SPU2: Improve DMA Write timing. Better sync DMA speeds with IOP

It takes 4 cycles per word, according to No$PSX documents
Also fixed an issue with when ADMA refills the buffer, fixes The Simpsons (for real this time)
This commit is contained in:
refractionpcsx2 2020-12-30 17:48:14 +00:00
parent f07ca859e5
commit a94561fba7
6 changed files with 161 additions and 71 deletions

View File

@ -43,7 +43,7 @@ static void __fastcall psxDmaGeneric(u32 madr, u32 bcr, u32 chcr, u32 spuCore)
//Console.Status("cycles sent to SPU2 %x\n", psxRegs.cycle - psxCounters[6].sCycleT); //Console.Status("cycles sent to SPU2 %x\n", psxRegs.cycle - psxCounters[6].sCycleT);
psxCounters[6].sCycleT = psxRegs.cycle; psxCounters[6].sCycleT = psxRegs.cycle;
psxCounters[6].CycleT = size * 2; psxCounters[6].CycleT = size * 4;
psxNextCounter -= (psxRegs.cycle - psxNextsCounter); psxNextCounter -= (psxRegs.cycle - psxNextsCounter);
psxNextsCounter = psxRegs.cycle; psxNextsCounter = psxRegs.cycle;

View File

@ -16,6 +16,7 @@
#include "PrecompiledHeader.h" #include "PrecompiledHeader.h"
#include "Global.h" #include "Global.h"
#include "Dma.h" #include "Dma.h"
#include "IopCommon.h"
#include "spu2.h" // temporary until I resolve cyclePtr/TimeUpdate dependencies. #include "spu2.h" // temporary until I resolve cyclePtr/TimeUpdate dependencies.
@ -139,14 +140,14 @@ void V_Core::StartADMAWrite(u16* pMem, u32 sz)
if (MsgAutoDMA()) if (MsgAutoDMA())
ConLog("* SPU2: DMA%c AutoDMA Transfer of %d bytes to %x (%02x %x %04x).\n", ConLog("* SPU2: DMA%c AutoDMA Transfer of %d bytes to %x (%02x %x %04x).\n",
GetDmaIndexChar(), size << 1, TSA, DMABits, AutoDMACtrl, (~Regs.ATTR) & 0x7fff); GetDmaIndexChar(), size << 1, TSA, DMABits, AutoDMACtrl, (~Regs.ATTR) & 0xffff);
InputDataProgress = 0; InputDataProgress = 0;
if ((AutoDMACtrl & (Index + 1)) == 0) if ((AutoDMACtrl & (Index + 1)) == 0)
{ {
TSA = 0x2000 + (Index << 10); TSA = 0x2000 + (Index << 10);
DMAICounter = size; DMAICounter = size * 4;
LastClock = lClocks; LastClock = *cyclePtr;
} }
else if (size >= 512) else if (size >= 512)
{ {
@ -171,8 +172,8 @@ void V_Core::StartADMAWrite(u16* pMem, u32 sz)
// Klonoa 2 // Klonoa 2
if (size == 512) if (size == 512)
{ {
DMAICounter = size; DMAICounter = size * 4;
LastClock = lClocks; LastClock = *cyclePtr;
} }
} }
@ -180,9 +181,10 @@ void V_Core::StartADMAWrite(u16* pMem, u32 sz)
} }
else else
{ {
LastClock = lClocks; size = sz;
InputDataLeft = 0; InputDataLeft = 0;
DMAICounter = 1; DMAICounter = size * 4;
LastClock = *cyclePtr;
} }
TADR = MADR + (size << 1); TADR = MADR + (size << 1);
} }
@ -206,6 +208,37 @@ void V_Core::StartADMAWrite(u16* pMem, u32 sz)
void V_Core::PlainDMAWrite(u16* pMem, u32 size) void V_Core::PlainDMAWrite(u16* pMem, u32 size)
{ {
if (cyclePtr != nullptr)
TimeUpdate(*cyclePtr);
TSA &= 0xfffff;
ReadSize = size;
IsDMARead = false;
LastClock = *cyclePtr;
DMAICounter = std::min(ReadSize, (u32)0x100) * 4;
Regs.STATX &= ~0x80;
Regs.STATX |= 0x400;
TADR = MADR + (size << 1);
if (((psxCounters[6].sCycleT + psxCounters[6].CycleT) - psxRegs.cycle) > DMAICounter)
{
psxCounters[6].sCycleT = psxRegs.cycle;
psxCounters[6].CycleT = DMAICounter;
psxNextCounter -= (psxRegs.cycle - psxNextsCounter);
psxNextsCounter = psxRegs.cycle;
if (psxCounters[6].CycleT < psxNextCounter)
psxNextCounter = psxCounters[6].CycleT;
}
if (MsgDMA())
ConLog("* SPU2: DMA%c Write Transfer of %d bytes to %x (%02x %x %04x). IRQE = %d IRQA = %x \n",
GetDmaIndexChar(), size << 1, TSA, DMABits, AutoDMACtrl, Regs.ATTR & 0xffff,
Cores[Index].IRQEnable, Cores[Index].IRQA);
}
void V_Core::FinishDMAwrite()
{
// Perform an alignment check. // Perform an alignment check.
// Not really important. Everything should work regardless, // Not really important. Everything should work regardless,
// but it could be indicative of an emulation foopah elsewhere. // but it could be indicative of an emulation foopah elsewhere.
@ -220,18 +253,18 @@ void V_Core::PlainDMAWrite(u16* pMem, u32 size)
if (TSA & 7) if (TSA & 7)
{ {
ConLog("* SPU2 DMA Write > Misaligned target. Core: %d IOP: %p TSA: 0x%x Size: 0x%x\n", Index, (void*)pMem, TSA, size); ConLog("* SPU2 DMA Write > Misaligned target. Core: %d IOP: %p TSA: 0x%x Size: 0x%x\n", Index, (void*)DMAPtr, TSA, ReadSize);
} }
} }
if (Index == 0) if (Index == 0)
DMA4LogWrite(pMem, size << 1); DMA4LogWrite(DMAPtr, ReadSize << 1);
else else
DMA7LogWrite(pMem, size << 1); DMA7LogWrite(DMAPtr, ReadSize << 1);
TSA &= 0xfffff; TSA &= 0xfffff;
u32 buff1end = TSA + size; u32 buff1end = TSA + std::min(ReadSize, (u32)0x100);
u32 buff2end = 0; u32 buff2end = 0;
if (buff1end > 0x100000) if (buff1end > 0x100000)
{ {
@ -258,7 +291,7 @@ void V_Core::PlainDMAWrite(u16* pMem, u32 size)
// It starts at TSA and goes to buff1end. // It starts at TSA and goes to buff1end.
const u32 buff1size = (buff1end - TSA); const u32 buff1size = (buff1end - TSA);
memcpy(GetMemPtr(TSA), pMem, buff1size * 2); memcpy(GetMemPtr(TSA), DMAPtr, buff1size * 2);
u32 TDA; u32 TDA;
@ -274,8 +307,7 @@ void V_Core::PlainDMAWrite(u16* pMem, u32 size)
// Emulation Grayarea: Should addresses wrap around to zero, or wrap around to // Emulation Grayarea: Should addresses wrap around to zero, or wrap around to
// 0x2800? Hard to know for sure (almost no games depend on this) // 0x2800? Hard to know for sure (almost no games depend on this)
memcpy(GetMemPtr(0), &DMAPtr[buff1size], buff2end * 2);
memcpy(GetMemPtr(0), &pMem[buff1size], buff2end * 2);
TDA = (buff2end) & 0xfffff; TDA = (buff2end) & 0xfffff;
// Flag interrupt? If IRQA occurs between start and dest, flag it. // Flag interrupt? If IRQA occurs between start and dest, flag it.
@ -333,15 +365,32 @@ void V_Core::PlainDMAWrite(u16* pMem, u32 size)
} }
#endif #endif
} }
LastClock = lClocks;
TSA = TDA; TSA = TDA;
DMAICounter = size; DMAPtr += std::min(ReadSize, (u32)0x100);
TADR = MADR + (size << 1); ReadSize -= std::min(ReadSize, (u32)0x100);
if (ReadSize == 0)
DMAICounter = 0;
else
{
DMAICounter = std::min(ReadSize, (u32)0x100) * 4;
if (((psxCounters[6].sCycleT + psxCounters[6].CycleT) - psxRegs.cycle) > DMAICounter)
{
psxCounters[6].sCycleT = psxRegs.cycle;
psxCounters[6].CycleT = DMAICounter;
psxNextCounter -= (psxRegs.cycle - psxNextsCounter);
psxNextsCounter = psxRegs.cycle;
if (psxCounters[6].CycleT < psxNextCounter)
psxNextCounter = psxCounters[6].CycleT;
}
}
} }
void V_Core::FinishDMAread() void V_Core::FinishDMAread()
{ {
u32 buff1end = TSA + ReadSize; u32 buff1end = TSA + std::min(ReadSize, (u32)0x100);
u32 buff2end = 0; u32 buff2end = 0;
if (buff1end > 0x100000) if (buff1end > 0x100000)
{ {
@ -354,17 +403,15 @@ void V_Core::FinishDMAread()
// Note on TSA's position after our copy finishes: // Note on TSA's position after our copy finishes:
// IRQA should be measured by the end of the writepos+0x20. But the TDA // IRQA should be measured by the end of the writepos+0x20. But the TDA
// should be written back at the precise endpoint of the xfer. // should be written back at the precise endpoint of the xfer.
u32 TDA; u32 TDA;
if (buff2end > 0) if (buff2end > 0)
{ {
// second branch needs cleared: // second branch needs cleared:
// It starts at the beginning of memory and moves forward to buff2end // It starts at the beginning of memory and moves forward to buff2end
memcpy(&DMARPtr[buff1size], GetMemPtr(0), buff2end * 2); memcpy(&DMARPtr[buff1size], GetMemPtr(0), buff2end * 2);
TDA = (buff2end + 0x20) & 0xfffff; TDA = (buff2end) & 0xfffff;
// Flag interrupt? If IRQA occurs between start and dest, flag it. // Flag interrupt? If IRQA occurs between start and dest, flag it.
// Important: Test both core IRQ settings for either DMA! // Important: Test both core IRQ settings for either DMA!
@ -383,7 +430,7 @@ void V_Core::FinishDMAread()
// Buffer doesn't wrap/overflow! // Buffer doesn't wrap/overflow!
// Just set the TDA and check for an IRQ... // Just set the TDA and check for an IRQ...
TDA = (buff1end + 0x20) & 0xfffff; TDA = (buff1end) & 0xfffff;
// Flag interrupt? If IRQA occurs between start and dest, flag it. // Flag interrupt? If IRQA occurs between start and dest, flag it.
// Important: Test both core IRQ settings for either DMA! // Important: Test both core IRQ settings for either DMA!
@ -398,21 +445,61 @@ void V_Core::FinishDMAread()
} }
TSA = TDA; TSA = TDA;
DMARPtr += std::min(ReadSize, (u32)0x100);
ReadSize -= std::min(ReadSize, (u32)0x100);
if (ReadSize == 0)
{
IsDMARead = false; IsDMARead = false;
DMAICounter = 0;
}
else
{
DMAICounter = std::min(ReadSize, (u32)0x100) * 4;
if (((psxCounters[6].sCycleT + psxCounters[6].CycleT) - psxRegs.cycle) > DMAICounter)
{
psxCounters[6].sCycleT = psxRegs.cycle;
psxCounters[6].CycleT = DMAICounter;
psxNextCounter -= (psxRegs.cycle - psxNextsCounter);
psxNextsCounter = psxRegs.cycle;
if (psxCounters[6].CycleT < psxNextCounter)
psxNextCounter = psxCounters[6].CycleT;
}
}
} }
void V_Core::DoDMAread(u16* pMem, u32 size) void V_Core::DoDMAread(u16* pMem, u32 size)
{ {
TSA &= 0xfffff; if (cyclePtr != nullptr)
TimeUpdate(*cyclePtr);
DMARPtr = pMem; DMARPtr = pMem;
TSA &= 0xfffff;
ReadSize = size; ReadSize = size;
IsDMARead = true; IsDMARead = true;
LastClock = lClocks; LastClock = *cyclePtr;
DMAICounter = size; DMAICounter = std::min(ReadSize, (u32)0x100) * 4;
Regs.STATX &= ~0x80; Regs.STATX &= ~0x80;
Regs.STATX |= 0x400; Regs.STATX |= 0x400;
//Regs.ATTR |= 0x30; //Regs.ATTR |= 0x30;
TADR = MADR + (size << 1); TADR = MADR + (size << 1);
if (((psxCounters[6].sCycleT + psxCounters[6].CycleT) - psxRegs.cycle) > DMAICounter)
{
psxCounters[6].sCycleT = psxRegs.cycle;
psxCounters[6].CycleT = DMAICounter;
psxNextCounter -= (psxRegs.cycle - psxNextsCounter);
psxNextsCounter = psxRegs.cycle;
if (psxCounters[6].CycleT < psxNextCounter)
psxNextCounter = psxCounters[6].CycleT;
}
if (MsgDMA())
ConLog("* SPU2: DMA%c Read Transfer of %d bytes from %x (%02x %x %04x). IRQE = %d IRQA = %x \n",
GetDmaIndexChar(), size << 1, TSA, DMABits, AutoDMACtrl, Regs.ATTR & 0xffff,
Cores[Index].IRQEnable, Cores[Index].IRQA);
} }
void V_Core::DoDMAwrite(u16* pMem, u32 size) void V_Core::DoDMAwrite(u16* pMem, u32 size)
@ -423,8 +510,8 @@ void V_Core::DoDMAwrite(u16* pMem, u32 size)
{ {
Regs.STATX &= ~0x80; Regs.STATX &= ~0x80;
//Regs.ATTR |= 0x30; //Regs.ATTR |= 0x30;
DMAICounter = 1; DMAICounter = 1 * 4;
LastClock = lClocks; LastClock = *cyclePtr;
return; return;
} }
@ -453,14 +540,8 @@ void V_Core::DoDMAwrite(u16* pMem, u32 size)
} }
else else
{ {
if (MsgDMA())
ConLog("* SPU2: DMA%c Transfer of %d bytes to %x (%02x %x %04x). IRQE = %d IRQA = %x \n",
GetDmaIndexChar(), size << 1, TSA, DMABits, AutoDMACtrl, Regs.ATTR & 0x7fff,
Cores[Index].IRQEnable, Cores[Index].IRQA);
PlainDMAWrite(pMem, size); PlainDMAWrite(pMem, size);
} }
Regs.STATX &= ~0x80; Regs.STATX &= ~0x80;
Regs.STATX |= 0x400; Regs.STATX |= 0x400;
//Regs.ATTR |= 0x30;
} }

View File

@ -142,7 +142,7 @@ StereoOut32 V_Core::ReadInput()
InputPosRead++; InputPosRead++;
if (AutoDMACtrl & (Index + 1) && (InputPosRead == 0x100 || InputPosRead == 0x200)) if (AutoDMACtrl & (Index + 1) && (InputPosRead == 0x180 || InputPosRead == 0x80))
{ {
AdmaInProgress = 0; AdmaInProgress = 0;
if (InputDataLeft >= 0x200) if (InputDataLeft >= 0x200)

View File

@ -533,6 +533,7 @@ struct V_Core
void AutoDMAReadBuffer(int mode); void AutoDMAReadBuffer(int mode);
void StartADMAWrite(u16* pMem, u32 sz); void StartADMAWrite(u16* pMem, u32 sz);
void PlainDMAWrite(u16* pMem, u32 sz); void PlainDMAWrite(u16* pMem, u32 sz);
void FinishDMAwrite();
}; };
extern V_Core Cores[2]; extern V_Core Cores[2];

View File

@ -134,7 +134,6 @@ void SPU2interruptDMA4()
FileLog("[%10d] SPU2 interruptDMA4\n", Cycles); FileLog("[%10d] SPU2 interruptDMA4\n", Cycles);
Cores[0].Regs.STATX |= 0x80; Cores[0].Regs.STATX |= 0x80;
Cores[0].Regs.STATX &= ~0x400; Cores[0].Regs.STATX &= ~0x400;
Cores[0].Regs.ATTR &= ~0x30;
} }
void SPU2interruptDMA7() void SPU2interruptDMA7()
@ -142,7 +141,6 @@ void SPU2interruptDMA7()
FileLog("[%10d] SPU2 interruptDMA7\n", Cycles); FileLog("[%10d] SPU2 interruptDMA7\n", Cycles);
Cores[1].Regs.STATX |= 0x80; Cores[1].Regs.STATX |= 0x80;
Cores[1].Regs.STATX &= ~0x400; Cores[1].Regs.STATX &= ~0x400;
Cores[1].Regs.ATTR &= ~0x30;
} }
void SPU2readDMA7Mem(u16* pMem, u32 size) void SPU2readDMA7Mem(u16* pMem, u32 size)

View File

@ -402,16 +402,21 @@ __forceinline void TimeUpdate(u32 cClocks)
TickInterval = 768; // Reset to default, in case the user hotswitched from async to something else. TickInterval = 768; // Reset to default, in case the user hotswitched from async to something else.
//Update DMA4 interrupt delay counter //Update DMA4 interrupt delay counter
if (Cores[0].DMAICounter > 0 && (cClocks - Cores[0].LastClock) > 0) if (Cores[0].DMAICounter > 0 && (*cyclePtr - Cores[0].LastClock) > 0)
{ {
const u32 amt = std::min(cClocks - Cores[0].LastClock, (u32)Cores[0].DMAICounter); const u32 amt = std::min(*cyclePtr - Cores[0].LastClock, (u32)Cores[0].DMAICounter);
Cores[0].DMAICounter -= amt; Cores[0].DMAICounter -= amt;
Cores[0].LastClock = cClocks; Cores[0].LastClock = *cyclePtr;
Cores[0].MADR += amt * 2; Cores[0].MADR += amt / 2;
if (Cores[0].DMAICounter <= 0) if (Cores[0].DMAICounter <= 0)
{
if (((Cores[0].AutoDMACtrl & 1) != 1))
{ {
if (Cores[0].IsDMARead) if (Cores[0].IsDMARead)
Cores[0].FinishDMAread(); Cores[0].FinishDMAread();
else
Cores[0].FinishDMAwrite();
}
for (int i = 0; i < 2; i++) for (int i = 0; i < 2; i++)
{ {
@ -427,27 +432,33 @@ __forceinline void TimeUpdate(u32 cClocks)
} }
} }
} }
if (!Cores[0].DMAICounter)
//ConLog("counter set and callback!\n"); {
Cores[0].DMAICounter = 0; Cores[0].MADR = Cores[0].TADR;
if (!SPU2_dummy_callback) if (!SPU2_dummy_callback)
spu2DMA4Irq(); spu2DMA4Irq();
else else
SPU2interruptDMA4(); SPU2interruptDMA4();
} }
} }
}
//Update DMA7 interrupt delay counter //Update DMA7 interrupt delay counter
if (Cores[1].DMAICounter > 0 && (cClocks - Cores[1].LastClock) > 0) if (Cores[1].DMAICounter > 0 && (*cyclePtr - Cores[1].LastClock) > 0)
{ {
const u32 amt = std::min(cClocks - Cores[1].LastClock, (u32)Cores[1].DMAICounter); const u32 amt = std::min(*cyclePtr - Cores[1].LastClock, (u32)Cores[1].DMAICounter);
Cores[1].DMAICounter -= amt; Cores[1].DMAICounter -= amt;
Cores[1].LastClock = cClocks; Cores[1].LastClock = *cyclePtr;
Cores[1].MADR += amt * 2; Cores[1].MADR += amt / 2;
if (Cores[1].DMAICounter <= 0) if (Cores[1].DMAICounter <= 0)
{
if (((Cores[1].AutoDMACtrl & 2) != 2))
{ {
if (Cores[1].IsDMARead) if (Cores[1].IsDMARead)
Cores[1].FinishDMAread(); Cores[1].FinishDMAread();
else
Cores[1].FinishDMAwrite();
}
for (int i = 0; i < 2; i++) for (int i = 0; i < 2; i++)
{ {
@ -464,14 +475,16 @@ __forceinline void TimeUpdate(u32 cClocks)
} }
} }
Cores[1].DMAICounter = 0; if (!Cores[1].DMAICounter)
//ConLog( "* SPU2 > DMA 7 Callback! %d\n", Cycles ); {
Cores[1].MADR = Cores[1].TADR;
if (!SPU2_dummy_callback) if (!SPU2_dummy_callback)
spu2DMA7Irq(); spu2DMA7Irq();
else else
SPU2interruptDMA7(); SPU2interruptDMA7();
} }
} }
}
//Update Mixing Progress //Update Mixing Progress
while (dClocks >= TickInterval) while (dClocks >= TickInterval)
@ -1232,9 +1245,7 @@ static void __fastcall RegWrite_Core(u16 value)
thiscore.Mute = 0; thiscore.Mute = 0;
//thiscore.CoreEnabled=(value>>15) & 0x01; //1 bit //thiscore.CoreEnabled=(value>>15) & 0x01; //1 bit
// no clue // no clue
if (value >> 15) thiscore.Regs.ATTR = value & 0xffff;
thiscore.Regs.STATX = 0;
thiscore.Regs.ATTR = value & 0x7fff;
if (fxenable && !thiscore.FxEnable && (thiscore.EffectsStartA != thiscore.ExtEffectsStartA || thiscore.EffectsEndA != thiscore.ExtEffectsEndA)) if (fxenable && !thiscore.FxEnable && (thiscore.EffectsStartA != thiscore.ExtEffectsStartA || thiscore.EffectsEndA != thiscore.ExtEffectsEndA))
{ {
@ -1244,11 +1255,10 @@ static void __fastcall RegWrite_Core(u16 value)
thiscore.RevBuffers.NeedsUpdated = true; thiscore.RevBuffers.NeedsUpdated = true;
} }
if (oldDmaMode != thiscore.DmaMode) if (!thiscore.DmaMode)
{ thiscore.Regs.STATX &= ~0x80;
// FIXME... maybe: if this mode was cleared in the middle of a DMA, should we interrupt it? else if(!oldDmaMode)
thiscore.Regs.STATX &= ~0x400; // ready to transfer thiscore.Regs.STATX |= 0x80;
}
if (value & 0x000E) if (value & 0x000E)
{ {