zzogl-pg:

* Finish to convert ASM to intrinsic
* Force the pointer outsides of the screen in fullscreen
* do not compile useless files


git-svn-id: http://pcsx2.googlecode.com/svn/trunk@3903 96395faa-99c1-11dd-bbfe-3dabce05a288
This commit is contained in:
gregory.hainaut@gmail.com 2010-10-08 21:31:13 +00:00
parent 277d8fb5a6
commit c1c2866c1b
4 changed files with 408 additions and 17 deletions

View File

@ -52,7 +52,7 @@ set(zzoglSources
GSmain.cpp
HostMemory.cpp
Mem.cpp
memcpy_amd.cpp
# memcpy_amd.cpp
Mem_Swizzle.cpp
Mem_Tables.cpp
Profile.cpp
@ -79,7 +79,7 @@ set(zzoglHeaders
common.h
CRC.h
GifTransfer.h
glprocs.h
# glprocs.h
GS.h
Mem.h
Mem_Swizzle.h

View File

@ -242,8 +242,9 @@ void GLWindow::ToggleFullscreen()
}
// Hide the cursor in the right bottom corner
// Note: Use big value instead of width/height to be sure it is really out of the screen
if(fullScreen)
XWarpPointer(glDisplay, None, glWindow, 0, 0, 0, 0, width, height);
XWarpPointer(glDisplay, None, glWindow, 0, 0, 0, 0, 4000, 2000);
}

View File

@ -20,48 +20,437 @@
#include "GS.h"
#include "Mem.h"
#include "Mem_Swizzle.h"
#ifdef ZEROGS_SSE2
#include <emmintrin.h>
#endif
// Current port of the ASM function to intrinsic
#define INTRINSIC_PORT_32
#define INTRINSIC_PORT_16
#define INTRINSIC_PORT_8
#define INTRINSIC_PORT_4
#ifdef ZEROGS_SSE2
template<bool aligned>
__forceinline void SwizzleBlock32_sse2_I(u8 *dst, u8 *src, int pitch, u32 WriteMask)
{
__m128i src_0;
__m128i src_1;
__m128i src_2;
__m128i src_3;
if (WriteMask == 0xffffffff) {
for (int i=3 ; i >= 0 ; --i) {
// load
if (aligned) {
src_0 = _mm_load_si128((__m128i*)src); // 5 4 1 0
src_1 = _mm_load_si128((__m128i*)(src+16)); // 13 12 9 8
src_2 = _mm_load_si128((__m128i*)(src+pitch)); // 7 6 3 2
src_3 = _mm_load_si128((__m128i*)(src+16+pitch)); // 15 14 11 10
} else {
src_0 = _mm_loadu_si128((__m128i*)src); // 5 4 1 0
src_1 = _mm_loadu_si128((__m128i*)(src+16)); // 13 12 9 8
src_2 = _mm_loadu_si128((__m128i*)(src+pitch)); // 7 6 3 2
src_3 = _mm_loadu_si128((__m128i*)(src+16+pitch)); // 15 14 11 10
}
// Reorder
__m128i dst_0 = _mm_unpacklo_epi64(src_0, src_2); // 3 2 1 0
__m128i dst_1 = _mm_unpackhi_epi64(src_0, src_2); // 7 6 5 4
__m128i dst_2 = _mm_unpacklo_epi64(src_1, src_3); // 11 10 9 8
__m128i dst_3 = _mm_unpackhi_epi64(src_1, src_3); // 15 14 13 12
// store
_mm_stream_si128((__m128i*)dst, dst_0);
_mm_stream_si128(((__m128i*)dst)+1, dst_1);
_mm_stream_si128(((__m128i*)dst)+2, dst_2);
_mm_stream_si128(((__m128i*)dst)+3, dst_3);
// update the pointer
dst += 64;
src += 2*pitch;
}
}
else
{
// Build the mask (tranform a u32 to a 4 packets u32)
__m128i mask = _mm_cvtsi32_si128(WriteMask);
mask = _mm_shuffle_epi32(mask, 0);
for (int i=3 ; i >= 0 ; --i) {
// load
if (aligned) {
src_0 = _mm_load_si128((__m128i*)src); // 5 4 1 0
src_1 = _mm_load_si128((__m128i*)(src+16)); // 13 12 9 8
src_2 = _mm_load_si128((__m128i*)(src+pitch)); // 7 6 3 2
src_3 = _mm_load_si128((__m128i*)(src+16+pitch)); // 15 14 11 10
} else {
src_0 = _mm_loadu_si128((__m128i*)src); // 5 4 1 0
src_1 = _mm_loadu_si128((__m128i*)(src+16)); // 13 12 9 8
src_2 = _mm_loadu_si128((__m128i*)(src+pitch)); // 7 6 3 2
src_3 = _mm_loadu_si128((__m128i*)(src+16+pitch)); // 15 14 11 10
}
// Apply the WriteMask before reordering
src_0 = _mm_and_si128(src_0, mask);
src_1 = _mm_and_si128(src_1, mask);
src_2 = _mm_and_si128(src_2, mask);
src_3 = _mm_and_si128(src_3, mask);
// Reorder
__m128i dst_0 = _mm_unpacklo_epi64(src_0, src_2); // 3 2 1 0
__m128i dst_1 = _mm_unpackhi_epi64(src_0, src_2); // 7 6 5 4
__m128i dst_2 = _mm_unpacklo_epi64(src_1, src_3); // 11 10 9 8
__m128i dst_3 = _mm_unpackhi_epi64(src_1, src_3); // 15 14 13 12
// Load previous value and apply the ~mask
__m128i old_dst_0 = _mm_andnot_si128(mask, _mm_load_si128((__m128i*)dst));
__m128i old_dst_1 = _mm_andnot_si128(mask, _mm_load_si128(((__m128i*)dst)+1));
__m128i old_dst_2 = _mm_andnot_si128(mask, _mm_load_si128(((__m128i*)dst)+2));
__m128i old_dst_3 = _mm_andnot_si128(mask, _mm_load_si128(((__m128i*)dst)+3));
// Build the final value
dst_0 = _mm_or_si128(dst_0, old_dst_0);
dst_1 = _mm_or_si128(dst_1, old_dst_1);
dst_2 = _mm_or_si128(dst_2, old_dst_2);
dst_3 = _mm_or_si128(dst_3, old_dst_3);
// store
_mm_stream_si128((__m128i*)dst, dst_0);
_mm_stream_si128(((__m128i*)dst)+1, dst_1);
_mm_stream_si128(((__m128i*)dst)+2, dst_2);
_mm_stream_si128(((__m128i*)dst)+3, dst_3);
// update the pointer
dst += 64;
src += 2*pitch;
}
}
// FIXME normally you must use a sfence but it would impact perf to do here
// the function is in a loop and it would have a better place after the loop...
}
template<bool aligned>
__forceinline void SwizzleBlock16_sse2_I(u8 *dst, u8 *src, int pitch)
{
__m128i src_0_L;
__m128i src_0_H;
__m128i src_2_L;
__m128i src_2_H;
for (int i=3 ; i >= 0 ; --i) {
// load
if (aligned) {
src_0_L = _mm_load_si128((__m128i*)src); // 13L 12L 9L 8L 5L 4L 1L 0L
src_0_H = _mm_load_si128((__m128i*)(src+16)); // 13H 12H 9H 8H 5H 4H 1H 0H
src_2_L = _mm_load_si128((__m128i*)(src+pitch)); // 15L 14L 11L 10L 7L 6L 3L 2L
src_2_H = _mm_load_si128((__m128i*)(src+16+pitch)); // 15H 14H 11H 10H 7H 6H 3H 2H
} else {
src_0_L = _mm_loadu_si128((__m128i*)src); // 13L 12L 9L 8L 5L 4L 1L 0L
src_0_H = _mm_loadu_si128((__m128i*)(src+16)); // 13H 12H 9H 8H 5H 4H 1H 0H
src_2_L = _mm_loadu_si128((__m128i*)(src+pitch)); // 15L 14L 11L 10L 7L 6L 3L 2L
src_2_H = _mm_loadu_si128((__m128i*)(src+16+pitch)); // 15H 14H 11H 10H 7H 6H 3H 2H
}
// Interleave L and H to obtains 32 bits packets
__m128i dst_0_tmp = _mm_unpacklo_epi16(src_0_L, src_0_H); // 5H 5L 4H 4L 1H 1L 0H 0L
__m128i dst_1_tmp = _mm_unpacklo_epi16(src_2_L, src_2_H); // 7H 7L 6H 6L 3H 3L 2H 2L
__m128i dst_2_tmp = _mm_unpackhi_epi16(src_0_L, src_0_H); // 13H 13L 12H 12L 9H 9L 8H 8L
__m128i dst_3_tmp = _mm_unpackhi_epi16(src_2_L, src_2_H); // 15H 15L 14H 14L 11H 11L 10H 10L
// Reorder
__m128i dst_0 = _mm_unpacklo_epi64(dst_0_tmp, dst_1_tmp); // 3 2 1 0
__m128i dst_1 = _mm_unpackhi_epi64(dst_0_tmp, dst_1_tmp); // 7 6 5 4
__m128i dst_2 = _mm_unpacklo_epi64(dst_2_tmp, dst_3_tmp); // 11 10 9 8
__m128i dst_3 = _mm_unpackhi_epi64(dst_2_tmp, dst_3_tmp); // 15 14 13 12
// store
_mm_stream_si128((__m128i*)dst, dst_0);
_mm_stream_si128(((__m128i*)dst)+1, dst_1);
_mm_stream_si128(((__m128i*)dst)+2, dst_2);
_mm_stream_si128(((__m128i*)dst)+3, dst_3);
// update the pointer
dst += 64;
src += 2*pitch;
}
// FIXME normally you must use a sfence but it would impact perf to do here
// the function is in a loop and it would have a better place after the loop...
}
// Template the code to improve reuse of code
template<bool aligned, u32 INDEX>
__forceinline void SwizzleColumn8_sse2_I(u8 *dst, u8 *src, int pitch)
{
__m128i src_0;
__m128i src_1;
__m128i src_2;
__m128i src_3;
// load 4 line of 16*8 bits packets
if (aligned) {
src_0 = _mm_load_si128((__m128i*)src);
src_2 = _mm_load_si128((__m128i*)(src+pitch));
src_1 = _mm_load_si128((__m128i*)(src+2*pitch));
src_3 = _mm_load_si128((__m128i*)(src+3*pitch));
} else {
src_0 = _mm_loadu_si128((__m128i*)src);
src_2 = _mm_loadu_si128((__m128i*)(src+pitch));
src_1 = _mm_loadu_si128((__m128i*)(src+2*pitch));
src_3 = _mm_loadu_si128((__m128i*)(src+3*pitch));
}
// shuffle 2 lines to align pixels
if (INDEX == 0 || INDEX == 2) {
src_1 = _mm_shuffle_epi32(src_1, 0xB1); // 13 12 9 8 5 4 1 0 ... (byte 3 & 1)
src_3 = _mm_shuffle_epi32(src_3, 0xB1); // 15 14 11 10 7 6 3 2 ... (byte 3 & 1)
} else if (INDEX == 1 || INDEX == 3) {
src_0 = _mm_shuffle_epi32(src_0, 0xB1); // 13 12 9 8 5 4 1 0 ... (byte 2 & 0)
src_2 = _mm_shuffle_epi32(src_2, 0xB1); // 15 14 11 10 7 6 3 2 ... (byte 2 & 0)
} else {
assert(0);
}
// src_0 = 13 12 9 8 5 4 1 0 ... (byte 2 & 0)
// src_1 = 13 12 9 8 5 4 1 0 ... (byte 3 & 1)
// src_2 = 15 14 11 10 7 6 3 2 ... (byte 2 & 0)
// src_3 = 15 14 11 10 7 6 3 2 ... (byte 3 & 1)
// Interleave byte 1 & 0 to obtain 16 bits packets
__m128i src_0_L = _mm_unpacklo_epi8(src_0, src_1); // 13L 12L 9L 8L 5L 4L 1L 0L
__m128i src_1_L = _mm_unpacklo_epi8(src_2, src_3); // 15L 14L 11L 10L 7L 6L 3L 2L
// Interleave byte 3 & 2 to obtain 16 bits packets
__m128i src_0_H = _mm_unpackhi_epi8(src_0, src_1); // 13H 12H 9H 8H 5H 4H 1H 0H
__m128i src_1_H = _mm_unpackhi_epi8(src_2, src_3); // 15H 14H 11H 10H 7H 6H 3H 2H
// Interleave H and L to obtain 32 bits packets
__m128i dst_0_tmp = _mm_unpacklo_epi16(src_0_L, src_0_H); // 5 4 1 0
__m128i dst_1_tmp = _mm_unpacklo_epi16(src_1_L, src_1_H); // 7 6 3 2
__m128i dst_2_tmp = _mm_unpackhi_epi16(src_0_L, src_0_H); // 13 12 9 8
__m128i dst_3_tmp = _mm_unpackhi_epi16(src_1_L, src_1_H); // 15 14 11 10
// Reorder the 32 bits packets
__m128i dst_0 = _mm_unpacklo_epi64(dst_0_tmp, dst_1_tmp); // 3 2 1 0
__m128i dst_1 = _mm_unpackhi_epi64(dst_0_tmp, dst_1_tmp); // 7 6 5 4
__m128i dst_2 = _mm_unpacklo_epi64(dst_2_tmp, dst_3_tmp); // 11 10 9 8
__m128i dst_3 = _mm_unpackhi_epi64(dst_2_tmp, dst_3_tmp); // 15 14 13 12
// store
_mm_stream_si128((__m128i*)dst, dst_0);
_mm_stream_si128(((__m128i*)dst)+1, dst_1);
_mm_stream_si128(((__m128i*)dst)+2, dst_2);
_mm_stream_si128(((__m128i*)dst)+3, dst_3);
}
template<bool aligned>
__forceinline void SwizzleBlock8_sse2_I(u8 *dst, u8 *src, int pitch)
{
SwizzleColumn8_sse2_I<aligned, 0>(dst, src, pitch);
dst += 64;
src += 4*pitch;
SwizzleColumn8_sse2_I<aligned, 1>(dst, src, pitch);
dst += 64;
src += 4*pitch;
SwizzleColumn8_sse2_I<aligned, 2>(dst, src, pitch);
dst += 64;
src += 4*pitch;
SwizzleColumn8_sse2_I<aligned, 3>(dst, src, pitch);
// FIXME normally you must use a sfence but it would impact perf to do here
// the function is in a loop and it would have a better place after the loop...
}
// Template the code to improve reuse of code
template<bool aligned, u32 INDEX>
__forceinline void SwizzleColumn4_sse2_I(u8 *dst, u8 *src, int pitch)
{
__m128i src_0;
__m128i src_1;
__m128i src_2;
__m128i src_3;
// Build a mask (tranform a u32 to a 4 packets u32)
const u32 mask_template = 0x0f0f0f0f;
__m128i mask = _mm_cvtsi32_si128(mask_template);
mask = _mm_shuffle_epi32(mask, 0);
// load 4 line of 32*4 bits packets
if (aligned) {
src_0 = _mm_load_si128((__m128i*)src);
src_2 = _mm_load_si128((__m128i*)(src+pitch));
src_1 = _mm_load_si128((__m128i*)(src+2*pitch));
src_3 = _mm_load_si128((__m128i*)(src+3*pitch));
} else {
src_0 = _mm_loadu_si128((__m128i*)src);
src_2 = _mm_loadu_si128((__m128i*)(src+pitch));
src_1 = _mm_loadu_si128((__m128i*)(src+2*pitch));
src_3 = _mm_loadu_si128((__m128i*)(src+3*pitch));
}
// shuffle 2 lines to align pixels
if (INDEX == 0 || INDEX == 2) {
src_1 = _mm_shufflelo_epi16(src_1, 0xB1);
src_1 = _mm_shufflehi_epi16(src_1, 0xB1); // 13 12 9 8 5 4 1 0 ... (Half-byte 7 & 5 & 3 & 1)
src_3 = _mm_shufflelo_epi16(src_3, 0xB1);
src_3 = _mm_shufflehi_epi16(src_3, 0xB1); // 15 14 11 10 7 6 3 2 ... (Half-byte 7 & 5 & 3 & 1)
} else if (INDEX == 1 || INDEX == 3) {
src_0 = _mm_shufflelo_epi16(src_0, 0xB1);
src_0 = _mm_shufflehi_epi16(src_0, 0xB1); // 13 12 9 8 5 4 1 0 ... (Half-byte 6 & 4 & 2 & 0)
src_2 = _mm_shufflelo_epi16(src_2, 0xB1);
src_2 = _mm_shufflehi_epi16(src_2, 0xB1); // 15 14 11 10 7 6 3 2 ... (Half-byte 6 & 4 & 2 & 0)
} else {
assert(0);
}
// src_0 = 13 12 9 8 5 4 1 0 ... (Half-byte 6 & 4 & 2 & 0)
// src_1 = 13 12 9 8 5 4 1 0 ... (Half-byte 7 & 5 & 3 & 1)
// src_2 = 15 14 11 10 7 6 3 2 ... (Half-byte 6 & 4 & 2 & 0)
// src_3 = 15 14 11 10 7 6 3 2 ... (Half-byte 7 & 5 & 3 & 1)
// ** Interleave Half-byte to obtain 8 bits packets
// Shift value to ease 4 bits filter.
// Note use a packet shift to allow a 4bits shifts
__m128i src_0_shift = _mm_srli_epi64(src_0, 4); // ? 13 12 9 8 5 4 1 ... (Half-byte 6 & 4 & 2 & 0)
__m128i src_1_shift = _mm_slli_epi64(src_1, 4); // 12 9 8 5 4 1 0 ? ... (Half-byte 7 & 5 & 3 & 1)
__m128i src_2_shift = _mm_srli_epi64(src_2, 4); // ? 15 14 11 10 7 6 3 ... (Half-byte 6 & 4 & 2 & 0)
__m128i src_3_shift = _mm_slli_epi64(src_3, 4); // 14 11 10 7 6 3 2 ? ... (Half-byte 7 & 5 & 3 & 1)
// 12 - 8 - 4 - 0 - (HB odd) || - 12 - 8 - 4 - 0 (HB even) => 12 8 4 0 (byte 3 & 2 & 1 & 0)
src_0 = _mm_or_si128(_mm_andnot_si128(mask, src_1_shift), _mm_and_si128(mask, src_0));
// - 13 - 9 - 5 - 1 (HB even) || 13 - 9 - 5 - 1 - (HB odd) => 13 9 5 1 (byte 3 & 2 & 1 & 0)
src_1 = _mm_or_si128(_mm_and_si128(mask, src_0_shift), _mm_andnot_si128(mask, src_1));
// 14 - 10 - 6 - 2 - (HB odd) || - 14 - 10 - 6 - 2 (HB even) => 14 10 6 2 (byte 3 & 2 & 1 & 0)
src_2 = _mm_or_si128(_mm_andnot_si128(mask, src_3_shift), _mm_and_si128(mask, src_2));
// - 15 - 11 - 7 - 3 (HB even) || 15 - 11 - 7 - 3 - (HB odd) => 15 11 7 3 (byte 3 & 2 & 1 & 0)
src_3 = _mm_or_si128(_mm_and_si128(mask, src_2_shift), _mm_andnot_si128(mask, src_3));
// reorder the 8 bits packets
__m128i src_0_tmp = _mm_unpacklo_epi8(src_0, src_1); // 13 12 9 8 5 4 1 0 (byte 1 & 0)
__m128i src_1_tmp = _mm_unpackhi_epi8(src_0, src_1); // 13 12 9 8 5 4 1 0 (byte 3 & 2)
__m128i src_2_tmp = _mm_unpacklo_epi8(src_2, src_3); // 15 14 11 10 7 6 3 2 (byte 1 & 0)
__m128i src_3_tmp = _mm_unpackhi_epi8(src_2, src_3); // 15 14 11 10 7 6 3 2 (byte 3 & 2)
// interleave byte to obtain 32 bits packets
__m128i src_0_L = _mm_unpacklo_epi8(src_0_tmp, src_1_tmp); // 2.13 0.13 2.12 0.12 2.9 0.9 2.8 0.8 2.5 0.5 2.4 0.4 2.1 0.1 2.0 0.0
__m128i src_0_H = _mm_unpackhi_epi8(src_0_tmp, src_1_tmp); // 3.13 1.13 3.12 1.12 3.9 1.9 3.8 1.8 3.5 1.5 3.4 1.4 3.1 1.1 3.0 1.0
__m128i src_1_L = _mm_unpacklo_epi8(src_2_tmp, src_3_tmp); // 2.15 0.15 2.14 0.14 2.11 0.11 2.10 0.10 2.7 0.7 2.6 0.6 2.3 0.3 2.2 0.2
__m128i src_1_H = _mm_unpackhi_epi8(src_2_tmp, src_3_tmp); // 3.15 1.15 3.14 1.14 3.11 1.11 3.10 1.10 3.7 1.7 3.6 1.6 3.3 1.3 3.2 1.2
__m128i dst_0_tmp = _mm_unpacklo_epi8(src_0_L, src_0_H); // 5 4 1 0
__m128i dst_1_tmp = _mm_unpacklo_epi8(src_1_L, src_1_H); // 7 6 3 2
__m128i dst_2_tmp = _mm_unpackhi_epi8(src_0_L, src_0_H); // 13 12 9 8
__m128i dst_3_tmp = _mm_unpackhi_epi8(src_1_L, src_1_H); // 15 14 11 10
// Reorder the 32 bits packets
__m128i dst_0 = _mm_unpacklo_epi64(dst_0_tmp, dst_1_tmp); // 3 2 1 0
__m128i dst_1 = _mm_unpackhi_epi64(dst_0_tmp, dst_1_tmp); // 7 6 5 4
__m128i dst_2 = _mm_unpacklo_epi64(dst_2_tmp, dst_3_tmp); // 11 10 9 8
__m128i dst_3 = _mm_unpackhi_epi64(dst_2_tmp, dst_3_tmp); // 15 14 13 12
// store
_mm_stream_si128((__m128i*)dst, dst_0);
_mm_stream_si128(((__m128i*)dst)+1, dst_1);
_mm_stream_si128(((__m128i*)dst)+2, dst_2);
_mm_stream_si128(((__m128i*)dst)+3, dst_3);
}
template<bool aligned>
__forceinline void SwizzleBlock4_sse2_I(u8 *dst, u8 *src, int pitch)
{
SwizzleColumn4_sse2_I<aligned, 0>(dst, src, pitch);
dst += 64;
src += 4*pitch;
SwizzleColumn4_sse2_I<aligned, 1>(dst, src, pitch);
dst += 64;
src += 4*pitch;
SwizzleColumn4_sse2_I<aligned, 2>(dst, src, pitch);
dst += 64;
src += 4*pitch;
SwizzleColumn4_sse2_I<aligned, 3>(dst, src, pitch);
// FIXME normally you must use a sfence but it would impact perf to do here
// the function is in a loop and it would have a better place after the loop...
}
#endif
// special swizzle macros - which I converted to functions.
#ifdef ZEROGS_SSE2
__forceinline void SwizzleBlock32(u8 *dst, u8 *src, int pitch, u32 WriteMask)
{
#ifdef INTRINSIC_PORT_32
SwizzleBlock32_sse2_I<true>(dst, src, pitch, WriteMask);
#else
SwizzleBlock32_sse2(dst, src, pitch, WriteMask);
#endif
}
__forceinline void SwizzleBlock16(u8 *dst, u8 *src, int pitch, u32 WriteMask)
{
#ifdef INTRINSIC_PORT_16
SwizzleBlock16_sse2_I<true>(dst, src, pitch/*, WriteMask*/);
#else
SwizzleBlock16_sse2(dst, src, pitch/*, WriteMask*/);
#endif
}
__forceinline void SwizzleBlock8(u8 *dst, u8 *src, int pitch, u32 WriteMask)
{
#ifdef INTRINSIC_PORT_8
SwizzleBlock8_sse2_I<true>(dst, src, pitch/*, WriteMask*/);
#else
SwizzleBlock8_sse2(dst, src, pitch/*, WriteMask*/);
#endif
}
__forceinline void SwizzleBlock4(u8 *dst, u8 *src, int pitch, u32 WriteMask)
{
#ifdef INTRINSIC_PORT_4
SwizzleBlock4_sse2_I<true>(dst, src, pitch/*, WriteMask*/);
#else
SwizzleBlock4_sse2(dst, src, pitch/*, WriteMask*/);
#endif
}
__forceinline void SwizzleBlock32u(u8 *dst, u8 *src, int pitch, u32 WriteMask)
{
#ifdef INTRINSIC_PORT_32
SwizzleBlock32_sse2_I<false>(dst, src, pitch, WriteMask);
#else
SwizzleBlock32u_sse2(dst, src, pitch, WriteMask);
#endif
}
__forceinline void SwizzleBlock16u(u8 *dst, u8 *src, int pitch, u32 WriteMask)
{
#ifdef INTRINSIC_PORT_16
SwizzleBlock16_sse2_I<false>(dst, src, pitch/*, WriteMask*/);
#else
SwizzleBlock16u_sse2(dst, src, pitch/*, WriteMask*/);
#endif
}
__forceinline void SwizzleBlock8u(u8 *dst, u8 *src, int pitch, u32 WriteMask)
{
#ifdef INTRINSIC_PORT_8
SwizzleBlock8_sse2_I<false>(dst, src, pitch/*, WriteMask*/);
#else
SwizzleBlock8u_sse2(dst, src, pitch/*, WriteMask*/);
#endif
}
__forceinline void SwizzleBlock4u(u8 *dst, u8 *src, int pitch, u32 WriteMask)
{
#ifdef INTRINSIC_PORT_4
SwizzleBlock4_sse2_I<false>(dst, src, pitch/*, WriteMask*/);
#else
SwizzleBlock4u_sse2(dst, src, pitch/*, WriteMask*/);
#endif
}
#else
@ -270,3 +659,4 @@ __forceinline void SwizzleBlock4HL(u8 *dst, u8 *src, int pitch, u32 WriteMask)
SwizzleBlock32((u8*)dst, (u8*)tempblock, 32, 0x0f000000);
}

View File

@ -3140,10 +3140,10 @@ __forceinline void update_8pixels_sse2(u32* src, u32* basepage, u32 i_msk, u32 j
}
// Merge the 2 dword
pixels_0 = _mm_unpacklo_epi64(pixel_0_low, pixel_0_high);
pixels_0 = _mm_unpacklo_epi64(pixel_0_low, pixel_0_high);
if (PSMT_ISHALF(psm)) pixels_1 = _mm_unpacklo_epi64(pixel_1_low, pixel_1_high);
// transform pixel from ARGB:8888 to ARGB:1555
// transform pixel from ARGB:8888 to ARGB:1555
if (psm == PSMCT16 || psm == PSMCT16S) {
// shift pixel instead of the mask. It allow to keep 1 mask into a register
// instead of 4 (not enough room on x86...).
@ -3214,26 +3214,26 @@ __forceinline void update_8pixels_sse2(u32* src, u32* basepage, u32 i_msk, u32 j
// Save some memory access when pix_mask is 0.
if (pix_mask) {
// Build fbm mask (tranform a u32 to a 4 packets u32)
// In 16 bits texture one packet is "0000 DATA"
__m128i imask = _mm_cvtsi32_si128(pix_mask);
imask = _mm_shuffle_epi32(imask, 0);
// Build fbm mask (tranform a u32 to a 4 packets u32)
// In 16 bits texture one packet is "0000 DATA"
__m128i imask = _mm_cvtsi32_si128(pix_mask);
imask = _mm_shuffle_epi32(imask, 0);
// apply the mask on new values
pixels_0 = _mm_andnot_si128(imask, pixels_0);
// apply the mask on new values
pixels_0 = _mm_andnot_si128(imask, pixels_0);
__m128i old_pixels_0;
__m128i final_pixels_0;
__m128i old_pixels_0;
__m128i final_pixels_0;
old_pixels_0 = _mm_and_si128(imask, _mm_load_si128((__m128i*)dst_add));
final_pixels_0 = _mm_or_si128(old_pixels_0, pixels_0);
_mm_store_si128((__m128i*)dst_add, final_pixels_0);
} else {
} else {
// Note: because we did not read the previous value of add. We could bypass the cache.
// We gains a few percents
_mm_stream_si128((__m128i*)dst_add, pixels_0);
}
}
}
@ -3362,13 +3362,13 @@ void Resolve_32_Bit_sse2(const void* psrc, int fbp, int fbw, int fbh, u32 fbm)
// Note update_8pixels process 2 lines at onces hence the factor 2
src -= 2*raw_size;
}
}
if(!pix_mask) {
// Ensure that previous (out of order) write are done. It must be done after non temporal instruction
// (or *_stream_* intrinsic)
_mm_sfence();
}
}
#ifdef LOG_RESOLVE_PROFILE
#ifdef __LINUX__