mirror of https://github.com/PCSX2/pcsx2.git
USB: Remove readerwriterqueue
Not used anymore, apparently forgot to remove this in the USB refactor.
This commit is contained in:
parent
5ad8ed43fd
commit
93c2081d3f
|
@ -431,8 +431,6 @@ set(pcsx2USBHeaders
|
|||
USB/qemu-usb/input-keymap.h
|
||||
USB/qemu-usb/queue.h
|
||||
USB/qemu-usb/qusb.h
|
||||
USB/readerwriterqueue/atomicops.h
|
||||
USB/readerwriterqueue/readerwriterqueue.h
|
||||
USB/shared/ringbuffer.h
|
||||
USB/usb-eyetoy/jo_mpeg.h
|
||||
USB/usb-eyetoy/ov519.h
|
||||
|
|
|
@ -1,29 +0,0 @@
|
|||
This license applies to all the code in this repository except that written by third
|
||||
parties, namely the files in benchmarks/ext, which have their own licenses, and Jeff
|
||||
Preshing's semaphore implementation (used in the blocking queue) which has a zlib
|
||||
license (embedded in atomicops.h).
|
||||
|
||||
Simplified BSD License:
|
||||
|
||||
Copyright (c) 2013-2015, Cameron Desrochers
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without modification,
|
||||
are permitted provided that the following conditions are met:
|
||||
|
||||
- Redistributions of source code must retain the above copyright notice, this list of
|
||||
conditions and the following disclaimer.
|
||||
|
||||
- Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
conditions and the following disclaimer in the documentation and/or other materials
|
||||
provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
|
||||
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||||
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
||||
THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
|
||||
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
|
||||
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
||||
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
@ -1,117 +0,0 @@
|
|||
# A single-producer, single-consumer lock-free queue for C++
|
||||
|
||||
This mini-repository has my very own implementation of a lock-free queue (that I designed from scratch) for C++.
|
||||
|
||||
It only supports a two-thread use case (one consuming, and one producing). The threads can't switch roles, though
|
||||
you could use this queue completely from a single thread if you wish (but that would sort of defeat the purpose!).
|
||||
|
||||
Note: If you need a general-purpose multi-producer, multi-consumer lock free queue, I have [one of those too][mpmc].
|
||||
|
||||
## Features
|
||||
|
||||
- [Blazing fast][benchmarks]
|
||||
- Compatible with C++11 (supports moving objects instead of making copies)
|
||||
- Fully generic (templated container of any type) -- just like `std::queue`, you never need to allocate memory for elements yourself
|
||||
(which saves you the hassle of writing a lock-free memory manager to hold the elements you're queueing)
|
||||
- Allocates memory up front, in contiguous blocks
|
||||
- Provides a `try_enqueue` method which is guaranteed never to allocate memory (the queue starts with an initial capacity)
|
||||
- Also provides an `enqueue` method which can dynamically grow the size of the queue as needed
|
||||
- Also provides `try_emplace`/`emplace` convenience methods
|
||||
- Has a blocking version with `wait_dequeue`
|
||||
- Completely "wait-free" (no compare-and-swap loop). Enqueue and dequeue are always O(1) (not counting memory allocation)
|
||||
- On x86, the memory barriers compile down to no-ops, meaning enqueue and dequeue are just a simple series of loads and stores (and branches)
|
||||
|
||||
## Use
|
||||
|
||||
Simply drop the readerwriterqueue.h and atomicops.h files into your source code and include them :-)
|
||||
A modern compiler is required (MSVC2010+, GCC 4.7+, ICC 13+, or any C++11 compliant compiler should work).
|
||||
|
||||
Note: If you're using GCC, you really do need GCC 4.7 or above -- [4.6 has a bug][gcc46bug] that prevents the atomic fence primitives
|
||||
from working correctly.
|
||||
|
||||
Example:
|
||||
|
||||
```cpp
|
||||
using namespace moodycamel;
|
||||
|
||||
ReaderWriterQueue<int> q(100); // Reserve space for at least 100 elements up front
|
||||
|
||||
q.enqueue(17); // Will allocate memory if the queue is full
|
||||
bool succeeded = q.try_enqueue(18); // Will only succeed if the queue has an empty slot (never allocates)
|
||||
assert(succeeded);
|
||||
|
||||
int number;
|
||||
succeeded = q.try_dequeue(number); // Returns false if the queue was empty
|
||||
|
||||
assert(succeeded && number == 17);
|
||||
|
||||
// You can also peek at the front item of the queue (consumer only)
|
||||
int* front = q.peek();
|
||||
assert(*front == 18);
|
||||
succeeded = q.try_dequeue(number);
|
||||
assert(succeeded && number == 18);
|
||||
front = q.peek();
|
||||
assert(front == nullptr); // Returns nullptr if the queue was empty
|
||||
```
|
||||
|
||||
The blocking version has the exact same API, with the addition of `wait_dequeue` and
|
||||
`wait_dequeue_timed` methods:
|
||||
|
||||
```cpp
|
||||
BlockingReaderWriterQueue<int> q;
|
||||
|
||||
std::thread reader([&]() {
|
||||
int item;
|
||||
for (int i = 0; i != 100; ++i) {
|
||||
// Fully-blocking:
|
||||
q.wait_dequeue(item);
|
||||
|
||||
// Blocking with timeout
|
||||
if (q.wait_dequeue_timed(item, std::chrono::milliseconds(5)))
|
||||
++i;
|
||||
}
|
||||
});
|
||||
std::thread writer([&]() {
|
||||
for (int i = 0; i != 100; ++i) {
|
||||
q.enqueue(i);
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(10));
|
||||
}
|
||||
});
|
||||
writer.join();
|
||||
reader.join();
|
||||
|
||||
assert(q.size_approx() == 0);
|
||||
```
|
||||
|
||||
Note that `wait_dequeue` will block indefinitely while the queue is empty; this
|
||||
means care must be taken to only call `wait_dequeue` if you're sure another element
|
||||
will come along eventually, or if the queue has a static lifetime. This is because
|
||||
destroying the queue while a thread is waiting on it will invoke undefined behaviour.
|
||||
|
||||
## Disclaimers
|
||||
|
||||
The queue should only be used on platforms where aligned integer and pointer access is atomic; fortunately, that
|
||||
includes all modern processors (e.g. x86/x86-64, ARM, and PowerPC). *Not* for use with a DEC Alpha processor (which has very weak memory ordering) :-)
|
||||
|
||||
Note that it's only been tested on x86(-64); if someone has access to other processors I'd love to run some tests on
|
||||
anything that's not x86-based.
|
||||
|
||||
Finally, I am not an expert. This is my first foray into lock-free programming, and though I'm confident in the code,
|
||||
it's possible that there are bugs despite the effort I put into designing and testing this data structure.
|
||||
|
||||
Use this code at your own risk; in particular, lock-free programming is a patent minefield, and this code may very
|
||||
well violate a pending patent (I haven't looked). It's worth noting that I came up with this algorithm and
|
||||
implementation from scratch, independent of any existing lock-free queues.
|
||||
|
||||
## More info
|
||||
|
||||
See the [LICENSE.md][license] file for the license (simplified BSD).
|
||||
|
||||
My [blog post][blog] introduces the context that led to this code, and may be of interest if you're curious
|
||||
about lock-free programming.
|
||||
|
||||
[blog]: http://moodycamel.com/blog/2013/a-fast-lock-free-queue-for-c++
|
||||
[license]: LICENSE.md
|
||||
[benchmarks]: http://moodycamel.com/blog/2013/a-fast-lock-free-queue-for-c++#benchmarks
|
||||
[gcc46bug]: http://stackoverflow.com/questions/16429669/stdatomic-thread-fence-has-undefined-reference
|
||||
[mpmc]: https://github.com/cameron314/concurrentqueue
|
|
@ -1,746 +0,0 @@
|
|||
// ©2013-2016 Cameron Desrochers.
|
||||
// Distributed under the simplified BSD license (see the license file that
|
||||
// should have come with this header).
|
||||
// Uses Jeff Preshing's semaphore implementation (under the terms of its
|
||||
// separate zlib license, embedded below).
|
||||
|
||||
#pragma once
|
||||
|
||||
// Provides portable (VC++2010+, Intel ICC 13, GCC 4.7+, and anything C++11 compliant) implementation
|
||||
// of low-level memory barriers, plus a few semi-portable utility macros (for inlining and alignment).
|
||||
// Also has a basic atomic type (limited to hardware-supported atomics with no memory ordering guarantees).
|
||||
// Uses the AE_* prefix for macros (historical reasons), and the "moodycamel" namespace for symbols.
|
||||
|
||||
#include <cassert>
|
||||
#include <type_traits>
|
||||
#include <cerrno>
|
||||
#include <cstdint>
|
||||
#include <ctime>
|
||||
|
||||
// Platform detection
|
||||
#if defined(__INTEL_COMPILER)
|
||||
#define AE_ICC
|
||||
#elif defined(_MSC_VER)
|
||||
#define AE_VCPP
|
||||
#elif defined(__GNUC__)
|
||||
#define AE_GCC
|
||||
#endif
|
||||
|
||||
#if defined(_M_IA64) || defined(__ia64__)
|
||||
#define AE_ARCH_IA64
|
||||
#elif defined(_WIN64) || defined(__amd64__) || defined(_M_X64) || defined(__x86_64__)
|
||||
#define AE_ARCH_X64
|
||||
#elif defined(_M_IX86) || defined(__i386__)
|
||||
#define AE_ARCH_X86
|
||||
#elif defined(_M_PPC) || defined(__powerpc__)
|
||||
#define AE_ARCH_PPC
|
||||
#else
|
||||
#define AE_ARCH_UNKNOWN
|
||||
#endif
|
||||
|
||||
|
||||
// AE_UNUSED
|
||||
#define AE_UNUSED(x) ((void)x)
|
||||
|
||||
|
||||
// AE_FORCEINLINE
|
||||
#if defined(AE_VCPP) || defined(AE_ICC)
|
||||
#define AE_FORCEINLINE __forceinline
|
||||
#elif defined(AE_GCC)
|
||||
//#define AE_FORCEINLINE __attribute__((always_inline))
|
||||
#define AE_FORCEINLINE inline
|
||||
#else
|
||||
#define AE_FORCEINLINE inline
|
||||
#endif
|
||||
|
||||
|
||||
// AE_ALIGN
|
||||
#if defined(AE_VCPP) || defined(AE_ICC)
|
||||
#define AE_ALIGN(x) __declspec(align(x))
|
||||
#elif defined(AE_GCC)
|
||||
#define AE_ALIGN(x) __attribute__((aligned(x)))
|
||||
#else
|
||||
// Assume GCC compliant syntax...
|
||||
#define AE_ALIGN(x) __attribute__((aligned(x)))
|
||||
#endif
|
||||
|
||||
|
||||
// Portable atomic fences implemented below:
|
||||
|
||||
namespace moodycamel
|
||||
{
|
||||
|
||||
enum memory_order
|
||||
{
|
||||
memory_order_relaxed,
|
||||
memory_order_acquire,
|
||||
memory_order_release,
|
||||
memory_order_acq_rel,
|
||||
memory_order_seq_cst,
|
||||
|
||||
// memory_order_sync: Forces a full sync:
|
||||
// #LoadLoad, #LoadStore, #StoreStore, and most significantly, #StoreLoad
|
||||
memory_order_sync = memory_order_seq_cst
|
||||
};
|
||||
|
||||
} // end namespace moodycamel
|
||||
|
||||
#if (defined(AE_VCPP) && (_MSC_VER < 1700 || defined(__cplusplus_cli))) || (defined(AE_ICC) && __INTEL_COMPILER < 1600)
|
||||
// VS2010 and ICC13 don't support std::atomic_*_fence, implement our own fences
|
||||
|
||||
#include <intrin.h>
|
||||
|
||||
#if defined(AE_ARCH_X64) || defined(AE_ARCH_X86)
|
||||
#define AeFullSync _mm_mfence
|
||||
#define AeLiteSync _mm_mfence
|
||||
#elif defined(AE_ARCH_IA64)
|
||||
#define AeFullSync __mf
|
||||
#define AeLiteSync __mf
|
||||
#elif defined(AE_ARCH_PPC)
|
||||
#include <ppcintrinsics.h>
|
||||
#define AeFullSync __sync
|
||||
#define AeLiteSync __lwsync
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef AE_VCPP
|
||||
#pragma warning(push)
|
||||
#pragma warning(disable : 4365) // Disable erroneous 'conversion from long to unsigned int, signed/unsigned mismatch' error when using `assert`
|
||||
#ifdef __cplusplus_cli
|
||||
#pragma managed(push, off)
|
||||
#endif
|
||||
#endif
|
||||
|
||||
namespace moodycamel
|
||||
{
|
||||
|
||||
AE_FORCEINLINE void compiler_fence(memory_order order)
|
||||
{
|
||||
switch (order)
|
||||
{
|
||||
case memory_order_relaxed:
|
||||
break;
|
||||
case memory_order_acquire:
|
||||
_ReadBarrier();
|
||||
break;
|
||||
case memory_order_release:
|
||||
_WriteBarrier();
|
||||
break;
|
||||
case memory_order_acq_rel:
|
||||
_ReadWriteBarrier();
|
||||
break;
|
||||
case memory_order_seq_cst:
|
||||
_ReadWriteBarrier();
|
||||
break;
|
||||
default:
|
||||
assert(false);
|
||||
}
|
||||
}
|
||||
|
||||
// x86/x64 have a strong memory model -- all loads and stores have
|
||||
// acquire and release semantics automatically (so only need compiler
|
||||
// barriers for those).
|
||||
#if defined(AE_ARCH_X86) || defined(AE_ARCH_X64)
|
||||
AE_FORCEINLINE void fence(memory_order order)
|
||||
{
|
||||
switch (order)
|
||||
{
|
||||
case memory_order_relaxed:
|
||||
break;
|
||||
case memory_order_acquire:
|
||||
_ReadBarrier();
|
||||
break;
|
||||
case memory_order_release:
|
||||
_WriteBarrier();
|
||||
break;
|
||||
case memory_order_acq_rel:
|
||||
_ReadWriteBarrier();
|
||||
break;
|
||||
case memory_order_seq_cst:
|
||||
_ReadWriteBarrier();
|
||||
AeFullSync();
|
||||
_ReadWriteBarrier();
|
||||
break;
|
||||
default:
|
||||
assert(false);
|
||||
}
|
||||
}
|
||||
#else
|
||||
AE_FORCEINLINE void fence(memory_order order)
|
||||
{
|
||||
// Non-specialized arch, use heavier memory barriers everywhere just in case :-(
|
||||
switch (order)
|
||||
{
|
||||
case memory_order_relaxed:
|
||||
break;
|
||||
case memory_order_acquire:
|
||||
_ReadBarrier();
|
||||
AeLiteSync();
|
||||
_ReadBarrier();
|
||||
break;
|
||||
case memory_order_release:
|
||||
_WriteBarrier();
|
||||
AeLiteSync();
|
||||
_WriteBarrier();
|
||||
break;
|
||||
case memory_order_acq_rel:
|
||||
_ReadWriteBarrier();
|
||||
AeLiteSync();
|
||||
_ReadWriteBarrier();
|
||||
break;
|
||||
case memory_order_seq_cst:
|
||||
_ReadWriteBarrier();
|
||||
AeFullSync();
|
||||
_ReadWriteBarrier();
|
||||
break;
|
||||
default:
|
||||
assert(false);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
} // end namespace moodycamel
|
||||
#else
|
||||
// Use standard library of atomics
|
||||
#include <atomic>
|
||||
|
||||
namespace moodycamel
|
||||
{
|
||||
|
||||
AE_FORCEINLINE void compiler_fence(memory_order order)
|
||||
{
|
||||
switch (order)
|
||||
{
|
||||
case memory_order_relaxed:
|
||||
break;
|
||||
case memory_order_acquire:
|
||||
std::atomic_signal_fence(std::memory_order_acquire);
|
||||
break;
|
||||
case memory_order_release:
|
||||
std::atomic_signal_fence(std::memory_order_release);
|
||||
break;
|
||||
case memory_order_acq_rel:
|
||||
std::atomic_signal_fence(std::memory_order_acq_rel);
|
||||
break;
|
||||
case memory_order_seq_cst:
|
||||
std::atomic_signal_fence(std::memory_order_seq_cst);
|
||||
break;
|
||||
default:
|
||||
assert(false);
|
||||
}
|
||||
}
|
||||
|
||||
AE_FORCEINLINE void fence(memory_order order)
|
||||
{
|
||||
switch (order)
|
||||
{
|
||||
case memory_order_relaxed:
|
||||
break;
|
||||
case memory_order_acquire:
|
||||
std::atomic_thread_fence(std::memory_order_acquire);
|
||||
break;
|
||||
case memory_order_release:
|
||||
std::atomic_thread_fence(std::memory_order_release);
|
||||
break;
|
||||
case memory_order_acq_rel:
|
||||
std::atomic_thread_fence(std::memory_order_acq_rel);
|
||||
break;
|
||||
case memory_order_seq_cst:
|
||||
std::atomic_thread_fence(std::memory_order_seq_cst);
|
||||
break;
|
||||
default:
|
||||
assert(false);
|
||||
}
|
||||
}
|
||||
|
||||
} // end namespace moodycamel
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#if !defined(AE_VCPP) || (_MSC_VER >= 1700 && !defined(__cplusplus_cli))
|
||||
#define AE_USE_STD_ATOMIC_FOR_WEAK_ATOMIC
|
||||
#endif
|
||||
|
||||
#ifdef AE_USE_STD_ATOMIC_FOR_WEAK_ATOMIC
|
||||
#include <atomic>
|
||||
#endif
|
||||
#include <utility>
|
||||
|
||||
// WARNING: *NOT* A REPLACEMENT FOR std::atomic. READ CAREFULLY:
|
||||
// Provides basic support for atomic variables -- no memory ordering guarantees are provided.
|
||||
// The guarantee of atomicity is only made for types that already have atomic load and store guarantees
|
||||
// at the hardware level -- on most platforms this generally means aligned pointers and integers (only).
|
||||
namespace moodycamel
|
||||
{
|
||||
template <typename T>
|
||||
class weak_atomic
|
||||
{
|
||||
public:
|
||||
weak_atomic() {}
|
||||
#ifdef AE_VCPP
|
||||
#pragma warning(push)
|
||||
#pragma warning(disable : 4100) // Get rid of (erroneous) 'unreferenced formal parameter' warning
|
||||
#endif
|
||||
template <typename U>
|
||||
weak_atomic(U&& x)
|
||||
: value(std::forward<U>(x))
|
||||
{
|
||||
}
|
||||
#ifdef __cplusplus_cli
|
||||
// Work around bug with universal reference/nullptr combination that only appears when /clr is on
|
||||
weak_atomic(nullptr_t)
|
||||
: value(nullptr)
|
||||
{
|
||||
}
|
||||
#endif
|
||||
weak_atomic(weak_atomic const& other)
|
||||
: value(other.value)
|
||||
{
|
||||
}
|
||||
weak_atomic(weak_atomic&& other)
|
||||
: value(std::move(other.value))
|
||||
{
|
||||
}
|
||||
#ifdef AE_VCPP
|
||||
#pragma warning(pop)
|
||||
#endif
|
||||
|
||||
AE_FORCEINLINE operator T() const
|
||||
{
|
||||
return load();
|
||||
}
|
||||
|
||||
|
||||
#ifndef AE_USE_STD_ATOMIC_FOR_WEAK_ATOMIC
|
||||
template <typename U>
|
||||
AE_FORCEINLINE weak_atomic const& operator=(U&& x)
|
||||
{
|
||||
value = std::forward<U>(x);
|
||||
return *this;
|
||||
}
|
||||
AE_FORCEINLINE weak_atomic const& operator=(weak_atomic const& other)
|
||||
{
|
||||
value = other.value;
|
||||
return *this;
|
||||
}
|
||||
|
||||
AE_FORCEINLINE T load() const { return value; }
|
||||
|
||||
AE_FORCEINLINE T fetch_add_acquire(T increment)
|
||||
{
|
||||
#if defined(AE_ARCH_X64) || defined(AE_ARCH_X86)
|
||||
if (sizeof(T) == 4)
|
||||
return _InterlockedExchangeAdd((long volatile*)&value, (long)increment);
|
||||
#if defined(_M_AMD64)
|
||||
else if (sizeof(T) == 8)
|
||||
return _InterlockedExchangeAdd64((long long volatile*)&value, (long long)increment);
|
||||
#endif
|
||||
#else
|
||||
#error Unsupported platform
|
||||
#endif
|
||||
assert(false && "T must be either a 32 or 64 bit type");
|
||||
return value;
|
||||
}
|
||||
|
||||
AE_FORCEINLINE T fetch_add_release(T increment)
|
||||
{
|
||||
#if defined(AE_ARCH_X64) || defined(AE_ARCH_X86)
|
||||
if (sizeof(T) == 4)
|
||||
return _InterlockedExchangeAdd((long volatile*)&value, (long)increment);
|
||||
#if defined(_M_AMD64)
|
||||
else if (sizeof(T) == 8)
|
||||
return _InterlockedExchangeAdd64((long long volatile*)&value, (long long)increment);
|
||||
#endif
|
||||
#else
|
||||
#error Unsupported platform
|
||||
#endif
|
||||
assert(false && "T must be either a 32 or 64 bit type");
|
||||
return value;
|
||||
}
|
||||
#else
|
||||
template <typename U>
|
||||
AE_FORCEINLINE weak_atomic const& operator=(U&& x)
|
||||
{
|
||||
value.store(std::forward<U>(x), std::memory_order_relaxed);
|
||||
return *this;
|
||||
}
|
||||
|
||||
AE_FORCEINLINE weak_atomic const& operator=(weak_atomic const& other)
|
||||
{
|
||||
value.store(other.value.load(std::memory_order_relaxed), std::memory_order_relaxed);
|
||||
return *this;
|
||||
}
|
||||
|
||||
AE_FORCEINLINE T load() const { return value.load(std::memory_order_relaxed); }
|
||||
|
||||
AE_FORCEINLINE T fetch_add_acquire(T increment)
|
||||
{
|
||||
return value.fetch_add(increment, std::memory_order_acquire);
|
||||
}
|
||||
|
||||
AE_FORCEINLINE T fetch_add_release(T increment)
|
||||
{
|
||||
return value.fetch_add(increment, std::memory_order_release);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
private:
|
||||
#ifndef AE_USE_STD_ATOMIC_FOR_WEAK_ATOMIC
|
||||
// No std::atomic support, but still need to circumvent compiler optimizations.
|
||||
// `volatile` will make memory access slow, but is guaranteed to be reliable.
|
||||
volatile T value;
|
||||
#else
|
||||
std::atomic<T> value;
|
||||
#endif
|
||||
};
|
||||
|
||||
} // end namespace moodycamel
|
||||
|
||||
|
||||
|
||||
// Portable single-producer, single-consumer semaphore below:
|
||||
|
||||
#if defined(_WIN32)
|
||||
// Avoid including windows.h in a header; we only need a handful of
|
||||
// items, so we'll redeclare them here (this is relatively safe since
|
||||
// the API generally has to remain stable between Windows versions).
|
||||
// I know this is an ugly hack but it still beats polluting the global
|
||||
// namespace with thousands of generic names or adding a .cpp for nothing.
|
||||
extern "C" {
|
||||
struct _SECURITY_ATTRIBUTES;
|
||||
__declspec(dllimport) void* __stdcall CreateSemaphoreW(_SECURITY_ATTRIBUTES* lpSemaphoreAttributes, long lInitialCount, long lMaximumCount, const wchar_t* lpName);
|
||||
__declspec(dllimport) int __stdcall CloseHandle(void* hObject);
|
||||
__declspec(dllimport) unsigned long __stdcall WaitForSingleObject(void* hHandle, unsigned long dwMilliseconds);
|
||||
__declspec(dllimport) int __stdcall ReleaseSemaphore(void* hSemaphore, long lReleaseCount, long* lpPreviousCount);
|
||||
}
|
||||
#elif defined(__MACH__)
|
||||
#include <mach/mach.h>
|
||||
#elif defined(__unix__)
|
||||
#include <semaphore.h>
|
||||
#endif
|
||||
|
||||
namespace moodycamel
|
||||
{
|
||||
// Code in the spsc_sema namespace below is an adaptation of Jeff Preshing's
|
||||
// portable + lightweight semaphore implementations, originally from
|
||||
// https://github.com/preshing/cpp11-on-multicore/blob/master/common/sema.h
|
||||
// LICENSE:
|
||||
// Copyright (c) 2015 Jeff Preshing
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
//
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
//
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgement in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
namespace spsc_sema
|
||||
{
|
||||
#if defined(_WIN32)
|
||||
class Semaphore
|
||||
{
|
||||
private:
|
||||
void* m_hSema;
|
||||
|
||||
Semaphore(const Semaphore& other);
|
||||
Semaphore& operator=(const Semaphore& other);
|
||||
|
||||
public:
|
||||
Semaphore(int initialCount = 0)
|
||||
{
|
||||
assert(initialCount >= 0);
|
||||
const long maxLong = 0x7fffffff;
|
||||
m_hSema = CreateSemaphoreW(nullptr, initialCount, maxLong, nullptr);
|
||||
}
|
||||
|
||||
~Semaphore()
|
||||
{
|
||||
CloseHandle(m_hSema);
|
||||
}
|
||||
|
||||
void wait()
|
||||
{
|
||||
const unsigned long infinite = 0xffffffff;
|
||||
WaitForSingleObject(m_hSema, infinite);
|
||||
}
|
||||
|
||||
bool try_wait()
|
||||
{
|
||||
const unsigned long RC_WAIT_TIMEOUT = 0x00000102;
|
||||
return WaitForSingleObject(m_hSema, 0) != RC_WAIT_TIMEOUT;
|
||||
}
|
||||
|
||||
bool timed_wait(std::uint64_t usecs)
|
||||
{
|
||||
const unsigned long RC_WAIT_TIMEOUT = 0x00000102;
|
||||
return WaitForSingleObject(m_hSema, (unsigned long)(usecs / 1000)) != RC_WAIT_TIMEOUT;
|
||||
}
|
||||
|
||||
void signal(int count = 1)
|
||||
{
|
||||
ReleaseSemaphore(m_hSema, count, nullptr);
|
||||
}
|
||||
};
|
||||
#elif defined(__MACH__)
|
||||
//---------------------------------------------------------
|
||||
// Semaphore (Apple iOS and OSX)
|
||||
// Can't use POSIX semaphores due to http://lists.apple.com/archives/darwin-kernel/2009/Apr/msg00010.html
|
||||
//---------------------------------------------------------
|
||||
class Semaphore
|
||||
{
|
||||
private:
|
||||
semaphore_t m_sema;
|
||||
|
||||
Semaphore(const Semaphore& other);
|
||||
Semaphore& operator=(const Semaphore& other);
|
||||
|
||||
public:
|
||||
Semaphore(int initialCount = 0)
|
||||
{
|
||||
assert(initialCount >= 0);
|
||||
semaphore_create(mach_task_self(), &m_sema, SYNC_POLICY_FIFO, initialCount);
|
||||
}
|
||||
|
||||
~Semaphore()
|
||||
{
|
||||
semaphore_destroy(mach_task_self(), m_sema);
|
||||
}
|
||||
|
||||
void wait()
|
||||
{
|
||||
semaphore_wait(m_sema);
|
||||
}
|
||||
|
||||
bool try_wait()
|
||||
{
|
||||
return timed_wait(0);
|
||||
}
|
||||
|
||||
bool timed_wait(std::int64_t timeout_usecs)
|
||||
{
|
||||
mach_timespec_t ts;
|
||||
ts.tv_sec = static_cast<unsigned int>(timeout_usecs / 1000000);
|
||||
ts.tv_nsec = (timeout_usecs % 1000000) * 1000;
|
||||
|
||||
// added in OSX 10.10: https://developer.apple.com/library/prerelease/mac/documentation/General/Reference/APIDiffsMacOSX10_10SeedDiff/modules/Darwin.html
|
||||
kern_return_t rc = semaphore_timedwait(m_sema, ts);
|
||||
|
||||
return rc != KERN_OPERATION_TIMED_OUT && rc != KERN_ABORTED;
|
||||
}
|
||||
|
||||
void signal()
|
||||
{
|
||||
semaphore_signal(m_sema);
|
||||
}
|
||||
|
||||
void signal(int count)
|
||||
{
|
||||
while (count-- > 0)
|
||||
{
|
||||
semaphore_signal(m_sema);
|
||||
}
|
||||
}
|
||||
};
|
||||
#elif defined(__unix__)
|
||||
//---------------------------------------------------------
|
||||
// Semaphore (POSIX, Linux)
|
||||
//---------------------------------------------------------
|
||||
class Semaphore
|
||||
{
|
||||
private:
|
||||
sem_t m_sema;
|
||||
|
||||
Semaphore(const Semaphore& other);
|
||||
Semaphore& operator=(const Semaphore& other);
|
||||
|
||||
public:
|
||||
Semaphore(int initialCount = 0)
|
||||
{
|
||||
assert(initialCount >= 0);
|
||||
sem_init(&m_sema, 0, initialCount);
|
||||
}
|
||||
|
||||
~Semaphore()
|
||||
{
|
||||
sem_destroy(&m_sema);
|
||||
}
|
||||
|
||||
void wait()
|
||||
{
|
||||
// http://stackoverflow.com/questions/2013181/gdb-causes-sem-wait-to-fail-with-eintr-error
|
||||
int rc;
|
||||
do
|
||||
{
|
||||
rc = sem_wait(&m_sema);
|
||||
} while (rc == -1 && errno == EINTR);
|
||||
}
|
||||
|
||||
bool try_wait()
|
||||
{
|
||||
int rc;
|
||||
do
|
||||
{
|
||||
rc = sem_trywait(&m_sema);
|
||||
} while (rc == -1 && errno == EINTR);
|
||||
return !(rc == -1 && errno == EAGAIN);
|
||||
}
|
||||
|
||||
bool timed_wait(std::uint64_t usecs)
|
||||
{
|
||||
struct timespec ts;
|
||||
const int usecs_in_1_sec = 1000000;
|
||||
const int nsecs_in_1_sec = 1000000000;
|
||||
clock_gettime(CLOCK_REALTIME, &ts);
|
||||
ts.tv_sec += usecs / usecs_in_1_sec;
|
||||
ts.tv_nsec += (usecs % usecs_in_1_sec) * 1000;
|
||||
// sem_timedwait bombs if you have more than 1e9 in tv_nsec
|
||||
// so we have to clean things up before passing it in
|
||||
if (ts.tv_nsec >= nsecs_in_1_sec)
|
||||
{
|
||||
ts.tv_nsec -= nsecs_in_1_sec;
|
||||
++ts.tv_sec;
|
||||
}
|
||||
|
||||
int rc;
|
||||
do
|
||||
{
|
||||
rc = sem_timedwait(&m_sema, &ts);
|
||||
} while (rc == -1 && errno == EINTR);
|
||||
return !(rc == -1 && errno == ETIMEDOUT);
|
||||
}
|
||||
|
||||
void signal()
|
||||
{
|
||||
sem_post(&m_sema);
|
||||
}
|
||||
|
||||
void signal(int count)
|
||||
{
|
||||
while (count-- > 0)
|
||||
{
|
||||
sem_post(&m_sema);
|
||||
}
|
||||
}
|
||||
};
|
||||
#else
|
||||
#error Unsupported platform! (No semaphore wrapper available)
|
||||
#endif
|
||||
|
||||
//---------------------------------------------------------
|
||||
// LightweightSemaphore
|
||||
//---------------------------------------------------------
|
||||
class LightweightSemaphore
|
||||
{
|
||||
public:
|
||||
typedef std::make_signed<std::size_t>::type ssize_t;
|
||||
|
||||
private:
|
||||
weak_atomic<ssize_t> m_count;
|
||||
Semaphore m_sema;
|
||||
|
||||
bool waitWithPartialSpinning(std::int64_t timeout_usecs = -1)
|
||||
{
|
||||
ssize_t oldCount;
|
||||
// Is there a better way to set the initial spin count?
|
||||
// If we lower it to 1000, testBenaphore becomes 15x slower on my Core i7-5930K Windows PC,
|
||||
// as threads start hitting the kernel semaphore.
|
||||
int spin = 10000;
|
||||
while (--spin >= 0)
|
||||
{
|
||||
if (m_count.load() > 0)
|
||||
{
|
||||
m_count.fetch_add_acquire(-1);
|
||||
return true;
|
||||
}
|
||||
compiler_fence(memory_order_acquire); // Prevent the compiler from collapsing the loop.
|
||||
}
|
||||
oldCount = m_count.fetch_add_acquire(-1);
|
||||
if (oldCount > 0)
|
||||
return true;
|
||||
if (timeout_usecs < 0)
|
||||
{
|
||||
m_sema.wait();
|
||||
return true;
|
||||
}
|
||||
if (m_sema.timed_wait(timeout_usecs))
|
||||
return true;
|
||||
// At this point, we've timed out waiting for the semaphore, but the
|
||||
// count is still decremented indicating we may still be waiting on
|
||||
// it. So we have to re-adjust the count, but only if the semaphore
|
||||
// wasn't signaled enough times for us too since then. If it was, we
|
||||
// need to release the semaphore too.
|
||||
while (true)
|
||||
{
|
||||
oldCount = m_count.fetch_add_release(1);
|
||||
if (oldCount < 0)
|
||||
return false; // successfully restored things to the way they were
|
||||
// Oh, the producer thread just signaled the semaphore after all. Try again:
|
||||
oldCount = m_count.fetch_add_acquire(-1);
|
||||
if (oldCount > 0 && m_sema.try_wait())
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
LightweightSemaphore(ssize_t initialCount = 0)
|
||||
: m_count(initialCount)
|
||||
{
|
||||
assert(initialCount >= 0);
|
||||
}
|
||||
|
||||
bool tryWait()
|
||||
{
|
||||
if (m_count.load() > 0)
|
||||
{
|
||||
m_count.fetch_add_acquire(-1);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void wait()
|
||||
{
|
||||
if (!tryWait())
|
||||
waitWithPartialSpinning();
|
||||
}
|
||||
|
||||
bool wait(std::int64_t timeout_usecs)
|
||||
{
|
||||
return tryWait() || waitWithPartialSpinning(timeout_usecs);
|
||||
}
|
||||
|
||||
void signal(ssize_t count = 1)
|
||||
{
|
||||
assert(count >= 0);
|
||||
ssize_t oldCount = m_count.fetch_add_release(count);
|
||||
assert(oldCount >= -1);
|
||||
if (oldCount < 0)
|
||||
{
|
||||
m_sema.signal(1);
|
||||
}
|
||||
}
|
||||
|
||||
ssize_t availableApprox() const
|
||||
{
|
||||
ssize_t count = m_count.load();
|
||||
return count > 0 ? count : 0;
|
||||
}
|
||||
};
|
||||
} // end namespace spsc_sema
|
||||
} // end namespace moodycamel
|
||||
|
||||
#if defined(AE_VCPP) && (_MSC_VER < 1700 || defined(__cplusplus_cli))
|
||||
#pragma warning(pop)
|
||||
#ifdef __cplusplus_cli
|
||||
#pragma managed(pop)
|
||||
#endif
|
||||
#endif
|
|
@ -1,946 +0,0 @@
|
|||
// ©2013-2016 Cameron Desrochers.
|
||||
// Distributed under the simplified BSD license (see the license file that
|
||||
// should have come with this header).
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "atomicops.h"
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
#include <cassert>
|
||||
#include <stdexcept>
|
||||
#include <new>
|
||||
#include <cstdint>
|
||||
#include <cstdlib> // For malloc/free/abort & size_t
|
||||
#if __cplusplus > 199711L || _MSC_VER >= 1700 // C++11 or VS2012
|
||||
#include <chrono>
|
||||
#endif
|
||||
|
||||
|
||||
// A lock-free queue for a single-consumer, single-producer architecture.
|
||||
// The queue is also wait-free in the common path (except if more memory
|
||||
// needs to be allocated, in which case malloc is called).
|
||||
// Allocates memory sparingly (O(lg(n) times, amortized), and only once if
|
||||
// the original maximum size estimate is never exceeded.
|
||||
// Tested on x86/x64 processors, but semantics should be correct for all
|
||||
// architectures (given the right implementations in atomicops.h), provided
|
||||
// that aligned integer and pointer accesses are naturally atomic.
|
||||
// Note that there should only be one consumer thread and producer thread;
|
||||
// Switching roles of the threads, or using multiple consecutive threads for
|
||||
// one role, is not safe unless properly synchronized.
|
||||
// Using the queue exclusively from one thread is fine, though a bit silly.
|
||||
|
||||
#ifndef MOODYCAMEL_CACHE_LINE_SIZE
|
||||
#define MOODYCAMEL_CACHE_LINE_SIZE 64
|
||||
#endif
|
||||
|
||||
#ifndef MOODYCAMEL_EXCEPTIONS_ENABLED
|
||||
#if (defined(_MSC_VER) && defined(_CPPUNWIND)) || (defined(__GNUC__) && defined(__EXCEPTIONS)) || (!defined(_MSC_VER) && !defined(__GNUC__))
|
||||
#define MOODYCAMEL_EXCEPTIONS_ENABLED
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef MOODYCAMEL_HAS_EMPLACE
|
||||
#if !defined(_MSC_VER) || _MSC_VER >= 1800 // variadic templates: either a non-MS compiler or VS >= 2013
|
||||
#define MOODYCAMEL_HAS_EMPLACE 1
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef AE_VCPP
|
||||
#pragma warning(push)
|
||||
#pragma warning(disable : 4324) // structure was padded due to __declspec(align())
|
||||
#pragma warning(disable : 4820) // padding was added
|
||||
#pragma warning(disable : 4127) // conditional expression is constant
|
||||
#endif
|
||||
|
||||
namespace moodycamel
|
||||
{
|
||||
|
||||
template <typename T, size_t MAX_BLOCK_SIZE = 512>
|
||||
class ReaderWriterQueue
|
||||
{
|
||||
// Design: Based on a queue-of-queues. The low-level queues are just
|
||||
// circular buffers with front and tail indices indicating where the
|
||||
// next element to dequeue is and where the next element can be enqueued,
|
||||
// respectively. Each low-level queue is called a "block". Each block
|
||||
// wastes exactly one element's worth of space to keep the design simple
|
||||
// (if front == tail then the queue is empty, and can't be full).
|
||||
// The high-level queue is a circular linked list of blocks; again there
|
||||
// is a front and tail, but this time they are pointers to the blocks.
|
||||
// The front block is where the next element to be dequeued is, provided
|
||||
// the block is not empty. The back block is where elements are to be
|
||||
// enqueued, provided the block is not full.
|
||||
// The producer thread owns all the tail indices/pointers. The consumer
|
||||
// thread owns all the front indices/pointers. Both threads read each
|
||||
// other's variables, but only the owning thread updates them. E.g. After
|
||||
// the consumer reads the producer's tail, the tail may change before the
|
||||
// consumer is done dequeuing an object, but the consumer knows the tail
|
||||
// will never go backwards, only forwards.
|
||||
// If there is no room to enqueue an object, an additional block (of
|
||||
// equal size to the last block) is added. Blocks are never removed.
|
||||
|
||||
public:
|
||||
typedef T value_type;
|
||||
|
||||
// Constructs a queue that can hold maxSize elements without further
|
||||
// allocations. If more than MAX_BLOCK_SIZE elements are requested,
|
||||
// then several blocks of MAX_BLOCK_SIZE each are reserved (including
|
||||
// at least one extra buffer block).
|
||||
explicit ReaderWriterQueue(size_t maxSize = 15)
|
||||
#ifndef NDEBUG
|
||||
: enqueuing(false)
|
||||
, dequeuing(false)
|
||||
#endif
|
||||
{
|
||||
assert(maxSize > 0);
|
||||
assert(MAX_BLOCK_SIZE == ceilToPow2(MAX_BLOCK_SIZE) && "MAX_BLOCK_SIZE must be a power of 2");
|
||||
assert(MAX_BLOCK_SIZE >= 2 && "MAX_BLOCK_SIZE must be at least 2");
|
||||
|
||||
Block* firstBlock = nullptr;
|
||||
|
||||
largestBlockSize = ceilToPow2(maxSize + 1); // We need a spare slot to fit maxSize elements in the block
|
||||
if (largestBlockSize > MAX_BLOCK_SIZE * 2)
|
||||
{
|
||||
// We need a spare block in case the producer is writing to a different block the consumer is reading from, and
|
||||
// wants to enqueue the maximum number of elements. We also need a spare element in each block to avoid the ambiguity
|
||||
// between front == tail meaning "empty" and "full".
|
||||
// So the effective number of slots that are guaranteed to be usable at any time is the block size - 1 times the
|
||||
// number of blocks - 1. Solving for maxSize and applying a ceiling to the division gives us (after simplifying):
|
||||
size_t initialBlockCount = (maxSize + MAX_BLOCK_SIZE * 2 - 3) / (MAX_BLOCK_SIZE - 1);
|
||||
largestBlockSize = MAX_BLOCK_SIZE;
|
||||
Block* lastBlock = nullptr;
|
||||
for (size_t i = 0; i != initialBlockCount; ++i)
|
||||
{
|
||||
auto block = make_block(largestBlockSize);
|
||||
if (block == nullptr)
|
||||
{
|
||||
#ifdef MOODYCAMEL_EXCEPTIONS_ENABLED
|
||||
throw std::bad_alloc();
|
||||
#else
|
||||
abort();
|
||||
#endif
|
||||
}
|
||||
if (firstBlock == nullptr)
|
||||
{
|
||||
firstBlock = block;
|
||||
}
|
||||
else
|
||||
{
|
||||
lastBlock->next = block;
|
||||
}
|
||||
lastBlock = block;
|
||||
block->next = firstBlock;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
firstBlock = make_block(largestBlockSize);
|
||||
if (firstBlock == nullptr)
|
||||
{
|
||||
#ifdef MOODYCAMEL_EXCEPTIONS_ENABLED
|
||||
throw std::bad_alloc();
|
||||
#else
|
||||
abort();
|
||||
#endif
|
||||
}
|
||||
firstBlock->next = firstBlock;
|
||||
}
|
||||
frontBlock = firstBlock;
|
||||
tailBlock = firstBlock;
|
||||
|
||||
// Make sure the reader/writer threads will have the initialized memory setup above:
|
||||
fence(memory_order_sync);
|
||||
}
|
||||
|
||||
// Note: The queue should not be accessed concurrently while it's
|
||||
// being moved. It's up to the user to synchronize this.
|
||||
ReaderWriterQueue(ReaderWriterQueue&& other)
|
||||
: frontBlock(other.frontBlock.load())
|
||||
, tailBlock(other.tailBlock.load())
|
||||
, largestBlockSize(other.largestBlockSize)
|
||||
#ifndef NDEBUG
|
||||
, enqueuing(false)
|
||||
, dequeuing(false)
|
||||
#endif
|
||||
{
|
||||
other.largestBlockSize = 32;
|
||||
Block* b = other.make_block(other.largestBlockSize);
|
||||
if (b == nullptr)
|
||||
{
|
||||
#ifdef MOODYCAMEL_EXCEPTIONS_ENABLED
|
||||
throw std::bad_alloc();
|
||||
#else
|
||||
abort();
|
||||
#endif
|
||||
}
|
||||
b->next = b;
|
||||
other.frontBlock = b;
|
||||
other.tailBlock = b;
|
||||
}
|
||||
|
||||
// Note: The queue should not be accessed concurrently while it's
|
||||
// being moved. It's up to the user to synchronize this.
|
||||
ReaderWriterQueue& operator=(ReaderWriterQueue&& other)
|
||||
{
|
||||
Block* b = frontBlock.load();
|
||||
frontBlock = other.frontBlock.load();
|
||||
other.frontBlock = b;
|
||||
b = tailBlock.load();
|
||||
tailBlock = other.tailBlock.load();
|
||||
other.tailBlock = b;
|
||||
std::swap(largestBlockSize, other.largestBlockSize);
|
||||
return *this;
|
||||
}
|
||||
|
||||
// Note: The queue should not be accessed concurrently while it's
|
||||
// being deleted. It's up to the user to synchronize this.
|
||||
~ReaderWriterQueue()
|
||||
{
|
||||
// Make sure we get the latest version of all variables from other CPUs:
|
||||
fence(memory_order_sync);
|
||||
|
||||
// Destroy any remaining objects in queue and free memory
|
||||
Block* frontBlock_ = frontBlock;
|
||||
Block* block = frontBlock_;
|
||||
do
|
||||
{
|
||||
Block* nextBlock = block->next;
|
||||
size_t blockFront = block->front;
|
||||
size_t blockTail = block->tail;
|
||||
|
||||
for (size_t i = blockFront; i != blockTail; i = (i + 1) & block->sizeMask)
|
||||
{
|
||||
auto element = reinterpret_cast<T*>(block->data + i * sizeof(T));
|
||||
element->~T();
|
||||
(void)element;
|
||||
}
|
||||
|
||||
auto rawBlock = block->rawThis;
|
||||
block->~Block();
|
||||
std::free(rawBlock);
|
||||
block = nextBlock;
|
||||
} while (block != frontBlock_);
|
||||
}
|
||||
|
||||
|
||||
// Enqueues a copy of element if there is room in the queue.
|
||||
// Returns true if the element was enqueued, false otherwise.
|
||||
// Does not allocate memory.
|
||||
AE_FORCEINLINE bool try_enqueue(T const& element)
|
||||
{
|
||||
return inner_enqueue<CannotAlloc>(element);
|
||||
}
|
||||
|
||||
// Enqueues a moved copy of element if there is room in the queue.
|
||||
// Returns true if the element was enqueued, false otherwise.
|
||||
// Does not allocate memory.
|
||||
AE_FORCEINLINE bool try_enqueue(T&& element)
|
||||
{
|
||||
return inner_enqueue<CannotAlloc>(std::forward<T>(element));
|
||||
}
|
||||
|
||||
#if MOODYCAMEL_HAS_EMPLACE
|
||||
// Like try_enqueue() but with emplace semantics (i.e. construct-in-place).
|
||||
template <typename... Args>
|
||||
AE_FORCEINLINE bool try_emplace(Args&&... args)
|
||||
{
|
||||
return inner_enqueue<CannotAlloc>(std::forward<Args>(args)...);
|
||||
}
|
||||
#endif
|
||||
|
||||
// Enqueues a copy of element on the queue.
|
||||
// Allocates an additional block of memory if needed.
|
||||
// Only fails (returns false) if memory allocation fails.
|
||||
AE_FORCEINLINE bool enqueue(T const& element)
|
||||
{
|
||||
return inner_enqueue<CanAlloc>(element);
|
||||
}
|
||||
|
||||
// Enqueues a moved copy of element on the queue.
|
||||
// Allocates an additional block of memory if needed.
|
||||
// Only fails (returns false) if memory allocation fails.
|
||||
AE_FORCEINLINE bool enqueue(T&& element)
|
||||
{
|
||||
return inner_enqueue<CanAlloc>(std::forward<T>(element));
|
||||
}
|
||||
|
||||
#if MOODYCAMEL_HAS_EMPLACE
|
||||
// Like enqueue() but with emplace semantics (i.e. construct-in-place).
|
||||
template <typename... Args>
|
||||
AE_FORCEINLINE bool emplace(Args&&... args)
|
||||
{
|
||||
return inner_enqueue<CanAlloc>(std::forward<Args>(args)...);
|
||||
}
|
||||
#endif
|
||||
|
||||
// Attempts to dequeue an element; if the queue is empty,
|
||||
// returns false instead. If the queue has at least one element,
|
||||
// moves front to result using operator=, then returns true.
|
||||
template <typename U>
|
||||
bool try_dequeue(U& result)
|
||||
{
|
||||
#ifndef NDEBUG
|
||||
ReentrantGuard guard(this->dequeuing);
|
||||
#endif
|
||||
|
||||
// High-level pseudocode:
|
||||
// Remember where the tail block is
|
||||
// If the front block has an element in it, dequeue it
|
||||
// Else
|
||||
// If front block was the tail block when we entered the function, return false
|
||||
// Else advance to next block and dequeue the item there
|
||||
|
||||
// Note that we have to use the value of the tail block from before we check if the front
|
||||
// block is full or not, in case the front block is empty and then, before we check if the
|
||||
// tail block is at the front block or not, the producer fills up the front block *and
|
||||
// moves on*, which would make us skip a filled block. Seems unlikely, but was consistently
|
||||
// reproducible in practice.
|
||||
// In order to avoid overhead in the common case, though, we do a double-checked pattern
|
||||
// where we have the fast path if the front block is not empty, then read the tail block,
|
||||
// then re-read the front block and check if it's not empty again, then check if the tail
|
||||
// block has advanced.
|
||||
|
||||
Block* frontBlock_ = frontBlock.load();
|
||||
size_t blockTail = frontBlock_->localTail;
|
||||
size_t blockFront = frontBlock_->front.load();
|
||||
|
||||
if (blockFront != blockTail || blockFront != (frontBlock_->localTail = frontBlock_->tail.load()))
|
||||
{
|
||||
fence(memory_order_acquire);
|
||||
|
||||
non_empty_front_block:
|
||||
// Front block not empty, dequeue from here
|
||||
auto element = reinterpret_cast<T*>(frontBlock_->data + blockFront * sizeof(T));
|
||||
result = std::move(*element);
|
||||
element->~T();
|
||||
|
||||
blockFront = (blockFront + 1) & frontBlock_->sizeMask;
|
||||
|
||||
fence(memory_order_release);
|
||||
frontBlock_->front = blockFront;
|
||||
}
|
||||
else if (frontBlock_ != tailBlock.load())
|
||||
{
|
||||
fence(memory_order_acquire);
|
||||
|
||||
frontBlock_ = frontBlock.load();
|
||||
blockTail = frontBlock_->localTail = frontBlock_->tail.load();
|
||||
blockFront = frontBlock_->front.load();
|
||||
fence(memory_order_acquire);
|
||||
|
||||
if (blockFront != blockTail)
|
||||
{
|
||||
// Oh look, the front block isn't empty after all
|
||||
goto non_empty_front_block;
|
||||
}
|
||||
|
||||
// Front block is empty but there's another block ahead, advance to it
|
||||
Block* nextBlock = frontBlock_->next;
|
||||
// Don't need an acquire fence here since next can only ever be set on the tailBlock,
|
||||
// and we're not the tailBlock, and we did an acquire earlier after reading tailBlock which
|
||||
// ensures next is up-to-date on this CPU in case we recently were at tailBlock.
|
||||
|
||||
size_t nextBlockFront = nextBlock->front.load();
|
||||
size_t nextBlockTail = nextBlock->localTail = nextBlock->tail.load();
|
||||
fence(memory_order_acquire);
|
||||
|
||||
// Since the tailBlock is only ever advanced after being written to,
|
||||
// we know there's for sure an element to dequeue on it
|
||||
assert(nextBlockFront != nextBlockTail);
|
||||
AE_UNUSED(nextBlockTail);
|
||||
|
||||
// We're done with this block, let the producer use it if it needs
|
||||
fence(memory_order_release); // Expose possibly pending changes to frontBlock->front from last dequeue
|
||||
frontBlock = frontBlock_ = nextBlock;
|
||||
|
||||
compiler_fence(memory_order_release); // Not strictly needed
|
||||
|
||||
auto element = reinterpret_cast<T*>(frontBlock_->data + nextBlockFront * sizeof(T));
|
||||
|
||||
result = std::move(*element);
|
||||
element->~T();
|
||||
|
||||
nextBlockFront = (nextBlockFront + 1) & frontBlock_->sizeMask;
|
||||
|
||||
fence(memory_order_release);
|
||||
frontBlock_->front = nextBlockFront;
|
||||
}
|
||||
else
|
||||
{
|
||||
// No elements in current block and no other block to advance to
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
// Returns a pointer to the front element in the queue (the one that
|
||||
// would be removed next by a call to `try_dequeue` or `pop`). If the
|
||||
// queue appears empty at the time the method is called, nullptr is
|
||||
// returned instead.
|
||||
// Must be called only from the consumer thread.
|
||||
T* peek()
|
||||
{
|
||||
#ifndef NDEBUG
|
||||
ReentrantGuard guard(this->dequeuing);
|
||||
#endif
|
||||
// See try_dequeue() for reasoning
|
||||
|
||||
Block* frontBlock_ = frontBlock.load();
|
||||
size_t blockTail = frontBlock_->localTail;
|
||||
size_t blockFront = frontBlock_->front.load();
|
||||
|
||||
if (blockFront != blockTail || blockFront != (frontBlock_->localTail = frontBlock_->tail.load()))
|
||||
{
|
||||
fence(memory_order_acquire);
|
||||
non_empty_front_block:
|
||||
return reinterpret_cast<T*>(frontBlock_->data + blockFront * sizeof(T));
|
||||
}
|
||||
else if (frontBlock_ != tailBlock.load())
|
||||
{
|
||||
fence(memory_order_acquire);
|
||||
frontBlock_ = frontBlock.load();
|
||||
blockTail = frontBlock_->localTail = frontBlock_->tail.load();
|
||||
blockFront = frontBlock_->front.load();
|
||||
fence(memory_order_acquire);
|
||||
|
||||
if (blockFront != blockTail)
|
||||
{
|
||||
goto non_empty_front_block;
|
||||
}
|
||||
|
||||
Block* nextBlock = frontBlock_->next;
|
||||
|
||||
size_t nextBlockFront = nextBlock->front.load();
|
||||
fence(memory_order_acquire);
|
||||
|
||||
assert(nextBlockFront != nextBlock->tail.load());
|
||||
return reinterpret_cast<T*>(nextBlock->data + nextBlockFront * sizeof(T));
|
||||
}
|
||||
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Removes the front element from the queue, if any, without returning it.
|
||||
// Returns true on success, or false if the queue appeared empty at the time
|
||||
// `pop` was called.
|
||||
bool pop()
|
||||
{
|
||||
#ifndef NDEBUG
|
||||
ReentrantGuard guard(this->dequeuing);
|
||||
#endif
|
||||
// See try_dequeue() for reasoning
|
||||
|
||||
Block* frontBlock_ = frontBlock.load();
|
||||
size_t blockTail = frontBlock_->localTail;
|
||||
size_t blockFront = frontBlock_->front.load();
|
||||
|
||||
if (blockFront != blockTail || blockFront != (frontBlock_->localTail = frontBlock_->tail.load()))
|
||||
{
|
||||
fence(memory_order_acquire);
|
||||
|
||||
non_empty_front_block:
|
||||
auto element = reinterpret_cast<T*>(frontBlock_->data + blockFront * sizeof(T));
|
||||
element->~T();
|
||||
|
||||
blockFront = (blockFront + 1) & frontBlock_->sizeMask;
|
||||
|
||||
fence(memory_order_release);
|
||||
frontBlock_->front = blockFront;
|
||||
}
|
||||
else if (frontBlock_ != tailBlock.load())
|
||||
{
|
||||
fence(memory_order_acquire);
|
||||
frontBlock_ = frontBlock.load();
|
||||
blockTail = frontBlock_->localTail = frontBlock_->tail.load();
|
||||
blockFront = frontBlock_->front.load();
|
||||
fence(memory_order_acquire);
|
||||
|
||||
if (blockFront != blockTail)
|
||||
{
|
||||
goto non_empty_front_block;
|
||||
}
|
||||
|
||||
// Front block is empty but there's another block ahead, advance to it
|
||||
Block* nextBlock = frontBlock_->next;
|
||||
|
||||
size_t nextBlockFront = nextBlock->front.load();
|
||||
size_t nextBlockTail = nextBlock->localTail = nextBlock->tail.load();
|
||||
fence(memory_order_acquire);
|
||||
|
||||
assert(nextBlockFront != nextBlockTail);
|
||||
AE_UNUSED(nextBlockTail);
|
||||
|
||||
fence(memory_order_release);
|
||||
frontBlock = frontBlock_ = nextBlock;
|
||||
|
||||
compiler_fence(memory_order_release);
|
||||
|
||||
auto element = reinterpret_cast<T*>(frontBlock_->data + nextBlockFront * sizeof(T));
|
||||
element->~T();
|
||||
|
||||
nextBlockFront = (nextBlockFront + 1) & frontBlock_->sizeMask;
|
||||
|
||||
fence(memory_order_release);
|
||||
frontBlock_->front = nextBlockFront;
|
||||
}
|
||||
else
|
||||
{
|
||||
// No elements in current block and no other block to advance to
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// Returns the approximate number of items currently in the queue.
|
||||
// Safe to call from both the producer and consumer threads.
|
||||
inline size_t size_approx() const
|
||||
{
|
||||
size_t result = 0;
|
||||
Block* frontBlock_ = frontBlock.load();
|
||||
Block* block = frontBlock_;
|
||||
do
|
||||
{
|
||||
fence(memory_order_acquire);
|
||||
size_t blockFront = block->front.load();
|
||||
size_t blockTail = block->tail.load();
|
||||
result += (blockTail - blockFront) & block->sizeMask;
|
||||
block = block->next.load();
|
||||
} while (block != frontBlock_);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
enum AllocationMode
|
||||
{
|
||||
CanAlloc,
|
||||
CannotAlloc
|
||||
};
|
||||
|
||||
#if MOODYCAMEL_HAS_EMPLACE
|
||||
template <AllocationMode canAlloc, typename... Args>
|
||||
bool inner_enqueue(Args&&... args)
|
||||
#else
|
||||
template <AllocationMode canAlloc, typename U>
|
||||
bool inner_enqueue(U&& element)
|
||||
#endif
|
||||
{
|
||||
#ifndef NDEBUG
|
||||
ReentrantGuard guard(this->enqueuing);
|
||||
#endif
|
||||
|
||||
// High-level pseudocode (assuming we're allowed to alloc a new block):
|
||||
// If room in tail block, add to tail
|
||||
// Else check next block
|
||||
// If next block is not the head block, enqueue on next block
|
||||
// Else create a new block and enqueue there
|
||||
// Advance tail to the block we just enqueued to
|
||||
|
||||
Block* tailBlock_ = tailBlock.load();
|
||||
size_t blockFront = tailBlock_->localFront;
|
||||
size_t blockTail = tailBlock_->tail.load();
|
||||
|
||||
size_t nextBlockTail = (blockTail + 1) & tailBlock_->sizeMask;
|
||||
if (nextBlockTail != blockFront || nextBlockTail != (tailBlock_->localFront = tailBlock_->front.load()))
|
||||
{
|
||||
fence(memory_order_acquire);
|
||||
// This block has room for at least one more element
|
||||
char* location = tailBlock_->data + blockTail * sizeof(T);
|
||||
#if MOODYCAMEL_HAS_EMPLACE
|
||||
new (location) T(std::forward<Args>(args)...);
|
||||
#else
|
||||
new (location) T(std::forward<U>(element));
|
||||
#endif
|
||||
|
||||
fence(memory_order_release);
|
||||
tailBlock_->tail = nextBlockTail;
|
||||
}
|
||||
else
|
||||
{
|
||||
fence(memory_order_acquire);
|
||||
if (tailBlock_->next.load() != frontBlock)
|
||||
{
|
||||
// Note that the reason we can't advance to the frontBlock and start adding new entries there
|
||||
// is because if we did, then dequeue would stay in that block, eventually reading the new values,
|
||||
// instead of advancing to the next full block (whose values were enqueued first and so should be
|
||||
// consumed first).
|
||||
|
||||
fence(memory_order_acquire); // Ensure we get latest writes if we got the latest frontBlock
|
||||
|
||||
// tailBlock is full, but there's a free block ahead, use it
|
||||
Block* tailBlockNext = tailBlock_->next.load();
|
||||
size_t nextBlockFront = tailBlockNext->localFront = tailBlockNext->front.load();
|
||||
nextBlockTail = tailBlockNext->tail.load();
|
||||
fence(memory_order_acquire);
|
||||
|
||||
// This block must be empty since it's not the head block and we
|
||||
// go through the blocks in a circle
|
||||
assert(nextBlockFront == nextBlockTail);
|
||||
tailBlockNext->localFront = nextBlockFront;
|
||||
|
||||
char* location = tailBlockNext->data + nextBlockTail * sizeof(T);
|
||||
#if MOODYCAMEL_HAS_EMPLACE
|
||||
new (location) T(std::forward<Args>(args)...);
|
||||
#else
|
||||
new (location) T(std::forward<U>(element));
|
||||
#endif
|
||||
|
||||
tailBlockNext->tail = (nextBlockTail + 1) & tailBlockNext->sizeMask;
|
||||
|
||||
fence(memory_order_release);
|
||||
tailBlock = tailBlockNext;
|
||||
}
|
||||
else if (canAlloc == CanAlloc)
|
||||
{
|
||||
// tailBlock is full and there's no free block ahead; create a new block
|
||||
auto newBlockSize = largestBlockSize >= MAX_BLOCK_SIZE ? largestBlockSize : largestBlockSize * 2;
|
||||
auto newBlock = make_block(newBlockSize);
|
||||
if (newBlock == nullptr)
|
||||
{
|
||||
// Could not allocate a block!
|
||||
return false;
|
||||
}
|
||||
largestBlockSize = newBlockSize;
|
||||
|
||||
#if MOODYCAMEL_HAS_EMPLACE
|
||||
new (newBlock->data) T(std::forward<Args>(args)...);
|
||||
#else
|
||||
new (newBlock->data) T(std::forward<U>(element));
|
||||
#endif
|
||||
assert(newBlock->front == 0);
|
||||
newBlock->tail = newBlock->localTail = 1;
|
||||
|
||||
newBlock->next = tailBlock_->next.load();
|
||||
tailBlock_->next = newBlock;
|
||||
|
||||
// Might be possible for the dequeue thread to see the new tailBlock->next
|
||||
// *without* seeing the new tailBlock value, but this is OK since it can't
|
||||
// advance to the next block until tailBlock is set anyway (because the only
|
||||
// case where it could try to read the next is if it's already at the tailBlock,
|
||||
// and it won't advance past tailBlock in any circumstance).
|
||||
|
||||
fence(memory_order_release);
|
||||
tailBlock = newBlock;
|
||||
}
|
||||
else if (canAlloc == CannotAlloc)
|
||||
{
|
||||
// Would have had to allocate a new block to enqueue, but not allowed
|
||||
return false;
|
||||
}
|
||||
else
|
||||
{
|
||||
assert(false && "Should be unreachable code");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
// Disable copying
|
||||
ReaderWriterQueue(ReaderWriterQueue const&) {}
|
||||
|
||||
// Disable assignment
|
||||
ReaderWriterQueue& operator=(ReaderWriterQueue const&) {}
|
||||
|
||||
|
||||
|
||||
AE_FORCEINLINE static size_t ceilToPow2(size_t x)
|
||||
{
|
||||
// From http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
|
||||
--x;
|
||||
x |= x >> 1;
|
||||
x |= x >> 2;
|
||||
x |= x >> 4;
|
||||
for (size_t i = 1; i < sizeof(size_t); i <<= 1)
|
||||
{
|
||||
x |= x >> (i << 3);
|
||||
}
|
||||
++x;
|
||||
return x;
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
static AE_FORCEINLINE char* align_for(char* ptr)
|
||||
{
|
||||
const std::size_t alignment = std::alignment_of<U>::value;
|
||||
return ptr + (alignment - (reinterpret_cast<std::uintptr_t>(ptr) % alignment)) % alignment;
|
||||
}
|
||||
|
||||
private:
|
||||
#ifndef NDEBUG
|
||||
struct ReentrantGuard
|
||||
{
|
||||
ReentrantGuard(bool& _inSection)
|
||||
: inSection(_inSection)
|
||||
{
|
||||
assert(!inSection && "ReaderWriterQueue does not support enqueuing or dequeuing elements from other elements' ctors and dtors");
|
||||
inSection = true;
|
||||
}
|
||||
|
||||
~ReentrantGuard() { inSection = false; }
|
||||
|
||||
private:
|
||||
ReentrantGuard& operator=(ReentrantGuard const&);
|
||||
|
||||
private:
|
||||
bool& inSection;
|
||||
};
|
||||
#endif
|
||||
|
||||
struct Block
|
||||
{
|
||||
// Avoid false-sharing by putting highly contended variables on their own cache lines
|
||||
weak_atomic<size_t> front; // (Atomic) Elements are read from here
|
||||
size_t localTail; // An uncontended shadow copy of tail, owned by the consumer
|
||||
|
||||
char cachelineFiller0[MOODYCAMEL_CACHE_LINE_SIZE - sizeof(weak_atomic<size_t>) - sizeof(size_t)];
|
||||
weak_atomic<size_t> tail; // (Atomic) Elements are enqueued here
|
||||
size_t localFront;
|
||||
|
||||
char cachelineFiller1[MOODYCAMEL_CACHE_LINE_SIZE - sizeof(weak_atomic<size_t>) - sizeof(size_t)]; // next isn't very contended, but we don't want it on the same cache line as tail (which is)
|
||||
weak_atomic<Block*> next; // (Atomic)
|
||||
|
||||
char* data; // Contents (on heap) are aligned to T's alignment
|
||||
|
||||
const size_t sizeMask;
|
||||
|
||||
|
||||
// size must be a power of two (and greater than 0)
|
||||
Block(size_t const& _size, char* _rawThis, char* _data)
|
||||
: front(0)
|
||||
, localTail(0)
|
||||
, tail(0)
|
||||
, localFront(0)
|
||||
, next(nullptr)
|
||||
, data(_data)
|
||||
, sizeMask(_size - 1)
|
||||
, rawThis(_rawThis)
|
||||
{
|
||||
}
|
||||
|
||||
private:
|
||||
// C4512 - Assignment operator could not be generated
|
||||
Block& operator=(Block const&);
|
||||
|
||||
public:
|
||||
char* rawThis;
|
||||
};
|
||||
|
||||
|
||||
static Block* make_block(size_t capacity)
|
||||
{
|
||||
// Allocate enough memory for the block itself, as well as all the elements it will contain
|
||||
auto size = sizeof(Block) + std::alignment_of<Block>::value - 1;
|
||||
size += sizeof(T) * capacity + std::alignment_of<T>::value - 1;
|
||||
auto newBlockRaw = static_cast<char*>(std::malloc(size));
|
||||
if (newBlockRaw == nullptr)
|
||||
{
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
auto newBlockAligned = align_for<Block>(newBlockRaw);
|
||||
auto newBlockData = align_for<T>(newBlockAligned + sizeof(Block));
|
||||
return new (newBlockAligned) Block(capacity, newBlockRaw, newBlockData);
|
||||
}
|
||||
|
||||
private:
|
||||
weak_atomic<Block*> frontBlock; // (Atomic) Elements are enqueued to this block
|
||||
|
||||
char cachelineFiller[MOODYCAMEL_CACHE_LINE_SIZE - sizeof(weak_atomic<Block*>)];
|
||||
weak_atomic<Block*> tailBlock; // (Atomic) Elements are dequeued from this block
|
||||
|
||||
size_t largestBlockSize;
|
||||
|
||||
#ifndef NDEBUG
|
||||
bool enqueuing;
|
||||
bool dequeuing;
|
||||
#endif
|
||||
};
|
||||
|
||||
// Like ReaderWriterQueue, but also providees blocking operations
|
||||
template <typename T, size_t MAX_BLOCK_SIZE = 512>
|
||||
class BlockingReaderWriterQueue
|
||||
{
|
||||
private:
|
||||
typedef ::moodycamel::ReaderWriterQueue<T, MAX_BLOCK_SIZE> ReaderWriterQueue;
|
||||
|
||||
public:
|
||||
explicit BlockingReaderWriterQueue(size_t maxSize = 15)
|
||||
: inner(maxSize)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
// Enqueues a copy of element if there is room in the queue.
|
||||
// Returns true if the element was enqueued, false otherwise.
|
||||
// Does not allocate memory.
|
||||
AE_FORCEINLINE bool try_enqueue(T const& element)
|
||||
{
|
||||
if (inner.try_enqueue(element))
|
||||
{
|
||||
sema.signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues a moved copy of element if there is room in the queue.
|
||||
// Returns true if the element was enqueued, false otherwise.
|
||||
// Does not allocate memory.
|
||||
AE_FORCEINLINE bool try_enqueue(T&& element)
|
||||
{
|
||||
if (inner.try_enqueue(std::forward<T>(element)))
|
||||
{
|
||||
sema.signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// Enqueues a copy of element on the queue.
|
||||
// Allocates an additional block of memory if needed.
|
||||
// Only fails (returns false) if memory allocation fails.
|
||||
AE_FORCEINLINE bool enqueue(T const& element)
|
||||
{
|
||||
if (inner.enqueue(element))
|
||||
{
|
||||
sema.signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues a moved copy of element on the queue.
|
||||
// Allocates an additional block of memory if needed.
|
||||
// Only fails (returns false) if memory allocation fails.
|
||||
AE_FORCEINLINE bool enqueue(T&& element)
|
||||
{
|
||||
if (inner.enqueue(std::forward<T>(element)))
|
||||
{
|
||||
sema.signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// Attempts to dequeue an element; if the queue is empty,
|
||||
// returns false instead. If the queue has at least one element,
|
||||
// moves front to result using operator=, then returns true.
|
||||
template <typename U>
|
||||
bool try_dequeue(U& result)
|
||||
{
|
||||
if (sema.tryWait())
|
||||
{
|
||||
bool success = inner.try_dequeue(result);
|
||||
assert(success);
|
||||
AE_UNUSED(success);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// Attempts to dequeue an element; if the queue is empty,
|
||||
// waits until an element is available, then dequeues it.
|
||||
template <typename U>
|
||||
void wait_dequeue(U& result)
|
||||
{
|
||||
sema.wait();
|
||||
bool success = inner.try_dequeue(result);
|
||||
AE_UNUSED(result);
|
||||
assert(success);
|
||||
AE_UNUSED(success);
|
||||
}
|
||||
|
||||
|
||||
// Attempts to dequeue an element; if the queue is empty,
|
||||
// waits until an element is available up to the specified timeout,
|
||||
// then dequeues it and returns true, or returns false if the timeout
|
||||
// expires before an element can be dequeued.
|
||||
// Using a negative timeout indicates an indefinite timeout,
|
||||
// and is thus functionally equivalent to calling wait_dequeue.
|
||||
template <typename U>
|
||||
bool wait_dequeue_timed(U& result, std::int64_t timeout_usecs)
|
||||
{
|
||||
if (!sema.wait(timeout_usecs))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
bool success = inner.try_dequeue(result);
|
||||
AE_UNUSED(result);
|
||||
assert(success);
|
||||
AE_UNUSED(success);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
#if __cplusplus > 199711L || _MSC_VER >= 1700
|
||||
// Attempts to dequeue an element; if the queue is empty,
|
||||
// waits until an element is available up to the specified timeout,
|
||||
// then dequeues it and returns true, or returns false if the timeout
|
||||
// expires before an element can be dequeued.
|
||||
// Using a negative timeout indicates an indefinite timeout,
|
||||
// and is thus functionally equivalent to calling wait_dequeue.
|
||||
template <typename U, typename Rep, typename Period>
|
||||
inline bool wait_dequeue_timed(U& result, std::chrono::duration<Rep, Period> const& timeout)
|
||||
{
|
||||
return wait_dequeue_timed(result, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
// Returns a pointer to the front element in the queue (the one that
|
||||
// would be removed next by a call to `try_dequeue` or `pop`). If the
|
||||
// queue appears empty at the time the method is called, nullptr is
|
||||
// returned instead.
|
||||
// Must be called only from the consumer thread.
|
||||
AE_FORCEINLINE T* peek()
|
||||
{
|
||||
return inner.peek();
|
||||
}
|
||||
|
||||
// Removes the front element from the queue, if any, without returning it.
|
||||
// Returns true on success, or false if the queue appeared empty at the time
|
||||
// `pop` was called.
|
||||
AE_FORCEINLINE bool pop()
|
||||
{
|
||||
if (sema.tryWait())
|
||||
{
|
||||
bool result = inner.pop();
|
||||
assert(result);
|
||||
AE_UNUSED(result);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Returns the approximate number of items currently in the queue.
|
||||
// Safe to call from both the producer and consumer threads.
|
||||
AE_FORCEINLINE size_t size_approx() const
|
||||
{
|
||||
return sema.availableApprox();
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
// Disable copying & assignment
|
||||
BlockingReaderWriterQueue(ReaderWriterQueue const&) {}
|
||||
BlockingReaderWriterQueue& operator=(ReaderWriterQueue const&) {}
|
||||
|
||||
private:
|
||||
ReaderWriterQueue inner;
|
||||
spsc_sema::LightweightSemaphore sema;
|
||||
};
|
||||
|
||||
} // end namespace moodycamel
|
||||
|
||||
#ifdef AE_VCPP
|
||||
#pragma warning(pop)
|
||||
#endif
|
|
@ -685,8 +685,6 @@
|
|||
<ClInclude Include="USB\qemu-usb\queue.h" />
|
||||
<ClInclude Include="USB\qemu-usb\qusb.h" />
|
||||
<ClInclude Include="USB\qemu-usb\USBinternal.h" />
|
||||
<ClInclude Include="USB\readerwriterqueue\atomicops.h" />
|
||||
<ClInclude Include="USB\readerwriterqueue\readerwriterqueue.h" />
|
||||
<ClInclude Include="USB\shared\ringbuffer.h" />
|
||||
<ClInclude Include="USB\usb-eyetoy\cam-windows.h" />
|
||||
<ClInclude Include="USB\usb-eyetoy\jo_mpeg.h" />
|
||||
|
|
|
@ -241,9 +241,6 @@
|
|||
<Filter Include="System\Ps2\USB\qemu-usb">
|
||||
<UniqueIdentifier>{e068b724-9319-42e5-9ea7-63d80989ea1d}</UniqueIdentifier>
|
||||
</Filter>
|
||||
<Filter Include="System\Ps2\USB\readerwriterqueue">
|
||||
<UniqueIdentifier>{f82a2be4-24a1-4dd8-9395-c53d0e1c4ddb}</UniqueIdentifier>
|
||||
</Filter>
|
||||
<Filter Include="System\Ps2\USB\shared">
|
||||
<UniqueIdentifier>{58074375-dbbe-4137-bbe5-54478d1a97c7}</UniqueIdentifier>
|
||||
</Filter>
|
||||
|
@ -2255,12 +2252,6 @@
|
|||
<ClInclude Include="USB\qemu-usb\input-keymap.h">
|
||||
<Filter>System\Ps2\USB\qemu-usb</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="USB\readerwriterqueue\atomicops.h">
|
||||
<Filter>System\Ps2\USB\readerwriterqueue</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="USB\readerwriterqueue\readerwriterqueue.h">
|
||||
<Filter>System\Ps2\USB\readerwriterqueue</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="USB\shared\ringbuffer.h">
|
||||
<Filter>System\Ps2\USB\shared</Filter>
|
||||
</ClInclude>
|
||||
|
|
Loading…
Reference in New Issue