3rdparty: Update xbyak to 7.06

Might fix a crash on older AMD CPUs apparently.
This commit is contained in:
JordanTheToaster 2024-06-07 10:22:18 +01:00 committed by refractionpcsx2
parent 1ec4c248fb
commit 7d530228e3
3 changed files with 200 additions and 136 deletions

View File

@ -155,7 +155,7 @@ namespace Xbyak {
enum {
DEFAULT_MAX_CODE_SIZE = 4096,
VERSION = 0x7051 /* 0xABCD = A.BC(.D) */
VERSION = 0x7060 /* 0xABCD = A.BC(.D) */
};
#ifndef MIE_INTEGER_TYPE_DEFINED

View File

@ -1,4 +1,4 @@
const char *getVersionString() const { return "7.05.1"; }
const char *getVersionString() const { return "7.06"; }
void aadd(const Address& addr, const Reg32e &reg) { opMR(addr, reg, T_0F38, 0x0FC, T_APX); }
void aand(const Address& addr, const Reg32e &reg) { opMR(addr, reg, T_0F38|T_66, 0x0FC, T_APX|T_66); }
void adc(const Operand& op, uint32_t imm) { opOI(op, imm, 0x10, 2); }

View File

@ -91,7 +91,8 @@ namespace Xbyak { namespace util {
typedef enum {
SmtLevel = 1,
CoreLevel = 2
} IntelCpuTopologyLevel;
} CpuTopologyLevel;
typedef CpuTopologyLevel IntelCpuTopologyLevel; // for backward compatibility
namespace local {
@ -136,13 +137,12 @@ public:
private:
Type type_;
//system topology
bool x2APIC_supported_;
static const size_t maxTopologyLevels = 2;
uint32_t numCores_[maxTopologyLevels];
static const uint32_t maxNumberCacheLevels = 10;
uint32_t dataCacheSize_[maxNumberCacheLevels];
uint32_t coresSharignDataCache_[maxNumberCacheLevels];
uint32_t coresSharingDataCache_[maxNumberCacheLevels];
uint32_t dataCacheLevels_;
uint32_t avx10version_;
@ -154,123 +154,200 @@ private:
{
return (1U << n) - 1;
}
// [EBX:ECX:EDX] == s?
bool isEqualStr(uint32_t EBX, uint32_t ECX, uint32_t EDX, const char s[12]) const
{
return get32bitAsBE(&s[0]) == EBX && get32bitAsBE(&s[4]) == EDX && get32bitAsBE(&s[8]) == ECX;
}
uint32_t extractBit(uint32_t val, uint32_t base, uint32_t end) const
{
return (val >> base) & ((1u << (end + 1 - base)) - 1);
}
void setFamily()
{
uint32_t data[4] = {};
getCpuid(1, data);
stepping = data[0] & mask(4);
model = (data[0] >> 4) & mask(4);
family = (data[0] >> 8) & mask(4);
// type = (data[0] >> 12) & mask(2);
extModel = (data[0] >> 16) & mask(4);
extFamily = (data[0] >> 20) & mask(8);
stepping = extractBit(data[0], 0, 3);
model = extractBit(data[0], 4, 7);
family = extractBit(data[0], 8, 11);
//type = extractBit(data[0], 12, 13);
extModel = extractBit(data[0], 16, 19);
extFamily = extractBit(data[0], 20, 27);
if (family == 0x0f) {
displayFamily = family + extFamily;
} else {
displayFamily = family;
}
if (family == 6 || family == 0x0f) {
if ((has(tINTEL) && family == 6) || family == 0x0f) {
displayModel = (extModel << 4) + model;
} else {
displayModel = model;
}
}
uint32_t extractBit(uint32_t val, uint32_t base, uint32_t end)
{
return (val >> base) & ((1u << (end + 1 - base)) - 1);
}
void setNumCores()
{
if (!has(tINTEL) && !has(tAMD)) return;
uint32_t data[4] = {};
getCpuidEx(0x0, 0, data);
getCpuid(0x0, data);
if (data[0] >= 0xB) {
// Check if "Extended Topology Enumeration" is implemented.
getCpuidEx(0xB, 0, data);
if (data[0] != 0 || data[1] != 0) {
/*
if leaf 11 exists(x2APIC is supported),
we use it to get the number of smt cores and cores on socket
leaf 0xB can be zeroed-out by a hypervisor
*/
x2APIC_supported_ = true;
for (uint32_t i = 0; i < maxTopologyLevels; i++) {
getCpuidEx(0xB, i, data);
IntelCpuTopologyLevel level = (IntelCpuTopologyLevel)extractBit(data[2], 8, 15);
CpuTopologyLevel level = (CpuTopologyLevel)extractBit(data[2], 8, 15);
if (level == SmtLevel || level == CoreLevel) {
numCores_[level - 1] = extractBit(data[1], 0, 15);
}
}
/*
Fallback values in case a hypervisor has 0xB leaf zeroed-out.
Fallback values in case a hypervisor has the leaf zeroed-out.
*/
numCores_[SmtLevel - 1] = local::max_(1u, numCores_[SmtLevel - 1]);
numCores_[CoreLevel - 1] = local::max_(numCores_[SmtLevel - 1], numCores_[CoreLevel - 1]);
return;
}
}
// "Extended Topology Enumeration" is not supported.
if (has(tAMD)) {
/*
AMD - Legacy Method
*/
int physicalThreadCount = 0;
getCpuid(0x1, data);
int logicalProcessorCount = extractBit(data[1], 16, 23);
int htt = extractBit(data[3], 28, 28); // Hyper-threading technology.
getCpuid(0x80000000, data);
uint32_t highestExtendedLeaf = data[0];
if (highestExtendedLeaf >= 0x80000008) {
getCpuid(0x80000008, data);
physicalThreadCount = extractBit(data[2], 0, 7) + 1;
}
if (htt == 0) {
numCores_[SmtLevel - 1] = 1;
numCores_[CoreLevel - 1] = 1;
} else if (physicalThreadCount > 1) {
if ((displayFamily >= 0x17) && (highestExtendedLeaf >= 0x8000001E)) {
// Zen overreports its core count by a factor of two.
getCpuid(0x8000001E, data);
int threadsPerComputeUnit = extractBit(data[1], 8, 15) + 1;
physicalThreadCount /= threadsPerComputeUnit;
}
numCores_[SmtLevel - 1] = logicalProcessorCount / physicalThreadCount;
numCores_[CoreLevel - 1] = logicalProcessorCount;
} else {
numCores_[SmtLevel - 1] = 1;
numCores_[CoreLevel - 1] = logicalProcessorCount > 1 ? logicalProcessorCount : 2;
}
} else {
/*
Failed to deremine num of cores without x2APIC support.
TODO: USE initial APIC ID to determine ncores.
Intel - Legacy Method
*/
numCores_[SmtLevel - 1] = 0;
numCores_[CoreLevel - 1] = 0;
int physicalThreadCount = 0;
getCpuid(0x1, data);
int logicalProcessorCount = extractBit(data[1], 16, 23);
int htt = extractBit(data[3], 28, 28); // Hyper-threading technology.
getCpuid(0, data);
if (data[0] >= 0x4) {
getCpuid(0x4, data);
physicalThreadCount = extractBit(data[0], 26, 31) + 1;
}
if (htt == 0) {
numCores_[SmtLevel - 1] = 1;
numCores_[CoreLevel - 1] = 1;
} else if (physicalThreadCount > 1) {
numCores_[SmtLevel - 1] = logicalProcessorCount / physicalThreadCount;
numCores_[CoreLevel - 1] = logicalProcessorCount;
} else {
numCores_[SmtLevel - 1] = 1;
numCores_[CoreLevel - 1] = logicalProcessorCount > 0 ? logicalProcessorCount : 1;
}
}
}
void setCacheHierarchy()
{
if (!has(tINTEL) && !has(tAMD)) return;
// https://github.com/amd/ZenDNN/blob/a08bf9a9efc160a69147cdecfb61cc85cc0d4928/src/cpu/x64/xbyak/xbyak_util.h#L236-L288
if (has(tAMD)) {
// There are 3 Data Cache Levels (L1, L2, L3)
dataCacheLevels_ = 3;
const uint32_t leaf = 0x8000001D; // for modern AMD CPus
// Sub leaf value ranges from 0 to 3
// Sub leaf value 0 refers to L1 Data Cache
// Sub leaf value 1 refers to L1 Instruction Cache
// Sub leaf value 2 refers to L2 Cache
// Sub leaf value 3 refers to L3 Cache
// For legacy AMD CPU, use leaf 0x80000005 for L1 cache
// and 0x80000006 for L2 and L3 cache
int cache_index = 0;
for (uint32_t sub_leaf = 0; sub_leaf <= dataCacheLevels_; sub_leaf++) {
// Skip sub_leaf = 1 as it refers to
// L1 Instruction Cache (not required)
if (sub_leaf == 1) {
continue;
}
uint32_t data[4] = {};
getCpuidEx(leaf, sub_leaf, data);
// Cache Size = Line Size * Partitions * Associativity * Cache Sets
dataCacheSize_[cache_index] =
(extractBit(data[1], 22, 31) + 1) // Associativity-1
* (extractBit(data[1], 12, 21) + 1) // Partitions-1
* (extractBit(data[1], 0, 11) + 1) // Line Size
* (data[2] + 1);
// Calculate the number of cores sharing the current data cache
int smt_width = numCores_[0];
int logical_cores = numCores_[1];
int actual_logical_cores = extractBit(data[0], 14, 25) /* # of cores * # of threads */ + 1;
if (logical_cores != 0) {
actual_logical_cores = local::min_(actual_logical_cores, logical_cores);
if (has(tAMD)) {
getCpuid(0x80000000, data);
if (data[0] >= 0x8000001D) {
// For modern AMD CPUs.
dataCacheLevels_ = 0;
for (uint32_t subLeaf = 0; dataCacheLevels_ < maxNumberCacheLevels; subLeaf++) {
getCpuidEx(0x8000001D, subLeaf, data);
int cacheType = extractBit(data[0], 0, 4);
/*
cacheType
00h - Null; no more caches
01h - Data cache
02h - Instrution cache
03h - Unified cache
04h-1Fh - Reserved
*/
if (cacheType == 0) break; // No more caches.
if (cacheType == 0x2) continue; // Skip instruction cache.
int fullyAssociative = extractBit(data[0], 9, 9);
int numSharingCache = extractBit(data[0], 14, 25) + 1;
int cacheNumWays = extractBit(data[1], 22, 31) + 1;
int cachePhysPartitions = extractBit(data[1], 12, 21) + 1;
int cacheLineSize = extractBit(data[1], 0, 11) + 1;
int cacheNumSets = data[2] + 1;
dataCacheSize_[dataCacheLevels_] =
cacheLineSize * cachePhysPartitions * cacheNumWays;
if (fullyAssociative == 0) {
dataCacheSize_[dataCacheLevels_] *= cacheNumSets;
}
coresSharignDataCache_[cache_index] = local::max_(actual_logical_cores / smt_width, 1);
++cache_index;
if (subLeaf > 0) {
numSharingCache = local::min_(numSharingCache, (int)numCores_[1]);
numSharingCache /= local::max_(1u, coresSharingDataCache_[0]);
}
return;
coresSharingDataCache_[dataCacheLevels_] = numSharingCache;
dataCacheLevels_ += 1;
}
// intel
coresSharingDataCache_[0] = local::min_(1u, coresSharingDataCache_[0]);
} else if (data[0] >= 0x80000006) {
// For legacy AMD CPUs, use leaf 0x80000005 for L1 cache
// and 0x80000006 for L2 and L3 cache.
dataCacheLevels_ = 1;
getCpuid(0x80000005, data);
int l1dc_size = extractBit(data[2], 24, 31);
dataCacheSize_[0] = l1dc_size * 1024;
coresSharingDataCache_[0] = 1;
getCpuid(0x80000006, data);
// L2 cache
int l2_assoc = extractBit(data[2], 12, 15);
if (l2_assoc > 0) {
dataCacheLevels_ = 2;
int l2_size = extractBit(data[2], 16, 31);
dataCacheSize_[1] = l2_size * 1024;
coresSharingDataCache_[1] = 1;
}
// L3 cache
int l3_assoc = extractBit(data[3], 12, 15);
if (l3_assoc > 0) {
dataCacheLevels_ = 3;
int l3_size = extractBit(data[3], 18, 31);
dataCacheSize_[2] = l3_size * 512 * 1024;
coresSharingDataCache_[2] = numCores_[1];
}
}
} else if (has(tINTEL)) {
// Use the "Deterministic Cache Parameters" leaf is supported.
const uint32_t NO_CACHE = 0;
const uint32_t DATA_CACHE = 1;
//const uint32_t INSTRUCTION_CACHE = 2;
const uint32_t UNIFIED_CACHE = 3;
uint32_t smt_width = 0;
uint32_t logical_cores = 0;
uint32_t data[4] = {};
if (x2APIC_supported_) {
smt_width = numCores_[0];
logical_cores = numCores_[1];
}
/*
Assumptions:
@ -298,11 +375,12 @@ private:
* (data[2] + 1);
if (cacheType == DATA_CACHE && smt_width == 0) smt_width = actual_logical_cores;
assert(smt_width != 0);
coresSharignDataCache_[dataCacheLevels_] = local::max_(actual_logical_cores / smt_width, 1u);
coresSharingDataCache_[dataCacheLevels_] = local::max_(actual_logical_cores / smt_width, 1u);
dataCacheLevels_++;
}
}
}
}
public:
int model;
@ -313,8 +391,7 @@ public:
int displayFamily; // family + extFamily
int displayModel; // model + extModel
uint32_t getNumCores(IntelCpuTopologyLevel level) const {
if (!x2APIC_supported_) XBYAK_THROW_RET(ERR_X2APIC_IS_NOT_SUPPORTED, 0)
uint32_t getNumCores(CpuTopologyLevel level) const {
switch (level) {
case SmtLevel: return numCores_[level - 1];
case CoreLevel: return numCores_[level - 1] / numCores_[SmtLevel - 1];
@ -326,7 +403,7 @@ public:
uint32_t getCoresSharingDataCache(uint32_t i) const
{
if (i >= dataCacheLevels_) XBYAK_THROW_RET(ERR_BAD_PARAMETER, 0)
return coresSharignDataCache_[i];
return coresSharingDataCache_[i];
}
uint32_t getDataCacheSize(uint32_t i) const
{
@ -337,19 +414,6 @@ public:
/*
data[] = { eax, ebx, ecx, edx }
*/
static inline void getCpuid(uint32_t eaxIn, uint32_t data[4])
{
#ifdef XBYAK_INTEL_CPU_SPECIFIC
#ifdef _WIN32
__cpuid(reinterpret_cast<int*>(data), eaxIn);
#else
__cpuid(eaxIn, data[0], data[1], data[2], data[3]);
#endif
#else
(void)eaxIn;
(void)data;
#endif
}
static inline void getCpuidEx(uint32_t eaxIn, uint32_t ecxIn, uint32_t data[4])
{
#ifdef XBYAK_INTEL_CPU_SPECIFIC
@ -364,6 +428,10 @@ public:
(void)data;
#endif
}
static inline void getCpuid(uint32_t eaxIn, uint32_t data[4])
{
getCpuidEx(eaxIn, 0, data);
}
static inline uint64_t getXfeature()
{
#ifdef XBYAK_INTEL_CPU_SPECIFIC
@ -485,10 +553,9 @@ public:
Cpu()
: type_()
, x2APIC_supported_(false)
, numCores_()
, dataCacheSize_()
, coresSharignDataCache_()
, coresSharingDataCache_()
, dataCacheLevels_(0)
, avx10version_(0)
{
@ -499,9 +566,7 @@ public:
const uint32_t& EDX = data[3];
getCpuid(0, data);
const uint32_t maxNum = EAX;
static const char intel[] = "ntel";
static const char amd[] = "cAMD";
if (ECX == get32bitAsBE(amd)) {
if (isEqualStr(EBX, ECX, EDX, "AuthenticAMD")) {
type_ |= tAMD;
getCpuid(0x80000001, data);
if (EDX & (1U << 31)) {
@ -514,8 +579,7 @@ public:
// Long mode implies support for PREFETCHW on AMD
type_ |= tPREFETCHW;
}
}
if (ECX == get32bitAsBE(intel)) {
} else if (isEqualStr(EBX, ECX, EDX, "GenuineIntel")) {
type_ |= tINTEL;
}