Soundtouch update from 1.5 to 1.71 as per patch from lincolnh_br.

There's been changes in the VS2008 project file which we may want to look at and port to 2010/2012 separately but it builds like this in 2010 here.
I want to wait and see if there's any issues with Linux first, too.
Thanks to lincolnh_br :)

git-svn-id: http://pcsx2.googlecode.com/svn/trunk@5619 96395faa-99c1-11dd-bbfe-3dabce05a288
This commit is contained in:
ramapcsx2.code 2013-04-17 10:46:57 +00:00
parent 86a2f5a8ec
commit 796bdb8f37
26 changed files with 2199 additions and 1569 deletions

View File

@ -1,9 +1,9 @@
////////////////////////////////////////////////////////////////////////////////
///
/// FIR low-pass (anti-alias) filter with filter coefficient design routine and
/// MMX optimization.
///
/// Anti-alias filter is used to prevent folding of high frequencies when
/// MMX optimization.
///
/// Anti-alias filter is used to prevent folding of high frequencies when
/// transposing the sample rate with interpolation.
///
/// Author : Copyright (c) Olli Parviainen
@ -12,7 +12,7 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2009-01-11 13:34:24 +0200 (Sun, 11 Jan 2009) $
// Last changed : $Date: 2009-01-11 09:34:24 -0200 (dom, 11 jan 2009) $
// File revision : $Revision: 4 $
//
// $Id: AAFilter.cpp 45 2009-01-11 11:34:24Z oparviai $
@ -112,21 +112,21 @@ void AAFilter::calculateCoeffs()
work = new double[length];
coeffs = new SAMPLETYPE[length];
fc2 = 2.0 * cutoffFreq;
fc2 = 2.0 * cutoffFreq;
wc = PI * fc2;
tempCoeff = TWOPI / (double)length;
sum = 0;
for (i = 0; i < length; i ++)
for (i = 0; i < length; i ++)
{
cntTemp = (double)i - (double)(length / 2);
temp = cntTemp * wc;
if (temp != 0)
if (temp != 0)
{
h = fc2 * sin(temp) / temp; // sinc function
}
else
}
else
{
h = 1.0;
}
@ -135,7 +135,7 @@ void AAFilter::calculateCoeffs()
temp = w * h;
work[i] = temp;
// calc net sum of coefficients
// calc net sum of coefficients
sum += temp;
}
@ -151,7 +151,7 @@ void AAFilter::calculateCoeffs()
// divided by 16384
scaleCoeff = 16384.0f / sum;
for (i = 0; i < length; i ++)
for (i = 0; i < length; i ++)
{
// scale & round to nearest integer
temp = work[i] * scaleCoeff;
@ -169,8 +169,8 @@ void AAFilter::calculateCoeffs()
}
// Applies the filter to the given sequence of samples.
// Note : The amount of outputted samples is by value of 'filter length'
// Applies the filter to the given sequence of samples.
// Note : The amount of outputted samples is by value of 'filter length'
// smaller than the amount of input samples.
uint AAFilter::evaluate(SAMPLETYPE *dest, const SAMPLETYPE *src, uint numSamples, uint numChannels) const
{

View File

@ -1,10 +1,10 @@
////////////////////////////////////////////////////////////////////////////////
///
/// Sampled sound tempo changer/time stretch algorithm. Changes the sound tempo
/// while maintaining the original pitch by using a time domain WSOLA-like method
/// Sampled sound tempo changer/time stretch algorithm. Changes the sound tempo
/// while maintaining the original pitch by using a time domain WSOLA-like method
/// with several performance-increasing tweaks.
///
/// Anti-alias filter is used to prevent folding of high frequencies when
/// Anti-alias filter is used to prevent folding of high frequencies when
/// transposing the sample rate with interpolation.
///
/// Author : Copyright (c) Olli Parviainen
@ -13,7 +13,7 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2008-02-10 18:26:55 +0200 (Sun, 10 Feb 2008) $
// Last changed : $Date: 2008-02-10 14:26:55 -0200 (dom, 10 fev 2008) $
// File revision : $Revision: 4 $
//
// $Id: AAFilter.h 11 2008-02-10 16:26:55Z oparviai $
@ -67,8 +67,8 @@ public:
~AAFilter();
/// Sets new anti-alias filter cut-off edge frequency, scaled to sampling
/// frequency (nyquist frequency = 0.5). The filter will cut off the
/// Sets new anti-alias filter cut-off edge frequency, scaled to sampling
/// frequency (nyquist frequency = 0.5). The filter will cut off the
/// frequencies than that.
void setCutoffFreq(double newCutoffFreq);
@ -77,12 +77,12 @@ public:
uint getLength() const;
/// Applies the filter to the given sequence of samples.
/// Note : The amount of outputted samples is by value of 'filter length'
/// Applies the filter to the given sequence of samples.
/// Note : The amount of outputted samples is by value of 'filter length'
/// smaller than the amount of input samples.
uint evaluate(SAMPLETYPE *dest,
const SAMPLETYPE *src,
uint numSamples,
uint evaluate(SAMPLETYPE *dest,
const SAMPLETYPE *src,
uint numSamples,
uint numChannels) const;
};

370
3rdparty/SoundTouch/BPMDetect.cpp vendored Normal file
View File

@ -0,0 +1,370 @@
////////////////////////////////////////////////////////////////////////////////
///
/// Beats-per-minute (BPM) detection routine.
///
/// The beat detection algorithm works as follows:
/// - Use function 'inputSamples' to input a chunks of samples to the class for
/// analysis. It's a good idea to enter a large sound file or stream in smallish
/// chunks of around few kilosamples in order not to extinguish too much RAM memory.
/// - Inputted sound data is decimated to approx 500 Hz to reduce calculation burden,
/// which is basically ok as low (bass) frequencies mostly determine the beat rate.
/// Simple averaging is used for anti-alias filtering because the resulting signal
/// quality isn't of that high importance.
/// - Decimated sound data is enveloped, i.e. the amplitude shape is detected by
/// taking absolute value that's smoothed by sliding average. Signal levels that
/// are below a couple of times the general RMS amplitude level are cut away to
/// leave only notable peaks there.
/// - Repeating sound patterns (e.g. beats) are detected by calculating short-term
/// autocorrelation function of the enveloped signal.
/// - After whole sound data file has been analyzed as above, the bpm level is
/// detected by function 'getBpm' that finds the highest peak of the autocorrelation
/// function, calculates it's precise location and converts this reading to bpm's.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2012-08-30 16:45:25 -0300 (qui, 30 ago 2012) $
// File revision : $Revision: 4 $
//
// $Id: BPMDetect.cpp 149 2012-08-30 19:45:25Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#include <math.h>
#include <assert.h>
#include <string.h>
#include <stdio.h>
#include "FIFOSampleBuffer.h"
#include "PeakFinder.h"
#include "BPMDetect.h"
using namespace soundtouch;
#define INPUT_BLOCK_SAMPLES 2048
#define DECIMATED_BLOCK_SAMPLES 256
/// decay constant for calculating RMS volume sliding average approximation
/// (time constant is about 10 sec)
const float avgdecay = 0.99986f;
/// Normalization coefficient for calculating RMS sliding average approximation.
const float avgnorm = (1 - avgdecay);
////////////////////////////////////////////////////////////////////////////////
// Enable following define to create bpm analysis file:
// #define _CREATE_BPM_DEBUG_FILE
#ifdef _CREATE_BPM_DEBUG_FILE
#define DEBUGFILE_NAME "c:\\temp\\soundtouch-bpm-debug.txt"
static void _SaveDebugData(const float *data, int minpos, int maxpos, double coeff)
{
FILE *fptr = fopen(DEBUGFILE_NAME, "wt");
int i;
if (fptr)
{
printf("\n\nWriting BPM debug data into file " DEBUGFILE_NAME "\n\n");
for (i = minpos; i < maxpos; i ++)
{
fprintf(fptr, "%d\t%.1lf\t%f\n", i, coeff / (double)i, data[i]);
}
fclose(fptr);
}
}
#else
#define _SaveDebugData(a,b,c,d)
#endif
////////////////////////////////////////////////////////////////////////////////
BPMDetect::BPMDetect(int numChannels, int aSampleRate)
{
this->sampleRate = aSampleRate;
this->channels = numChannels;
decimateSum = 0;
decimateCount = 0;
envelopeAccu = 0;
// Initialize RMS volume accumulator to RMS level of 1500 (out of 32768) that's
// safe initial RMS signal level value for song data. This value is then adapted
// to the actual level during processing.
#ifdef SOUNDTOUCH_INTEGER_SAMPLES
// integer samples
RMSVolumeAccu = (1500 * 1500) / avgnorm;
#else
// float samples, scaled to range [-1..+1[
RMSVolumeAccu = (0.045f * 0.045f) / avgnorm;
#endif
// choose decimation factor so that result is approx. 1000 Hz
decimateBy = sampleRate / 1000;
assert(decimateBy > 0);
assert(INPUT_BLOCK_SAMPLES < decimateBy * DECIMATED_BLOCK_SAMPLES);
// Calculate window length & starting item according to desired min & max bpms
windowLen = (60 * sampleRate) / (decimateBy * MIN_BPM);
windowStart = (60 * sampleRate) / (decimateBy * MAX_BPM);
assert(windowLen > windowStart);
// allocate new working objects
xcorr = new float[windowLen];
memset(xcorr, 0, windowLen * sizeof(float));
// allocate processing buffer
buffer = new FIFOSampleBuffer();
// we do processing in mono mode
buffer->setChannels(1);
buffer->clear();
}
BPMDetect::~BPMDetect()
{
delete[] xcorr;
delete buffer;
}
/// convert to mono, low-pass filter & decimate to about 500 Hz.
/// return number of outputted samples.
///
/// Decimation is used to remove the unnecessary frequencies and thus to reduce
/// the amount of data needed to be processed as calculating autocorrelation
/// function is a very-very heavy operation.
///
/// Anti-alias filtering is done simply by averaging the samples. This is really a
/// poor-man's anti-alias filtering, but it's not so critical in this kind of application
/// (it'd also be difficult to design a high-quality filter with steep cut-off at very
/// narrow band)
int BPMDetect::decimate(SAMPLETYPE *dest, const SAMPLETYPE *src, int numsamples)
{
int count, outcount;
LONG_SAMPLETYPE out;
assert(channels > 0);
assert(decimateBy > 0);
outcount = 0;
for (count = 0; count < numsamples; count ++)
{
int j;
// convert to mono and accumulate
for (j = 0; j < channels; j ++)
{
decimateSum += src[j];
}
src += j;
decimateCount ++;
if (decimateCount >= decimateBy)
{
// Store every Nth sample only
out = (LONG_SAMPLETYPE)(decimateSum / (decimateBy * channels));
decimateSum = 0;
decimateCount = 0;
#ifdef SOUNDTOUCH_INTEGER_SAMPLES
// check ranges for sure (shouldn't actually be necessary)
if (out > 32767)
{
out = 32767;
}
else if (out < -32768)
{
out = -32768;
}
#endif // SOUNDTOUCH_INTEGER_SAMPLES
dest[outcount] = (SAMPLETYPE)out;
outcount ++;
}
}
return outcount;
}
// Calculates autocorrelation function of the sample history buffer
void BPMDetect::updateXCorr(int process_samples)
{
int offs;
SAMPLETYPE *pBuffer;
assert(buffer->numSamples() >= (uint)(process_samples + windowLen));
pBuffer = buffer->ptrBegin();
for (offs = windowStart; offs < windowLen; offs ++)
{
LONG_SAMPLETYPE sum;
int i;
sum = 0;
for (i = 0; i < process_samples; i ++)
{
sum += pBuffer[i] * pBuffer[i + offs]; // scaling the sub-result shouldn't be necessary
}
// xcorr[offs] *= xcorr_decay; // decay 'xcorr' here with suitable coefficients
// if it's desired that the system adapts automatically to
// various bpms, e.g. in processing continouos music stream.
// The 'xcorr_decay' should be a value that's smaller than but
// close to one, and should also depend on 'process_samples' value.
xcorr[offs] += (float)sum;
}
}
// Calculates envelope of the sample data
void BPMDetect::calcEnvelope(SAMPLETYPE *samples, int numsamples)
{
const static double decay = 0.7f; // decay constant for smoothing the envelope
const static double norm = (1 - decay);
int i;
LONG_SAMPLETYPE out;
double val;
for (i = 0; i < numsamples; i ++)
{
// calc average RMS volume
RMSVolumeAccu *= avgdecay;
val = (float)fabs((float)samples[i]);
RMSVolumeAccu += val * val;
// cut amplitudes that are below cutoff ~2 times RMS volume
// (we're interested in peak values, not the silent moments)
if (val < 0.5 * sqrt(RMSVolumeAccu * avgnorm))
{
val = 0;
}
// smooth amplitude envelope
envelopeAccu *= decay;
envelopeAccu += val;
out = (LONG_SAMPLETYPE)(envelopeAccu * norm);
#ifdef SOUNDTOUCH_INTEGER_SAMPLES
// cut peaks (shouldn't be necessary though)
if (out > 32767) out = 32767;
#endif // SOUNDTOUCH_INTEGER_SAMPLES
samples[i] = (SAMPLETYPE)out;
}
}
void BPMDetect::inputSamples(const SAMPLETYPE *samples, int numSamples)
{
SAMPLETYPE decimated[DECIMATED_BLOCK_SAMPLES];
// iterate so that max INPUT_BLOCK_SAMPLES processed per iteration
while (numSamples > 0)
{
int block;
int decSamples;
block = (numSamples > INPUT_BLOCK_SAMPLES) ? INPUT_BLOCK_SAMPLES : numSamples;
// decimate. note that converts to mono at the same time
decSamples = decimate(decimated, samples, block);
samples += block * channels;
numSamples -= block;
// envelope new samples and add them to buffer
calcEnvelope(decimated, decSamples);
buffer->putSamples(decimated, decSamples);
}
// when the buffer has enought samples for processing...
if ((int)buffer->numSamples() > windowLen)
{
int processLength;
// how many samples are processed
processLength = (int)buffer->numSamples() - windowLen;
// ... calculate autocorrelations for oldest samples...
updateXCorr(processLength);
// ... and remove them from the buffer
buffer->receiveSamples(processLength);
}
}
void BPMDetect::removeBias()
{
int i;
float minval = 1e12f; // arbitrary large number
for (i = windowStart; i < windowLen; i ++)
{
if (xcorr[i] < minval)
{
minval = xcorr[i];
}
}
for (i = windowStart; i < windowLen; i ++)
{
xcorr[i] -= minval;
}
}
float BPMDetect::getBpm()
{
double peakPos;
double coeff;
PeakFinder peakFinder;
coeff = 60.0 * ((double)sampleRate / (double)decimateBy);
// save bpm debug analysis data if debug data enabled
_SaveDebugData(xcorr, windowStart, windowLen, coeff);
// remove bias from xcorr data
removeBias();
// find peak position
peakPos = peakFinder.detectPeak(xcorr, windowStart, windowLen);
assert(decimateBy != 0);
if (peakPos < 1e-9) return 0.0; // detection failed.
// calculate BPM
return (float) (coeff / peakPos);
}

View File

@ -14,10 +14,10 @@
/// taking absolute value that's smoothed by sliding average. Signal levels that
/// are below a couple of times the general RMS amplitude level are cut away to
/// leave only notable peaks there.
/// - Repeating sound patterns (e.g. beats) are detected by calculating short-term
/// - Repeating sound patterns (e.g. beats) are detected by calculating short-term
/// autocorrelation function of the enveloped signal.
/// - After whole sound data file has been analyzed as above, the bpm level is
/// detected by function 'getBpm' that finds the highest peak of the autocorrelation
/// - After whole sound data file has been analyzed as above, the bpm level is
/// detected by function 'getBpm' that finds the highest peak of the autocorrelation
/// function, calculates it's precise location and converts this reading to bpm's.
///
/// Author : Copyright (c) Olli Parviainen
@ -26,10 +26,10 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2009-02-21 18:00:14 +0200 (Sat, 21 Feb 2009) $
// Last changed : $Date: 2012-08-30 16:53:44 -0300 (qui, 30 ago 2012) $
// File revision : $Revision: 4 $
//
// $Id: BPMDetect.h 63 2009-02-21 16:00:14Z oparviai $
// $Id: BPMDetect.h 150 2012-08-30 19:53:44Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
@ -67,7 +67,7 @@ namespace soundtouch
#define MIN_BPM 29
/// Maximum allowed BPM rate. Used to restrict accepted result below a reasonable limit.
#define MAX_BPM 230
#define MAX_BPM 200
/// Class for calculating BPM rate for audio data.
@ -76,12 +76,12 @@ class BPMDetect
protected:
/// Auto-correlation accumulator bins.
float *xcorr;
/// Amplitude envelope sliding average approximation level accumulator
float envelopeAccu;
double envelopeAccu;
/// RMS volume sliding average approximation level accumulator
float RMSVolumeAccu;
double RMSVolumeAccu;
/// Sample average counter.
int decimateCount;
@ -104,12 +104,12 @@ protected:
/// Beginning of auto-correlation window: Autocorrelation isn't being updated for
/// the first these many correlation bins.
int windowStart;
/// FIFO-buffer for decimated processing samples.
soundtouch::FIFOSampleBuffer *buffer;
/// Updates auto-correlation function for given number of decimated samples that
/// are read from the internal 'buffer' pipe (samples aren't removed from the pipe
/// Updates auto-correlation function for given number of decimated samples that
/// are read from the internal 'buffer' pipe (samples aren't removed from the pipe
/// though).
void updateXCorr(int process_samples /// How many samples are processed.
);
@ -128,6 +128,9 @@ protected:
int numsamples ///< Number of samples in buffer
);
/// remove constant bias from xcorr data
void removeBias();
public:
/// Constructor.
BPMDetect(int numChannels, ///< Number of channels in sample data.
@ -139,9 +142,9 @@ public:
/// Inputs a block of samples for analyzing: Envelopes the samples and then
/// updates the autocorrelation estimation. When whole song data has been input
/// in smaller blocks using this function, read the resulting bpm with 'getBpm'
/// function.
///
/// in smaller blocks using this function, read the resulting bpm with 'getBpm'
/// function.
///
/// Notice that data in 'samples' array can be disrupted in processing.
void inputSamples(const soundtouch::SAMPLETYPE *samples, ///< Pointer to input/working data buffer
int numSamples ///< Number of samples in buffer

View File

@ -1,12 +1,12 @@
////////////////////////////////////////////////////////////////////////////////
///
/// A buffer class for temporarily storaging sound samples, operates as a
/// A buffer class for temporarily storaging sound samples, operates as a
/// first-in-first-out pipe.
///
/// Samples are added to the end of the sample buffer with the 'putSamples'
/// Samples are added to the end of the sample buffer with the 'putSamples'
/// function, and are received from the beginning of the buffer by calling
/// the 'receiveSamples' function. The class automatically removes the
/// outputted samples from the buffer, as well as grows the buffer size
/// the 'receiveSamples' function. The class automatically removes the
/// outputted samples from the buffer, as well as grows the buffer size
/// whenever necessary.
///
/// Author : Copyright (c) Olli Parviainen
@ -15,10 +15,10 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2009-02-27 19:24:42 +0200 (Fri, 27 Feb 2009) $
// Last changed : $Date: 2012-11-08 16:53:01 -0200 (qui, 08 nov 2012) $
// File revision : $Revision: 4 $
//
// $Id: FIFOSampleBuffer.cpp 68 2009-02-27 17:24:42Z oparviai $
// $Id: FIFOSampleBuffer.cpp 160 2012-11-08 18:53:01Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
@ -47,7 +47,6 @@
#include <memory.h>
#include <string.h>
#include <assert.h>
#include <stdexcept>
#include "FIFOSampleBuffer.h"
@ -63,7 +62,7 @@ FIFOSampleBuffer::FIFOSampleBuffer(int numChannels)
samplesInBuffer = 0;
bufferPos = 0;
channels = (uint)numChannels;
ensureCapacity(32); // allocate initial capacity
ensureCapacity(32); // allocate initial capacity
}
@ -89,11 +88,11 @@ void FIFOSampleBuffer::setChannels(int numChannels)
// if output location pointer 'bufferPos' isn't zero, 'rewinds' the buffer and
// zeroes this pointer by copying samples from the 'bufferPos' pointer
// zeroes this pointer by copying samples from the 'bufferPos' pointer
// location on to the beginning of the buffer.
void FIFOSampleBuffer::rewind()
{
if (buffer && bufferPos)
if (buffer && bufferPos)
{
memmove(buffer, ptrBegin(), sizeof(SAMPLETYPE) * channels * samplesInBuffer);
bufferPos = 0;
@ -101,7 +100,7 @@ void FIFOSampleBuffer::rewind()
}
// Adds 'numSamples' pcs of samples from the 'samples' memory position to
// Adds 'numSamples' pcs of samples from the 'samples' memory position to
// the sample buffer.
void FIFOSampleBuffer::putSamples(const SAMPLETYPE *samples, uint nSamples)
{
@ -114,7 +113,7 @@ void FIFOSampleBuffer::putSamples(const SAMPLETYPE *samples, uint nSamples)
// samples.
//
// This function is used to update the number of samples in the sample buffer
// when accessing the buffer directly with 'ptrEnd' function. Please be
// when accessing the buffer directly with 'ptrEnd' function. Please be
// careful though!
void FIFOSampleBuffer::putSamples(uint nSamples)
{
@ -126,31 +125,31 @@ void FIFOSampleBuffer::putSamples(uint nSamples)
}
// Returns a pointer to the end of the used part of the sample buffer (i.e.
// where the new samples are to be inserted). This function may be used for
// inserting new samples into the sample buffer directly. Please be careful!
// Returns a pointer to the end of the used part of the sample buffer (i.e.
// where the new samples are to be inserted). This function may be used for
// inserting new samples into the sample buffer directly. Please be careful!
//
// Parameter 'slackCapacity' tells the function how much free capacity (in
// terms of samples) there _at least_ should be, in order to the caller to
// succesfully insert all the required samples to the buffer. When necessary,
// succesfully insert all the required samples to the buffer. When necessary,
// the function grows the buffer size to comply with this requirement.
//
// When using this function as means for inserting new samples, also remember
// to increase the sample count afterwards, by calling the
// When using this function as means for inserting new samples, also remember
// to increase the sample count afterwards, by calling the
// 'putSamples(numSamples)' function.
SAMPLETYPE *FIFOSampleBuffer::ptrEnd(uint slackCapacity)
SAMPLETYPE *FIFOSampleBuffer::ptrEnd(uint slackCapacity)
{
ensureCapacity(samplesInBuffer + slackCapacity);
return buffer + samplesInBuffer * channels;
}
// Returns a pointer to the beginning of the currently non-outputted samples.
// This function is provided for accessing the output samples directly.
// Returns a pointer to the beginning of the currently non-outputted samples.
// This function is provided for accessing the output samples directly.
// Please be careful!
//
// When using this function to output samples, also remember to 'remove' the
// outputted samples from the buffer by calling the
// outputted samples from the buffer by calling the
// 'receiveSamples(numSamples)' function
SAMPLETYPE *FIFOSampleBuffer::ptrBegin()
{
@ -167,7 +166,7 @@ void FIFOSampleBuffer::ensureCapacity(uint capacityRequirement)
{
SAMPLETYPE *tempUnaligned, *temp;
if (capacityRequirement > getCapacity())
if (capacityRequirement > getCapacity())
{
// enlarge the buffer in 4kbyte steps (round up to next 4k boundary)
sizeInBytes = (capacityRequirement * channels * sizeof(SAMPLETYPE) + 4095) & (uint)-4096;
@ -175,10 +174,10 @@ void FIFOSampleBuffer::ensureCapacity(uint capacityRequirement)
tempUnaligned = new SAMPLETYPE[sizeInBytes / sizeof(SAMPLETYPE) + 16 / sizeof(SAMPLETYPE)];
if (tempUnaligned == NULL)
{
throw std::runtime_error("Couldn't allocate memory!\n");
ST_THROW_RT_ERROR("Couldn't allocate memory!\n");
}
// Align the buffer to begin at 16byte cache line boundary for optimal performance
temp = (SAMPLETYPE *)(((ulong)tempUnaligned + 15) & (ulong)-16);
temp = (SAMPLETYPE *)SOUNDTOUCH_ALIGN_POINTER_16(tempUnaligned);
if (samplesInBuffer)
{
memcpy(temp, ptrBegin(), samplesInBuffer * channels * sizeof(SAMPLETYPE));
@ -187,8 +186,8 @@ void FIFOSampleBuffer::ensureCapacity(uint capacityRequirement)
buffer = temp;
bufferUnaligned = tempUnaligned;
bufferPos = 0;
}
else
}
else
{
// simply rewind the buffer (if necessary)
rewind();
@ -260,3 +259,16 @@ void FIFOSampleBuffer::clear()
samplesInBuffer = 0;
bufferPos = 0;
}
/// allow trimming (downwards) amount of samples in pipeline.
/// Returns adjusted amount of samples
uint FIFOSampleBuffer::adjustAmountOfSamples(uint numSamples)
{
if (numSamples < samplesInBuffer)
{
samplesInBuffer = numSamples;
}
return samplesInBuffer;
}

View File

@ -1,12 +1,12 @@
////////////////////////////////////////////////////////////////////////////////
///
/// A buffer class for temporarily storaging sound samples, operates as a
/// A buffer class for temporarily storaging sound samples, operates as a
/// first-in-first-out pipe.
///
/// Samples are added to the end of the sample buffer with the 'putSamples'
/// Samples are added to the end of the sample buffer with the 'putSamples'
/// function, and are received from the beginning of the buffer by calling
/// the 'receiveSamples' function. The class automatically removes the
/// output samples from the buffer as well as grows the storage size
/// the 'receiveSamples' function. The class automatically removes the
/// output samples from the buffer as well as grows the storage size
/// whenever necessary.
///
/// Author : Copyright (c) Olli Parviainen
@ -15,10 +15,10 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2009-02-21 18:00:14 +0200 (Sat, 21 Feb 2009) $
// Last changed : $Date: 2012-06-13 16:29:53 -0300 (qua, 13 jun 2012) $
// File revision : $Revision: 4 $
//
// $Id: FIFOSampleBuffer.h 63 2009-02-21 16:00:14Z oparviai $
// $Id: FIFOSampleBuffer.h 143 2012-06-13 19:29:53Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
@ -54,7 +54,7 @@ namespace soundtouch
/// Sample buffer working in FIFO (first-in-first-out) principle. The class takes
/// care of storage size adjustment and data moving during input/output operations.
///
/// Notice that in case of stereo audio, one sample is considered to consist of
/// Notice that in case of stereo audio, one sample is considered to consist of
/// both channel data.
class FIFOSampleBuffer : public FIFOSamplePipe
{
@ -75,12 +75,12 @@ private:
/// Channels, 1=mono, 2=stereo.
uint channels;
/// Current position pointer to the buffer. This pointer is increased when samples are
/// Current position pointer to the buffer. This pointer is increased when samples are
/// removed from the pipe so that it's necessary to actually rewind buffer (move data)
/// only new data when is put to the pipe.
uint bufferPos;
/// Rewind the buffer by moving data from position pointed by 'bufferPos' to real
/// Rewind the buffer by moving data from position pointed by 'bufferPos' to real
/// beginning of the buffer.
void rewind();
@ -100,27 +100,27 @@ public:
/// destructor
~FIFOSampleBuffer();
/// Returns a pointer to the beginning of the output samples.
/// This function is provided for accessing the output samples directly.
/// Returns a pointer to the beginning of the output samples.
/// This function is provided for accessing the output samples directly.
/// Please be careful for not to corrupt the book-keeping!
///
/// When using this function to output samples, also remember to 'remove' the
/// output samples from the buffer by calling the
/// output samples from the buffer by calling the
/// 'receiveSamples(numSamples)' function
virtual SAMPLETYPE *ptrBegin();
/// Returns a pointer to the end of the used part of the sample buffer (i.e.
/// where the new samples are to be inserted). This function may be used for
/// Returns a pointer to the end of the used part of the sample buffer (i.e.
/// where the new samples are to be inserted). This function may be used for
/// inserting new samples into the sample buffer directly. Please be careful
/// not corrupt the book-keeping!
///
/// When using this function as means for inserting new samples, also remember
/// to increase the sample count afterwards, by calling the
/// When using this function as means for inserting new samples, also remember
/// to increase the sample count afterwards, by calling the
/// 'putSamples(numSamples)' function.
SAMPLETYPE *ptrEnd(
uint slackCapacity ///< How much free capacity (in samples) there _at least_
///< should be so that the caller can succesfully insert the
///< desired samples to the buffer. If necessary, the function
uint slackCapacity ///< How much free capacity (in samples) there _at least_
///< should be so that the caller can succesfully insert the
///< desired samples to the buffer. If necessary, the function
///< grows the buffer size to comply with this requirement.
);
@ -130,17 +130,17 @@ public:
uint numSamples ///< Number of samples to insert.
);
/// Adjusts the book-keeping to increase number of samples in the buffer without
/// Adjusts the book-keeping to increase number of samples in the buffer without
/// copying any actual samples.
///
/// This function is used to update the number of samples in the sample buffer
/// when accessing the buffer directly with 'ptrEnd' function. Please be
/// when accessing the buffer directly with 'ptrEnd' function. Please be
/// careful though!
virtual void putSamples(uint numSamples ///< Number of samples been inserted.
);
/// Output samples from beginning of the sample buffer. Copies requested samples to
/// output buffer and removes them from the sample buffer. If there are less than
/// Output samples from beginning of the sample buffer. Copies requested samples to
/// output buffer and removes them from the sample buffer. If there are less than
/// 'numsample' samples in the buffer, returns all that available.
///
/// \return Number of samples returned.
@ -148,8 +148,8 @@ public:
uint maxSamples ///< How many samples to receive at max.
);
/// Adjusts book-keeping so that given number of samples are removed from beginning of the
/// sample buffer without copying them anywhere.
/// Adjusts book-keeping so that given number of samples are removed from beginning of the
/// sample buffer without copying them anywhere.
///
/// Used to reduce the number of samples in the buffer when accessing the sample buffer directly
/// with 'ptrBegin' function.
@ -167,6 +167,10 @@ public:
/// Clears all the samples.
virtual void clear();
/// allow trimming (downwards) amount of samples in pipeline.
/// Returns adjusted amount of samples
uint adjustAmountOfSamples(uint numSamples);
};
}

View File

@ -5,7 +5,7 @@
/// into one end of the pipe with the 'putSamples' function, and the processed
/// samples are received from the other end with the 'receiveSamples' function.
///
/// 'FIFOProcessor' : A base class for classes the do signal processing with
/// 'FIFOProcessor' : A base class for classes the do signal processing with
/// the samples while operating like a first-in-first-out pipe. When samples
/// are input with the 'putSamples' function, the class processes them
/// and moves the processed samples to the given 'output' pipe object, which
@ -17,10 +17,10 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2009-04-13 16:18:48 +0300 (Mon, 13 Apr 2009) $
// Last changed : $Date: 2012-06-13 16:29:53 -0300 (qua, 13 jun 2012) $
// File revision : $Revision: 4 $
//
// $Id: FIFOSamplePipe.h 69 2009-04-13 13:18:48Z oparviai $
// $Id: FIFOSamplePipe.h 143 2012-06-13 19:29:53Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
@ -63,12 +63,12 @@ public:
virtual ~FIFOSamplePipe() {}
/// Returns a pointer to the beginning of the output samples.
/// This function is provided for accessing the output samples directly.
/// Returns a pointer to the beginning of the output samples.
/// This function is provided for accessing the output samples directly.
/// Please be careful for not to corrupt the book-keeping!
///
/// When using this function to output samples, also remember to 'remove' the
/// output samples from the buffer by calling the
/// output samples from the buffer by calling the
/// 'receiveSamples(numSamples)' function
virtual SAMPLETYPE *ptrBegin() = 0;
@ -89,8 +89,8 @@ public:
other.receiveSamples(oNumSamples);
};
/// Output samples from beginning of the sample buffer. Copies requested samples to
/// output buffer and removes them from the sample buffer. If there are less than
/// Output samples from beginning of the sample buffer. Copies requested samples to
/// output buffer and removes them from the sample buffer. If there are less than
/// 'numsample' samples in the buffer, returns all that available.
///
/// \return Number of samples returned.
@ -98,8 +98,8 @@ public:
uint maxSamples ///< How many samples to receive at max.
) = 0;
/// Adjusts book-keeping so that given number of samples are removed from beginning of the
/// sample buffer without copying them anywhere.
/// Adjusts book-keeping so that given number of samples are removed from beginning of the
/// sample buffer without copying them anywhere.
///
/// Used to reduce the number of samples in the buffer when accessing the sample buffer directly
/// with 'ptrBegin' function.
@ -114,16 +114,21 @@ public:
/// Clears all the samples.
virtual void clear() = 0;
/// allow trimming (downwards) amount of samples in pipeline.
/// Returns adjusted amount of samples
virtual uint adjustAmountOfSamples(uint numSamples) = 0;
};
/// Base-class for sound processing routines working in FIFO principle. With this base
/// Base-class for sound processing routines working in FIFO principle. With this base
/// class it's easy to implement sound processing stages that can be chained together,
/// so that samples that are fed into beginning of the pipe automatically go through
/// so that samples that are fed into beginning of the pipe automatically go through
/// all the processing stages.
///
/// When samples are input to this class, they're first processed and then put to
/// When samples are input to this class, they're first processed and then put to
/// the FIFO pipe that's defined as output of this class. This output pipe can be
/// either other processing stage or a FIFO sample buffer.
class FIFOProcessor :public FIFOSamplePipe
@ -141,7 +146,7 @@ protected:
}
/// Constructor. Doesn't define output pipe; it has to be set be
/// Constructor. Doesn't define output pipe; it has to be set be
/// 'setOutPipe' function.
FIFOProcessor()
{
@ -163,12 +168,12 @@ protected:
}
/// Returns a pointer to the beginning of the output samples.
/// This function is provided for accessing the output samples directly.
/// Returns a pointer to the beginning of the output samples.
/// This function is provided for accessing the output samples directly.
/// Please be careful for not to corrupt the book-keeping!
///
/// When using this function to output samples, also remember to 'remove' the
/// output samples from the buffer by calling the
/// output samples from the buffer by calling the
/// 'receiveSamples(numSamples)' function
virtual SAMPLETYPE *ptrBegin()
{
@ -177,8 +182,8 @@ protected:
public:
/// Output samples from beginning of the sample buffer. Copies requested samples to
/// output buffer and removes them from the sample buffer. If there are less than
/// Output samples from beginning of the sample buffer. Copies requested samples to
/// output buffer and removes them from the sample buffer. If there are less than
/// 'numsample' samples in the buffer, returns all that available.
///
/// \return Number of samples returned.
@ -190,8 +195,8 @@ public:
}
/// Adjusts book-keeping so that given number of samples are removed from beginning of the
/// sample buffer without copying them anywhere.
/// Adjusts book-keeping so that given number of samples are removed from beginning of the
/// sample buffer without copying them anywhere.
///
/// Used to reduce the number of samples in the buffer when accessing the sample buffer directly
/// with 'ptrBegin' function.
@ -214,6 +219,14 @@ public:
{
return output->isEmpty();
}
/// allow trimming (downwards) amount of samples in pipeline.
/// Returns adjusted amount of samples
virtual uint adjustAmountOfSamples(uint numSamples)
{
return output->adjustAmountOfSamples(numSamples);
}
};
}

View File

@ -1,8 +1,8 @@
////////////////////////////////////////////////////////////////////////////////
///
/// General FIR digital filter routines with MMX optimization.
/// General FIR digital filter routines with MMX optimization.
///
/// Note : MMX optimized functions reside in a separate, platform-specific file,
/// Note : MMX optimized functions reside in a separate, platform-specific file,
/// e.g. 'mmx_win.cpp' or 'mmx_gcc.cpp'
///
/// Author : Copyright (c) Olli Parviainen
@ -11,10 +11,10 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2009-02-25 19:13:51 +0200 (Wed, 25 Feb 2009) $
// Last changed : $Date: 2011-09-02 15:56:11 -0300 (sex, 02 set 2011) $
// File revision : $Revision: 4 $
//
// $Id: FIRFilter.cpp 67 2009-02-25 17:13:51Z oparviai $
// $Id: FIRFilter.cpp 131 2011-09-02 18:56:11Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
@ -43,7 +43,6 @@
#include <assert.h>
#include <math.h>
#include <stdlib.h>
#include <stdexcept>
#include "FIRFilter.h"
#include "cpu_detect.h"
@ -75,7 +74,7 @@ uint FIRFilter::evaluateFilterStereo(SAMPLETYPE *dest, const SAMPLETYPE *src, ui
{
uint i, j, end;
LONG_SAMPLETYPE suml, sumr;
#ifdef FLOAT_SAMPLES
#ifdef SOUNDTOUCH_FLOAT_SAMPLES
// when using floating point samples, use a scaler instead of a divider
// because division is much slower operation than multiplying.
double dScaler = 1.0 / (double)resultDivider;
@ -88,14 +87,14 @@ uint FIRFilter::evaluateFilterStereo(SAMPLETYPE *dest, const SAMPLETYPE *src, ui
end = 2 * (numSamples - length);
for (j = 0; j < end; j += 2)
for (j = 0; j < end; j += 2)
{
const SAMPLETYPE *ptr;
suml = sumr = 0;
ptr = src + j;
for (i = 0; i < length; i += 4)
for (i = 0; i < length; i += 4)
{
// loop is unrolled by factor of 4 here for efficiency
suml += ptr[2 * i + 0] * filterCoeffs[i + 0] +
@ -108,7 +107,7 @@ uint FIRFilter::evaluateFilterStereo(SAMPLETYPE *dest, const SAMPLETYPE *src, ui
ptr[2 * i + 7] * filterCoeffs[i + 3];
}
#ifdef INTEGER_SAMPLES
#ifdef SOUNDTOUCH_INTEGER_SAMPLES
suml >>= resultDivFactor;
sumr >>= resultDivFactor;
// saturate to 16 bit integer limits
@ -118,7 +117,7 @@ uint FIRFilter::evaluateFilterStereo(SAMPLETYPE *dest, const SAMPLETYPE *src, ui
#else
suml *= dScaler;
sumr *= dScaler;
#endif // INTEGER_SAMPLES
#endif // SOUNDTOUCH_INTEGER_SAMPLES
dest[j] = (SAMPLETYPE)suml;
dest[j + 1] = (SAMPLETYPE)sumr;
}
@ -133,7 +132,7 @@ uint FIRFilter::evaluateFilterMono(SAMPLETYPE *dest, const SAMPLETYPE *src, uint
{
uint i, j, end;
LONG_SAMPLETYPE sum;
#ifdef FLOAT_SAMPLES
#ifdef SOUNDTOUCH_FLOAT_SAMPLES
// when using floating point samples, use a scaler instead of a divider
// because division is much slower operation than multiplying.
double dScaler = 1.0 / (double)resultDivider;
@ -143,24 +142,24 @@ uint FIRFilter::evaluateFilterMono(SAMPLETYPE *dest, const SAMPLETYPE *src, uint
assert(length != 0);
end = numSamples - length;
for (j = 0; j < end; j ++)
for (j = 0; j < end; j ++)
{
sum = 0;
for (i = 0; i < length; i += 4)
for (i = 0; i < length; i += 4)
{
// loop is unrolled by factor of 4 here for efficiency
sum += src[i + 0] * filterCoeffs[i + 0] +
src[i + 1] * filterCoeffs[i + 1] +
src[i + 2] * filterCoeffs[i + 2] +
sum += src[i + 0] * filterCoeffs[i + 0] +
src[i + 1] * filterCoeffs[i + 1] +
src[i + 2] * filterCoeffs[i + 2] +
src[i + 3] * filterCoeffs[i + 3];
}
#ifdef INTEGER_SAMPLES
#ifdef SOUNDTOUCH_INTEGER_SAMPLES
sum >>= resultDivFactor;
// saturate to 16 bit integer limits
sum = (sum < -32768) ? -32768 : (sum > 32767) ? 32767 : sum;
#else
sum *= dScaler;
#endif // INTEGER_SAMPLES
#endif // SOUNDTOUCH_INTEGER_SAMPLES
dest[j] = (SAMPLETYPE)sum;
src ++;
}
@ -174,7 +173,7 @@ uint FIRFilter::evaluateFilterMono(SAMPLETYPE *dest, const SAMPLETYPE *src, uint
void FIRFilter::setCoefficients(const SAMPLETYPE *coeffs, uint newLength, uint uResultDivFactor)
{
assert(newLength > 0);
if (newLength % 8) throw std::runtime_error("FIR filter length not divisible by 8");
if (newLength % 8) ST_THROW_RT_ERROR("FIR filter length not divisible by 8");
lengthDiv8 = newLength / 8;
length = lengthDiv8 * 8;
@ -196,9 +195,9 @@ uint FIRFilter::getLength() const
// Applies the filter to the given sequence of samples.
// Applies the filter to the given sequence of samples.
//
// Note : The amount of outputted samples is by value of 'filter_length'
// Note : The amount of outputted samples is by value of 'filter_length'
// smaller than the amount of input samples.
uint FIRFilter::evaluate(SAMPLETYPE *dest, const SAMPLETYPE *src, uint numSamples, uint numChannels) const
{
@ -207,7 +206,7 @@ uint FIRFilter::evaluate(SAMPLETYPE *dest, const SAMPLETYPE *src, uint numSample
assert(length > 0);
assert(lengthDiv8 * 8 == length);
if (numSamples < length) return 0;
if (numChannels == 2)
if (numChannels == 2)
{
return evaluateFilterStereo(dest, src, numSamples);
} else {
@ -217,13 +216,13 @@ uint FIRFilter::evaluate(SAMPLETYPE *dest, const SAMPLETYPE *src, uint numSample
// Operator 'new' is overloaded so that it automatically creates a suitable instance
// Operator 'new' is overloaded so that it automatically creates a suitable instance
// depending on if we've a MMX-capable CPU available or not.
void * FIRFilter::operator new(size_t s)
{
// Notice! don't use "new FIRFilter" directly, use "newInstance" to create a new instance instead!
throw std::runtime_error("Error in FIRFilter::new: Don't use 'new FIRFilter', use 'newInstance' member instead!");
return NULL;
ST_THROW_RT_ERROR("Error in FIRFilter::new: Don't use 'new FIRFilter', use 'newInstance' member instead!");
return newInstance();
}
@ -233,34 +232,25 @@ FIRFilter * FIRFilter::newInstance()
uExtensions = detectCPUextensions();
// Check if MMX/SSE/3DNow! instruction set extensions supported by CPU
// Check if MMX/SSE instruction set extensions supported by CPU
#ifdef ALLOW_MMX
#ifdef SOUNDTOUCH_ALLOW_MMX
// MMX routines available only with integer sample types
if (uExtensions & SUPPORT_MMX)
{
return ::new FIRFilterMMX;
}
else
#endif // ALLOW_MMX
#endif // SOUNDTOUCH_ALLOW_MMX
#ifdef ALLOW_SSE
#ifdef SOUNDTOUCH_ALLOW_SSE
if (uExtensions & SUPPORT_SSE)
{
// SSE support
return ::new FIRFilterSSE;
}
else
#endif // ALLOW_SSE
#ifdef ALLOW_3DNOW
if (uExtensions & SUPPORT_3DNOW)
{
// 3DNow! support
return ::new FIRFilter3DNow;
}
else
#endif // ALLOW_3DNOW
#endif // SOUNDTOUCH_ALLOW_SSE
{
// ISA optimizations not supported, use plain C version

View File

@ -1,8 +1,8 @@
////////////////////////////////////////////////////////////////////////////////
///
/// General FIR digital filter routines with MMX optimization.
/// General FIR digital filter routines with MMX optimization.
///
/// Note : MMX optimized functions reside in a separate, platform-specific file,
/// Note : MMX optimized functions reside in a separate, platform-specific file,
/// e.g. 'mmx_win.cpp' or 'mmx_gcc.cpp'
///
/// Author : Copyright (c) Olli Parviainen
@ -11,10 +11,10 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2009-02-21 18:00:14 +0200 (Sat, 21 Feb 2009) $
// Last changed : $Date: 2011-02-13 17:13:57 -0200 (dom, 13 fev 2011) $
// File revision : $Revision: 4 $
//
// $Id: FIRFilter.h 63 2009-02-21 16:00:14Z oparviai $
// $Id: FIRFilter.h 104 2011-02-13 19:13:57Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
@ -48,11 +48,11 @@
namespace soundtouch
{
class FIRFilter
class FIRFilter
{
protected:
// Number of FIR filter taps
uint length;
uint length;
// Number of FIR filter taps divided by 8
uint lengthDiv8;
@ -65,44 +65,44 @@ protected:
// Memory for filter coefficients
SAMPLETYPE *filterCoeffs;
virtual uint evaluateFilterStereo(SAMPLETYPE *dest,
const SAMPLETYPE *src,
virtual uint evaluateFilterStereo(SAMPLETYPE *dest,
const SAMPLETYPE *src,
uint numSamples) const;
virtual uint evaluateFilterMono(SAMPLETYPE *dest,
const SAMPLETYPE *src,
virtual uint evaluateFilterMono(SAMPLETYPE *dest,
const SAMPLETYPE *src,
uint numSamples) const;
public:
FIRFilter();
virtual ~FIRFilter();
/// Operator 'new' is overloaded so that it automatically creates a suitable instance
/// Operator 'new' is overloaded so that it automatically creates a suitable instance
/// depending on if we've a MMX-capable CPU available or not.
static void * operator new(size_t s);
static FIRFilter *newInstance();
/// Applies the filter to the given sequence of samples.
/// Note : The amount of outputted samples is by value of 'filter_length'
/// Applies the filter to the given sequence of samples.
/// Note : The amount of outputted samples is by value of 'filter_length'
/// smaller than the amount of input samples.
///
/// \return Number of samples copied to 'dest'.
uint evaluate(SAMPLETYPE *dest,
const SAMPLETYPE *src,
uint numSamples,
uint evaluate(SAMPLETYPE *dest,
const SAMPLETYPE *src,
uint numSamples,
uint numChannels) const;
uint getLength() const;
virtual void setCoefficients(const SAMPLETYPE *coeffs,
uint newLength,
virtual void setCoefficients(const SAMPLETYPE *coeffs,
uint newLength,
uint uResultDivFactor);
};
// Optional subclasses that implement CPU-specific optimizations:
#ifdef ALLOW_MMX
#ifdef SOUNDTOUCH_ALLOW_MMX
/// Class that implements MMX optimized functions exclusive for 16bit integer samples type.
class FIRFilterMMX : public FIRFilter
@ -119,29 +119,10 @@ public:
virtual void setCoefficients(const short *coeffs, uint newLength, uint uResultDivFactor);
};
#endif // ALLOW_MMX
#endif // SOUNDTOUCH_ALLOW_MMX
#ifdef ALLOW_3DNOW
/// Class that implements 3DNow! optimized functions exclusive for floating point samples type.
class FIRFilter3DNow : public FIRFilter
{
protected:
float *filterCoeffsUnalign;
float *filterCoeffsAlign;
virtual uint evaluateFilterStereo(float *dest, const float *src, uint numSamples) const;
public:
FIRFilter3DNow();
~FIRFilter3DNow();
virtual void setCoefficients(const float *coeffs, uint newLength, uint uResultDivFactor);
};
#endif // ALLOW_3DNOW
#ifdef ALLOW_SSE
#ifdef SOUNDTOUCH_ALLOW_SSE
/// Class that implements SSE optimized functions exclusive for floating point samples type.
class FIRFilterSSE : public FIRFilter
{
@ -157,7 +138,7 @@ public:
virtual void setCoefficients(const float *coeffs, uint newLength, uint uResultDivFactor);
};
#endif // ALLOW_SSE
#endif // SOUNDTOUCH_ALLOW_SSE
}

View File

@ -1,42 +1,71 @@
## Process this file with automake to create Makefile.in
##
## $Id: Makefile.am,v 1.3 2006/02/05 18:33:34 Olli Exp $
##
## Copyright (C) 2003 - David W. Durham
## $Id: Makefile.am 138 2012-04-01 20:00:09Z oparviai $
##
## This file is part of SoundTouch, an audio processing library for pitch/time adjustments
##
##
## SoundTouch is free software; you can redistribute it and/or modify it under the
## terms of the GNU General Public License as published by the Free Software
## Foundation; either version 2 of the License, or (at your option) any later
## version.
##
##
## SoundTouch is distributed in the hope that it will be useful, but WITHOUT ANY
## WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
## A PARTICULAR PURPOSE. See the GNU General Public License for more details.
##
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, write to the Free Software Foundation, Inc., 59 Temple
## Place - Suite 330, Boston, MA 02111-1307, USA
AUTOMAKE_OPTIONS = foreign
noinst_HEADERS=AAFilter.h cpu_detect.h FIRFilter.h RateTransposer.h TDStretch.h cpu_detect_x86_gcc.cpp
noinst_LIBRARIES = libSoundTouch.a
include $(top_srcdir)/config/am_include.mk
libSoundTouch_a_CXXFLAGS = -msse -mmmx
libSoundTouch_a_CFLAGS = -msse -mmmx
#lib_LTLIBRARIES=libSoundTouch.la
# the mmx_gcc.cpp and cpu_detect_x86_gcc.cpp may need to be conditionally included here from things discovered in configure.ac
libSoundTouch_a_SOURCES=AAFilter.cpp FIRFilter.cpp FIFOSampleBuffer.cpp mmx_optimized.cpp sse_optimized.cpp \
RateTransposer.cpp SoundTouch.cpp TDStretch.cpp WavFile.cpp cpu_detect_x86_gcc.cpp
# set to something if you want other stuff to be included in the distribution tarball
EXTRA_DIST=SoundTouch.dsp SoundTouch.dsw SoundTouch.sln SoundTouch.vcproj
noinst_HEADERS=AAFilter.h cpu_detect.h cpu_detect_x86.cpp FIRFilter.h RateTransposer.h TDStretch.h PeakFinder.h
lib_LTLIBRARIES=libSoundTouch.la
#
libSoundTouch_la_SOURCES=AAFilter.cpp FIRFilter.cpp FIFOSampleBuffer.cpp RateTransposer.cpp SoundTouch.cpp TDStretch.cpp cpu_detect_x86.cpp BPMDetect.cpp PeakFinder.cpp
# Compiler flags
AM_CXXFLAGS=-O3 -fcheck-new -I../../include
# Compile the files that need MMX and SSE individually.
libSoundTouch_la_LIBADD=libSoundTouchMMX.la libSoundTouchSSE.la
noinst_LTLIBRARIES=libSoundTouchMMX.la libSoundTouchSSE.la
libSoundTouchMMX_la_SOURCES=mmx_optimized.cpp
libSoundTouchSSE_la_SOURCES=sse_optimized.cpp
# We enable optimizations by default.
# If MMX is supported compile with -mmmx.
# Do not assume -msse is also supported.
if HAVE_MMX
libSoundTouchMMX_la_CXXFLAGS = -mmmx $(AM_CXXFLAGS)
else
libSoundTouchMMX_la_CXXFLAGS = $(AM_CXXFLAGS)
endif
# We enable optimizations by default.
# If SSE is supported compile with -msse.
if HAVE_SSE
libSoundTouchSSE_la_CXXFLAGS = -msse $(AM_CXXFLAGS)
else
libSoundTouchSSE_la_CXXFLAGS = $(AM_CXXFLAGS)
endif
# Let the user disable optimizations if he wishes to.
if !X86_OPTIMIZATIONS
libSoundTouchMMX_la_CXXFLAGS = $(AM_CXXFLAGS)
libSoundTouchSSE_la_CXXFLAGS = $(AM_CXXFLAGS)
endif
# ??? test for -fcheck-new in configure.ac
# other compiler flags to add
AM_CXXFLAGS=-O3 -msse -fcheck-new
#-I../../include
# other linking flags to add
#libSoundTouch_la_LIBADD=
# noinst_LTLIBRARIES = libSoundTouchOpt.la
# libSoundTouch_la_LIBADD = libSoundTouchOpt.la
# libSoundTouchOpt_la_SOURCES = mmx_optimized.cpp sse_optimized.cpp
# libSoundTouchOpt_la_CXXFLAGS = -O3 -msse -fcheck-new -I../../include

276
3rdparty/SoundTouch/PeakFinder.cpp vendored Normal file
View File

@ -0,0 +1,276 @@
////////////////////////////////////////////////////////////////////////////////
///
/// Peak detection routine.
///
/// The routine detects highest value on an array of values and calculates the
/// precise peak location as a mass-center of the 'hump' around the peak value.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2012-12-28 17:52:47 -0200 (sex, 28 dez 2012) $
// File revision : $Revision: 4 $
//
// $Id: PeakFinder.cpp 164 2012-12-28 19:52:47Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#include <math.h>
#include <assert.h>
#include "PeakFinder.h"
using namespace soundtouch;
#define max(x, y) (((x) > (y)) ? (x) : (y))
PeakFinder::PeakFinder()
{
minPos = maxPos = 0;
}
// Finds real 'top' of a peak hump from neighnourhood of the given 'peakpos'.
int PeakFinder::findTop(const float *data, int peakpos) const
{
int i;
int start, end;
float refvalue;
refvalue = data[peakpos];
// seek within ±10 points
start = peakpos - 10;
if (start < minPos) start = minPos;
end = peakpos + 10;
if (end > maxPos) end = maxPos;
for (i = start; i <= end; i ++)
{
if (data[i] > refvalue)
{
peakpos = i;
refvalue = data[i];
}
}
// failure if max value is at edges of seek range => it's not peak, it's at slope.
if ((peakpos == start) || (peakpos == end)) return 0;
return peakpos;
}
// Finds 'ground level' of a peak hump by starting from 'peakpos' and proceeding
// to direction defined by 'direction' until next 'hump' after minimum value will
// begin
int PeakFinder::findGround(const float *data, int peakpos, int direction) const
{
int lowpos;
int pos;
int climb_count;
float refvalue;
float delta;
climb_count = 0;
refvalue = data[peakpos];
lowpos = peakpos;
pos = peakpos;
while ((pos > minPos+1) && (pos < maxPos-1))
{
int prevpos;
prevpos = pos;
pos += direction;
// calculate derivate
delta = data[pos] - data[prevpos];
if (delta <= 0)
{
// going downhill, ok
if (climb_count)
{
climb_count --; // decrease climb count
}
// check if new minimum found
if (data[pos] < refvalue)
{
// new minimum found
lowpos = pos;
refvalue = data[pos];
}
}
else
{
// going uphill, increase climbing counter
climb_count ++;
if (climb_count > 5) break; // we've been climbing too long => it's next uphill => quit
}
}
return lowpos;
}
// Find offset where the value crosses the given level, when starting from 'peakpos' and
// proceeds to direction defined in 'direction'
int PeakFinder::findCrossingLevel(const float *data, float level, int peakpos, int direction) const
{
float peaklevel;
int pos;
peaklevel = data[peakpos];
assert(peaklevel >= level);
pos = peakpos;
while ((pos >= minPos) && (pos < maxPos))
{
if (data[pos + direction] < level) return pos; // crossing found
pos += direction;
}
return -1; // not found
}
// Calculates the center of mass location of 'data' array items between 'firstPos' and 'lastPos'
double PeakFinder::calcMassCenter(const float *data, int firstPos, int lastPos) const
{
int i;
float sum;
float wsum;
sum = 0;
wsum = 0;
for (i = firstPos; i <= lastPos; i ++)
{
sum += (float)i * data[i];
wsum += data[i];
}
if (wsum < 1e-6) return 0;
return sum / wsum;
}
/// get exact center of peak near given position by calculating local mass of center
double PeakFinder::getPeakCenter(const float *data, int peakpos) const
{
float peakLevel; // peak level
int crosspos1, crosspos2; // position where the peak 'hump' crosses cutting level
float cutLevel; // cutting value
float groundLevel; // ground level of the peak
int gp1, gp2; // bottom positions of the peak 'hump'
// find ground positions.
gp1 = findGround(data, peakpos, -1);
gp2 = findGround(data, peakpos, 1);
groundLevel = 0.5f * (data[gp1] + data[gp2]);
peakLevel = data[peakpos];
// calculate 70%-level of the peak
cutLevel = 0.70f * peakLevel + 0.30f * groundLevel;
// find mid-level crossings
crosspos1 = findCrossingLevel(data, cutLevel, peakpos, -1);
crosspos2 = findCrossingLevel(data, cutLevel, peakpos, 1);
if ((crosspos1 < 0) || (crosspos2 < 0)) return 0; // no crossing, no peak..
// calculate mass center of the peak surroundings
return calcMassCenter(data, crosspos1, crosspos2);
}
double PeakFinder::detectPeak(const float *data, int aminPos, int amaxPos)
{
int i;
int peakpos; // position of peak level
double highPeak, peak;
this->minPos = aminPos;
this->maxPos = amaxPos;
// find absolute peak
peakpos = minPos;
peak = data[minPos];
for (i = minPos + 1; i < maxPos; i ++)
{
if (data[i] > peak)
{
peak = data[i];
peakpos = i;
}
}
// Calculate exact location of the highest peak mass center
highPeak = getPeakCenter(data, peakpos);
peak = highPeak;
// Now check if the highest peak were in fact harmonic of the true base beat peak
// - sometimes the highest peak can be Nth harmonic of the true base peak yet
// just a slightly higher than the true base
for (i = 3; i < 10; i ++)
{
double peaktmp, harmonic;
int i1,i2;
harmonic = (double)i * 0.5;
peakpos = (int)(highPeak / harmonic + 0.5f);
if (peakpos < minPos) break;
peakpos = findTop(data, peakpos); // seek true local maximum index
if (peakpos == 0) continue; // no local max here
// calculate mass-center of possible harmonic peak
peaktmp = getPeakCenter(data, peakpos);
// accept harmonic peak if
// (a) it is found
// (b) is within ±4% of the expected harmonic interval
// (c) has at least half x-corr value of the max. peak
double diff = harmonic * peaktmp / highPeak;
if ((diff < 0.96) || (diff > 1.04)) continue; // peak too afar from expected
// now compare to highest detected peak
i1 = (int)(highPeak + 0.5);
i2 = (int)(peaktmp + 0.5);
if (data[i2] >= 0.4*data[i1])
{
// The harmonic is at least half as high primary peak,
// thus use the harmonic peak instead
peak = peaktmp;
}
}
return peak;
}

97
3rdparty/SoundTouch/PeakFinder.h vendored Normal file
View File

@ -0,0 +1,97 @@
////////////////////////////////////////////////////////////////////////////////
///
/// The routine detects highest value on an array of values and calculates the
/// precise peak location as a mass-center of the 'hump' around the peak value.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2011-12-30 18:33:46 -0200 (sex, 30 dez 2011) $
// File revision : $Revision: 4 $
//
// $Id: PeakFinder.h 132 2011-12-30 20:33:46Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#ifndef _PeakFinder_H_
#define _PeakFinder_H_
namespace soundtouch
{
class PeakFinder
{
protected:
/// Min, max allowed peak positions within the data vector
int minPos, maxPos;
/// Calculates the mass center between given vector items.
double calcMassCenter(const float *data, ///< Data vector.
int firstPos, ///< Index of first vector item beloging to the peak.
int lastPos ///< Index of last vector item beloging to the peak.
) const;
/// Finds the data vector index where the monotoniously decreasing signal crosses the
/// given level.
int findCrossingLevel(const float *data, ///< Data vector.
float level, ///< Goal crossing level.
int peakpos, ///< Peak position index within the data vector.
int direction /// Direction where to proceed from the peak: 1 = right, -1 = left.
) const;
// Finds real 'top' of a peak hump from neighnourhood of the given 'peakpos'.
int findTop(const float *data, int peakpos) const;
/// Finds the 'ground' level, i.e. smallest level between two neighbouring peaks, to right-
/// or left-hand side of the given peak position.
int findGround(const float *data, /// Data vector.
int peakpos, /// Peak position index within the data vector.
int direction /// Direction where to proceed from the peak: 1 = right, -1 = left.
) const;
/// get exact center of peak near given position by calculating local mass of center
double getPeakCenter(const float *data, int peakpos) const;
public:
/// Constructor.
PeakFinder();
/// Detect exact peak position of the data vector by finding the largest peak 'hump'
/// and calculating the mass-center location of the peak hump.
///
/// \return The location of the largest base harmonic peak hump.
double detectPeak(const float *data, /// Data vector to be analyzed. The data vector has
/// to be at least 'maxPos' items long.
int minPos, ///< Min allowed peak location within the vector data.
int maxPos ///< Max allowed peak location within the vector data.
);
};
}
#endif // _PeakFinder_H_

File diff suppressed because it is too large Load Diff

View File

@ -1,6 +1,6 @@
////////////////////////////////////////////////////////////////////////////////
///
/// Sample rate transposer. Changes sample rate by using linear interpolation
///
/// Sample rate transposer. Changes sample rate by using linear interpolation
/// together with anti-alias filtering (first order interpolation with anti-
/// alias filtering should be quite adequate for this application)
///
@ -10,10 +10,10 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2009-10-31 16:37:24 +0200 (Sat, 31 Oct 2009) $
// Last changed : $Date: 2011-09-02 15:56:11 -0300 (sex, 02 set 2011) $
// File revision : $Revision: 4 $
//
// $Id: RateTransposer.cpp 74 2009-10-31 14:37:24Z oparviai $
// $Id: RateTransposer.cpp 131 2011-09-02 18:56:11Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
@ -42,11 +42,9 @@
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdexcept>
#include "RateTransposer.h"
#include "AAFilter.h"
using namespace std;
using namespace soundtouch;
@ -61,18 +59,18 @@ protected:
virtual void resetRegisters();
virtual uint transposeStereo(SAMPLETYPE *dest,
const SAMPLETYPE *src,
virtual uint transposeStereo(SAMPLETYPE *dest,
const SAMPLETYPE *src,
uint numSamples);
virtual uint transposeMono(SAMPLETYPE *dest,
const SAMPLETYPE *src,
virtual uint transposeMono(SAMPLETYPE *dest,
const SAMPLETYPE *src,
uint numSamples);
public:
RateTransposerInteger();
virtual ~RateTransposerInteger();
/// Sets new target rate. Normal rate = 1.0, smaller values represent slower
/// Sets new target rate. Normal rate = 1.0, smaller values represent slower
/// rate, larger faster rates.
virtual void setRate(float newRate);
@ -89,11 +87,11 @@ protected:
virtual void resetRegisters();
virtual uint transposeStereo(SAMPLETYPE *dest,
const SAMPLETYPE *src,
virtual uint transposeStereo(SAMPLETYPE *dest,
const SAMPLETYPE *src,
uint numSamples);
virtual uint transposeMono(SAMPLETYPE *dest,
const SAMPLETYPE *src,
virtual uint transposeMono(SAMPLETYPE *dest,
const SAMPLETYPE *src,
uint numSamples);
public:
@ -104,18 +102,18 @@ public:
// Operator 'new' is overloaded so that it automatically creates a suitable instance
// Operator 'new' is overloaded so that it automatically creates a suitable instance
// depending on if we've a MMX/SSE/etc-capable CPU available or not.
void * RateTransposer::operator new(size_t s)
{
throw runtime_error("Error in RateTransoser::new: don't use \"new TDStretch\" directly, use \"newInstance\" to create a new instance instead!");
return NULL;
ST_THROW_RT_ERROR("Error in RateTransoser::new: don't use \"new TDStretch\" directly, use \"newInstance\" to create a new instance instead!");
return newInstance();
}
RateTransposer *RateTransposer::newInstance()
{
#ifdef INTEGER_SAMPLES
#ifdef SOUNDTOUCH_INTEGER_SAMPLES
return ::new RateTransposerInteger;
#else
return ::new RateTransposerFloat;
@ -165,7 +163,7 @@ AAFilter *RateTransposer::getAAFilter()
// Sets new target iRate. Normal iRate = 1.0, smaller values represent slower
// Sets new target iRate. Normal iRate = 1.0, smaller values represent slower
// iRate, larger faster iRates.
void RateTransposer::setRate(float newRate)
{
@ -174,11 +172,11 @@ void RateTransposer::setRate(float newRate)
fRate = newRate;
// design a new anti-alias filter
if (newRate > 1.0f)
if (newRate > 1.0f)
{
fCutoff = 0.5f / newRate;
}
else
}
else
{
fCutoff = 0.5f * newRate;
}
@ -220,7 +218,7 @@ void RateTransposer::upsample(const SAMPLETYPE *src, uint nSamples)
// If the parameter 'uRate' value is smaller than 'SCALE', first transpose
// the samples and then apply the anti-alias filter to remove aliasing.
// First check that there's enough room in 'storeBuffer'
// First check that there's enough room in 'storeBuffer'
// (+16 is to reserve some slack in the destination buffer)
sizeTemp = (uint)((float)nSamples / fRate + 16.0f);
@ -231,7 +229,7 @@ void RateTransposer::upsample(const SAMPLETYPE *src, uint nSamples)
// Apply the anti-alias filter to samples in "store output", output the
// result to "dest"
num = storeBuffer.numSamples();
count = pAAFilter->evaluate(outputBuffer.ptrEnd(num),
count = pAAFilter->evaluate(outputBuffer.ptrEnd(num),
storeBuffer.ptrBegin(), num, (uint)numChannels);
outputBuffer.putSamples(count);
@ -253,13 +251,13 @@ void RateTransposer::downsample(const SAMPLETYPE *src, uint nSamples)
// Add the new samples to the end of the storeBuffer
storeBuffer.putSamples(src, nSamples);
// Anti-alias filter the samples to prevent folding and output the filtered
// Anti-alias filter the samples to prevent folding and output the filtered
// data to tempBuffer. Note : because of the FIR filter length, the
// filtering routine takes in 'filter_length' more samples than it outputs.
assert(tempBuffer.isEmpty());
sizeTemp = storeBuffer.numSamples();
count = pAAFilter->evaluate(tempBuffer.ptrEnd(sizeTemp),
count = pAAFilter->evaluate(tempBuffer.ptrEnd(sizeTemp),
storeBuffer.ptrBegin(), sizeTemp, (uint)numChannels);
if (count == 0) return;
@ -274,7 +272,7 @@ void RateTransposer::downsample(const SAMPLETYPE *src, uint nSamples)
}
// Transposes sample rate by applying anti-alias filter to prevent folding.
// Transposes sample rate by applying anti-alias filter to prevent folding.
// Returns amount of samples returned in the "dest" buffer.
// The maximum amount of samples that can be returned at a time is set by
// the 'set_returnBuffer_size' function.
@ -288,7 +286,7 @@ void RateTransposer::processSamples(const SAMPLETYPE *src, uint nSamples)
// If anti-alias filter is turned off, simply transpose without applying
// the filter
if (bUseAAFilter == FALSE)
if (bUseAAFilter == FALSE)
{
sizeReq = (uint)((float)nSamples / fRate + 1.0f);
count = transpose(outputBuffer.ptrEnd(sizeReq), src, nSamples);
@ -297,26 +295,26 @@ void RateTransposer::processSamples(const SAMPLETYPE *src, uint nSamples)
}
// Transpose with anti-alias filter
if (fRate < 1.0f)
if (fRate < 1.0f)
{
upsample(src, nSamples);
}
else
}
else
{
downsample(src, nSamples);
}
}
// Transposes the sample rate of the given samples using linear interpolation.
// Transposes the sample rate of the given samples using linear interpolation.
// Returns the number of samples returned in the "dest" buffer
inline uint RateTransposer::transpose(SAMPLETYPE *dest, const SAMPLETYPE *src, uint nSamples)
{
if (numChannels == 2)
if (numChannels == 2)
{
return transposeStereo(dest, src, nSamples);
}
else
}
else
{
return transposeMono(dest, src, nSamples);
}
@ -363,7 +361,7 @@ int RateTransposer::isEmpty() const
//////////////////////////////////////////////////////////////////////////////
//
// RateTransposerInteger - integer arithmetic implementation
//
//
/// fixed-point interpolation routine precision
#define SCALE 65536
@ -371,7 +369,7 @@ int RateTransposer::isEmpty() const
// Constructor
RateTransposerInteger::RateTransposerInteger() : RateTransposer()
{
// Notice: use local function calling syntax for sake of clarity,
// Notice: use local function calling syntax for sake of clarity,
// to indicate the fact that C++ constructor can't call virtual functions.
RateTransposerInteger::resetRegisters();
RateTransposerInteger::setRate(1.0f);
@ -386,14 +384,14 @@ RateTransposerInteger::~RateTransposerInteger()
void RateTransposerInteger::resetRegisters()
{
iSlopeCount = 0;
sPrevSampleL =
sPrevSampleL =
sPrevSampleR = 0;
}
// Transposes the sample rate of the given samples using linear interpolation.
// 'Mono' version of the routine. Returns the number of samples returned in
// Transposes the sample rate of the given samples using linear interpolation.
// 'Mono' version of the routine. Returns the number of samples returned in
// the "dest" buffer
uint RateTransposerInteger::transposeMono(SAMPLETYPE *dest, const SAMPLETYPE *src, uint nSamples)
{
@ -402,11 +400,11 @@ uint RateTransposerInteger::transposeMono(SAMPLETYPE *dest, const SAMPLETYPE *sr
if (nSamples == 0) return 0; // no samples, no work
used = 0;
used = 0;
i = 0;
// Process the last sample saved from the previous call first...
while (iSlopeCount <= SCALE)
while (iSlopeCount <= SCALE)
{
vol1 = (LONG_SAMPLETYPE)(SCALE - iSlopeCount);
temp = vol1 * sPrevSampleL + iSlopeCount * src[0];
@ -419,7 +417,7 @@ uint RateTransposerInteger::transposeMono(SAMPLETYPE *dest, const SAMPLETYPE *sr
while (1)
{
while (iSlopeCount > SCALE)
while (iSlopeCount > SCALE)
{
iSlopeCount -= SCALE;
used ++;
@ -440,8 +438,8 @@ end:
}
// Transposes the sample rate of the given samples using linear interpolation.
// 'Stereo' version of the routine. Returns the number of samples returned in
// Transposes the sample rate of the given samples using linear interpolation.
// 'Stereo' version of the routine. Returns the number of samples returned in
// the "dest" buffer
uint RateTransposerInteger::transposeStereo(SAMPLETYPE *dest, const SAMPLETYPE *src, uint nSamples)
{
@ -450,11 +448,11 @@ uint RateTransposerInteger::transposeStereo(SAMPLETYPE *dest, const SAMPLETYPE *
if (nSamples == 0) return 0; // no samples, no work
used = 0;
used = 0;
i = 0;
// Process the last sample saved from the sPrevSampleLious call first...
while (iSlopeCount <= SCALE)
while (iSlopeCount <= SCALE)
{
vol1 = (LONG_SAMPLETYPE)(SCALE - iSlopeCount);
temp = vol1 * sPrevSampleL + iSlopeCount * src[0];
@ -469,7 +467,7 @@ uint RateTransposerInteger::transposeStereo(SAMPLETYPE *dest, const SAMPLETYPE *
while (1)
{
while (iSlopeCount > SCALE)
while (iSlopeCount > SCALE)
{
iSlopeCount -= SCALE;
used ++;
@ -494,7 +492,7 @@ end:
}
// Sets new target iRate. Normal iRate = 1.0, smaller values represent slower
// Sets new target iRate. Normal iRate = 1.0, smaller values represent slower
// iRate, larger faster iRates.
void RateTransposerInteger::setRate(float newRate)
{
@ -506,13 +504,13 @@ void RateTransposerInteger::setRate(float newRate)
//////////////////////////////////////////////////////////////////////////////
//
// RateTransposerFloat - floating point arithmetic implementation
//
//
//////////////////////////////////////////////////////////////////////////////
// Constructor
RateTransposerFloat::RateTransposerFloat() : RateTransposer()
{
// Notice: use local function calling syntax for sake of clarity,
// Notice: use local function calling syntax for sake of clarity,
// to indicate the fact that C++ constructor can't call virtual functions.
RateTransposerFloat::resetRegisters();
RateTransposerFloat::setRate(1.0f);
@ -527,24 +525,24 @@ RateTransposerFloat::~RateTransposerFloat()
void RateTransposerFloat::resetRegisters()
{
fSlopeCount = 0;
sPrevSampleL =
sPrevSampleL =
sPrevSampleR = 0;
}
// Transposes the sample rate of the given samples using linear interpolation.
// 'Mono' version of the routine. Returns the number of samples returned in
// Transposes the sample rate of the given samples using linear interpolation.
// 'Mono' version of the routine. Returns the number of samples returned in
// the "dest" buffer
uint RateTransposerFloat::transposeMono(SAMPLETYPE *dest, const SAMPLETYPE *src, uint nSamples)
{
unsigned int i, used;
used = 0;
used = 0;
i = 0;
// Process the last sample saved from the previous call first...
while (fSlopeCount <= 1.0f)
while (fSlopeCount <= 1.0f)
{
dest[i] = (SAMPLETYPE)((1.0f - fSlopeCount) * sPrevSampleL + fSlopeCount * src[0]);
i++;
@ -556,7 +554,7 @@ uint RateTransposerFloat::transposeMono(SAMPLETYPE *dest, const SAMPLETYPE *src,
{
while (1)
{
while (fSlopeCount > 1.0f)
while (fSlopeCount > 1.0f)
{
fSlopeCount -= 1.0f;
used ++;
@ -575,8 +573,8 @@ end:
}
// Transposes the sample rate of the given samples using linear interpolation.
// 'Mono' version of the routine. Returns the number of samples returned in
// Transposes the sample rate of the given samples using linear interpolation.
// 'Mono' version of the routine. Returns the number of samples returned in
// the "dest" buffer
uint RateTransposerFloat::transposeStereo(SAMPLETYPE *dest, const SAMPLETYPE *src, uint nSamples)
{
@ -584,11 +582,11 @@ uint RateTransposerFloat::transposeStereo(SAMPLETYPE *dest, const SAMPLETYPE *sr
if (nSamples == 0) return 0; // no samples, no work
used = 0;
used = 0;
i = 0;
// Process the last sample saved from the sPrevSampleLious call first...
while (fSlopeCount <= 1.0f)
while (fSlopeCount <= 1.0f)
{
dest[2 * i] = (SAMPLETYPE)((1.0f - fSlopeCount) * sPrevSampleL + fSlopeCount * src[0]);
dest[2 * i + 1] = (SAMPLETYPE)((1.0f - fSlopeCount) * sPrevSampleR + fSlopeCount * src[1]);
@ -602,7 +600,7 @@ uint RateTransposerFloat::transposeStereo(SAMPLETYPE *dest, const SAMPLETYPE *sr
{
while (1)
{
while (fSlopeCount > 1.0f)
while (fSlopeCount > 1.0f)
{
fSlopeCount -= 1.0f;
used ++;
@ -610,9 +608,9 @@ uint RateTransposerFloat::transposeStereo(SAMPLETYPE *dest, const SAMPLETYPE *sr
}
srcPos = 2 * used;
dest[2 * i] = (SAMPLETYPE)((1.0f - fSlopeCount) * src[srcPos]
dest[2 * i] = (SAMPLETYPE)((1.0f - fSlopeCount) * src[srcPos]
+ fSlopeCount * src[srcPos + 2]);
dest[2 * i + 1] = (SAMPLETYPE)((1.0f - fSlopeCount) * src[srcPos + 1]
dest[2 * i + 1] = (SAMPLETYPE)((1.0f - fSlopeCount) * src[srcPos + 1]
+ fSlopeCount * src[srcPos + 3]);
i++;

View File

@ -1,10 +1,10 @@
////////////////////////////////////////////////////////////////////////////////
///
/// Sample rate transposer. Changes sample rate by using linear interpolation
///
/// Sample rate transposer. Changes sample rate by using linear interpolation
/// together with anti-alias filtering (first order interpolation with anti-
/// alias filtering should be quite adequate for this application).
///
/// Use either of the derived classes of 'RateTransposerInteger' or
/// Use either of the derived classes of 'RateTransposerInteger' or
/// 'RateTransposerFloat' for corresponding integer/floating point tranposing
/// algorithm implementation.
///
@ -14,7 +14,7 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2009-02-21 18:00:14 +0200 (Sat, 21 Feb 2009) $
// Last changed : $Date: 2009-02-21 13:00:14 -0300 (sáb, 21 fev 2009) $
// File revision : $Revision: 4 $
//
// $Id: RateTransposer.h 63 2009-02-21 16:00:14Z oparviai $
@ -57,9 +57,9 @@ namespace soundtouch
/// A common linear samplerate transposer class.
///
/// Note: Use function "RateTransposer::newInstance()" to create a new class
/// instance instead of the "new" operator; that function automatically
/// chooses a correct implementation depending on if integer or floating
/// Note: Use function "RateTransposer::newInstance()" to create a new class
/// instance instead of the "new" operator; that function automatically
/// chooses a correct implementation depending on if integer or floating
/// arithmetics are to be used.
class RateTransposer : public FIFOProcessor
{
@ -85,26 +85,26 @@ protected:
virtual void resetRegisters() = 0;
virtual uint transposeStereo(SAMPLETYPE *dest,
const SAMPLETYPE *src,
virtual uint transposeStereo(SAMPLETYPE *dest,
const SAMPLETYPE *src,
uint numSamples) = 0;
virtual uint transposeMono(SAMPLETYPE *dest,
const SAMPLETYPE *src,
virtual uint transposeMono(SAMPLETYPE *dest,
const SAMPLETYPE *src,
uint numSamples) = 0;
inline uint transpose(SAMPLETYPE *dest,
const SAMPLETYPE *src,
inline uint transpose(SAMPLETYPE *dest,
const SAMPLETYPE *src,
uint numSamples);
void downsample(const SAMPLETYPE *src,
void downsample(const SAMPLETYPE *src,
uint numSamples);
void upsample(const SAMPLETYPE *src,
void upsample(const SAMPLETYPE *src,
uint numSamples);
/// Transposes sample rate by applying anti-alias filter to prevent folding.
/// Transposes sample rate by applying anti-alias filter to prevent folding.
/// Returns amount of samples returned in the "dest" buffer.
/// The maximum amount of samples that can be returned at a time is set by
/// the 'set_returnBuffer_size' function.
void processSamples(const SAMPLETYPE *src,
void processSamples(const SAMPLETYPE *src,
uint numSamples);
@ -112,12 +112,12 @@ public:
RateTransposer();
virtual ~RateTransposer();
/// Operator 'new' is overloaded so that it automatically creates a suitable instance
/// Operator 'new' is overloaded so that it automatically creates a suitable instance
/// depending on if we're to use integer or floating point arithmetics.
static void *operator new(size_t s);
/// Use this function instead of "new" operator to create a new instance of this class.
/// This function automatically chooses a correct implementation, depending on if
/// Use this function instead of "new" operator to create a new instance of this class.
/// This function automatically chooses a correct implementation, depending on if
/// integer ot floating point arithmetics are to be used.
static RateTransposer *newInstance();
@ -136,7 +136,7 @@ public:
/// Returns nonzero if anti-alias filter is enabled.
BOOL isAAFilterEnabled() const;
/// Sets new target rate. Normal rate = 1.0, smaller values represent slower
/// Sets new target rate. Normal rate = 1.0, smaller values represent slower
/// rate, larger faster rates.
virtual void setRate(float newRate);

View File

@ -8,10 +8,10 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2009-05-17 14:30:57 +0300 (Sun, 17 May 2009) $
// Last changed : $Date: 2012-12-28 12:53:56 -0200 (sex, 28 dez 2012) $
// File revision : $Revision: 3 $
//
// $Id: STTypes.h 70 2009-05-17 11:30:57Z oparviai $
// $Id: STTypes.h 162 2012-12-28 14:53:56Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
@ -42,8 +42,21 @@
typedef unsigned int uint;
typedef unsigned long ulong;
#ifdef __GNUC__
// In GCC, include soundtouch_config.h made by config scritps
// Patch for MinGW: on Win64 long is 32-bit
#ifdef _WIN64
typedef unsigned long long ulongptr;
#else
typedef ulong ulongptr;
#endif
// Helper macro for aligning pointer up to next 16-byte boundary
#define SOUNDTOUCH_ALIGN_POINTER_16(x) ( ( (ulongptr)(x) + 15 ) & ~(ulongptr)15 )
#if (defined(__GNUC__) && !defined(ANDROID))
// In GCC, include soundtouch_config.h made by config scritps.
// Skip this in Android compilation that uses GCC but without configure scripts.
#include "soundtouch_config.h"
#endif
@ -60,64 +73,81 @@ typedef unsigned long ulong;
namespace soundtouch
{
/// Activate these undef's to overrule the possible sampletype
/// setting inherited from some other header file:
//#undef SOUNDTOUCH_INTEGER_SAMPLES
//#undef SOUNDTOUCH_FLOAT_SAMPLES
/// Activate these undef's to overrule the possible sampletype
/// setting inherited from some other header file:
//#undef INTEGER_SAMPLES
//#undef FLOAT_SAMPLES
#if (defined(__SOFTFP__))
// For Android compilation: Force use of Integer samples in case that
// compilation uses soft-floating point emulation - soft-fp is way too slow
#undef SOUNDTOUCH_FLOAT_SAMPLES
#define SOUNDTOUCH_INTEGER_SAMPLES 1
#endif
#if !(INTEGER_SAMPLES || FLOAT_SAMPLES)
#if !(SOUNDTOUCH_INTEGER_SAMPLES || SOUNDTOUCH_FLOAT_SAMPLES)
/// Choose either 32bit floating point or 16bit integer sampletype
/// by choosing one of the following defines, unless this selection
/// has already been done in some other file.
////
/// Notes:
/// - In Windows environment, choose the sample format with the
/// following defines.
/// - In GNU environment, the floating point samples are used by
/// default, but integer samples can be chosen by giving the
/// following switch to the configure script:
/// ./configure --enable-integer-samples
/// However, if you still prefer to select the sample format here
/// also in GNU environment, then please #undef the INTEGER_SAMPLE
/// and FLOAT_SAMPLE defines first as in comments above.
//#define SOUNDTOUCH_INTEGER_SAMPLES 1 //< 16bit integer samples
#define SOUNDTOUCH_FLOAT_SAMPLES 1 //< 32bit float samples
#endif
/// Choose either 32bit floating point or 16bit integer sampletype
/// by choosing one of the following defines, unless this selection
/// has already been done in some other file.
////
/// Notes:
/// - In Windows environment, choose the sample format with the
/// following defines.
/// - In GNU environment, the floating point samples are used by
/// default, but integer samples can be chosen by giving the
/// following switch to the configure script:
/// ./configure --enable-integer-samples
/// However, if you still prefer to select the sample format here
/// also in GNU environment, then please #undef the INTEGER_SAMPLE
/// and FLOAT_SAMPLE defines first as in comments above.
//#define INTEGER_SAMPLES 1 //< 16bit integer samples
#define FLOAT_SAMPLES 1 //< 32bit float samples
#endif
#if (WIN32 || __i386__ || __x86_64__)
/// Define this to allow X86-specific assembler/intrinsic optimizations.
#if (_M_IX86 || __i386__ || __x86_64__ || _M_X64)
/// Define this to allow X86-specific assembler/intrinsic optimizations.
/// Notice that library contains also usual C++ versions of each of these
/// these routines, so if you're having difficulties getting the optimized
/// routines compiled for whatever reason, you may disable these optimizations
/// these routines, so if you're having difficulties getting the optimized
/// routines compiled for whatever reason, you may disable these optimizations
/// to make the library compile.
#define ALLOW_X86_OPTIMIZATIONS 1
#define SOUNDTOUCH_ALLOW_X86_OPTIMIZATIONS 1
/// In GNU environment, allow the user to override this setting by
/// giving the following switch to the configure script:
/// ./configure --disable-x86-optimizations
/// ./configure --enable-x86-optimizations=no
#ifdef SOUNDTOUCH_DISABLE_X86_OPTIMIZATIONS
#undef SOUNDTOUCH_ALLOW_X86_OPTIMIZATIONS
#endif
#else
/// Always disable optimizations when not using a x86 systems.
#undef SOUNDTOUCH_ALLOW_X86_OPTIMIZATIONS
#endif
// If defined, allows the SIMD-optimized routines to take minor shortcuts
// for improved performance. Undefine to require faithfully similar SIMD
// If defined, allows the SIMD-optimized routines to take minor shortcuts
// for improved performance. Undefine to require faithfully similar SIMD
// calculations as in normal C implementation.
#define ALLOW_NONEXACT_SIMD_OPTIMIZATION 1
#define SOUNDTOUCH_ALLOW_NONEXACT_SIMD_OPTIMIZATION 1
#ifdef INTEGER_SAMPLES
#ifdef SOUNDTOUCH_INTEGER_SAMPLES
// 16bit integer sample type
typedef short SAMPLETYPE;
// data type for sample accumulation: Use 32bit integer to prevent overflows
typedef long LONG_SAMPLETYPE;
#ifdef FLOAT_SAMPLES
#ifdef SOUNDTOUCH_FLOAT_SAMPLES
// check that only one sample type is defined
#error "conflicting sample types defined"
#endif // FLOAT_SAMPLES
#endif // SOUNDTOUCH_FLOAT_SAMPLES
#ifdef ALLOW_X86_OPTIMIZATIONS
#ifdef SOUNDTOUCH_ALLOW_X86_OPTIMIZATIONS
// Allow MMX optimizations
#define ALLOW_MMX 1
#define SOUNDTOUCH_ALLOW_MMX 1
#endif
#else
@ -127,23 +157,31 @@ namespace soundtouch
// data type for sample accumulation: Use double to utilize full precision.
typedef double LONG_SAMPLETYPE;
#ifdef ALLOW_X86_OPTIMIZATIONS
// Allow 3DNow! and SSE optimizations
#if WIN32
#define ALLOW_3DNOW 1
#endif
#define ALLOW_SSE 1
#ifdef SOUNDTOUCH_ALLOW_X86_OPTIMIZATIONS
// Allow SSE optimizations
#define SOUNDTOUCH_ALLOW_SSE 1
#endif
#endif // INTEGER_SAMPLES
#endif // SOUNDTOUCH_INTEGER_SAMPLES
};
// define ST_NO_EXCEPTION_HANDLING switch to disable throwing std exceptions:
// #define ST_NO_EXCEPTION_HANDLING 1
#ifdef ST_NO_EXCEPTION_HANDLING
// Exceptions disabled. Throw asserts instead if enabled.
#include <assert.h>
#define ST_THROW_RT_ERROR(x) {assert((const char *)x);}
#else
// use c++ standard exceptions
#include <stdexcept>
#define ST_THROW_RT_ERROR(x) {throw std::runtime_error(x);}
#endif
// When this #define is active, eliminates a clicking sound when the "rate" or "pitch"
// parameter setting crosses from value <1 to >=1 or vice versa during processing.
// Default is off as such crossover is untypical case and involves a slight sound
// When this #define is active, eliminates a clicking sound when the "rate" or "pitch"
// parameter setting crosses from value <1 to >=1 or vice versa during processing.
// Default is off as such crossover is untypical case and involves a slight sound
// quality compromise.
//#define PREVENT_CLICK_AT_RATE_CROSSOVER 1
//#define SOUNDTOUCH_PREVENT_CLICK_AT_RATE_CROSSOVER 1
#endif

View File

@ -1,27 +1,27 @@
//////////////////////////////////////////////////////////////////////////////
///
/// SoundTouch - main class for tempo/pitch/rate adjusting routines.
/// SoundTouch - main class for tempo/pitch/rate adjusting routines.
///
/// Notes:
/// - Initialize the SoundTouch object instance by setting up the sound stream
/// parameters with functions 'setSampleRate' and 'setChannels', then set
/// - Initialize the SoundTouch object instance by setting up the sound stream
/// parameters with functions 'setSampleRate' and 'setChannels', then set
/// desired tempo/pitch/rate settings with the corresponding functions.
///
/// - The SoundTouch class behaves like a first-in-first-out pipeline: The
/// - The SoundTouch class behaves like a first-in-first-out pipeline: The
/// samples that are to be processed are fed into one of the pipe by calling
/// function 'putSamples', while the ready processed samples can be read
/// function 'putSamples', while the ready processed samples can be read
/// from the other end of the pipeline with function 'receiveSamples'.
///
/// - The SoundTouch processing classes require certain sized 'batches' of
/// samples in order to process the sound. For this reason the classes buffer
/// incoming samples until there are enough of samples available for
///
/// - The SoundTouch processing classes require certain sized 'batches' of
/// samples in order to process the sound. For this reason the classes buffer
/// incoming samples until there are enough of samples available for
/// processing, then they carry out the processing step and consequently
/// make the processed samples available for outputting.
///
/// - For the above reason, the processing routines introduce a certain
///
/// - For the above reason, the processing routines introduce a certain
/// 'latency' between the input and output, so that the samples input to
/// SoundTouch may not be immediately available in the output, and neither
/// the amount of outputtable samples may not immediately be in direct
/// SoundTouch may not be immediately available in the output, and neither
/// the amount of outputtable samples may not immediately be in direct
/// relationship with the amount of previously input samples.
///
/// - The tempo/pitch/rate control parameters can be altered during processing.
@ -30,8 +30,8 @@
/// required.
///
/// - This class utilizes classes 'TDStretch' for tempo change (without modifying
/// pitch) and 'RateTransposer' for changing the playback rate (that is, both
/// tempo and pitch in the same ratio) of the sound. The third available control
/// pitch) and 'RateTransposer' for changing the playback rate (that is, both
/// tempo and pitch in the same ratio) of the sound. The third available control
/// 'pitch' (change pitch but maintain tempo) is produced by a combination of
/// combining the two other controls.
///
@ -41,10 +41,10 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2009-05-19 07:57:30 +0300 (Tue, 19 May 2009) $
// Last changed : $Date: 2012-06-13 16:29:53 -0300 (qua, 13 jun 2012) $
// File revision : $Revision: 4 $
//
// $Id: SoundTouch.cpp 73 2009-05-19 04:57:30Z oparviai $
// $Id: SoundTouch.cpp 143 2012-06-13 19:29:53Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
@ -73,7 +73,6 @@
#include <stdlib.h>
#include <memory.h>
#include <math.h>
#include <stdexcept>
#include <stdio.h>
#include "SoundTouch.h"
@ -82,7 +81,7 @@
#include "cpu_detect.h"
using namespace soundtouch;
/// test if two floating point numbers are equal
#define TEST_FLOAT_EQUAL(a, b) (fabs(a - b) < 1e-10)
@ -91,7 +90,7 @@ using namespace soundtouch;
extern "C" void soundtouch_ac_test()
{
printf("SoundTouch Version: %s\n",SOUNDTOUCH_VERSION);
}
}
SoundTouch::SoundTouch()
@ -105,8 +104,8 @@ SoundTouch::SoundTouch()
rate = tempo = 0;
virtualPitch =
virtualRate =
virtualPitch =
virtualRate =
virtualTempo = 1.0;
calcEffectiveRateAndTempo();
@ -144,9 +143,9 @@ uint SoundTouch::getVersionId()
// Sets the number of channels, 1 = mono, 2 = stereo
void SoundTouch::setChannels(uint numChannels)
{
if (numChannels != 1 && numChannels != 2)
if (numChannels != 1 && numChannels != 2)
{
throw std::runtime_error("Illegal number of channels");
ST_THROW_RT_ERROR("Illegal number of channels");
}
channels = numChannels;
pRateTransposer->setChannels((int)numChannels);
@ -243,10 +242,10 @@ void SoundTouch::calcEffectiveRateAndTempo()
if (!TEST_FLOAT_EQUAL(rate,oldRate)) pRateTransposer->setRate(rate);
if (!TEST_FLOAT_EQUAL(tempo, oldTempo)) pTDStretch->setTempo(tempo);
#ifndef PREVENT_CLICK_AT_RATE_CROSSOVER
if (rate <= 1.0f)
#ifndef SOUNDTOUCH_PREVENT_CLICK_AT_RATE_CROSSOVER
if (rate <= 1.0f)
{
if (output != pTDStretch)
if (output != pTDStretch)
{
FIFOSamplePipe *tempoOut;
@ -263,7 +262,7 @@ void SoundTouch::calcEffectiveRateAndTempo()
else
#endif
{
if (output != pRateTransposer)
if (output != pRateTransposer)
{
FIFOSamplePipe *transOut;
@ -276,7 +275,7 @@ void SoundTouch::calcEffectiveRateAndTempo()
output = pRateTransposer;
}
}
}
}
@ -293,42 +292,42 @@ void SoundTouch::setSampleRate(uint srate)
// the input of the object.
void SoundTouch::putSamples(const SAMPLETYPE *samples, uint nSamples)
{
if (bSrateSet == FALSE)
if (bSrateSet == FALSE)
{
throw std::runtime_error("SoundTouch : Sample rate not defined");
}
else if (channels == 0)
ST_THROW_RT_ERROR("SoundTouch : Sample rate not defined");
}
else if (channels == 0)
{
throw std::runtime_error("SoundTouch : Number of channels not defined");
ST_THROW_RT_ERROR("SoundTouch : Number of channels not defined");
}
// Transpose the rate of the new samples if necessary
/* Bypass the nominal setting - can introduce a click in sound when tempo/pitch control crosses the nominal value...
if (rate == 1.0f)
if (rate == 1.0f)
{
// The rate value is same as the original, simply evaluate the tempo changer.
// The rate value is same as the original, simply evaluate the tempo changer.
assert(output == pTDStretch);
if (pRateTransposer->isEmpty() == 0)
if (pRateTransposer->isEmpty() == 0)
{
// yet flush the last samples in the pitch transposer buffer
// (may happen if 'rate' changes from a non-zero value to zero)
pTDStretch->moveSamples(*pRateTransposer);
}
pTDStretch->putSamples(samples, nSamples);
}
}
*/
#ifndef PREVENT_CLICK_AT_RATE_CROSSOVER
else if (rate <= 1.0f)
#ifndef SOUNDTOUCH_PREVENT_CLICK_AT_RATE_CROSSOVER
else if (rate <= 1.0f)
{
// transpose the rate down, output the transposed sound to tempo changer buffer
assert(output == pTDStretch);
pRateTransposer->putSamples(samples, nSamples);
pTDStretch->moveSamples(*pRateTransposer);
}
else
}
else
#endif
{
// evaluate the tempo changer, then transpose the rate up,
// evaluate the tempo changer, then transpose the rate up,
assert(output == pRateTransposer);
pTDStretch->putSamples(samples, nSamples);
pRateTransposer->moveSamples(*pTDStretch);
@ -346,20 +345,36 @@ void SoundTouch::putSamples(const SAMPLETYPE *samples, uint nSamples)
void SoundTouch::flush()
{
int i;
uint nOut;
SAMPLETYPE buff[128];
int nUnprocessed;
int nOut;
SAMPLETYPE buff[64*2]; // note: allocate 2*64 to cater 64 sample frames of stereo sound
nOut = numSamples();
// check how many samples still await processing, and scale
// that by tempo & rate to get expected output sample count
nUnprocessed = numUnprocessedSamples();
nUnprocessed = (int)((double)nUnprocessed / (tempo * rate) + 0.5);
memset(buff, 0, 128 * sizeof(SAMPLETYPE));
nOut = numSamples(); // ready samples currently in buffer ...
nOut += nUnprocessed; // ... and how many we expect there to be in the end
memset(buff, 0, 64 * channels * sizeof(SAMPLETYPE));
// "Push" the last active samples out from the processing pipeline by
// feeding blank samples into the processing pipeline until new,
// processed samples appear in the output (not however, more than
// feeding blank samples into the processing pipeline until new,
// processed samples appear in the output (not however, more than
// 8ksamples in any case)
for (i = 0; i < 128; i ++)
for (i = 0; i < 128; i ++)
{
putSamples(buff, 64);
if (numSamples() != nOut) break; // new samples have appeared in the output!
if ((int)numSamples() >= nOut)
{
// Enough new samples have appeared into the output!
// As samples come from processing with bigger chunks, now truncate it
// back to maximum "nOut" samples to improve duration accuracy
adjustAmountOfSamples(nOut);
// finish
break;
}
}
// Clear working buffers
@ -379,7 +394,7 @@ BOOL SoundTouch::setSetting(int settingId, int value)
// read current tdstretch routine parameters
pTDStretch->getParameters(&sampleRate, &sequenceMs, &seekWindowMs, &overlapMs);
switch (settingId)
switch (settingId)
{
case SETTING_USE_AA_FILTER :
// enables / disabless anti-alias filter
@ -425,7 +440,7 @@ int SoundTouch::getSetting(int settingId) const
{
int temp;
switch (settingId)
switch (settingId)
{
case SETTING_USE_AA_FILTER :
return (uint)pRateTransposer->isAAFilterEnabled();
@ -448,7 +463,13 @@ int SoundTouch::getSetting(int settingId) const
pTDStretch->getParameters(NULL, NULL, NULL, &temp);
return temp;
default :
case SETTING_NOMINAL_INPUT_SEQUENCE :
return pTDStretch->getInputSampleReq();
case SETTING_NOMINAL_OUTPUT_SEQUENCE :
return pTDStretch->getOutputBatchSize();
default :
return 0;
}
}

View File

@ -1,27 +1,27 @@
//////////////////////////////////////////////////////////////////////////////
///
/// SoundTouch - main class for tempo/pitch/rate adjusting routines.
/// SoundTouch - main class for tempo/pitch/rate adjusting routines.
///
/// Notes:
/// - Initialize the SoundTouch object instance by setting up the sound stream
/// parameters with functions 'setSampleRate' and 'setChannels', then set
/// - Initialize the SoundTouch object instance by setting up the sound stream
/// parameters with functions 'setSampleRate' and 'setChannels', then set
/// desired tempo/pitch/rate settings with the corresponding functions.
///
/// - The SoundTouch class behaves like a first-in-first-out pipeline: The
/// - The SoundTouch class behaves like a first-in-first-out pipeline: The
/// samples that are to be processed are fed into one of the pipe by calling
/// function 'putSamples', while the ready processed samples can be read
/// function 'putSamples', while the ready processed samples can be read
/// from the other end of the pipeline with function 'receiveSamples'.
///
/// - The SoundTouch processing classes require certain sized 'batches' of
/// samples in order to process the sound. For this reason the classes buffer
/// incoming samples until there are enough of samples available for
///
/// - The SoundTouch processing classes require certain sized 'batches' of
/// samples in order to process the sound. For this reason the classes buffer
/// incoming samples until there are enough of samples available for
/// processing, then they carry out the processing step and consequently
/// make the processed samples available for outputting.
///
/// - For the above reason, the processing routines introduce a certain
///
/// - For the above reason, the processing routines introduce a certain
/// 'latency' between the input and output, so that the samples input to
/// SoundTouch may not be immediately available in the output, and neither
/// the amount of outputtable samples may not immediately be in direct
/// SoundTouch may not be immediately available in the output, and neither
/// the amount of outputtable samples may not immediately be in direct
/// relationship with the amount of previously input samples.
///
/// - The tempo/pitch/rate control parameters can be altered during processing.
@ -30,8 +30,8 @@
/// required.
///
/// - This class utilizes classes 'TDStretch' for tempo change (without modifying
/// pitch) and 'RateTransposer' for changing the playback rate (that is, both
/// tempo and pitch in the same ratio) of the sound. The third available control
/// pitch) and 'RateTransposer' for changing the playback rate (that is, both
/// tempo and pitch in the same ratio) of the sound. The third available control
/// 'pitch' (change pitch but maintain tempo) is produced by a combination of
/// combining the two other controls.
///
@ -41,10 +41,10 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2009-12-28 22:10:14 +0200 (Mon, 28 Dec 2009) $
// Last changed : $Date: 2012-12-28 17:32:59 -0200 (sex, 28 dez 2012) $
// File revision : $Revision: 4 $
//
// $Id: SoundTouch.h 78 2009-12-28 20:10:14Z oparviai $
// $Id: SoundTouch.h 163 2012-12-28 19:32:59Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
@ -79,10 +79,10 @@ namespace soundtouch
{
/// Soundtouch library version string
#define SOUNDTOUCH_VERSION "1.5.0"
#define SOUNDTOUCH_VERSION "1.7.1"
/// SoundTouch library version id
#define SOUNDTOUCH_VERSION_ID (10500)
#define SOUNDTOUCH_VERSION_ID (10701)
//
// Available setting IDs for the 'setSetting' & 'get_setting' functions:
@ -98,24 +98,49 @@ namespace soundtouch
/// quality compromising)
#define SETTING_USE_QUICKSEEK 2
/// Time-stretch algorithm single processing sequence length in milliseconds. This determines
/// to how long sequences the original sound is chopped in the time-stretch algorithm.
/// Time-stretch algorithm single processing sequence length in milliseconds. This determines
/// to how long sequences the original sound is chopped in the time-stretch algorithm.
/// See "STTypes.h" or README for more information.
#define SETTING_SEQUENCE_MS 3
/// Time-stretch algorithm seeking window length in milliseconds for algorithm that finds the
/// best possible overlapping location. This determines from how wide window the algorithm
/// may look for an optimal joining location when mixing the sound sequences back together.
/// Time-stretch algorithm seeking window length in milliseconds for algorithm that finds the
/// best possible overlapping location. This determines from how wide window the algorithm
/// may look for an optimal joining location when mixing the sound sequences back together.
/// See "STTypes.h" or README for more information.
#define SETTING_SEEKWINDOW_MS 4
/// Time-stretch algorithm overlap length in milliseconds. When the chopped sound sequences
/// are mixed back together, to form a continuous sound stream, this parameter defines over
/// how long period the two consecutive sequences are let to overlap each other.
/// Time-stretch algorithm overlap length in milliseconds. When the chopped sound sequences
/// are mixed back together, to form a continuous sound stream, this parameter defines over
/// how long period the two consecutive sequences are let to overlap each other.
/// See "STTypes.h" or README for more information.
#define SETTING_OVERLAP_MS 5
/// Call "getSetting" with this ID to query nominal average processing sequence
/// size in samples. This value tells approcimate value how many input samples
/// SoundTouch needs to gather before it does DSP processing run for the sample batch.
///
/// Notices:
/// - This is read-only parameter, i.e. setSetting ignores this parameter
/// - Returned value is approximate average value, exact processing batch
/// size may wary from time to time
/// - This parameter value is not constant but may change depending on
/// tempo/pitch/rate/samplerate settings.
#define SETTING_NOMINAL_INPUT_SEQUENCE 6
/// Call "getSetting" with this ID to query nominal average processing output
/// size in samples. This value tells approcimate value how many output samples
/// SoundTouch outputs once it does DSP processing run for a batch of input samples.
///
/// Notices:
/// - This is read-only parameter, i.e. setSetting ignores this parameter
/// - Returned value is approximate average value, exact processing batch
/// size may wary from time to time
/// - This parameter value is not constant but may change depending on
/// tempo/pitch/rate/samplerate settings.
#define SETTING_NOMINAL_OUTPUT_SEQUENCE 7
class SoundTouch : public FIFOProcessor
{
private:
@ -137,7 +162,7 @@ private:
/// Flag: Has sample rate been set?
BOOL bSrateSet;
/// Calculates effective rate & tempo valuescfrom 'virtualRate', 'virtualTempo' and
/// Calculates effective rate & tempo valuescfrom 'virtualRate', 'virtualTempo' and
/// 'virtualPitch' parameters.
void calcEffectiveRateAndTempo();
@ -181,7 +206,7 @@ public:
/// represent lower pitches, larger values higher pitch.
void setPitch(float newPitch);
/// Sets pitch change in octaves compared to the original pitch
/// Sets pitch change in octaves compared to the original pitch
/// (-1.00 .. +1.00)
void setPitchOctaves(float newPitch);
@ -221,7 +246,7 @@ public:
/// Changes a setting controlling the processing system behaviour. See the
/// 'SETTING_...' defines for available setting ID's.
///
///
/// \return 'TRUE' if the setting was succesfully changed
BOOL setSetting(int settingId, ///< Setting ID number. see SETTING_... defines.
int value ///< New setting value.
@ -242,7 +267,7 @@ public:
/// classes 'FIFOProcessor' and 'FIFOSamplePipe')
///
/// - receiveSamples() : Use this function to receive 'ready' processed samples from SoundTouch.
/// - numSamples() : Get number of 'ready' samples that can be received with
/// - numSamples() : Get number of 'ready' samples that can be received with
/// function 'receiveSamples()'
/// - isEmpty() : Returns nonzero if there aren't any 'ready' samples.
/// - clear() : Clears all samples from ready/processing buffers.

View File

@ -1,10 +1,10 @@
////////////////////////////////////////////////////////////////////////////////
///
/// Sampled sound tempo changer/time stretch algorithm. Changes the sound tempo
/// while maintaining the original pitch by using a time domain WSOLA-like
///
/// Sampled sound tempo changer/time stretch algorithm. Changes the sound tempo
/// while maintaining the original pitch by using a time domain WSOLA-like
/// method with several performance-increasing tweaks.
///
/// Note : MMX optimized functions reside in a separate, platform-specific
/// Note : MMX optimized functions reside in a separate, platform-specific
/// file, e.g. 'mmx_win.cpp' or 'mmx_gcc.cpp'
///
/// Author : Copyright (c) Olli Parviainen
@ -13,10 +13,10 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2009-12-28 21:27:04 +0200 (Mon, 28 Dec 2009) $
// Last changed : $Date: 2012-11-08 16:53:01 -0200 (qui, 08 nov 2012) $
// File revision : $Revision: 1.12 $
//
// $Id: TDStretch.cpp 77 2009-12-28 19:27:04Z oparviai $
// $Id: TDStretch.cpp 160 2012-11-08 18:53:01Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
@ -46,7 +46,6 @@
#include <assert.h>
#include <math.h>
#include <float.h>
#include <stdexcept>
#include "STTypes.h"
#include "cpu_detect.h"
@ -91,7 +90,7 @@ TDStretch::TDStretch() : FIFOProcessor(&outputBuffer)
channels = 2;
pMidBuffer = NULL;
pRefMidBufferUnaligned = NULL;
pMidBufferUnaligned = NULL;
overlapLength = 0;
bAutoSeqSetting = TRUE;
@ -101,7 +100,7 @@ TDStretch::TDStretch() : FIFOProcessor(&outputBuffer)
skipFract = 0;
tempo = 1.0f;
setParameters(48000, DEFAULT_SEQUENCE_MS, DEFAULT_SEEKWINDOW_MS, DEFAULT_OVERLAP_MS);
setParameters(44100, DEFAULT_SEQUENCE_MS, DEFAULT_SEEKWINDOW_MS, DEFAULT_OVERLAP_MS);
setTempo(1.0f);
clear();
@ -111,8 +110,7 @@ TDStretch::TDStretch() : FIFOProcessor(&outputBuffer)
TDStretch::~TDStretch()
{
delete[] pMidBuffer;
delete[] pRefMidBufferUnaligned;
delete[] pMidBufferUnaligned;
}
@ -122,11 +120,11 @@ TDStretch::~TDStretch()
//
// 'sampleRate' = sample rate of the sound
// 'sequenceMS' = one processing sequence length in milliseconds (default = 82 ms)
// 'seekwindowMS' = seeking window length for scanning the best overlapping
// 'seekwindowMS' = seeking window length for scanning the best overlapping
// position (default = 28 ms)
// 'overlapMS' = overlapping length (default = 12 ms)
void TDStretch::setParameters(int aSampleRate, int aSequenceMS,
void TDStretch::setParameters(int aSampleRate, int aSequenceMS,
int aSeekWindowMS, int aOverlapMS)
{
// accept only positive parameter values - if zero or negative, use old values instead
@ -137,19 +135,19 @@ void TDStretch::setParameters(int aSampleRate, int aSequenceMS,
{
this->sequenceMs = aSequenceMS;
bAutoSeqSetting = FALSE;
}
}
else if (aSequenceMS == 0)
{
// if zero, use automatic setting
bAutoSeqSetting = TRUE;
}
if (aSeekWindowMS > 0)
if (aSeekWindowMS > 0)
{
this->seekWindowMs = aSeekWindowMS;
bAutoSeekSetting = FALSE;
}
else if (aSeekWindowMS == 0)
}
else if (aSeekWindowMS == 0)
{
// if zero, use automatic setting
bAutoSeekSetting = TRUE;
@ -196,12 +194,17 @@ void TDStretch::getParameters(int *pSampleRate, int *pSequenceMs, int *pSeekWind
// Overlaps samples in 'midBuffer' with the samples in 'pInput'
void TDStretch::overlapMono(SAMPLETYPE *pOutput, const SAMPLETYPE *pInput) const
{
int i, itemp;
int i;
SAMPLETYPE m1, m2;
for (i = 0; i < overlapLength ; i ++)
m1 = (SAMPLETYPE)0;
m2 = (SAMPLETYPE)overlapLength;
for (i = 0; i < overlapLength ; i ++)
{
itemp = overlapLength - i;
pOutput[i] = (pInput[i] * i + pMidBuffer[i] * itemp ) / overlapLength; // >> overlapDividerBits;
pOutput[i] = (pInput[i] * m1 + pMidBuffer[i] * m2 ) / overlapLength;
m1 += 1;
m2 -= 1;
}
}
@ -247,40 +250,22 @@ BOOL TDStretch::isQuickSeekEnabled() const
// Seeks for the optimal overlap-mixing position.
int TDStretch::seekBestOverlapPosition(const SAMPLETYPE *refPos)
{
if (channels == 2)
if (bQuickSeek)
{
// stereo sound
if (bQuickSeek)
{
return seekBestOverlapPositionStereoQuick(refPos);
}
else
{
return seekBestOverlapPositionStereo(refPos);
}
}
else
return seekBestOverlapPositionQuick(refPos);
}
else
{
// mono sound
if (bQuickSeek)
{
return seekBestOverlapPositionMonoQuick(refPos);
}
else
{
return seekBestOverlapPositionMono(refPos);
}
return seekBestOverlapPositionFull(refPos);
}
}
// Overlaps samples in 'midBuffer' with the samples in 'pInputBuffer' at position
// of 'ovlPos'.
inline void TDStretch::overlap(SAMPLETYPE *pOutput, const SAMPLETYPE *pInput, uint ovlPos) const
{
if (channels == 2)
if (channels == 2)
{
// stereo sound
overlapStereo(pOutput, pInput + 2 * ovlPos);
@ -292,38 +277,34 @@ inline void TDStretch::overlap(SAMPLETYPE *pOutput, const SAMPLETYPE *pInput, ui
// Seeks for the optimal overlap-mixing position. The 'stereo' version of the
// routine
//
// The best position is determined as the position where the two overlapped
// sample sequences are 'most alike', in terms of the highest cross-correlation
// value over the overlapping period
int TDStretch::seekBestOverlapPositionStereo(const SAMPLETYPE *refPos)
int TDStretch::seekBestOverlapPositionFull(const SAMPLETYPE *refPos)
{
int bestOffs;
double bestCorr, corr;
int i;
// Slopes the amplitudes of the 'midBuffer' samples
precalcCorrReferenceStereo();
bestCorr = FLT_MIN;
bestOffs = 0;
// Scans for the best correlation value by testing each possible position
// over the permitted range.
for (i = 0; i < seekLength; i ++)
for (i = 0; i < seekLength; i ++)
{
// Calculates correlation value for the mixing position corresponding
// to 'i'
corr = (double)calcCrossCorrStereo(refPos + 2 * i, pRefMidBuffer);
corr = calcCrossCorr(refPos + channels * i, pMidBuffer);
// heuristic rule to slightly favour values close to mid of the range
double tmp = (double)(2 * i - seekLength) / (double)seekLength;
corr = ((corr + 0.1) * (1.0 - 0.25 * tmp * tmp));
// Checks for the highest correlation value
if (corr > bestCorr)
if (corr > bestCorr)
{
bestCorr = corr;
bestOffs = i;
@ -342,16 +323,13 @@ int TDStretch::seekBestOverlapPositionStereo(const SAMPLETYPE *refPos)
// The best position is determined as the position where the two overlapped
// sample sequences are 'most alike', in terms of the highest cross-correlation
// value over the overlapping period
int TDStretch::seekBestOverlapPositionStereoQuick(const SAMPLETYPE *refPos)
int TDStretch::seekBestOverlapPositionQuick(const SAMPLETYPE *refPos)
{
int j;
int bestOffs;
double bestCorr, corr;
int scanCount, corrOffset, tempOffset;
// Slopes the amplitude of the 'midBuffer' samples
precalcCorrReferenceStereo();
bestCorr = FLT_MIN;
bestOffs = _scanOffsets[0][0];
corrOffset = 0;
@ -360,26 +338,26 @@ int TDStretch::seekBestOverlapPositionStereoQuick(const SAMPLETYPE *refPos)
// Scans for the best correlation value using four-pass hierarchical search.
//
// The look-up table 'scans' has hierarchical position adjusting steps.
// In first pass the routine searhes for the highest correlation with
// In first pass the routine searhes for the highest correlation with
// relatively coarse steps, then rescans the neighbourhood of the highest
// correlation with better resolution and so on.
for (scanCount = 0;scanCount < 4; scanCount ++)
for (scanCount = 0;scanCount < 4; scanCount ++)
{
j = 0;
while (_scanOffsets[scanCount][j])
while (_scanOffsets[scanCount][j])
{
tempOffset = corrOffset + _scanOffsets[scanCount][j];
if (tempOffset >= seekLength) break;
// Calculates correlation value for the mixing position corresponding
// to 'tempOffset'
corr = (double)calcCrossCorrStereo(refPos + 2 * tempOffset, pRefMidBuffer);
corr = (double)calcCrossCorr(refPos + channels * tempOffset, pMidBuffer);
// heuristic rule to slightly favour values close to mid of the range
double tmp = (double)(2 * tempOffset - seekLength) / seekLength;
corr = ((corr + 0.1) * (1.0 - 0.25 * tmp * tmp));
// Checks for the highest correlation value
if (corr > bestCorr)
if (corr > bestCorr)
{
bestCorr = corr;
bestOffs = tempOffset;
@ -396,112 +374,7 @@ int TDStretch::seekBestOverlapPositionStereoQuick(const SAMPLETYPE *refPos)
// Seeks for the optimal overlap-mixing position. The 'mono' version of the
// routine
//
// The best position is determined as the position where the two overlapped
// sample sequences are 'most alike', in terms of the highest cross-correlation
// value over the overlapping period
int TDStretch::seekBestOverlapPositionMono(const SAMPLETYPE *refPos)
{
int bestOffs;
double bestCorr, corr;
int tempOffset;
const SAMPLETYPE *compare;
// Slopes the amplitude of the 'midBuffer' samples
precalcCorrReferenceMono();
bestCorr = FLT_MIN;
bestOffs = 0;
// Scans for the best correlation value by testing each possible position
// over the permitted range.
for (tempOffset = 0; tempOffset < seekLength; tempOffset ++)
{
compare = refPos + tempOffset;
// Calculates correlation value for the mixing position corresponding
// to 'tempOffset'
corr = (double)calcCrossCorrMono(pRefMidBuffer, compare);
// heuristic rule to slightly favour values close to mid of the range
double tmp = (double)(2 * tempOffset - seekLength) / seekLength;
corr = ((corr + 0.1) * (1.0 - 0.25 * tmp * tmp));
// Checks for the highest correlation value
if (corr > bestCorr)
{
bestCorr = corr;
bestOffs = tempOffset;
}
}
// clear cross correlation routine state if necessary (is so e.g. in MMX routines).
clearCrossCorrState();
return bestOffs;
}
// Seeks for the optimal overlap-mixing position. The 'mono' version of the
// routine
//
// The best position is determined as the position where the two overlapped
// sample sequences are 'most alike', in terms of the highest cross-correlation
// value over the overlapping period
int TDStretch::seekBestOverlapPositionMonoQuick(const SAMPLETYPE *refPos)
{
int j;
int bestOffs;
double bestCorr, corr;
int scanCount, corrOffset, tempOffset;
// Slopes the amplitude of the 'midBuffer' samples
precalcCorrReferenceMono();
bestCorr = FLT_MIN;
bestOffs = _scanOffsets[0][0];
corrOffset = 0;
tempOffset = 0;
// Scans for the best correlation value using four-pass hierarchical search.
//
// The look-up table 'scans' has hierarchical position adjusting steps.
// In first pass the routine searhes for the highest correlation with
// relatively coarse steps, then rescans the neighbourhood of the highest
// correlation with better resolution and so on.
for (scanCount = 0;scanCount < 4; scanCount ++)
{
j = 0;
while (_scanOffsets[scanCount][j])
{
tempOffset = corrOffset + _scanOffsets[scanCount][j];
if (tempOffset >= seekLength) break;
// Calculates correlation value for the mixing position corresponding
// to 'tempOffset'
corr = (double)calcCrossCorrMono(refPos + tempOffset, pRefMidBuffer);
// heuristic rule to slightly favour values close to mid of the range
double tmp = (double)(2 * tempOffset - seekLength) / seekLength;
corr = ((corr + 0.1) * (1.0 - 0.25 * tmp * tmp));
// Checks for the highest correlation value
if (corr > bestCorr)
{
bestCorr = corr;
bestOffs = tempOffset;
}
j ++;
}
corrOffset = bestOffs;
}
// clear cross correlation routine state if necessary (is so e.g. in MMX routines).
clearCrossCorrState();
return bestOffs;
}
/// clear cross correlation routine state if necessary
/// clear cross correlation routine state if necessary
void TDStretch::clearCrossCorrState()
{
// default implementation is empty.
@ -531,7 +404,7 @@ void TDStretch::calcSeqParameters()
#define CHECK_LIMITS(x, mi, ma) (((x) < (mi)) ? (mi) : (((x) > (ma)) ? (ma) : (x)))
double seq, seek;
if (bAutoSeqSetting)
{
seq = AUTOSEQ_C + AUTOSEQ_K * tempo;
@ -548,7 +421,7 @@ void TDStretch::calcSeqParameters()
// Update seek window lengths
seekWindowLength = (sampleRate * sequenceMs) / 1000;
if (seekWindowLength < 2 * overlapLength)
if (seekWindowLength < 2 * overlapLength)
{
seekWindowLength = 2 * overlapLength;
}
@ -557,7 +430,7 @@ void TDStretch::calcSeqParameters()
// Sets new target tempo. Normal tempo = 'SCALE', smaller values represent slower
// Sets new target tempo. Normal tempo = 'SCALE', smaller values represent slower
// tempo, larger faster tempo.
void TDStretch::setTempo(float newTempo)
{
@ -568,11 +441,11 @@ void TDStretch::setTempo(float newTempo)
// Calculate new sequence duration
calcSeqParameters();
// Calculate ideal skip length (according to tempo value)
// Calculate ideal skip length (according to tempo value)
nominalSkip = tempo * (seekWindowLength - overlapLength);
intskip = (int)(nominalSkip + 0.5f);
// Calculate how many samples are needed in the 'inputBuffer' to
// Calculate how many samples are needed in the 'inputBuffer' to
// process another batch of samples
//sampleReq = max(intskip + overlapLength, seekWindowLength) + seekLength / 2;
sampleReq = max(intskip + overlapLength, seekWindowLength) + seekLength;
@ -600,18 +473,18 @@ void TDStretch::processNominalTempo()
{
assert(tempo == 1.0f);
if (bMidBufferDirty)
if (bMidBufferDirty)
{
// If there are samples in pMidBuffer waiting for overlapping,
// do a single sliding overlapping with them in order to prevent a
// do a single sliding overlapping with them in order to prevent a
// clicking distortion in the output sound
if (inputBuffer.numSamples() < overlapLength)
if (inputBuffer.numSamples() < overlapLength)
{
// wait until we've got overlapLength input samples
return;
}
// Mix the samples in the beginning of 'inputBuffer' with the
// samples in 'midBuffer' using sliding overlapping
// Mix the samples in the beginning of 'inputBuffer' with the
// samples in 'midBuffer' using sliding overlapping
overlap(outputBuffer.ptrEnd(overlapLength), inputBuffer.ptrBegin(), 0);
outputBuffer.putSamples(overlapLength);
inputBuffer.receiveSamples(overlapLength);
@ -636,7 +509,7 @@ void TDStretch::processSamples()
/* Removed this small optimization - can introduce a click to sound when tempo setting
crosses the nominal value
if (tempo == 1.0f)
if (tempo == 1.0f)
{
// tempo not changed from the original, so bypass the processing
processNominalTempo();
@ -646,14 +519,13 @@ void TDStretch::processSamples()
// Process samples as long as there are enough samples in 'inputBuffer'
// to form a processing frame.
// while ((int)inputBuffer.numSamples() >= sampleReq - (outDebt / 4))
while ((int)inputBuffer.numSamples() >= sampleReq)
while ((int)inputBuffer.numSamples() >= sampleReq)
{
// If tempo differs from the normal ('SCALE'), scan for the best overlapping
// position
offset = seekBestOverlapPosition(inputBuffer.ptrBegin());
// Mix the samples in the 'inputBuffer' at position of 'offset' with the
// Mix the samples in the 'inputBuffer' at position of 'offset' with the
// samples in 'midBuffer' using sliding overlapping
// ... first partially overlap with the end of the previous sequence
// (that's in 'midBuffer')
@ -661,16 +533,8 @@ void TDStretch::processSamples()
outputBuffer.putSamples((uint)overlapLength);
// ... then copy sequence samples from 'inputBuffer' to output:
temp = (seekLength / 2 - offset);
// compensate cumulated output length diff vs. ideal output
// temp -= outDebt / 4;
// update ideal vs. true output difference
// outDebt += temp;
// length of sequence
// temp += (seekWindowLength - 2 * overlapLength);
temp = (seekWindowLength - 2 * overlapLength);
// crosscheck that we don't have buffer overflow...
@ -681,11 +545,11 @@ void TDStretch::processSamples()
outputBuffer.putSamples(inputBuffer.ptrBegin() + channels * (offset + overlapLength), (uint)temp);
// Copies the end of the current sequence from 'inputBuffer' to
// 'midBuffer' for being mixed with the beginning of the next
// Copies the end of the current sequence from 'inputBuffer' to
// 'midBuffer' for being mixed with the beginning of the next
// processing sequence and so on
assert((offset + temp + overlapLength * 2) <= (int)inputBuffer.numSamples());
memcpy(pMidBuffer, inputBuffer.ptrBegin() + channels * (offset + temp + overlapLength),
memcpy(pMidBuffer, inputBuffer.ptrBegin() + channels * (offset + temp + overlapLength),
channels * sizeof(SAMPLETYPE) * overlapLength);
// Remove the processed samples from the input buffer. Update
@ -722,26 +586,24 @@ void TDStretch::acceptNewOverlapLength(int newOverlapLength)
if (overlapLength > prevOvl)
{
delete[] pMidBuffer;
delete[] pRefMidBufferUnaligned;
delete[] pMidBufferUnaligned;
pMidBufferUnaligned = new SAMPLETYPE[overlapLength * 2 + 16 / sizeof(SAMPLETYPE)];
// ensure that 'pMidBuffer' is aligned to 16 byte boundary for efficiency
pMidBuffer = (SAMPLETYPE *)SOUNDTOUCH_ALIGN_POINTER_16(pMidBufferUnaligned);
pMidBuffer = new SAMPLETYPE[overlapLength * 2];
clearMidBuffer();
pRefMidBufferUnaligned = new SAMPLETYPE[2 * overlapLength + 16 / sizeof(SAMPLETYPE)];
// ensure that 'pRefMidBuffer' is aligned to 16 byte boundary for efficiency
pRefMidBuffer = (SAMPLETYPE *)((((ulong)pRefMidBufferUnaligned) + 15) & (ulong)-16);
}
}
// Operator 'new' is overloaded so that it automatically creates a suitable instance
// Operator 'new' is overloaded so that it automatically creates a suitable instance
// depending on if we've a MMX/SSE/etc-capable CPU available or not.
void * TDStretch::operator new(size_t s)
{
// Notice! don't use "new TDStretch" directly, use "newInstance" to create a new instance instead!
throw std::runtime_error("Error in TDStretch::new: Don't use 'new TDStretch' directly, use 'newInstance' member instead!");
return NULL;
ST_THROW_RT_ERROR("Error in TDStretch::new: Don't use 'new TDStretch' directly, use 'newInstance' member instead!");
return newInstance();
}
@ -751,36 +613,26 @@ TDStretch * TDStretch::newInstance()
uExtensions = detectCPUextensions();
// Check if MMX/SSE/3DNow! instruction set extensions supported by CPU
// Check if MMX/SSE instruction set extensions supported by CPU
#ifdef ALLOW_MMX
#ifdef SOUNDTOUCH_ALLOW_MMX
// MMX routines available only with integer sample types
if (uExtensions & SUPPORT_MMX)
{
return ::new TDStretchMMX;
}
else
#endif // ALLOW_MMX
#endif // SOUNDTOUCH_ALLOW_MMX
#ifdef ALLOW_SSE
#ifdef SOUNDTOUCH_ALLOW_SSE
if (uExtensions & SUPPORT_SSE)
{
// SSE support
return ::new TDStretchSSE;
}
else
#endif // ALLOW_SSE
#ifdef ALLOW_3DNOW
if (uExtensions & SUPPORT_3DNOW)
{
// 3DNow! support
return ::new TDStretch3DNow;
}
else
#endif // ALLOW_3DNOW
#endif // SOUNDTOUCH_ALLOW_SSE
{
// ISA optimizations not supported, use plain C version
@ -795,46 +647,9 @@ TDStretch * TDStretch::newInstance()
//
//////////////////////////////////////////////////////////////////////////////
#ifdef INTEGER_SAMPLES
#ifdef SOUNDTOUCH_INTEGER_SAMPLES
// Slopes the amplitude of the 'midBuffer' samples so that cross correlation
// is faster to calculate
void TDStretch::precalcCorrReferenceStereo()
{
int i, cnt2;
int temp, temp2;
for (i=0 ; i < (int)overlapLength ;i ++)
{
temp = i * (overlapLength - i);
cnt2 = i * 2;
temp2 = (pMidBuffer[cnt2] * temp) / slopingDivider;
pRefMidBuffer[cnt2] = (short)(temp2);
temp2 = (pMidBuffer[cnt2 + 1] * temp) / slopingDivider;
pRefMidBuffer[cnt2 + 1] = (short)(temp2);
}
}
// Slopes the amplitude of the 'midBuffer' samples so that cross correlation
// is faster to calculate
void TDStretch::precalcCorrReferenceMono()
{
int i;
long temp;
long temp2;
for (i=0 ; i < (int)overlapLength ;i ++)
{
temp = i * (overlapLength - i);
temp2 = (pMidBuffer[i] * temp) / slopingDivider;
pRefMidBuffer[i] = (short)temp2;
}
}
// Overlaps samples in 'midBuffer' with the samples in 'input'. The 'Stereo'
// Overlaps samples in 'midBuffer' with the samples in 'input'. The 'Stereo'
// version of the routine.
void TDStretch::overlapStereo(short *poutput, const short *input) const
{
@ -842,7 +657,7 @@ void TDStretch::overlapStereo(short *poutput, const short *input) const
short temp;
int cnt2;
for (i = 0; i < overlapLength ; i ++)
for (i = 0; i < overlapLength ; i ++)
{
temp = (short)(overlapLength - i);
cnt2 = 2 * i;
@ -868,8 +683,8 @@ void TDStretch::calculateOverlapLength(int aoverlapMs)
assert(aoverlapMs >= 0);
// calculate overlap length so that it's power of 2 - thus it's easy to do
// integer division by right-shifting. Term "-1" at end is to account for
// the extra most significatnt bit left unused in result by signed multiplication
// integer division by right-shifting. Term "-1" at end is to account for
// the extra most significatnt bit left unused in result by signed multiplication
overlapDividerBits = _getClosest2Power((sampleRate * aoverlapMs) / 1000.0) - 1;
if (overlapDividerBits > 9) overlapDividerBits = 9;
if (overlapDividerBits < 3) overlapDividerBits = 3;
@ -877,113 +692,70 @@ void TDStretch::calculateOverlapLength(int aoverlapMs)
acceptNewOverlapLength(newOvl);
// calculate sloping divider so that crosscorrelation operation won't
// overflow 32-bit register. Max. sum of the crosscorrelation sum without
// calculate sloping divider so that crosscorrelation operation won't
// overflow 32-bit register. Max. sum of the crosscorrelation sum without
// divider would be 2^30*(N^3-N)/3, where N = overlap length
slopingDivider = (newOvl * newOvl - 1) / 3;
}
long TDStretch::calcCrossCorrMono(const short *mixingPos, const short *compare) const
double TDStretch::calcCrossCorr(const short *mixingPos, const short *compare) const
{
long corr;
long norm;
int i;
corr = norm = 0;
for (i = 1; i < overlapLength; i ++)
// Same routine for stereo and mono. For stereo, unroll loop for better
// efficiency and gives slightly better resolution against rounding.
// For mono it same routine, just unrolls loop by factor of 4
for (i = 0; i < channels * overlapLength; i += 4)
{
corr += (mixingPos[i] * compare[i]) >> overlapDividerBits;
norm += (mixingPos[i] * mixingPos[i]) >> overlapDividerBits;
corr += (mixingPos[i] * compare[i] +
mixingPos[i + 1] * compare[i + 1] +
mixingPos[i + 2] * compare[i + 2] +
mixingPos[i + 3] * compare[i + 3]) >> overlapDividerBits;
norm += (mixingPos[i] * mixingPos[i] +
mixingPos[i + 1] * mixingPos[i + 1] +
mixingPos[i + 2] * mixingPos[i + 2] +
mixingPos[i + 3] * mixingPos[i + 3]) >> overlapDividerBits;
}
// Normalize result by dividing by sqrt(norm) - this step is easiest
// Normalize result by dividing by sqrt(norm) - this step is easiest
// done using floating point operation
if (norm == 0) norm = 1; // to avoid div by zero
return (long)((double)corr * SHRT_MAX / sqrt((double)norm));
return (double)corr / sqrt((double)norm);
}
long TDStretch::calcCrossCorrStereo(const short *mixingPos, const short *compare) const
{
long corr;
long norm;
int i;
corr = norm = 0;
for (i = 2; i < 2 * overlapLength; i += 2)
{
corr += (mixingPos[i] * compare[i] +
mixingPos[i + 1] * compare[i + 1]) >> overlapDividerBits;
norm += (mixingPos[i] * mixingPos[i] + mixingPos[i + 1] * mixingPos[i + 1]) >> overlapDividerBits;
}
// Normalize result by dividing by sqrt(norm) - this step is easiest
// done using floating point operation
if (norm == 0) norm = 1; // to avoid div by zero
return (long)((double)corr * SHRT_MAX / sqrt((double)norm));
}
#endif // INTEGER_SAMPLES
#endif // SOUNDTOUCH_INTEGER_SAMPLES
//////////////////////////////////////////////////////////////////////////////
//
// Floating point arithmetics specific algorithm implementations.
//
#ifdef FLOAT_SAMPLES
// Slopes the amplitude of the 'midBuffer' samples so that cross correlation
// is faster to calculate
void TDStretch::precalcCorrReferenceStereo()
{
int i, cnt2;
float temp;
for (i=0 ; i < (int)overlapLength ;i ++)
{
temp = (float)i * (float)(overlapLength - i);
cnt2 = i * 2;
pRefMidBuffer[cnt2] = (float)(pMidBuffer[cnt2] * temp);
pRefMidBuffer[cnt2 + 1] = (float)(pMidBuffer[cnt2 + 1] * temp);
}
}
// Slopes the amplitude of the 'midBuffer' samples so that cross correlation
// is faster to calculate
void TDStretch::precalcCorrReferenceMono()
{
int i;
float temp;
for (i=0 ; i < (int)overlapLength ;i ++)
{
temp = (float)i * (float)(overlapLength - i);
pRefMidBuffer[i] = (float)(pMidBuffer[i] * temp);
}
}
#ifdef SOUNDTOUCH_FLOAT_SAMPLES
// Overlaps samples in 'midBuffer' with the samples in 'pInput'
void TDStretch::overlapStereo(float *pOutput, const float *pInput) const
{
int i;
int cnt2;
float fTemp;
float fScale;
float fi;
float f1;
float f2;
fScale = 1.0f / (float)overlapLength;
for (i = 0; i < (int)overlapLength ; i ++)
f1 = 0;
f2 = 1.0f;
for (i = 0; i < 2 * (int)overlapLength ; i += 2)
{
fTemp = (float)(overlapLength - i) * fScale;
fi = (float)i * fScale;
cnt2 = 2 * i;
pOutput[cnt2 + 0] = pInput[cnt2 + 0] * fi + pMidBuffer[cnt2 + 0] * fTemp;
pOutput[cnt2 + 1] = pInput[cnt2 + 1] * fi + pMidBuffer[cnt2 + 1] * fTemp;
pOutput[i + 0] = pInput[i + 0] * f1 + pMidBuffer[i + 0] * f2;
pOutput[i + 1] = pInput[i + 1] * f1 + pMidBuffer[i + 1] * f2;
f1 += fScale;
f2 -= fScale;
}
}
@ -1004,42 +776,33 @@ void TDStretch::calculateOverlapLength(int overlapInMsec)
}
double TDStretch::calcCrossCorrMono(const float *mixingPos, const float *compare) const
double TDStretch::calcCrossCorr(const float *mixingPos, const float *compare) const
{
double corr;
double norm;
int i;
corr = norm = 0;
for (i = 1; i < overlapLength; i ++)
{
corr += mixingPos[i] * compare[i];
norm += mixingPos[i] * mixingPos[i];
}
if (norm < 1e-9) norm = 1.0; // to avoid div by zero
return corr / sqrt(norm);
}
double TDStretch::calcCrossCorrStereo(const float *mixingPos, const float *compare) const
{
double corr;
double norm;
int i;
corr = norm = 0;
for (i = 2; i < 2 * overlapLength; i += 2)
// Same routine for stereo and mono. For Stereo, unroll by factor of 2.
// For mono it's same routine yet unrollsd by factor of 4.
for (i = 0; i < channels * overlapLength; i += 4)
{
corr += mixingPos[i] * compare[i] +
mixingPos[i + 1] * compare[i + 1];
norm += mixingPos[i] * mixingPos[i] +
norm += mixingPos[i] * mixingPos[i] +
mixingPos[i + 1] * mixingPos[i + 1];
// unroll the loop for better CPU efficiency:
corr += mixingPos[i + 2] * compare[i + 2] +
mixingPos[i + 3] * compare[i + 3];
norm += mixingPos[i + 2] * mixingPos[i + 2] +
mixingPos[i + 3] * mixingPos[i + 3];
}
if (norm < 1e-9) norm = 1.0; // to avoid div by zero
return corr / sqrt(norm);
}
#endif // FLOAT_SAMPLES
#endif // SOUNDTOUCH_FLOAT_SAMPLES

View File

@ -1,10 +1,10 @@
////////////////////////////////////////////////////////////////////////////////
///
/// Sampled sound tempo changer/time stretch algorithm. Changes the sound tempo
/// while maintaining the original pitch by using a time domain WSOLA-like method
///
/// Sampled sound tempo changer/time stretch algorithm. Changes the sound tempo
/// while maintaining the original pitch by using a time domain WSOLA-like method
/// with several performance-increasing tweaks.
///
/// Note : MMX/SSE optimized functions reside in separate, platform-specific files
/// Note : MMX/SSE optimized functions reside in separate, platform-specific files
/// 'mmx_optimized.cpp' and 'sse_optimized.cpp'
///
/// Author : Copyright (c) Olli Parviainen
@ -13,10 +13,10 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2009-05-17 14:35:13 +0300 (Sun, 17 May 2009) $
// Last changed : $Date: 2012-04-01 16:49:30 -0300 (dom, 01 abr 2012) $
// File revision : $Revision: 4 $
//
// $Id: TDStretch.h 71 2009-05-17 11:35:13Z oparviai $
// $Id: TDStretch.h 137 2012-04-01 19:49:30Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
@ -53,14 +53,14 @@ namespace soundtouch
{
/// Default values for sound processing parameters:
/// Notice that the default parameters are tuned for contemporary popular music
/// Notice that the default parameters are tuned for contemporary popular music
/// processing. For speech processing applications these parameters suit better:
/// #define DEFAULT_SEQUENCE_MS 40
/// #define DEFAULT_SEEKWINDOW_MS 15
/// #define DEFAULT_OVERLAP_MS 8
///
/// Default length of a single processing sequence, in milliseconds. This determines to how
/// Default length of a single processing sequence, in milliseconds. This determines to how
/// long sequences the original sound is chopped in the time-stretch algorithm.
///
/// The larger this value is, the lesser sequences are used in processing. In principle
@ -75,15 +75,15 @@ namespace soundtouch
/// according to tempo setting (recommended)
#define USE_AUTO_SEQUENCE_LEN 0
/// Seeking window default length in milliseconds for algorithm that finds the best possible
/// overlapping location. This determines from how wide window the algorithm may look for an
/// optimal joining location when mixing the sound sequences back together.
/// Seeking window default length in milliseconds for algorithm that finds the best possible
/// overlapping location. This determines from how wide window the algorithm may look for an
/// optimal joining location when mixing the sound sequences back together.
///
/// The bigger this window setting is, the higher the possibility to find a better mixing
/// position will become, but at the same time large values may cause a "drifting" artifact
/// because consequent sequences will be taken at more uneven intervals.
///
/// If there's a disturbing artifact that sounds as if a constant frequency was drifting
/// If there's a disturbing artifact that sounds as if a constant frequency was drifting
/// around, try reducing this setting.
///
/// Increasing this value increases computational burden & vice versa.
@ -94,11 +94,11 @@ namespace soundtouch
/// according to tempo setting (recommended)
#define USE_AUTO_SEEKWINDOW_LEN 0
/// Overlap length in milliseconds. When the chopped sound sequences are mixed back together,
/// to form a continuous sound stream, this parameter defines over how long period the two
/// consecutive sequences are let to overlap each other.
/// Overlap length in milliseconds. When the chopped sound sequences are mixed back together,
/// to form a continuous sound stream, this parameter defines over how long period the two
/// consecutive sequences are let to overlap each other.
///
/// This shouldn't be that critical parameter. If you reduce the DEFAULT_SEQUENCE_MS setting
/// This shouldn't be that critical parameter. If you reduce the DEFAULT_SEQUENCE_MS setting
/// by a large amount, you might wish to try a smaller value on this.
///
/// Increasing this value increases computational burden & vice versa.
@ -115,8 +115,7 @@ protected:
float tempo;
SAMPLETYPE *pMidBuffer;
SAMPLETYPE *pRefMidBuffer;
SAMPLETYPE *pRefMidBufferUnaligned;
SAMPLETYPE *pMidBufferUnaligned;
int overlapLength;
int seekLength;
int seekWindowLength;
@ -127,8 +126,6 @@ protected:
FIFOSampleBuffer outputBuffer;
FIFOSampleBuffer inputBuffer;
BOOL bQuickSeek;
// int outDebt;
// BOOL bMidBufferDirty;
int sampleRate;
int sequenceMs;
@ -142,13 +139,10 @@ protected:
virtual void clearCrossCorrState();
void calculateOverlapLength(int overlapMs);
virtual LONG_SAMPLETYPE calcCrossCorrStereo(const SAMPLETYPE *mixingPos, const SAMPLETYPE *compare) const;
virtual LONG_SAMPLETYPE calcCrossCorrMono(const SAMPLETYPE *mixingPos, const SAMPLETYPE *compare) const;
virtual double calcCrossCorr(const SAMPLETYPE *mixingPos, const SAMPLETYPE *compare) const;
virtual int seekBestOverlapPositionStereo(const SAMPLETYPE *refPos);
virtual int seekBestOverlapPositionStereoQuick(const SAMPLETYPE *refPos);
virtual int seekBestOverlapPositionMono(const SAMPLETYPE *refPos);
virtual int seekBestOverlapPositionMonoQuick(const SAMPLETYPE *refPos);
virtual int seekBestOverlapPositionFull(const SAMPLETYPE *refPos);
virtual int seekBestOverlapPositionQuick(const SAMPLETYPE *refPos);
int seekBestOverlapPosition(const SAMPLETYPE *refPos);
virtual void overlapStereo(SAMPLETYPE *output, const SAMPLETYPE *input) const;
@ -157,9 +151,6 @@ protected:
void clearMidBuffer();
void overlap(SAMPLETYPE *output, const SAMPLETYPE *input, uint ovlPos) const;
void precalcCorrReferenceMono();
void precalcCorrReferenceStereo();
void calcSeqParameters();
/// Changes the tempo of the given sound samples.
@ -167,27 +158,27 @@ protected:
/// The maximum amount of samples that can be returned at a time is set by
/// the 'set_returnBuffer_size' function.
void processSamples();
public:
TDStretch();
virtual ~TDStretch();
/// Operator 'new' is overloaded so that it automatically creates a suitable instance
/// Operator 'new' is overloaded so that it automatically creates a suitable instance
/// depending on if we've a MMX/SSE/etc-capable CPU available or not.
static void *operator new(size_t s);
/// Use this function instead of "new" operator to create a new instance of this class.
/// Use this function instead of "new" operator to create a new instance of this class.
/// This function automatically chooses a correct feature set depending on if the CPU
/// supports MMX/SSE/etc extensions.
static TDStretch *newInstance();
/// Returns the output buffer object
FIFOSamplePipe *getOutput() { return &outputBuffer; };
/// Returns the input buffer object
FIFOSamplePipe *getInput() { return &inputBuffer; };
/// Sets new target tempo. Normal tempo = 'SCALE', smaller values represent slower
/// Sets new target tempo. Normal tempo = 'SCALE', smaller values represent slower
/// tempo, larger faster tempo.
void setTempo(float newTempo);
@ -200,7 +191,7 @@ public:
/// Sets the number of channels, 1 = mono, 2 = stereo
void setChannels(int numChannels);
/// Enables/disables the quick position seeking algorithm. Zero to disable,
/// Enables/disables the quick position seeking algorithm. Zero to disable,
/// nonzero to enable
void enableQuickSeek(BOOL enable);
@ -212,7 +203,7 @@ public:
//
/// 'sampleRate' = sample rate of the sound
/// 'sequenceMS' = one processing sequence length in milliseconds
/// 'seekwindowMS' = seeking window length for scanning the best overlapping
/// 'seekwindowMS' = seeking window length for scanning the best overlapping
/// position
/// 'overlapMS' = overlapping length
void setParameters(int sampleRate, ///< Samplerate of sound being processed (Hz)
@ -233,43 +224,45 @@ public:
uint numSamples ///< Number of samples in 'samples' so that one sample
///< contains both channels if stereo
);
/// return nominal input sample requirement for triggering a processing batch
int getInputSampleReq() const
{
return (int)(nominalSkip + 0.5);
}
/// return nominal output sample amount when running a processing batch
int getOutputBatchSize() const
{
return seekWindowLength - overlapLength;
}
};
// Implementation-specific class declarations:
#ifdef ALLOW_MMX
#ifdef SOUNDTOUCH_ALLOW_MMX
/// Class that implements MMX optimized routines for 16bit integer samples type.
class TDStretchMMX : public TDStretch
{
protected:
long calcCrossCorrStereo(const short *mixingPos, const short *compare) const;
double calcCrossCorr(const short *mixingPos, const short *compare) const;
virtual void overlapStereo(short *output, const short *input) const;
virtual void clearCrossCorrState();
};
#endif /// ALLOW_MMX
#endif /// SOUNDTOUCH_ALLOW_MMX
#ifdef ALLOW_3DNOW
/// Class that implements 3DNow! optimized routines for floating point samples type.
class TDStretch3DNow : public TDStretch
{
protected:
double calcCrossCorrStereo(const float *mixingPos, const float *compare) const;
};
#endif /// ALLOW_3DNOW
#ifdef ALLOW_SSE
#ifdef SOUNDTOUCH_ALLOW_SSE
/// Class that implements SSE optimized routines for floating point samples type.
class TDStretchSSE : public TDStretch
{
protected:
double calcCrossCorrStereo(const float *mixingPos, const float *compare) const;
double calcCrossCorr(const float *mixingPos, const float *compare) const;
};
#endif /// ALLOW_SSE
#endif /// SOUNDTOUCH_ALLOW_SSE
}
#endif /// TDStretch_H

View File

@ -2,8 +2,8 @@
///
/// A header file for detecting the Intel MMX instructions set extension.
///
/// Please see 'mmx_win.cpp', 'mmx_cpp.cpp' and 'mmx_non_x86.cpp' for the
/// routine implementations for x86 Windows, x86 gnu version and non-x86
/// Please see 'mmx_win.cpp', 'mmx_cpp.cpp' and 'mmx_non_x86.cpp' for the
/// routine implementations for x86 Windows, x86 gnu version and non-x86
/// platforms, respectively.
///
/// Author : Copyright (c) Olli Parviainen
@ -12,7 +12,7 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2008-02-10 18:26:55 +0200 (Sun, 10 Feb 2008) $
// Last changed : $Date: 2008-02-10 14:26:55 -0200 (dom, 10 fev 2008) $
// File revision : $Revision: 4 $
//
// $Id: cpu_detect.h 11 2008-02-10 16:26:55Z oparviai $

137
3rdparty/SoundTouch/cpu_detect_x86.cpp vendored Normal file
View File

@ -0,0 +1,137 @@
////////////////////////////////////////////////////////////////////////////////
///
/// Generic version of the x86 CPU extension detection routine.
///
/// This file is for GNU & other non-Windows compilers, see 'cpu_detect_x86_win.cpp'
/// for the Microsoft compiler version.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2012-11-08 16:44:37 -0200 (qui, 08 nov 2012) $
// File revision : $Revision: 4 $
//
// $Id: cpu_detect_x86.cpp 159 2012-11-08 18:44:37Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#include "cpu_detect.h"
#include "STTypes.h"
#if defined(SOUNDTOUCH_ALLOW_X86_OPTIMIZATIONS)
#if defined(__GNUC__) && defined(__i386__)
// gcc
#include "cpuid.h"
#elif defined(_M_IX86)
// windows non-gcc
#include <intrin.h>
#define bit_MMX (1 << 23)
#define bit_SSE (1 << 25)
#define bit_SSE2 (1 << 26)
#endif
#endif
//////////////////////////////////////////////////////////////////////////////
//
// processor instructions extension detection routines
//
//////////////////////////////////////////////////////////////////////////////
// Flag variable indicating whick ISA extensions are disabled (for debugging)
static uint _dwDisabledISA = 0x00; // 0xffffffff; //<- use this to disable all extensions
// Disables given set of instruction extensions. See SUPPORT_... defines.
void disableExtensions(uint dwDisableMask)
{
_dwDisabledISA = dwDisableMask;
}
/// Checks which instruction set extensions are supported by the CPU.
uint detectCPUextensions(void)
{
/// If building for a 64bit system (no Itanium) and the user wants optimizations.
/// Return the OR of SUPPORT_{MMX,SSE,SSE2}. 11001 or 0x19.
/// Keep the _dwDisabledISA test (2 more operations, could be eliminated).
#if ((defined(__GNUC__) && defined(__x86_64__)) \
|| defined(_M_X64)) \
&& defined(SOUNDTOUCH_ALLOW_X86_OPTIMIZATIONS)
return 0x19 & ~_dwDisabledISA;
/// If building for a 32bit system and the user wants optimizations.
/// Keep the _dwDisabledISA test (2 more operations, could be eliminated).
#elif ((defined(__GNUC__) && defined(__i386__)) \
|| defined(_M_IX86)) \
&& defined(SOUNDTOUCH_ALLOW_X86_OPTIMIZATIONS)
if (_dwDisabledISA == 0xffffffff) return 0;
uint res = 0;
#if defined(__GNUC__)
// GCC version of cpuid. Requires GCC 4.3.0 or later for __cpuid intrinsic support.
uint eax, ebx, ecx, edx; // unsigned int is the standard type. uint is defined by the compiler and not guaranteed to be portable.
// Check if no cpuid support.
if (!__get_cpuid (1, &eax, &ebx, &ecx, &edx)) return 0; // always disable extensions.
if (edx & bit_MMX) res = res | SUPPORT_MMX;
if (edx & bit_SSE) res = res | SUPPORT_SSE;
if (edx & bit_SSE2) res = res | SUPPORT_SSE2;
#else
// Window / VS version of cpuid. Notice that Visual Studio 2005 or later required
// for __cpuid intrinsic support.
int reg[4] = {-1};
// Check if no cpuid support.
__cpuid(reg,0);
if ((unsigned int)reg[0] == 0) return 0; // always disable extensions.
__cpuid(reg,1);
if ((unsigned int)reg[3] & bit_MMX) res = res | SUPPORT_MMX;
if ((unsigned int)reg[3] & bit_SSE) res = res | SUPPORT_SSE;
if ((unsigned int)reg[3] & bit_SSE2) res = res | SUPPORT_SSE2;
#endif
return res & ~_dwDisabledISA;
#else
/// One of these is true:
/// 1) We don't want optimizations.
/// 2) Using an unsupported compiler.
/// 3) Running on a non-x86 platform.
return 0;
#endif
}

View File

@ -2,7 +2,7 @@
///
/// Generic version of the x86 CPU extension detection routine.
///
/// This file is for GNU & other non-Windows compilers, see 'cpu_detect_x86_win.cpp'
/// This file is for GNU & other non-Windows compilers, see 'cpu_detect_x86_win.cpp'
/// for the Microsoft compiler version.
///
/// Author : Copyright (c) Olli Parviainen
@ -11,10 +11,10 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2009-02-25 19:13:51 +0200 (Wed, 25 Feb 2009) $
// Last changed : $Date: 2011-09-02 15:56:11 -0300 (sex, 02 set 2011) $
// File revision : $Revision: 4 $
//
// $Id: cpu_detect_x86_gcc.cpp 67 2009-02-25 17:13:51Z oparviai $
// $Id: cpu_detect_x86_gcc.cpp 131 2011-09-02 18:56:11Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
@ -39,15 +39,9 @@
//
////////////////////////////////////////////////////////////////////////////////
#include <stdexcept>
#include <string>
#include "cpu_detect.h"
#include "STTypes.h"
using namespace std;
#include <stdio.h>
//////////////////////////////////////////////////////////////////////////////
//
// processor instructions extension detection routines
@ -68,7 +62,7 @@ void disableExtensions(uint dwDisableMask)
/// Checks which instruction set extensions are supported by the CPU.
uint detectCPUextensions(void)
{
#if (!(ALLOW_X86_OPTIMIZATIONS) || !(__GNUC__))
#if (!(SOUNDTOUCH_ALLOW_X86_OPTIMIZATIONS) || !(__GNUC__))
return 0; // always disable extensions on non-x86 platforms.
@ -78,8 +72,11 @@ uint detectCPUextensions(void)
if (_dwDisabledISA == 0xffffffff) return 0;
asm volatile(
#ifndef __x86_64__
// Check if 'cpuid' instructions is available by toggling eflags bit 21.
// Skip this for x86-64 as they always have cpuid while stack manipulation
// differs from 16/32bit ISA.
"\n\txor %%esi, %%esi" // clear %%esi = result register
// check if 'cpuid' instructions is available by toggling eflags bit 21
"\n\tpushf" // save eflags to stack
"\n\tmovl (%%esp), %%eax" // load eax from stack (with eflags)
@ -93,6 +90,8 @@ uint detectCPUextensions(void)
"\n\txor %%edx, %%edx" // clear edx for defaulting no mmx
"\n\tcmp %%ecx, %%eax" // compare to original eflags values
"\n\tjz end" // jumps to 'end' if cpuid not present
#endif // __x86_64__
// cpuid instruction available, test for presence of mmx instructions
"\n\tmovl $1, %%eax"
@ -129,7 +128,7 @@ uint detectCPUextensions(void)
: "=r" (res)
: /* no inputs */
: "%edx", "%eax", "%ecx", "%esi" );
return res & ~_dwDisabledISA;
#endif
}

View File

@ -2,8 +2,8 @@
///
/// Win32 version of the x86 CPU detect routine.
///
/// This file is to be compiled in Windows platform with Microsoft Visual C++
/// Compiler. Please see 'cpu_detect_x86_gcc.cpp' for the gcc compiler version
/// This file is to be compiled in Windows platform with Microsoft Visual C++
/// Compiler. Please see 'cpu_detect_x86_gcc.cpp' for the gcc compiler version
/// for all GNU platforms.
///
/// Author : Copyright (c) Olli Parviainen
@ -12,10 +12,10 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2009-02-13 18:22:48 +0200 (Fri, 13 Feb 2009) $
// Last changed : $Date: 2011-07-17 07:58:40 -0300 (dom, 17 jul 2011) $
// File revision : $Revision: 4 $
//
// $Id: cpu_detect_x86_win.cpp 62 2009-02-13 16:22:48Z oparviai $
// $Id: cpu_detect_x86_win.cpp 127 2011-07-17 10:58:40Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
@ -42,9 +42,7 @@
#include "cpu_detect.h"
#ifndef WIN32
#error wrong platform - this source code file is exclusively for Win32 platform
#endif
#include "STTypes.h"
//////////////////////////////////////////////////////////////////////////////
//
@ -71,7 +69,9 @@ uint detectCPUextensions(void)
if (_dwDisabledISA == 0xffffffff) return 0;
_asm
#ifndef _M_X64
// 32bit compilation, detect CPU capabilities with inline assembler.
__asm
{
; check if 'cpuid' instructions is available by toggling eflags bit 21
;
@ -92,7 +92,7 @@ uint detectCPUextensions(void)
cmp eax, ecx ; compare to original eflags values
jz end ; jumps to 'end' if cpuid not present
; cpuid instruction available, test for presence of mmx instructions
; cpuid instruction available, test for presence of mmx instructions
mov eax, 1
cpuid
test edx, 0x00800000
@ -125,5 +125,13 @@ uint detectCPUextensions(void)
mov res, esi
}
#else
// Visual C++ 64bit compilation doesn't support inline assembler. However,
// all x64 compatible CPUs support MMX & SSE extensions.
res = SUPPORT_MMX | SUPPORT_SSE | SUPPORT_SSE2;
#endif
return res & ~_dwDisabledISA;
}

View File

@ -1,15 +1,15 @@
////////////////////////////////////////////////////////////////////////////////
///
/// MMX optimized routines. All MMX optimized functions have been gathered into
/// this single source code file, regardless to their class or original source
/// code file, in order to ease porting the library to other compiler and
/// MMX optimized routines. All MMX optimized functions have been gathered into
/// this single source code file, regardless to their class or original source
/// code file, in order to ease porting the library to other compiler and
/// processor platforms.
///
/// The MMX-optimizations are programmed using MMX compiler intrinsics that
/// are supported both by Microsoft Visual C++ and GCC compilers, so this file
/// should compile with both toolsets.
///
/// NOTICE: If using Visual Studio 6.0, you'll need to install the "Visual C++
/// NOTICE: If using Visual Studio 6.0, you'll need to install the "Visual C++
/// 6.0 processor pack" update to support compiler intrinsic syntax. The update
/// is available for download at Microsoft Developers Network, see here:
/// http://msdn.microsoft.com/en-us/vstudio/aa718349.aspx
@ -20,10 +20,10 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2009-10-31 16:53:23 +0200 (Sat, 31 Oct 2009) $
// Last changed : $Date: 2012-11-08 16:53:01 -0200 (qui, 08 nov 2012) $
// File revision : $Revision: 4 $
//
// $Id: mmx_optimized.cpp 75 2009-10-31 14:53:23Z oparviai $
// $Id: mmx_optimized.cpp 160 2012-11-08 18:53:01Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
@ -50,13 +50,9 @@
#include "STTypes.h"
#ifdef ALLOW_MMX
#ifdef SOUNDTOUCH_ALLOW_MMX
// MMX routines available only with integer sample type
#if !(WIN32 || __i386__ || __x86_64__)
#error "wrong platform - this source code file is exclusively for x86 platforms"
#endif
using namespace soundtouch;
//////////////////////////////////////////////////////////////////////////////
@ -72,23 +68,23 @@ using namespace soundtouch;
// Calculates cross correlation of two buffers
long TDStretchMMX::calcCrossCorrStereo(const short *pV1, const short *pV2) const
double TDStretchMMX::calcCrossCorr(const short *pV1, const short *pV2) const
{
const __m64 *pVec1, *pVec2;
__m64 shifter;
__m64 accu, normaccu;
long corr, norm;
int i;
pVec1 = (__m64*)pV1;
pVec2 = (__m64*)pV2;
shifter = _m_from_int(overlapDividerBits);
normaccu = accu = _mm_setzero_si64();
// Process 4 parallel sets of 2 * stereo samples each during each
// round to improve CPU-level parallellization.
for (i = 0; i < overlapLength / 8; i ++)
// Process 4 parallel sets of 2 * stereo samples or 4 * mono samples
// during each round for improved CPU-level parallellization.
for (i = 0; i < channels * overlapLength / 16; i ++)
{
__m64 temp, temp2;
@ -127,10 +123,11 @@ long TDStretchMMX::calcCrossCorrStereo(const short *pV1, const short *pV2) const
// Clear MMS state
_m_empty();
// Normalize result by dividing by sqrt(norm) - this step is easiest
// Normalize result by dividing by sqrt(norm) - this step is easiest
// done using floating point operation
if (norm == 0) norm = 1; // to avoid div by zero
return (long)((double)corr * USHRT_MAX / sqrt((double)norm));
return (double)corr / sqrt((double)norm);
// Note: Warning about the missing EMMS instruction is harmless
// as it'll be called elsewhere.
}
@ -161,7 +158,7 @@ void TDStretchMMX::overlapStereo(short *output, const short *input) const
// mix1 = mixer values for 1st stereo sample
// mix1 = mixer values for 2nd stereo sample
// adder = adder for updating mixer values after each round
mix1 = _mm_set_pi16(0, overlapLength, 0, overlapLength);
adder = _mm_set_pi16(1, -1, 1, -1);
mix2 = _mm_add_pi16(mix1, adder);
@ -174,7 +171,7 @@ void TDStretchMMX::overlapStereo(short *output, const short *input) const
for (i = 0; i < overlapLength / 4; i ++)
{
__m64 temp1, temp2;
// load & shuffle data so that input & mixbuffer data samples are paired
temp1 = _mm_unpacklo_pi16(pVMidBuf[0], pVinput[0]); // = i0l m0l i0r m0r
temp2 = _mm_unpackhi_pi16(pVMidBuf[0], pVinput[0]); // = i1l m1l i1r m1r
@ -242,10 +239,10 @@ void FIRFilterMMX::setCoefficients(const short *coeffs, uint newLength, uint uRe
// Ensure that filter coeffs array is aligned to 16-byte boundary
delete[] filterCoeffsUnalign;
filterCoeffsUnalign = new short[2 * newLength + 8];
filterCoeffsAlign = (short *)(((ulong)filterCoeffsUnalign + 15) & -16);
filterCoeffsAlign = (short *)SOUNDTOUCH_ALIGN_POINTER_16(filterCoeffsUnalign);
// rearrange the filter coefficients for mmx routines
for (i = 0;i < length; i += 4)
// rearrange the filter coefficients for mmx routines
for (i = 0;i < length; i += 4)
{
filterCoeffsAlign[2 * i + 0] = coeffs[i + 0];
filterCoeffsAlign[2 * i + 1] = coeffs[i + 2];
@ -317,4 +314,4 @@ uint FIRFilterMMX::evaluateFilterStereo(short *dest, const short *src, uint numS
return (numSamples & 0xfffffffe) - length;
}
#endif // ALLOW_MMX
#endif // SOUNDTOUCH_ALLOW_MMX

View File

@ -1,20 +1,20 @@
////////////////////////////////////////////////////////////////////////////////
///
/// SSE optimized routines for Pentium-III, Athlon-XP and later CPUs. All SSE
/// optimized functions have been gathered into this single source
/// code file, regardless to their class or original source code file, in order
/// SSE optimized routines for Pentium-III, Athlon-XP and later CPUs. All SSE
/// optimized functions have been gathered into this single source
/// code file, regardless to their class or original source code file, in order
/// to ease porting the library to other compiler and processor platforms.
///
/// The SSE-optimizations are programmed using SSE compiler intrinsics that
/// are supported both by Microsoft Visual C++ and GCC compilers, so this file
/// should compile with both toolsets.
///
/// NOTICE: If using Visual Studio 6.0, you'll need to install the "Visual C++
/// 6.0 processor pack" update to support SSE instruction set. The update is
/// NOTICE: If using Visual Studio 6.0, you'll need to install the "Visual C++
/// 6.0 processor pack" update to support SSE instruction set. The update is
/// available for download at Microsoft Developers Network, see here:
/// http://msdn.microsoft.com/en-us/vstudio/aa718349.aspx
///
/// If the above URL is expired or removed, go to "http://msdn.microsoft.com" and
/// If the above URL is expired or removed, go to "http://msdn.microsoft.com" and
/// perform a search with keywords "processor pack".
///
/// Author : Copyright (c) Olli Parviainen
@ -23,10 +23,10 @@
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2009-12-28 22:32:57 +0200 (Mon, 28 Dec 2009) $
// Last changed : $Date: 2012-11-08 16:53:01 -0200 (qui, 08 nov 2012) $
// File revision : $Revision: 4 $
//
// $Id: sse_optimized.cpp 80 2009-12-28 20:32:57Z oparviai $
// $Id: sse_optimized.cpp 160 2012-11-08 18:53:01Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
@ -56,9 +56,9 @@
using namespace soundtouch;
#ifdef ALLOW_SSE
#ifdef SOUNDTOUCH_ALLOW_SSE
// SSE routines available only with float sample type
// SSE routines available only with float sample type
//////////////////////////////////////////////////////////////////////////////
//
@ -71,35 +71,35 @@ using namespace soundtouch;
#include <math.h>
// Calculates cross correlation of two buffers
double TDStretchSSE::calcCrossCorrStereo(const float *pV1, const float *pV2) const
double TDStretchSSE::calcCrossCorr(const float *pV1, const float *pV2) const
{
int i;
const float *pVec1;
const __m128 *pVec2;
__m128 vSum, vNorm;
// Note. It means a major slow-down if the routine needs to tolerate
// unaligned __m128 memory accesses. It's way faster if we can skip
// Note. It means a major slow-down if the routine needs to tolerate
// unaligned __m128 memory accesses. It's way faster if we can skip
// unaligned slots and use _mm_load_ps instruction instead of _mm_loadu_ps.
// This can mean up to ~ 10-fold difference (incl. part of which is
// due to skipping every second round for stereo sound though).
//
// Compile-time define ALLOW_NONEXACT_SIMD_OPTIMIZATION is provided
// Compile-time define SOUNDTOUCH_ALLOW_NONEXACT_SIMD_OPTIMIZATION is provided
// for choosing if this little cheating is allowed.
#ifdef ALLOW_NONEXACT_SIMD_OPTIMIZATION
// Little cheating allowed, return valid correlation only for
#ifdef SOUNDTOUCH_ALLOW_NONEXACT_SIMD_OPTIMIZATION
// Little cheating allowed, return valid correlation only for
// aligned locations, meaning every second round for stereo sound.
#define _MM_LOAD _mm_load_ps
if (((ulong)pV1) & 15) return -1e50; // skip unaligned locations
if (((ulongptr)pV1) & 15) return -1e50; // skip unaligned locations
#else
// No cheating allowed, use unaligned load & take the resulting
// performance hit.
#define _MM_LOAD _mm_loadu_ps
#endif
#endif
// ensure overlapLength is divisible by 8
assert((overlapLength % 8) == 0);
@ -110,8 +110,9 @@ double TDStretchSSE::calcCrossCorrStereo(const float *pV1, const float *pV2) con
pVec2 = (const __m128*)pV2;
vSum = vNorm = _mm_setzero_ps();
// Unroll the loop by factor of 4 * 4 operations
for (i = 0; i < overlapLength / 8; i ++)
// Unroll the loop by factor of 4 * 4 operations. Use same routine for
// stereo & mono, for mono it just means twice the amount of unrolling.
for (i = 0; i < channels * overlapLength / 16; i ++)
{
__m128 vTemp;
// vSum += pV1[0..3] * pV2[0..3]
@ -152,7 +153,7 @@ double TDStretchSSE::calcCrossCorrStereo(const float *pV1, const float *pV2) con
// Calculates the cross-correlation value between 'pV1' and 'pV2' vectors
corr = norm = 0.0;
for (i = 0; i < overlapLength / 8; i ++)
for (i = 0; i < channels * overlapLength / 16; i ++)
{
corr += pV1[0] * pV2[0] +
pV1[1] * pV2[1] +
@ -171,81 +172,13 @@ double TDStretchSSE::calcCrossCorrStereo(const float *pV1, const float *pV2) con
pV1[14] * pV2[14] +
pV1[15] * pV2[15];
for (j = 0; j < 15; j ++) norm += pV1[j] * pV1[j];
for (j = 0; j < 15; j ++) norm += pV1[j] * pV1[j];
pV1 += 16;
pV2 += 16;
}
return corr / sqrt(norm);
*/
/* This is a bit outdated, corresponding routine in assembler. This may be teeny-weeny bit
faster than intrinsic version, but more difficult to maintain & get compiled on multiple
platforms.
uint overlapLengthLocal = overlapLength;
float corr;
_asm
{
// Very important note: data in 'pV2' _must_ be aligned to
// 16-byte boundary!
// give prefetch hints to CPU of what data are to be needed soonish
// give more aggressive hints on pV1 as that changes while pV2 stays
// same between runs
prefetcht0 [pV1]
prefetcht0 [pV2]
prefetcht0 [pV1 + 32]
mov eax, dword ptr pV1
mov ebx, dword ptr pV2
xorps xmm0, xmm0
mov ecx, overlapLengthLocal
shr ecx, 3 // div by eight
loop1:
prefetcht0 [eax + 64] // give a prefetch hint to CPU what data are to be needed soonish
prefetcht0 [ebx + 32] // give a prefetch hint to CPU what data are to be needed soonish
movups xmm1, [eax]
mulps xmm1, [ebx]
addps xmm0, xmm1
movups xmm2, [eax + 16]
mulps xmm2, [ebx + 16]
addps xmm0, xmm2
prefetcht0 [eax + 96] // give a prefetch hint to CPU what data are to be needed soonish
prefetcht0 [ebx + 64] // give a prefetch hint to CPU what data are to be needed soonish
movups xmm3, [eax + 32]
mulps xmm3, [ebx + 32]
addps xmm0, xmm3
movups xmm4, [eax + 48]
mulps xmm4, [ebx + 48]
addps xmm0, xmm4
add eax, 64
add ebx, 64
dec ecx
jnz loop1
// add the four floats of xmm0 together and return the result.
movhlps xmm1, xmm0 // move 3 & 4 of xmm0 to 1 & 2 of xmm1
addps xmm1, xmm0
movaps xmm2, xmm1
shufps xmm2, xmm2, 0x01 // move 2 of xmm2 as 1 of xmm2
addss xmm2, xmm1
movss corr, xmm2
}
return (double)corr;
*/
}
@ -281,15 +214,15 @@ void FIRFilterSSE::setCoefficients(const float *coeffs, uint newLength, uint uRe
FIRFilter::setCoefficients(coeffs, newLength, uResultDivFactor);
// Scale the filter coefficients so that it won't be necessary to scale the filtering result
// also rearrange coefficients suitably for 3DNow!
// also rearrange coefficients suitably for SSE
// Ensure that filter coeffs array is aligned to 16-byte boundary
delete[] filterCoeffsUnalign;
filterCoeffsUnalign = new float[2 * newLength + 4];
filterCoeffsAlign = (float *)(((unsigned long)filterCoeffsUnalign + 15) & (ulong)-16);
filterCoeffsAlign = (float *)SOUNDTOUCH_ALIGN_POINTER_16(filterCoeffsUnalign);
fDivider = (float)resultDivider;
// rearrange the filter coefficients for mmx routines
// rearrange the filter coefficients for mmx routines
for (i = 0; i < newLength; i ++)
{
filterCoeffsAlign[2 * i + 0] =
@ -313,7 +246,7 @@ uint FIRFilterSSE::evaluateFilterStereo(float *dest, const float *source, uint n
assert(dest != NULL);
assert((length % 8) == 0);
assert(filterCoeffsAlign != NULL);
assert(((ulong)filterCoeffsAlign) % 16 == 0);
assert(((ulongptr)filterCoeffsAlign) % 16 == 0);
// filter is evaluated for two stereo samples with each iteration, thus use of 'j += 2'
for (j = 0; j < count; j += 2)
@ -324,13 +257,13 @@ uint FIRFilterSSE::evaluateFilterStereo(float *dest, const float *source, uint n
uint i;
pSrc = (const float*)source; // source audio data
pFil = (const __m128*)filterCoeffsAlign; // filter coefficients. NOTE: Assumes coefficients
pFil = (const __m128*)filterCoeffsAlign; // filter coefficients. NOTE: Assumes coefficients
// are aligned to 16-byte boundary
sum1 = sum2 = _mm_setzero_ps();
for (i = 0; i < length / 8; i ++)
for (i = 0; i < length / 8; i ++)
{
// Unroll loop for efficiency & calculate filter for 2*2 stereo samples
// Unroll loop for efficiency & calculate filter for 2*2 stereo samples
// at each pass
// sum1 is accu for 2*2 filtered stereo sound data at the primary sound data offset
@ -365,14 +298,14 @@ uint FIRFilterSSE::evaluateFilterStereo(float *dest, const float *source, uint n
}
// Ideas for further improvement:
// 1. If it could be guaranteed that 'source' were always aligned to 16-byte
// 1. If it could be guaranteed that 'source' were always aligned to 16-byte
// boundary, a faster aligned '_mm_load_ps' instruction could be used.
// 2. If it could be guaranteed that 'dest' were always aligned to 16-byte
// 2. If it could be guaranteed that 'dest' were always aligned to 16-byte
// boundary, a faster '_mm_store_ps' instruction could be used.
return (uint)count;
/* original routine in C-language. please notice the C-version has differently
/* original routine in C-language. please notice the C-version has differently
organized coefficients though.
double suml1, suml2;
double sumr1, sumr2;
@ -387,26 +320,26 @@ uint FIRFilterSSE::evaluateFilterStereo(float *dest, const float *source, uint n
suml2 = sumr2 = 0.0;
ptr = src;
pFil = filterCoeffs;
for (i = 0; i < lengthLocal; i ++)
for (i = 0; i < lengthLocal; i ++)
{
// unroll loop for efficiency.
suml1 += ptr[0] * pFil[0] +
suml1 += ptr[0] * pFil[0] +
ptr[2] * pFil[2] +
ptr[4] * pFil[4] +
ptr[6] * pFil[6];
sumr1 += ptr[1] * pFil[1] +
sumr1 += ptr[1] * pFil[1] +
ptr[3] * pFil[3] +
ptr[5] * pFil[5] +
ptr[7] * pFil[7];
suml2 += ptr[8] * pFil[0] +
suml2 += ptr[8] * pFil[0] +
ptr[10] * pFil[2] +
ptr[12] * pFil[4] +
ptr[14] * pFil[6];
sumr2 += ptr[9] * pFil[1] +
sumr2 += ptr[9] * pFil[1] +
ptr[11] * pFil[3] +
ptr[13] * pFil[5] +
ptr[15] * pFil[7];
@ -423,88 +356,6 @@ uint FIRFilterSSE::evaluateFilterStereo(float *dest, const float *source, uint n
dest += 4;
}
*/
/* Similar routine in assembly, again obsoleted due to maintainability
_asm
{
// Very important note: data in 'src' _must_ be aligned to
// 16-byte boundary!
mov edx, count
mov ebx, dword ptr src
mov eax, dword ptr dest
shr edx, 1
loop1:
// "outer loop" : during each round 2*2 output samples are calculated
// give prefetch hints to CPU of what data are to be needed soonish
prefetcht0 [ebx]
prefetcht0 [filterCoeffsLocal]
mov esi, ebx
mov edi, filterCoeffsLocal
xorps xmm0, xmm0
xorps xmm1, xmm1
mov ecx, lengthLocal
loop2:
// "inner loop" : during each round eight FIR filter taps are evaluated for 2*2 samples
prefetcht0 [esi + 32] // give a prefetch hint to CPU what data are to be needed soonish
prefetcht0 [edi + 32] // give a prefetch hint to CPU what data are to be needed soonish
movups xmm2, [esi] // possibly unaligned load
movups xmm3, [esi + 8] // possibly unaligned load
mulps xmm2, [edi]
mulps xmm3, [edi]
addps xmm0, xmm2
addps xmm1, xmm3
movups xmm4, [esi + 16] // possibly unaligned load
movups xmm5, [esi + 24] // possibly unaligned load
mulps xmm4, [edi + 16]
mulps xmm5, [edi + 16]
addps xmm0, xmm4
addps xmm1, xmm5
prefetcht0 [esi + 64] // give a prefetch hint to CPU what data are to be needed soonish
prefetcht0 [edi + 64] // give a prefetch hint to CPU what data are to be needed soonish
movups xmm6, [esi + 32] // possibly unaligned load
movups xmm7, [esi + 40] // possibly unaligned load
mulps xmm6, [edi + 32]
mulps xmm7, [edi + 32]
addps xmm0, xmm6
addps xmm1, xmm7
movups xmm4, [esi + 48] // possibly unaligned load
movups xmm5, [esi + 56] // possibly unaligned load
mulps xmm4, [edi + 48]
mulps xmm5, [edi + 48]
addps xmm0, xmm4
addps xmm1, xmm5
add esi, 64
add edi, 64
dec ecx
jnz loop2
// Now xmm0 and xmm1 both have a filtered 2-channel sample each, but we still need
// to sum the two hi- and lo-floats of these registers together.
movhlps xmm2, xmm0 // xmm2 = xmm2_3 xmm2_2 xmm0_3 xmm0_2
movlhps xmm2, xmm1 // xmm2 = xmm1_1 xmm1_0 xmm0_3 xmm0_2
shufps xmm0, xmm1, 0xe4 // xmm0 = xmm1_3 xmm1_2 xmm0_1 xmm0_0
addps xmm0, xmm2
movaps [eax], xmm0
add ebx, 16
add eax, 16
dec edx
jnz loop1
}
*/
}
#endif // ALLOW_SSE
#endif // SOUNDTOUCH_ALLOW_SSE