReadInputPV(thiscore, InpL,InpR); // get input data from input buffers
} }
s32 InputPeak = max(abs(InpL),abs(InpR)); s32 InputPeak = max(abs(InpL),abs(InpR));
if(Cores[core].AutoDMAPeak<InputPeak) Cores[core].AutoDMAPeak=InputPeak; if(thiscore.AutoDMAPeak<InputPeak) thiscore.AutoDMAPeak=InputPeak;
InpL = MulDiv(InpL,(Cores[core].InpL),1<<1); InpL = MulDiv(InpL,(thiscore.InpL),1<<1);
InpR = MulDiv(InpR,(Cores[core].InpR),1<<1); InpR = MulDiv(InpR,(thiscore.InpR),1<<1);
ExtL = MulDiv(ExtL,(Cores[core].ExtL),1<<12); ExtL = MulDiv(ExtL,(thiscore.ExtL),1<<12);
ExtR = MulDiv(ExtR,(Cores[core].ExtR),1<<12); ExtR = MulDiv(ExtR,(thiscore.ExtR),1<<12);
SDL=SDR=SWL=SWR=(s32)0; SDL=SDR=SWL=SWR=(s32)0;
@ -837,12 +994,13 @@ __forceinline void MixCore(s32& OutL, s32& OutR, s32 ExtL, s32 ExtR)
{ {
s32 VValL,VValR; s32 VValL,VValR;
MixVoice(VValL,VValR); V_Voice& vc( thiscore.Voices[voice] );
MixVoice( vc,VValL,VValR );
SDL += VValL * Cores[core].Voices[voice].DryL; SDL += VValL * vc.DryL;
SDR += VValR * Cores[core].Voices[voice].DryR; SDR += VValR * vc.DryR;
SWL += VValL * Cores[core].Voices[voice].WetL; SWL += VValL * vc.WetL;
SWR += VValR * Cores[core].Voices[voice].WetR; SWR += VValR * vc.WetR;
} }
//Write To Output Area //Write To Output Area
@ -852,30 +1010,30 @@ __forceinline void MixCore(s32& OutL, s32& OutR, s32 ExtL, s32 ExtR)
spu2Ms16(0x1600 + (core<<12) + OutPos)=(s16)(SWR>>16); spu2Ms16(0x1600 + (core<<12) + OutPos)=(s16)(SWR>>16);
// Mix in the Voice data // Mix in the Voice data
TDL += SDL * Cores[core].SndDryL; TDL += SDL * thiscore.SndDryL;
TDR += SDR * Cores[core].SndDryR; TDR += SDR * thiscore.SndDryR;
TWL += SWL * Cores[core].SndWetL; TWL += SWL * thiscore.SndWetL;
TWR += SWR * Cores[core].SndWetR; TWR += SWR * thiscore.SndWetR;
// Mix in the Input data // Mix in the Input data
TDL += InpL * Cores[core].InpDryL; TDL += InpL * thiscore.InpDryL;
TDR += InpR * Cores[core].InpDryR; TDR += InpR * thiscore.InpDryR;
TWL += InpL * Cores[core].InpWetL; TWL += InpL * thiscore.InpWetL;
TWR += InpR * Cores[core].InpWetR; TWR += InpR * thiscore.InpWetR;
// Mix in the External (nothing/core0) data // Mix in the External (nothing/core0) data
TDL += ExtL * Cores[core].ExtDryL; TDL += ExtL * thiscore.ExtDryL;
TDR += ExtR * Cores[core].ExtDryR; TDR += ExtR * thiscore.ExtDryR;
TWL += ExtL * Cores[core].ExtWetL; TWL += ExtL * thiscore.ExtWetL;
TWR += ExtR * Cores[core].ExtWetR; TWR += ExtR * thiscore.ExtWetR;
if(EffectsEnabled) if(EffectsEnabled)
{ {
//Apply Effects //Apply Effects
DoReverb(RVL,RVR,TWL>>16,TWR>>16); DoReverb( thiscore, RVL,RVR,TWL>>16,TWR>>16);
TWL=ApplyVolume(RVL,VOL(Cores[core].FxL)); TWL=ApplyVolume(RVL,VOL(thiscore.FxL));
TWR=ApplyVolume(RVR,VOL(Cores[core].FxR)); TWR=ApplyVolume(RVR,VOL(thiscore.FxR));
} }
else else
{ {
@ -888,12 +1046,12 @@ __forceinline void MixCore(s32& OutL, s32& OutR, s32 ExtL, s32 ExtR)
OutR=(TDR + TWR); OutR=(TDR + TWR);
//Apply Master Volume //Apply Master Volume
UpdateVolume(Cores[core].MasterL); UpdateVolume(thiscore.MasterL);
UpdateVolume(Cores[core].MasterR); UpdateVolume(thiscore.MasterR);
if (Cores[core].Mute==0) { if (thiscore.Mute==0) {
OutL=MulDiv(OutL,Cores[core].MasterL.Value,1<<16); OutL=MulDiv(OutL,thiscore.MasterL.Value,1<<16);
OutR=MulDiv(OutR,Cores[core].MasterR.Value,1<<16); OutR=MulDiv(OutR,thiscore.MasterR.Value,1<<16);
} }
else else
{ {
@ -903,7 +1061,7 @@ __forceinline void MixCore(s32& OutL, s32& OutR, s32 ExtL, s32 ExtR)
if((core==1)&&(PlayMode&8)) if((core==1)&&(PlayMode&8))
{ {
ReadInput(OutL,OutR); ReadInput(thiscore, OutL,OutR);
} }
if((core==0)&&(PlayMode&4)) if((core==0)&&(PlayMode&4))
@ -923,12 +1081,13 @@ void __fastcall Mix()
core=0; core=0;
MixCore(ExtL,ExtR,0,0); MixCore(ExtL,ExtR,0,0);
Peak0 = max(Peak0,max(ExtL,ExtR));
core=1; core=1;
MixCore(OutL,OutR,ExtL,ExtR); MixCore(OutL,OutR,ExtL,ExtR);
#ifdef _DEBUG
Peak0 = max(Peak0,max(ExtL,ExtR));
Peak1 = max(Peak1,max(OutL,OutR)); Peak1 = max(Peak1,max(OutL,OutR));
#endif
ExtL=MulDiv(OutL,VolumeMultiplier,VolumeDivisor<<6); ExtL=MulDiv(OutL,VolumeMultiplier,VolumeDivisor<<6);
ExtR=MulDiv(OutR,VolumeMultiplier,VolumeDivisor<<6); ExtR=MulDiv(OutR,VolumeMultiplier,VolumeDivisor<<6);

View File

@ -23,5 +23,4 @@ void __fastcall Mix();
void __fastcall LogVolInit(); void __fastcall LogVolInit();
void __fastcall LogVolClose(); void __fastcall LogVolClose();
#endif // MIXER_H_INCLUDED // #endif // MIXER_H_INCLUDED //

View File

@ -126,16 +126,18 @@ public:
#endif #endif
while((free<nSamples)&&(pw)) while((free<nSamples)&&(pw))
{ {
isWaiting=true; //isWaiting=true;
LeaveCriticalSection(&cs); LeaveCriticalSection(&cs);
ConLog( " * SPU2 : Waiting for object... " );
WaitForSingleObject(hSyncEvent,1000); WaitForSingleObject(hSyncEvent,1000);
ConLog( " Signaled! \n" );
EnterCriticalSection(&cs); EnterCriticalSection(&cs);
#ifdef DYNAMIC_BUFFER_LIMITING #ifdef DYNAMIC_BUFFER_LIMITING
free = buffer_limit-data; free = buffer_limit-data;
#else #else
free = size-data; free = size-data;
#endif #endif
isWaiting=false; //isWaiting=false;
} }
} }
@ -187,13 +189,19 @@ public:
underflows++; underflows++;
} }
#else #else
bool uflow = false;
while(data<0) while(data<0)
{ {
data+=size; data+=size;
uflow = true;
} }
//if( uflow )
//ConLog( " * SPU2 : Data Underflow detected!\n" );
#endif #endif
if(isWaiting) //if(isWaiting)
{ {
PulseEvent(hSyncEvent); PulseEvent(hSyncEvent);
} }

View File

@ -565,8 +565,6 @@ void CALLBACK TimeUpdate(u32 cClocks, u32 syncType)
// HACKY but should work anyway. // HACKY but should work anyway.
if(lClocks==0) lClocks = cClocks; if(lClocks==0) lClocks = cClocks;
if(dClocks>=TickInterval)
{
//Update Mixing Progress //Update Mixing Progress
while(dClocks>=TickInterval) while(dClocks>=TickInterval)
{ {
@ -634,7 +632,6 @@ void CALLBACK TimeUpdate(u32 cClocks, u32 syncType)
Mix(); Mix();
} }
}
} }
bool numpad_minus_old=false; bool numpad_minus_old=false;
@ -1713,8 +1710,12 @@ void VoiceStart(int core,int vc)
Cores[core].Voices[vc].Prev1=0; Cores[core].Voices[vc].Prev1=0;
Cores[core].Voices[vc].Prev2=0; Cores[core].Voices[vc].Prev2=0;
Cores[core].Voices[vc].PV1=Cores[core].Voices[vc].PV2=0; // [Air]: Don't wipe interpolation values on VoiceStart.
Cores[core].Voices[vc].PV3=Cores[core].Voices[vc].PV4=0; // There'll be less popping/clicking if we just interpolate from the
// old sample and the new sample.
//Cores[core].Voices[vc].PV1=Cores[core].Voices[vc].PV2=0;
//Cores[core].Voices[vc].PV3=Cores[core].Voices[vc].PV4=0;
Cores[core].Regs.ENDX&=~(1<<vc); Cores[core].Regs.ENDX&=~(1<<vc);
@ -1741,6 +1742,13 @@ void VoiceStop(int core,int vc)
{ {
Cores[core].Voices[vc].ADSR.Value=0; Cores[core].Voices[vc].ADSR.Value=0;
Cores[core].Voices[vc].ADSR.Phase=0; Cores[core].Voices[vc].ADSR.Phase=0;
// [Air]: Wipe the interpolation values here, since stopped voices
// are essentially silence (and any new voices shold thusly interpolate up from
// such silence)
Cores[core].Voices[vc].PV1=Cores[core].Voices[vc].PV2=0;
Cores[core].Voices[vc].PV3=Cores[core].Voices[vc].PV4=0;
//Cores[core].Regs.ENDX|=(1<<vc); //Cores[core].Regs.ENDX|=(1<<vc);
} }

View File

@ -53,6 +53,37 @@
#include "debug.h" #include "debug.h"
// [Air] : give hints to the optimizer
// This is primarily useful for the default case switch optimizer, which enables VC to
// generate more compact switches.
#ifdef NDEBUG
# define jBREAKPOINT() ((void) 0)
# ifdef _MSC_VER
# define jASSUME(exp) (__assume(exp))
# else
# define jASSUME(exp) ((void) sizeof(exp))
# endif
#else
# if defined(_MSC_VER)
# define jBREAKPOINT() do { __asm int 3 } while(0)
# else
# define jBREAKPOINT() ((void) *(volatile char *) 0)
# endif
# define jASSUME(exp) if(exp) ; else jBREAKPOINT()
#endif
// disable the default case in a switch
#define jNO_DEFAULT \
{ \
break; \
\
default: \
jASSUME(0); \
break; \
}
extern void spdif_set51(u32 is_5_1_out); extern void spdif_set51(u32 is_5_1_out);
extern u32 spdif_init(); extern u32 spdif_init();
extern void spdif_shutdown(); extern void spdif_shutdown();

View File

@ -54,40 +54,33 @@ private:
{ {
while( waveout_running ) while( waveout_running )
{ {
int free=0; bool didsomething = false;
int first=-1;
do
{
free=0;
for(int i=0;i<MAX_BUFFER_COUNT;i++) for(int i=0;i<MAX_BUFFER_COUNT;i++)
{ {
if(whbuffer[i].dwFlags & WHDR_DONE) if(!(whbuffer[i].dwFlags & WHDR_DONE) ) continue;
{
whbuffer[i].dwFlags&=~WHDR_DONE;
first=i;
free=1;
break;
}
}
if(free)
break;
else
Sleep(1);
} while(free==0);
WAVEHDR *buf=whbuffer+first; WAVEHDR *buf=whbuffer+i;
buf->dwBytesRecorded= buf->dwBufferLength; buf->dwBytesRecorded = buf->dwBufferLength;
buff->ReadSamples(tbuffer,BufferSize); buff->ReadSamples(tbuffer,BufferSize);
s16 *t = (s16*)buf->lpData; s16 *t = (s16*)buf->lpData;
s32 *s = (s32*)tbuffer; s32 *s = (s32*)tbuffer;
for(int i=0;i<BufferSize;i++)
for(int bleh=0;bleh<BufferSize;bleh++)
{ {
*(t++) = (s16)((*(s++))>>8); *(t++) = (s16)((*(s++))>>8);
} }
whbuffer[i].dwFlags&=~WHDR_DONE;
waveOutWrite(hwodevice,buf,sizeof(WAVEHDR)); waveOutWrite(hwodevice,buf,sizeof(WAVEHDR));
didsomething = true;
}
if( didsomething )
Sleep(1);
else
Sleep(0);
} }
return 0; return 0;
} }
@ -137,9 +130,12 @@ public:
} }
// Start Thread // Start Thread
// [Air]: The waveout code does not use wait objects, so setting a time critical
// priority level is a bad idea. Standard priority will do fine. The buffer will get the
// love it needs and won't suck resources idling pointlessly.
waveout_running=true; waveout_running=true;
thread=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)RThread,this,0,&tid); thread=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)RThread,this,0,&tid);
SetThreadPriority(thread,THREAD_PRIORITY_TIME_CRITICAL); //SetThreadPriority( thread, THREAD_PRIORITY_TIME_CRITICAL );
return 0; return 0;
} }