pcsx2: manually cast function pointer to void*

Templace is nicer but give a hard time to compiler.

New version compile in both gcc&clang without hack

v2: add an uptr cast too for VS2013 sigh...
v3: use an ugly function pointer cast to please VS2013
This commit is contained in:
Gregory Hainaut 2016-08-14 14:01:04 +02:00
parent 15db7eeb81
commit cc68776069
10 changed files with 93 additions and 104 deletions

View File

@ -19,23 +19,6 @@
namespace x86Emitter { namespace x86Emitter {
#ifdef __GNUG__
// GCC has a bug that causes the templated function handler for Jmp/Call emitters to generate
// bad asm code. (error is something like "7#*_uber_379s_mangled_$&02_name is already defined!")
// Using GCC's always_inline attribute fixes it. This differs from __fi in that it
// inlines *even in debug builds* which is (usually) undesirable.
// ... except when it avoids compiler bugs.
// Note: I try with -fabi-version=6 without success
// {standard input}: Assembler messages:
// {standard input}:30773: Error: symbol `_ZNK10x86Emitter13xImpl_JmpCallclIFvvEEEvPT_' is already defined
// pcsx2/CMakeFiles/PCSX2.dir/build.make:4550: recipe for target 'pcsx2/CMakeFiles/PCSX2.dir/x86/ix86-32/iR5900-32.cpp.o' failed
# define __always_inline_tmpl_fail __attribute__((always_inline))
#else
# define __always_inline_tmpl_fail
#endif
extern void xJccKnownTarget( JccComparisonType comparison, const void* target, bool slideForward ); extern void xJccKnownTarget( JccComparisonType comparison, const void* target, bool slideForward );
// ------------------------------------------------------------------------ // ------------------------------------------------------------------------
@ -48,8 +31,7 @@ struct xImpl_JmpCall
// Special form for calling functions. This form automatically resolves the // Special form for calling functions. This form automatically resolves the
// correct displacement based on the size of the instruction being generated. // correct displacement based on the size of the instruction being generated.
template< typename T > __fi __always_inline_tmpl_fail void operator()( void* func ) const
void operator()( T* func ) const
{ {
if( isJmp ) if( isJmp )
xJccKnownTarget( Jcc_Unconditional, (void*)(uptr)func, false ); // double cast to/from (uptr) needed to appease GCC xJccKnownTarget( Jcc_Unconditional, (void*)(uptr)func, false ); // double cast to/from (uptr) needed to appease GCC
@ -79,35 +61,34 @@ struct xImpl_FastCall
#ifdef __x86_64__ #ifdef __x86_64__
#define XFASTCALL \ #define XFASTCALL \
xCALL(func); xCALL(f);
#define XFASTCALL1 \ #define XFASTCALL1 \
xMOV(rdi, a1); \ xMOV(rdi, a1); \
xCALL(func); xCALL(f);
#define XFASTCALL2 \ #define XFASTCALL2 \
xMOV(rdi, a1); \ xMOV(rdi, a1); \
xMOV(rsi, a2); \ xMOV(rsi, a2); \
xCALL(func); xCALL(f);
#else #else
#define XFASTCALL \ #define XFASTCALL \
xCALL(func); xCALL(f);
#define XFASTCALL1 \ #define XFASTCALL1 \
xMOV(ecx, a1); \ xMOV(ecx, a1); \
xCALL(func); xCALL(f);
#define XFASTCALL2 \ #define XFASTCALL2 \
xMOV(ecx, a1); \ xMOV(ecx, a1); \
xMOV(edx, a2); \ xMOV(edx, a2); \
xCALL(func); xCALL(f);
#endif #endif
template< typename T > __fi __always_inline_tmpl_fail void operator()( void* f, const xRegisterLong& a1 = xEmptyReg, const xRegisterLong& a2 = xEmptyReg) const
void operator()( T* func, const xRegisterLong& a1 = xEmptyReg, const xRegisterLong& a2 = xEmptyReg) const
{ {
#ifdef __x86_64__ #ifdef __x86_64__
if (a1.IsEmpty()) { if (a1.IsEmpty()) {
@ -128,9 +109,11 @@ struct xImpl_FastCall
#endif #endif
} }
template< typename T > __fi __always_inline_tmpl_fail template< typename T > __fi
void operator()( T* func, u32 a1, const xRegisterLong& a2) const void operator()( T* func, u32 a1, const xRegisterLong& a2) const
{ {
void* f = (void*)func;
#ifdef __x86_64__ #ifdef __x86_64__
XFASTCALL2; XFASTCALL2;
#else #else
@ -138,9 +121,11 @@ struct xImpl_FastCall
#endif #endif
} }
template< typename T > __fi __always_inline_tmpl_fail template< typename T > __fi
void operator()( T* func, const xIndirectVoid& a1) const void operator()( T* func, const xIndirectVoid& a1) const
{ {
void* f = (void*)func;
#ifdef __x86_64__ #ifdef __x86_64__
XFASTCALL1; XFASTCALL1;
#else #else
@ -148,9 +133,11 @@ struct xImpl_FastCall
#endif #endif
} }
template< typename T > __fi __always_inline_tmpl_fail template< typename T > __fi
void operator()( T* func, u32 a1, u32 a2) const void operator()( T* func, u32 a1, u32 a2) const
{ {
void* f = (void*)func;
#ifdef __x86_64__ #ifdef __x86_64__
XFASTCALL2; XFASTCALL2;
#else #else
@ -158,9 +145,11 @@ struct xImpl_FastCall
#endif #endif
} }
template< typename T > __fi __always_inline_tmpl_fail template< typename T > __fi
void operator()( T* func, u32 a1) const void operator()( T* func, u32 a1) const
{ {
void* f = (void*)func;
#ifdef __x86_64__ #ifdef __x86_64__
XFASTCALL1; XFASTCALL1;
#else #else
@ -168,7 +157,7 @@ struct xImpl_FastCall
#endif #endif
} }
void operator()(const xIndirect32& func, const xRegisterLong& a1 = xEmptyReg, const xRegisterLong& a2 = xEmptyReg) const void operator()(const xIndirect32& f, const xRegisterLong& a1 = xEmptyReg, const xRegisterLong& a2 = xEmptyReg) const
{ {
#ifdef __x86_64__ #ifdef __x86_64__
if (a1.IsEmpty()) { if (a1.IsEmpty()) {

View File

@ -169,13 +169,13 @@ void recMFC0()
else if (0 == (_Imm_ & 2)) // MFPC 0, only LSB of register matters else if (0 == (_Imm_ & 2)) // MFPC 0, only LSB of register matters
{ {
iFlushCall(FLUSH_INTERPRETER); iFlushCall(FLUSH_INTERPRETER);
xFastCall(COP0_UpdatePCCR); xFastCall((void*)COP0_UpdatePCCR);
xMOV(eax, ptr[&cpuRegs.PERF.n.pcr0]); xMOV(eax, ptr[&cpuRegs.PERF.n.pcr0]);
} }
else // MFPC 1 else // MFPC 1
{ {
iFlushCall(FLUSH_INTERPRETER); iFlushCall(FLUSH_INTERPRETER);
xFastCall(COP0_UpdatePCCR); xFastCall((void*)COP0_UpdatePCCR);
xMOV(eax, ptr[&cpuRegs.PERF.n.pcr1]); xMOV(eax, ptr[&cpuRegs.PERF.n.pcr1]);
} }
_deleteEEreg(_Rt_, 0); _deleteEEreg(_Rt_, 0);
@ -206,7 +206,7 @@ void recMTC0()
{ {
case 12: case 12:
iFlushCall(FLUSH_INTERPRETER); iFlushCall(FLUSH_INTERPRETER);
xFastCall(WriteCP0Status, g_cpuConstRegs[_Rt_].UL[0] ); xFastCall((void*)WriteCP0Status, g_cpuConstRegs[_Rt_].UL[0] );
break; break;
case 9: case 9:
@ -222,9 +222,9 @@ void recMTC0()
break; break;
// Updates PCRs and sets the PCCR. // Updates PCRs and sets the PCCR.
iFlushCall(FLUSH_INTERPRETER); iFlushCall(FLUSH_INTERPRETER);
xFastCall(COP0_UpdatePCCR); xFastCall((void*)COP0_UpdatePCCR);
xMOV(ptr32[&cpuRegs.PERF.n.pccr], g_cpuConstRegs[_Rt_].UL[0]); xMOV(ptr32[&cpuRegs.PERF.n.pccr], g_cpuConstRegs[_Rt_].UL[0]);
xFastCall(COP0_DiagnosticPCCR); xFastCall((void*)COP0_DiagnosticPCCR);
} }
else if (0 == (_Imm_ & 2)) // MTPC 0, only LSB of register matters else if (0 == (_Imm_ & 2)) // MTPC 0, only LSB of register matters
{ {
@ -256,7 +256,7 @@ void recMTC0()
case 12: case 12:
iFlushCall(FLUSH_INTERPRETER); iFlushCall(FLUSH_INTERPRETER);
_eeMoveGPRtoR(ecx, _Rt_); _eeMoveGPRtoR(ecx, _Rt_);
xFastCall(WriteCP0Status, ecx ); xFastCall((void*)WriteCP0Status, ecx );
break; break;
case 9: case 9:
@ -271,9 +271,9 @@ void recMTC0()
if (0 != (_Imm_ & 0x3E)) // only effective when the register is 0 if (0 != (_Imm_ & 0x3E)) // only effective when the register is 0
break; break;
iFlushCall(FLUSH_INTERPRETER); iFlushCall(FLUSH_INTERPRETER);
xFastCall(COP0_UpdatePCCR); xFastCall((void*)COP0_UpdatePCCR);
_eeMoveGPRtoM((uptr)&cpuRegs.PERF.n.pccr, _Rt_); _eeMoveGPRtoM((uptr)&cpuRegs.PERF.n.pccr, _Rt_);
xFastCall(COP0_DiagnosticPCCR); xFastCall((void*)COP0_DiagnosticPCCR);
} }
else if (0 == (_Imm_ & 2)) // MTPC 0, only LSB of register matters else if (0 == (_Imm_ & 2)) // MTPC 0, only LSB of register matters
{ {

View File

@ -128,7 +128,7 @@ static DynGenFunc* _DynGen_JITCompile()
u8* retval = xGetPtr(); u8* retval = xGetPtr();
xFastCall(iopRecRecompile, ptr[&psxRegs.pc] ); xFastCall((void*)iopRecRecompile, ptr[&psxRegs.pc] );
xMOV( eax, ptr[&psxRegs.pc] ); xMOV( eax, ptr[&psxRegs.pc] );
xMOV( ebx, eax ); xMOV( ebx, eax );
@ -142,7 +142,7 @@ static DynGenFunc* _DynGen_JITCompile()
static DynGenFunc* _DynGen_JITCompileInBlock() static DynGenFunc* _DynGen_JITCompileInBlock()
{ {
u8* retval = xGetPtr(); u8* retval = xGetPtr();
xJMP( iopJITCompile ); xJMP( (void*)iopJITCompile );
return (DynGenFunc*)retval; return (DynGenFunc*)retval;
} }
@ -174,7 +174,7 @@ static DynGenFunc* _DynGen_EnterRecompiledCode()
{ // Properly scope the frame prologue/epilogue { // Properly scope the frame prologue/epilogue
xScopedStackFrame frame(IsDevBuild); xScopedStackFrame frame(IsDevBuild);
xJMP(iopDispatcherReg); xJMP((void*)iopDispatcherReg);
// Save an exit point // Save an exit point
iopExitRecompiledCode = (DynGenFunc*)xGetPtr(); iopExitRecompiledCode = (DynGenFunc*)xGetPtr();
@ -198,7 +198,7 @@ static void _DynGen_Dispatchers()
// Place the EventTest and DispatcherReg stuff at the top, because they get called the // Place the EventTest and DispatcherReg stuff at the top, because they get called the
// most and stand to benefit from strong alignment and direct referencing. // most and stand to benefit from strong alignment and direct referencing.
iopDispatcherEvent = (DynGenFunc*)xGetPtr(); iopDispatcherEvent = (DynGenFunc*)xGetPtr();
xFastCall(recEventTest ); xFastCall((void*)recEventTest );
iopDispatcherReg = _DynGen_DispatcherReg(); iopDispatcherReg = _DynGen_DispatcherReg();
iopJITCompile = _DynGen_JITCompile(); iopJITCompile = _DynGen_JITCompile();
@ -520,15 +520,15 @@ void psxRecompileCodeConst1(R3000AFNPTR constcode, R3000AFNPTR_INFO noconstcode)
xMOV(ecx, (uptr)libname); xMOV(ecx, (uptr)libname);
xMOV(edx, index); xMOV(edx, index);
xPUSH((uptr)funcname); xPUSH((uptr)funcname);
xCALL(irxImportLog); xCALL((void*)irxImportLog);
} }
if (debug) if (debug)
xFastCall(debug); xFastCall((void*)debug);
#endif #endif
irxHLE hle = irxImportHLE(libname, index); irxHLE hle = irxImportHLE(libname, index);
if (hle) { if (hle) {
xFastCall(hle); xFastCall((void*)hle);
xCMP(eax, 0); xCMP(eax, 0);
xJNE(iopDispatcherReg); xJNE(iopDispatcherReg);
} }
@ -908,7 +908,7 @@ static void iPsxBranchTest(u32 newpc, u32 cpuBranch)
xSUB(ptr32[&iopCycleEE], eax); xSUB(ptr32[&iopCycleEE], eax);
xJLE(iopExitRecompiledCode); xJLE(iopExitRecompiledCode);
xFastCall(iopEventTest); xFastCall((void*)iopEventTest);
if( newpc != 0xffffffff ) if( newpc != 0xffffffff )
{ {
@ -930,7 +930,7 @@ static void iPsxBranchTest(u32 newpc, u32 cpuBranch)
xSUB(eax, ptr32[&g_iopNextEventCycle]); xSUB(eax, ptr32[&g_iopNextEventCycle]);
xForwardJS<u8> nointerruptpending; xForwardJS<u8> nointerruptpending;
xFastCall(iopEventTest); xFastCall((void*)iopEventTest);
if( newpc != 0xffffffff ) { if( newpc != 0xffffffff ) {
xCMP(ptr32[&psxRegs.pc], newpc); xCMP(ptr32[&psxRegs.pc], newpc);
@ -967,7 +967,7 @@ void rpsxSYSCALL()
//xMOV( ecx, 0x20 ); // exception code //xMOV( ecx, 0x20 ); // exception code
//xMOV( edx, psxbranch==1 ); // branch delay slot? //xMOV( edx, psxbranch==1 ); // branch delay slot?
xFastCall(psxException, 0x20, psxbranch == 1 ); xFastCall((void*)psxException, 0x20, psxbranch == 1 );
xCMP(ptr32[&psxRegs.pc], psxpc-4); xCMP(ptr32[&psxRegs.pc], psxpc-4);
j8Ptr[0] = JE8(0); j8Ptr[0] = JE8(0);
@ -990,7 +990,7 @@ void rpsxBREAK()
//xMOV( ecx, 0x24 ); // exception code //xMOV( ecx, 0x24 ); // exception code
//xMOV( edx, psxbranch==1 ); // branch delay slot? //xMOV( edx, psxbranch==1 ); // branch delay slot?
xFastCall(psxException, 0x24, psxbranch == 1 ); xFastCall((void*)psxException, 0x24, psxbranch == 1 );
xCMP(ptr32[&psxRegs.pc], psxpc-4); xCMP(ptr32[&psxRegs.pc], psxpc-4);
j8Ptr[0] = JE8(0); j8Ptr[0] = JE8(0);
@ -1113,7 +1113,7 @@ static void __fastcall iopRecRecompile( const u32 startpc )
if( IsDebugBuild ) if( IsDebugBuild )
{ {
xFastCall(PreBlockCheck, psxpc); xFastCall((void*)PreBlockCheck, psxpc);
} }
// go until the next branch // go until the next branch

View File

@ -631,7 +631,7 @@ static void rpsxLB()
xMOV(ecx, ptr[&psxRegs.GPR.r[_Rs_]]); xMOV(ecx, ptr[&psxRegs.GPR.r[_Rs_]]);
if (_Imm_) xADD(ecx, _Imm_); if (_Imm_) xADD(ecx, _Imm_);
xFastCall(iopMemRead8, ecx ); // returns value in EAX xFastCall((void*)iopMemRead8, ecx ); // returns value in EAX
if (_Rt_) { if (_Rt_) {
xMOVSX(eax, al); xMOVSX(eax, al);
xMOV(ptr[&psxRegs.GPR.r[_Rt_]], eax); xMOV(ptr[&psxRegs.GPR.r[_Rt_]], eax);
@ -647,7 +647,7 @@ static void rpsxLBU()
xMOV(ecx, ptr[&psxRegs.GPR.r[_Rs_]]); xMOV(ecx, ptr[&psxRegs.GPR.r[_Rs_]]);
if (_Imm_) xADD(ecx, _Imm_); if (_Imm_) xADD(ecx, _Imm_);
xFastCall(iopMemRead8, ecx ); // returns value in EAX xFastCall((void*)iopMemRead8, ecx ); // returns value in EAX
if (_Rt_) { if (_Rt_) {
xMOVZX(eax, al); xMOVZX(eax, al);
xMOV(ptr[&psxRegs.GPR.r[_Rt_]], eax); xMOV(ptr[&psxRegs.GPR.r[_Rt_]], eax);
@ -663,7 +663,7 @@ static void rpsxLH()
xMOV(ecx, ptr[&psxRegs.GPR.r[_Rs_]]); xMOV(ecx, ptr[&psxRegs.GPR.r[_Rs_]]);
if (_Imm_) xADD(ecx, _Imm_); if (_Imm_) xADD(ecx, _Imm_);
xFastCall(iopMemRead16, ecx ); // returns value in EAX xFastCall((void*)iopMemRead16, ecx ); // returns value in EAX
if (_Rt_) { if (_Rt_) {
xMOVSX(eax, ax); xMOVSX(eax, ax);
xMOV(ptr[&psxRegs.GPR.r[_Rt_]], eax); xMOV(ptr[&psxRegs.GPR.r[_Rt_]], eax);
@ -679,7 +679,7 @@ static void rpsxLHU()
xMOV(ecx, ptr[&psxRegs.GPR.r[_Rs_]]); xMOV(ecx, ptr[&psxRegs.GPR.r[_Rs_]]);
if (_Imm_) xADD(ecx, _Imm_); if (_Imm_) xADD(ecx, _Imm_);
xFastCall(iopMemRead16, ecx ); // returns value in EAX xFastCall((void*)iopMemRead16, ecx ); // returns value in EAX
if (_Rt_) { if (_Rt_) {
xMOVZX(eax, ax); xMOVZX(eax, ax);
xMOV(ptr[&psxRegs.GPR.r[_Rt_]], eax); xMOV(ptr[&psxRegs.GPR.r[_Rt_]], eax);
@ -700,7 +700,7 @@ static void rpsxLW()
xTEST(ecx, 0x10000000); xTEST(ecx, 0x10000000);
j8Ptr[0] = JZ8(0); j8Ptr[0] = JZ8(0);
xFastCall(iopMemRead32, ecx ); // returns value in EAX xFastCall((void*)iopMemRead32, ecx ); // returns value in EAX
if (_Rt_) { if (_Rt_) {
xMOV(ptr[&psxRegs.GPR.r[_Rt_]], eax); xMOV(ptr[&psxRegs.GPR.r[_Rt_]], eax);
} }
@ -728,7 +728,7 @@ static void rpsxSB()
xMOV(ecx, ptr[&psxRegs.GPR.r[_Rs_]]); xMOV(ecx, ptr[&psxRegs.GPR.r[_Rs_]]);
if (_Imm_) xADD(ecx, _Imm_); if (_Imm_) xADD(ecx, _Imm_);
xMOV( edx, ptr[&psxRegs.GPR.r[_Rt_]] ); xMOV( edx, ptr[&psxRegs.GPR.r[_Rt_]] );
xFastCall(iopMemWrite8, ecx, edx ); xFastCall((void*)iopMemWrite8, ecx, edx );
} }
static void rpsxSH() static void rpsxSH()
@ -739,7 +739,7 @@ static void rpsxSH()
xMOV(ecx, ptr[&psxRegs.GPR.r[_Rs_]]); xMOV(ecx, ptr[&psxRegs.GPR.r[_Rs_]]);
if (_Imm_) xADD(ecx, _Imm_); if (_Imm_) xADD(ecx, _Imm_);
xMOV( edx, ptr[&psxRegs.GPR.r[_Rt_]] ); xMOV( edx, ptr[&psxRegs.GPR.r[_Rt_]] );
xFastCall(iopMemWrite16, ecx, edx ); xFastCall((void*)iopMemWrite16, ecx, edx );
} }
static void rpsxSW() static void rpsxSW()
@ -750,7 +750,7 @@ static void rpsxSW()
xMOV(ecx, ptr[&psxRegs.GPR.r[_Rs_]]); xMOV(ecx, ptr[&psxRegs.GPR.r[_Rs_]]);
if (_Imm_) xADD(ecx, _Imm_); if (_Imm_) xADD(ecx, _Imm_);
xMOV( edx, ptr[&psxRegs.GPR.r[_Rt_]] ); xMOV( edx, ptr[&psxRegs.GPR.r[_Rt_]] );
xFastCall(iopMemWrite32, ecx, edx ); xFastCall((void*)iopMemWrite32, ecx, edx );
} }
//// SLL //// SLL

View File

@ -307,7 +307,7 @@ void recBranchCall( void (*func)() )
void recCall( void (*func)() ) void recCall( void (*func)() )
{ {
iFlushCall(FLUSH_INTERPRETER); iFlushCall(FLUSH_INTERPRETER);
xFastCall(func); xFastCall((void*)func);
} }
// ===================================================================================================== // =====================================================================================================
@ -347,7 +347,7 @@ static DynGenFunc* _DynGen_JITCompile()
u8* retval = xGetAlignedCallTarget(); u8* retval = xGetAlignedCallTarget();
xFastCall(recRecompile, ptr[&cpuRegs.pc] ); xFastCall((void*)recRecompile, ptr[&cpuRegs.pc] );
xMOV( eax, ptr[&cpuRegs.pc] ); xMOV( eax, ptr[&cpuRegs.pc] );
xMOV( ebx, eax ); xMOV( ebx, eax );
@ -361,7 +361,7 @@ static DynGenFunc* _DynGen_JITCompile()
static DynGenFunc* _DynGen_JITCompileInBlock() static DynGenFunc* _DynGen_JITCompileInBlock()
{ {
u8* retval = xGetAlignedCallTarget(); u8* retval = xGetAlignedCallTarget();
xJMP( JITCompile ); xJMP( (void*)JITCompile );
return (DynGenFunc*)retval; return (DynGenFunc*)retval;
} }
@ -383,7 +383,7 @@ static DynGenFunc* _DynGen_DispatcherEvent()
{ {
u8* retval = xGetPtr(); u8* retval = xGetPtr();
xFastCall(recEventTest ); xFastCall((void*)recEventTest );
return (DynGenFunc*)retval; return (DynGenFunc*)retval;
} }
@ -397,7 +397,7 @@ static DynGenFunc* _DynGen_EnterRecompiledCode()
{ // Properly scope the frame prologue/epilogue { // Properly scope the frame prologue/epilogue
xScopedStackFrame frame(IsDevBuild); xScopedStackFrame frame(IsDevBuild);
xJMP(DispatcherReg); xJMP((void*)DispatcherReg);
// Save an exit point // Save an exit point
ExitRecompiledCode = (DynGenFunc*)xGetPtr(); ExitRecompiledCode = (DynGenFunc*)xGetPtr();
@ -411,16 +411,16 @@ static DynGenFunc* _DynGen_EnterRecompiledCode()
static DynGenFunc* _DynGen_DispatchBlockDiscard() static DynGenFunc* _DynGen_DispatchBlockDiscard()
{ {
u8* retval = xGetPtr(); u8* retval = xGetPtr();
xFastCall(dyna_block_discard); xFastCall((void*)dyna_block_discard);
xJMP(ExitRecompiledCode); xJMP((void*)ExitRecompiledCode);
return (DynGenFunc*)retval; return (DynGenFunc*)retval;
} }
static DynGenFunc* _DynGen_DispatchPageReset() static DynGenFunc* _DynGen_DispatchPageReset()
{ {
u8* retval = xGetPtr(); u8* retval = xGetPtr();
xFastCall(dyna_page_reset); xFastCall((void*)dyna_page_reset);
xJMP(ExitRecompiledCode); xJMP((void*)ExitRecompiledCode);
return (DynGenFunc*)retval; return (DynGenFunc*)retval;
} }
@ -742,7 +742,7 @@ void R5900::Dynarec::OpcodeImpl::recSYSCALL()
xADD(ptr32[&cpuRegs.cycle], scaleblockcycles()); xADD(ptr32[&cpuRegs.cycle], scaleblockcycles());
// Note: technically the address is 0x8000_0180 (or 0x180) // Note: technically the address is 0x8000_0180 (or 0x180)
// (if CPU is booted) // (if CPU is booted)
xJMP( DispatcherReg ); xJMP( (void*)DispatcherReg );
x86SetJ8(j8Ptr[0]); x86SetJ8(j8Ptr[0]);
//g_branch = 2; //g_branch = 2;
} }
@ -757,7 +757,7 @@ void R5900::Dynarec::OpcodeImpl::recBREAK()
xCMP(ptr32[&cpuRegs.pc], pc); xCMP(ptr32[&cpuRegs.pc], pc);
j8Ptr[0] = JE8(0); j8Ptr[0] = JE8(0);
xADD(ptr32[&cpuRegs.cycle], scaleblockcycles()); xADD(ptr32[&cpuRegs.cycle], scaleblockcycles());
xJMP( DispatcherEvent ); xJMP( (void*)DispatcherEvent );
x86SetJ8(j8Ptr[0]); x86SetJ8(j8Ptr[0]);
//g_branch = 2; //g_branch = 2;
} }
@ -1034,7 +1034,7 @@ static void iBranchTest(u32 newpc)
xCMOVS(eax, ptr32[&cpuRegs.cycle]); xCMOVS(eax, ptr32[&cpuRegs.cycle]);
xMOV(ptr32[&cpuRegs.cycle], eax); xMOV(ptr32[&cpuRegs.cycle], eax);
xJMP( DispatcherEvent ); xJMP( (void*)DispatcherEvent );
} }
else else
{ {
@ -1048,7 +1048,7 @@ static void iBranchTest(u32 newpc)
else else
recBlocks.Link(HWADDR(newpc), xJcc32(Jcc_Signed)); recBlocks.Link(HWADDR(newpc), xJcc32(Jcc_Signed));
xJMP( DispatcherEvent ); xJMP( (void*)DispatcherEvent );
} }
} }
@ -1179,7 +1179,7 @@ void recMemcheck(u32 op, u32 bits, bool store)
if (bits == 128) if (bits == 128)
xAND(ecx, ~0x0F); xAND(ecx, ~0x0F);
xFastCall(standardizeBreakpointAddress, ecx); xFastCall((void*)standardizeBreakpointAddress, ecx);
xMOV(ecx,eax); xMOV(ecx,eax);
xMOV(edx,eax); xMOV(edx,eax);
xADD(edx,bits/8); xADD(edx,bits/8);
@ -1210,10 +1210,10 @@ void recMemcheck(u32 op, u32 bits, bool store)
// hit the breakpoint // hit the breakpoint
if (checks[i].result & MEMCHECK_LOG) { if (checks[i].result & MEMCHECK_LOG) {
xMOV(edx, store); xMOV(edx, store);
xFastCall(dynarecMemLogcheck, ecx, edx); xFastCall((void*)dynarecMemLogcheck, ecx, edx);
} }
if (checks[i].result & MEMCHECK_BREAK) { if (checks[i].result & MEMCHECK_BREAK) {
xFastCall(dynarecMemcheck); xFastCall((void*)dynarecMemcheck);
} }
next1.SetTarget(); next1.SetTarget();
@ -1226,7 +1226,7 @@ void encodeBreakpoint()
if (isBreakpointNeeded(pc) != 0) if (isBreakpointNeeded(pc) != 0)
{ {
iFlushCall(FLUSH_EVERYTHING|FLUSH_PC); iFlushCall(FLUSH_EVERYTHING|FLUSH_PC);
xFastCall(dynarecCheckBreakpoint); xFastCall((void*)dynarecCheckBreakpoint);
} }
} }
@ -1657,7 +1657,7 @@ static void __fastcall recRecompile( const u32 startpc )
} }
if (eeloadMain && HWADDR(startpc) == HWADDR(eeloadMain)) { if (eeloadMain && HWADDR(startpc) == HWADDR(eeloadMain)) {
xFastCall(eeloadHook); xFastCall((void*)eeloadHook);
// On fast/full boot this will have a crc of 0x0. But when the game/elf itself is // On fast/full boot this will have a crc of 0x0. But when the game/elf itself is
// recompiled (below - ElfEntry && g_GameLoading), then the crc would be from the elf. // recompiled (below - ElfEntry && g_GameLoading), then the crc would be from the elf.
@ -1671,7 +1671,7 @@ static void __fastcall recRecompile( const u32 startpc )
// this is the only way patches get applied, doesn't depend on a hack // this is the only way patches get applied, doesn't depend on a hack
if (g_GameLoading && HWADDR(startpc) == ElfEntry) { if (g_GameLoading && HWADDR(startpc) == ElfEntry) {
Console.WriteLn(L"Elf entry point @ 0x%08x about to get recompiled. Load patches first.", startpc); Console.WriteLn(L"Elf entry point @ 0x%08x about to get recompiled. Load patches first.", startpc);
xFastCall(eeGameStarting); xFastCall((void*)eeGameStarting);
// Apply patch as soon as possible. Normally it is done in // Apply patch as soon as possible. Normally it is done in
// eeGameStarting but first block is already compiled. // eeGameStarting but first block is already compiled.
@ -1695,18 +1695,18 @@ static void __fastcall recRecompile( const u32 startpc )
// [TODO] : These must be enabled from the GUI or INI to be used, otherwise the // [TODO] : These must be enabled from the GUI or INI to be used, otherwise the
// code that calls PreBlockCheck will not be generated. // code that calls PreBlockCheck will not be generated.
xFastCall(PreBlockCheck, pc); xFastCall((void*)PreBlockCheck, pc);
} }
if (EmuConfig.Gamefixes.GoemonTlbHack) { if (EmuConfig.Gamefixes.GoemonTlbHack) {
if (pc == 0x33ad48 || pc == 0x35060c) { if (pc == 0x33ad48 || pc == 0x35060c) {
// 0x33ad48 and 0x35060c are the return address of the function (0x356250) that populate the TLB cache // 0x33ad48 and 0x35060c are the return address of the function (0x356250) that populate the TLB cache
xFastCall(GoemonPreloadTlb); xFastCall((void*)GoemonPreloadTlb);
} else if (pc == 0x3563b8) { } else if (pc == 0x3563b8) {
// Game will unmap some virtual addresses. If a constant address were hardcoded in the block, we would be in a bad situation. // Game will unmap some virtual addresses. If a constant address were hardcoded in the block, we would be in a bad situation.
eeRecNeedsReset = true; eeRecNeedsReset = true;
// 0x3563b8 is the start address of the function that invalidate entry in TLB cache // 0x3563b8 is the start address of the function that invalidate entry in TLB cache
xFastCall(GoemonUnloadTlb, ptr[&cpuRegs.GPR.n.a0.UL[0]]); xFastCall((void*)GoemonUnloadTlb, ptr[&cpuRegs.GPR.n.a0.UL[0]]);
} }
} }

View File

@ -57,8 +57,8 @@ void mVUDTendProgram(mV, microFlagCycles* mFC, int isEbit) {
mVU_XGKICK_DELAY(mVU); mVU_XGKICK_DELAY(mVU);
} }
if (doEarlyExit(mVU)) { if (doEarlyExit(mVU)) {
if (!isVU1) xFastCall(mVU0clearlpStateJIT); if (!isVU1) xFastCall((void*)mVU0clearlpStateJIT);
else xFastCall(mVU1clearlpStateJIT); else xFastCall((void*)mVU1clearlpStateJIT);
} }
} }
@ -117,9 +117,9 @@ void mVUendProgram(mV, microFlagCycles* mFC, int isEbit) {
} }
if (doEarlyExit(mVU)) { if (doEarlyExit(mVU)) {
if (!isVU1) if (!isVU1)
xFastCall(mVU0clearlpStateJIT); xFastCall((void*)mVU0clearlpStateJIT);
else else
xFastCall(mVU1clearlpStateJIT); xFastCall((void*)mVU1clearlpStateJIT);
} }
} }
@ -192,8 +192,8 @@ void normJumpCompile(mV, microFlagCycles& mFC, bool isEvilJump) {
xJMP(mVU.exitFunct); xJMP(mVU.exitFunct);
} }
if (!mVU.index) xFastCall(mVUcompileJIT<0>, gprT2, gprT3); //(u32 startPC, uptr pState) if (!mVU.index) xFastCall((void*)(void(*)())mVUcompileJIT<0>, gprT2, gprT3); //(u32 startPC, uptr pState)
else xFastCall(mVUcompileJIT<1>, gprT2, gprT3); else xFastCall((void*)(void(*)())mVUcompileJIT<1>, gprT2, gprT3);
mVUrestoreRegs(mVU); mVUrestoreRegs(mVU);
xJMP(gprT1); // Jump to rec-code address xJMP(gprT1); // Jump to rec-code address

View File

@ -27,8 +27,8 @@ void mVUdispatcherAB(mV) {
xScopedStackFrame frame(false, true); xScopedStackFrame frame(false, true);
// __fastcall = The caller has already put the needed parameters in ecx/edx: // __fastcall = The caller has already put the needed parameters in ecx/edx:
if (!isVU1) { xFastCall(mVUexecuteVU0, ecx, edx); } if (!isVU1) { xFastCall((void*)mVUexecuteVU0, ecx, edx); }
else { xFastCall(mVUexecuteVU1, ecx, edx); } else { xFastCall((void*)mVUexecuteVU1, ecx, edx); }
// Load VU's MXCSR state // Load VU's MXCSR state
xLDMXCSR(g_sseVUMXCSR); xLDMXCSR(g_sseVUMXCSR);
@ -61,8 +61,8 @@ void mVUdispatcherAB(mV) {
// __fastcall = The first two DWORD or smaller arguments are passed in ECX and EDX registers; // __fastcall = The first two DWORD or smaller arguments are passed in ECX and EDX registers;
// all other arguments are passed right to left. // all other arguments are passed right to left.
if (!isVU1) { xFastCall(mVUcleanUpVU0); } if (!isVU1) { xFastCall((void*)mVUcleanUpVU0); }
else { xFastCall(mVUcleanUpVU1); } else { xFastCall((void*)mVUcleanUpVU1); }
} }
xRET(); xRET();

View File

@ -249,15 +249,15 @@ void recBC2TL() { _setupBranchTest(JZ32, true); }
void COP2_Interlock(bool mBitSync) { void COP2_Interlock(bool mBitSync) {
if (cpuRegs.code & 1) { if (cpuRegs.code & 1) {
iFlushCall(FLUSH_EVERYTHING | FLUSH_PC); iFlushCall(FLUSH_EVERYTHING | FLUSH_PC);
if (mBitSync) xFastCall(_vu0WaitMicro); if (mBitSync) xFastCall((void*)_vu0WaitMicro);
else xFastCall(_vu0FinishMicro); else xFastCall((void*)_vu0FinishMicro);
} }
} }
void TEST_FBRST_RESET(FnType_Void* resetFunct, int vuIndex) { void TEST_FBRST_RESET(FnType_Void* resetFunct, int vuIndex) {
xTEST(eax, (vuIndex) ? 0x200 : 0x002); xTEST(eax, (vuIndex) ? 0x200 : 0x002);
xForwardJZ8 skip; xForwardJZ8 skip;
xFastCall(resetFunct); xFastCall((void*)resetFunct);
xMOV(eax, ptr32[&cpuRegs.GPR.r[_Rt_].UL[0]]); xMOV(eax, ptr32[&cpuRegs.GPR.r[_Rt_].UL[0]]);
skip.SetTarget(); skip.SetTarget();
} }
@ -316,8 +316,8 @@ static void recCTC2() {
xMOV(ecx, ptr32[&cpuRegs.GPR.r[_Rt_].UL[0]]); xMOV(ecx, ptr32[&cpuRegs.GPR.r[_Rt_].UL[0]]);
} }
else xXOR(ecx, ecx); else xXOR(ecx, ecx);
xFastCall(vu1ExecMicro, ecx); xFastCall((void*)vu1ExecMicro, ecx);
xFastCall(vif1VUFinish); xFastCall((void*)vif1VUFinish);
break; break;
case REG_FBRST: case REG_FBRST:
if (!_Rt_) { if (!_Rt_) {
@ -336,7 +336,7 @@ static void recCTC2() {
// Executing vu0 block here fixes the intro of Ratchet and Clank // Executing vu0 block here fixes the intro of Ratchet and Clank
// sVU's COP2 has a comment that "Donald Duck" needs this too... // sVU's COP2 has a comment that "Donald Duck" needs this too...
if (_Rd_) _eeMoveGPRtoM((uptr)&vu0Regs.VI[_Rd_].UL, _Rt_); if (_Rd_) _eeMoveGPRtoM((uptr)&vu0Regs.VI[_Rd_].UL, _Rt_);
xFastCall(BaseVUmicroCPU::ExecuteBlockJIT, (uptr)CpuVU0); xFastCall((void*)BaseVUmicroCPU::ExecuteBlockJIT, (uptr)CpuVU0);
break; break;
} }
} }

View File

@ -298,9 +298,9 @@ __fi void mVUaddrFix(mV, const x32& gprReg)
if (IsDevBuild && !isCOP2) { // Lets see which games do this! if (IsDevBuild && !isCOP2) { // Lets see which games do this!
xMOV(gprT2, mVU.prog.cur->idx); // Note: Kernel does it via COP2 to initialize VU1! xMOV(gprT2, mVU.prog.cur->idx); // Note: Kernel does it via COP2 to initialize VU1!
xMOV(gprT3, xPC); // So we don't spam console, we'll only check micro-mode... xMOV(gprT3, xPC); // So we don't spam console, we'll only check micro-mode...
xCALL(mVUwarningRegAccess); xCALL((void*)mVUwarningRegAccess);
} }
xCALL(mVUwaitMTVU); xCALL((void*)mVUwaitMTVU);
#ifdef __GNUC__ #ifdef __GNUC__
xADD(esp, 4); xADD(esp, 4);
#endif #endif

View File

@ -2890,7 +2890,7 @@ void VuBaseBlock::Recompile()
if (itparent == parents.end()) xMOV(ptr32[&skipparent], -1); if (itparent == parents.end()) xMOV(ptr32[&skipparent], -1);
xMOV( ecx, s_vu ); xMOV( ecx, s_vu );
xCALL( svudispfn ); xCALL( (void*)svudispfn );
#endif #endif
s_pCurBlock = this; s_pCurBlock = this;
@ -3599,7 +3599,7 @@ void VuInstruction::Recompile(std::list<VuInstruction>::iterator& itinst, u32 vu
u8* jptr = JZ8(0); u8* jptr = JZ8(0);
xOR(ptr32[&VU0.VI[REG_VPU_STAT].UL], s_vu ? 0x200 : 0x002); xOR(ptr32[&VU0.VI[REG_VPU_STAT].UL], s_vu ? 0x200 : 0x002);
xMOV( ecx, s_vu ? INTC_VU1 : INTC_VU0 ); xMOV( ecx, s_vu ? INTC_VU1 : INTC_VU0 );
xCALL( hwIntcIrq ); xCALL( (void*)hwIntcIrq );
x86SetJ8(jptr); x86SetJ8(jptr);
} }
if (code_ptr[1] & 0x08000000) // T flag if (code_ptr[1] & 0x08000000) // T flag
@ -3608,7 +3608,7 @@ void VuInstruction::Recompile(std::list<VuInstruction>::iterator& itinst, u32 vu
u8* jptr = JZ8(0); u8* jptr = JZ8(0);
xOR(ptr32[&VU0.VI[REG_VPU_STAT].UL], s_vu ? 0x400 : 0x004); xOR(ptr32[&VU0.VI[REG_VPU_STAT].UL], s_vu ? 0x400 : 0x004);
xMOV( ecx, s_vu ? INTC_VU1 : INTC_VU0 ); xMOV( ecx, s_vu ? INTC_VU1 : INTC_VU0 );
xCALL( hwIntcIrq ); xCALL( (void*)hwIntcIrq );
x86SetJ8(jptr); x86SetJ8(jptr);
} }
@ -4311,7 +4311,7 @@ void recVUMI_XGKICK_(VURegs *VU)
_freeXMMregs(); _freeXMMregs();
xMOV(ecx, xRegister32(s_XGKICKReg)); xMOV(ecx, xRegister32(s_XGKICKReg));
xCALL(VU1XGKICK_MTGSTransfer); xCALL((void*)VU1XGKICK_MTGSTransfer);
s_ScheduleXGKICK = 0; s_ScheduleXGKICK = 0;
} }