GS: added Motion Adaptive Deinterlacing support for Metal renderer

This commit is contained in:
sideprojectslab 2022-11-11 15:13:45 +01:00 committed by refractionpcsx2
parent 0f42eab7a4
commit 79b5f2154f
5 changed files with 132 additions and 9 deletions

View File

@ -150,7 +150,7 @@ The clamp modes are also numerically based.
Default: None (`0`)
* deinterlace
[Value between `0` to `9`]
{Automatic Off, WeaveTFF, WeaveBFF, BobTFF, BobBFF, BlendTFF, BlendBFF, AdaptiveTFF, AdaptiveBFF}
{Automatic, Off, WeaveTFF, WeaveBFF, BobTFF, BobBFF, BlendTFF, BlendBFF, AdaptiveTFF, AdaptiveBFF}
Default: Automatic (No value, looks up GameDB)
### GS Hardware Renderer Fixes

View File

@ -347,7 +347,7 @@ public:
GSTexture* CreateSurface(GSTexture::Type type, int width, int height, int levels, GSTexture::Format format) override;
void DoMerge(GSTexture* sTex[3], GSVector4* sRect, GSTexture* dTex, GSVector4* dRect, const GSRegPMODE& PMODE, const GSRegEXTBUF& EXTBUF, const GSVector4& c) override;
void DoInterlace(GSTexture* sTex, GSTexture* dTex, int shader, bool linear, float yoffset) override;
void DoInterlace(GSTexture* sTex, GSTexture* dTex, int shader, bool linear, float yoffset, int bufIdx) override;
void DoFXAA(GSTexture* sTex, GSTexture* dTex) override;
void DoShadeBoost(GSTexture* sTex, GSTexture* dTex, const float params[4]) override;
void DoExternalFX(GSTexture* sTex, GSTexture* dTex) override;

View File

@ -583,18 +583,19 @@ void GSDeviceMTL::DoMerge(GSTexture* sTex[3], GSVector4* sRect, GSTexture* dTex,
StretchRect(dTex, full_r, sTex[2], dRect[0], ShaderConvert::YUV);
}}
void GSDeviceMTL::DoInterlace(GSTexture* sTex, GSTexture* dTex, int shader, bool linear, float yoffset)
void GSDeviceMTL::DoInterlace(GSTexture* sTex, GSTexture* dTex, int shader, bool linear, float yoffset, int bufIdx)
{ @autoreleasepool {
id<MTLCommandBuffer> cmdbuf = GetRenderCmdBuf();
GSScopedDebugGroupMTL dbg(cmdbuf, @"DoInterlace");
GSVector4 s = GSVector4(dTex->GetSize());
GSVector4 ss = GSVector4(sTex->GetSize());
GSVector4 ds = GSVector4(dTex->GetSize());
GSVector4 sRect(0, 0, 1, 1);
GSVector4 dRect(0.f, yoffset, s.x, s.y + yoffset);
GSVector4 dRect(0.f, yoffset, ds.x, ds.y + yoffset);
GSMTLInterlacePSUniform cb = {};
cb.ZrH = {0, 1.f / s.y};
cb.ZrH = {static_cast<float>(bufIdx), 1.0f / ss.y, ss.y, MAD_SENSITIVITY};
DoStretchRect(sTex, sRect, dTex, dRect, m_interlace_pipeline[shader], linear, shader > 1 ? LoadAction::DontCareIfFull : LoadAction::Load, &cb, sizeof(cb));
}}

View File

@ -54,7 +54,7 @@ struct GSMTLPresentPSUniform
struct GSMTLInterlacePSUniform
{
vector_float2 ZrH;
vector_float4 ZrH;
};
struct GSMTLMainVertex

View File

@ -36,9 +36,10 @@ fragment float4 ps_interlace1(ConvertShaderData data [[stage_in]], ConvertPSRes
fragment float4 ps_interlace2(ConvertShaderData data [[stage_in]], ConvertPSRes res,
constant GSMTLInterlacePSUniform& uniform [[buffer(GSMTLBufferIndexUniforms)]])
{
float4 c0 = res.sample(data.t - uniform.ZrH);
float2 vstep = float2(0.0f, uniform.ZrH.y);
float4 c0 = res.sample(data.t - vstep);
float4 c1 = res.sample(data.t);
float4 c2 = res.sample(data.t + uniform.ZrH);
float4 c2 = res.sample(data.t + vstep);
return (c0 + c1 * 2.f + c2) / 4.f;
}
@ -47,3 +48,124 @@ fragment float4 ps_interlace3(ConvertShaderData data [[stage_in]], ConvertPSRes
return res.sample(data.t);
}
fragment float4 ps_interlace4(ConvertShaderData data [[stage_in]], ConvertPSRes res,
constant GSMTLInterlacePSUniform& uniform [[buffer(GSMTLBufferIndexUniforms)]])
{
const int vres = int(round(uniform.ZrH.z));
const int idx = int(round(uniform.ZrH.x));
const int bank = idx >> 1;
const int field = idx & 1;
const int vpos = int(data.p.y) + (((((vres + 1) >> 1) << 1) - vres) & bank);
const float2 bofs = float2(0.0f, 0.5f * bank);
const float2 vscale = float2(1.0f, 2.0f);
const float2 optr = data.t - bofs;
const float2 iptr = optr * vscale;
if ((optr.y >= 0.0f) && (optr.y < 0.5f) && ((vpos & 1) == field))
return res.sample(iptr);
else
discard_fragment();
return float4(0.0f, 0.0f, 0.0f, 0.0f);
}
fragment float4 ps_interlace5(ConvertShaderData data [[stage_in]], ConvertPSRes res,
constant GSMTLInterlacePSUniform& uniform [[buffer(GSMTLBufferIndexUniforms)]])
{
const float sensitivity = uniform.ZrH.w;
const float3 motion_thr = float3(1.0, 1.0, 1.0) * sensitivity;
const float2 vofs = float2(0.0f, 0.5f);
const float2 vscale = float2(1.0f, 0.5f);
const int idx = int(round(uniform.ZrH.x));
const int bank = idx >> 1;
const int field = idx & 1;
const float2 line_ofs = float2(0.0f, uniform.ZrH.y);
const float2 iptr = data.t * vscale;
float2 p_new_cf;
float2 p_old_cf;
float2 p_new_af;
float2 p_old_af;
switch (idx)
{
case 0:
p_new_cf = iptr;
p_new_af = iptr + vofs;
p_old_cf = iptr + vofs;
p_old_af = iptr;
break;
case 1:
p_new_cf = iptr;
p_new_af = iptr;
p_old_cf = iptr + vofs;
p_old_af = iptr + vofs;
break;
case 2:
p_new_cf = iptr + vofs;
p_new_af = iptr;
p_old_cf = iptr;
p_old_af = iptr + vofs;
break;
case 3:
p_new_cf = iptr + vofs;
p_new_af = iptr + vofs;
p_old_cf = iptr;
p_old_af = iptr;
break;
default:
break;
}
// calculating motion
float4 hn = res.sample(p_new_cf - line_ofs); // high
float4 cn = res.sample(p_new_af); // center
float4 ln = res.sample(p_new_cf + line_ofs); // low
float4 ho = res.sample(p_old_cf - line_ofs); // high
float4 co = res.sample(p_old_af); // center
float4 lo = res.sample(p_old_cf + line_ofs); // low
float3 mh = hn.rgb - ho.rgb;
float3 mc = cn.rgb - co.rgb;
float3 ml = ln.rgb - lo.rgb;
mh = max(mh, -mh) - motion_thr;
mc = max(mc, -mc) - motion_thr;
ml = max(ml, -ml) - motion_thr;
// float mh_max = max(max(mh.x, mh.y), mh.z);
// float mc_max = max(max(mc.x, mc.y), mc.z);
// float ml_max = max(max(ml.x, ml.y), ml.z);
float mh_max = mh.x + mh.y + mh.z;
float mc_max = mc.x + mc.y + mc.z;
float ml_max = ml.x + ml.y + ml.z;
// selecting deinterlacing output
if (((int(data.p.y) & 1) == field)) // output coordinate present on current field
{
return res.sample(p_new_cf);
}
else if ((iptr.y > 0.5f - line_ofs.y) || (iptr.y < 0.0 + line_ofs.y))
{
return res.sample(p_new_af);
}
else
{
if (((mh_max > 0.0f) || (ml_max > 0.0f)) || (mc_max > 0.0f))
{
return (hn + ln) / 2.0f;
}
else
{
return res.sample(p_new_af);
}
}
return float4(0.0f, 0.0f, 0.0f, 0.0f);
}