gsdx ogl:

* add some dummy shader. Can be modify inside the debugger apitrace
* glclear* commands` seem to depend on scissor test and depth mask. Allow full write for the depth buffer
* texture debug, try to output some nice colors for the depth buffers


git-svn-id: http://pcsx2.googlecode.com/svn/trunk@5365 96395faa-99c1-11dd-bbfe-3dabce05a288
This commit is contained in:
gregory.hainaut 2012-08-08 17:49:23 +00:00
parent 7ff8abe376
commit 636c16f2df
5 changed files with 348 additions and 334 deletions

View File

@ -584,7 +584,7 @@ void GSDeviceOGL::DebugOutput()
} else { } else {
if (m_state.rtv != NULL) m_state.rtv->Save(format("/tmp/out_f%d__d%d__tex.bmp", g_frame_count, g_draw_count)); if (m_state.rtv != NULL) m_state.rtv->Save(format("/tmp/out_f%d__d%d__tex.bmp", g_frame_count, g_draw_count));
} }
//if (m_state.dsv != NULL) m_state.dsv->Save(format("/tmp/ds_out_%d.bmp", g_draw_count)); if (m_state.dsv != NULL) m_state.dsv->Save(format("/tmp/ds_out_%d.bmp", g_draw_count));
fprintf(stderr, "\n"); fprintf(stderr, "\n");
//DebugBB(); //DebugBB();
@ -668,7 +668,17 @@ void GSDeviceOGL::ClearDepth(GSTexture* t, float c)
OMSetFBO(m_fbo); OMSetFBO(m_fbo);
static_cast<GSTextureOGL*>(t)->Attach(GL_DEPTH_STENCIL_ATTACHMENT); static_cast<GSTextureOGL*>(t)->Attach(GL_DEPTH_STENCIL_ATTACHMENT);
// FIXME can you clean depth and stencil separately // FIXME can you clean depth and stencil separately
glClearBufferfv(GL_DEPTH, 0, &c); // XXX: glClear* depends on the scissor test!!! Disable it because the viewport
// could be smaller than the texture and we really want to clean all pixels.
glDisable(GL_SCISSOR_TEST);
if (m_state.dss != NULL && m_state.dss->IsMaskEnable()) {
glClearBufferfv(GL_DEPTH, 0, &c);
} else {
glDepthMask(true);
glClearBufferfv(GL_DEPTH, 0, &c);
glDepthMask(false);
}
glEnable(GL_SCISSOR_TEST);
OMSetFBO(fbo_old); OMSetFBO(fbo_old);
} }

View File

@ -228,6 +228,8 @@ public:
if (!m_stencil_enable) return; if (!m_stencil_enable) return;
fprintf(stderr, "Stencil %s. Both pass op %s\n", NameOfParam(m_stencil_func), NameOfParam(m_stencil_spass_dpass_op)); fprintf(stderr, "Stencil %s. Both pass op %s\n", NameOfParam(m_stencil_func), NameOfParam(m_stencil_spass_dpass_op));
} }
bool IsMaskEnable() { return m_depth_mask; }
}; };
class GSDeviceOGL : public GSDevice class GSDeviceOGL : public GSDevice

View File

@ -46,21 +46,6 @@ void GSDeviceOGL::CreateTextureFX()
glSamplerParameteri(m_rt_ss, GL_TEXTURE_COMPARE_FUNC, GL_NEVER); glSamplerParameteri(m_rt_ss, GL_TEXTURE_COMPARE_FUNC, GL_NEVER);
// FIXME: need ogl extension sd.MaxAnisotropy = 16; // FIXME: need ogl extension sd.MaxAnisotropy = 16;
//{"TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0},
//{"TEXCOORD", 1, DXGI_FORMAT_R32_FLOAT, 0, 12, D3D11_INPUT_PER_VERTEX_DATA, 0},
//float2 t : TEXCOORD0;
//float q : TEXCOORD1;
//
//{"POSITION", 0, DXGI_FORMAT_R16G16_UINT, 0, 16, D3D11_INPUT_PER_VERTEX_DATA, 0},
//{"POSITION", 1, DXGI_FORMAT_R32_UINT, 0, 20, D3D11_INPUT_PER_VERTEX_DATA, 0},
//uint2 p : POSITION0;
//uint z : POSITION1;
//
//{"COLOR", 0, DXGI_FORMAT_R8G8B8A8_UNORM, 0, 8, D3D11_INPUT_PER_VERTEX_DATA, 0},
//{"COLOR", 1, DXGI_FORMAT_R8G8B8A8_UNORM, 0, 28, D3D11_INPUT_PER_VERTEX_DATA, 0},
//float4 c : COLOR0;
//float4 f : COLOR1;
GSInputLayoutOGL vert_format[] = GSInputLayoutOGL vert_format[] =
{ {
// FIXME // FIXME
@ -74,6 +59,13 @@ void GSDeviceOGL::CreateTextureFX()
{6 , 4 , GL_UNSIGNED_BYTE , GL_TRUE , sizeof(GSVertex) , (const GLvoid*)(28) } , {6 , 4 , GL_UNSIGNED_BYTE , GL_TRUE , sizeof(GSVertex) , (const GLvoid*)(28) } ,
}; };
m_vb = new GSVertexBufferStateOGL(sizeof(GSVertex), vert_format, countof(vert_format)); m_vb = new GSVertexBufferStateOGL(sizeof(GSVertex), vert_format, countof(vert_format));
// Compile some dummy shaders to allow modification inside Apitrace for debug
GLuint dummy;
std::string macro = "";
CompileShaderFromSource("tfx.glsl", "vs_main", GL_VERTEX_SHADER, &dummy, macro);
CompileShaderFromSource("tfx.glsl", "gs_main", GL_GEOMETRY_SHADER, &dummy, macro);
CompileShaderFromSource("tfx.glsl", "ps_main", GL_FRAGMENT_SHADER, &dummy, macro);
} }
void GSDeviceOGL::SetupVS(VSSelector sel, const VSConstantBuffer* cb) void GSDeviceOGL::SetupVS(VSSelector sel, const VSConstantBuffer* cb)

View File

@ -21,6 +21,7 @@
#pragma once #pragma once
#include <limits.h>
#include "GSTextureOGL.h" #include "GSTextureOGL.h"
static int g_state_texture_unit = -1; static int g_state_texture_unit = -1;
static int g_state_texture_id = -1; static int g_state_texture_id = -1;
@ -372,16 +373,22 @@ void GSTextureOGL::Save(const string& fn, const void* image, uint32 pitch)
for(int h = m_size.y; h > 0; h--, data -= pitch) for(int h = m_size.y; h > 0; h--, data -= pitch)
{ {
if (IsDss()) { if (false && IsDss()) {
// Only get the depth and convert it to an integer // Only get the depth and convert it to an integer
uint8* better_data = data; uint8* better_data = data;
for (int w = m_size.x; w > 0; w--, better_data += 8) { for (int w = m_size.x; w > 0; w--, better_data += 8) {
float* input = (float*)better_data; float* input = (float*)better_data;
// FIXME how to dump 32 bits value into 8bits component color // FIXME how to dump 32 bits value into 8bits component color
uint32 depth = (uint32)ldexpf(*input, 32); GLuint depth_integer = (GLuint)(*input * (float)UINT_MAX);
uint8 small_depth = depth >> 24; uint8 r = (depth_integer >> 0) & 0xFF;
uint8 better_data[4] = {small_depth, small_depth, small_depth, 0 }; uint8 g = (depth_integer >> 8) & 0xFF;
fwrite(&better_data, 1, 4, fp); uint8 b = (depth_integer >> 16) & 0xFF;
uint8 a = (depth_integer >> 24) & 0xFF;
fwrite(&r, 1, 1, fp);
fwrite(&g, 1, 1, fp);
fwrite(&b, 1, 1, fp);
fwrite(&a, 1, 1, fp);
} }
} else { } else {
// swap red and blue // swap red and blue
@ -402,7 +409,6 @@ bool GSTextureOGL::Save(const string& fn, bool dds)
{ {
// Collect the texture data // Collect the texture data
uint32 pitch = 4 * m_size.x; uint32 pitch = 4 * m_size.x;
if (IsDss()) pitch *= 2;
char* image = (char*)malloc(pitch * m_size.y); char* image = (char*)malloc(pitch * m_size.y);
bool status = true; bool status = true;
@ -413,8 +419,14 @@ bool GSTextureOGL::Save(const string& fn, bool dds)
//glBindFramebuffer(GL_READ_FRAMEBUFFER, 0); //glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
glReadPixels(0, 0, m_size.x, m_size.y, GL_RGBA, GL_UNSIGNED_BYTE, image); glReadPixels(0, 0, m_size.x, m_size.y, GL_RGBA, GL_UNSIGNED_BYTE, image);
} else if(IsDss()) { } else if(IsDss()) {
EnableUnit(0); glBindFramebuffer(GL_READ_FRAMEBUFFER, m_fbo_read);
glGetTexImage(m_texture_target, 0, GL_DEPTH_STENCIL, GL_FLOAT_32_UNSIGNED_INT_24_8_REV, image);
//EnableUnit(0);
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, m_texture_target, m_texture_id, 0);
glReadPixels(0, 0, m_size.x, m_size.y, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, image);
glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
} else { } else {
glBindFramebuffer(GL_READ_FRAMEBUFFER, m_fbo_read); glBindFramebuffer(GL_READ_FRAMEBUFFER, m_fbo_read);

View File

@ -11,6 +11,7 @@
#define VS_BPPZ 0 #define VS_BPPZ 0
#define VS_TME 1 #define VS_TME 1
#define VS_FST 1 #define VS_FST 1
#define VS_LOGZ 0
#endif #endif
#ifndef GS_IIP #ifndef GS_IIP
@ -57,74 +58,74 @@ layout(location = 6) in vec4 i_f;
layout(location = 0) out vertex VSout; layout(location = 0) out vertex VSout;
out gl_PerVertex { out gl_PerVertex {
vec4 gl_Position; invariant vec4 gl_Position;
float gl_PointSize; float gl_PointSize;
float gl_ClipDistance[]; float gl_ClipDistance[];
}; };
layout(std140, binding = 4) uniform cb0 layout(std140, binding = 4) uniform cb0
{ {
vec4 VertexScale; vec4 VertexScale;
vec4 VertexOffset; vec4 VertexOffset;
vec2 TextureScale; vec2 TextureScale;
}; };
void vs_main() void vs_main()
{ {
uint z; uint z;
if(VS_BPPZ == 1) // 24 if(VS_BPPZ == 1) // 24
z = i_z & uint(0xffffff); z = i_z & uint(0xffffff);
else if(VS_BPPZ == 2) // 16 else if(VS_BPPZ == 2) // 16
z = i_z & uint(0xffff); z = i_z & uint(0xffff);
else else
z = i_z; z = i_z;
// pos -= 0.05 (1/320 pixel) helps avoiding rounding problems (integral part of pos is usually 5 digits, 0.05 is about as low as we can go) // pos -= 0.05 (1/320 pixel) helps avoiding rounding problems (integral part of pos is usually 5 digits, 0.05 is about as low as we can go)
// example: ceil(afterseveralvertextransformations(y = 133)) => 134 => line 133 stays empty // example: ceil(afterseveralvertextransformations(y = 133)) => 134 => line 133 stays empty
// input granularity is 1/16 pixel, anything smaller than that won't step drawing up/left by one pixel // input granularity is 1/16 pixel, anything smaller than that won't step drawing up/left by one pixel
// example: 133.0625 (133 + 1/16) should start from line 134, ceil(133.0625 - 0.05) still above 133 // example: 133.0625 (133 + 1/16) should start from line 134, ceil(133.0625 - 0.05) still above 133
vec4 p = vec4(i_p, z, 0) - vec4(0.05f, 0.05f, 0, 0); vec4 p = vec4(i_p, z, 0) - vec4(0.05f, 0.05f, 0, 0);
vec4 final_p = p * VertexScale - VertexOffset; vec4 final_p = p * VertexScale - VertexOffset;
// FIXME // FIXME
// FLIP vertically // FLIP vertically
final_p.y *= -1.0f; final_p.y *= -1.0f;
if(VS_LOGZ == 1) if(VS_LOGZ == 1)
{ {
final_p.z = log2(1.0f + float(z)) / 32.0f; final_p.z = log2(1.0f + float(z)) / 32.0f;
} }
VSout.p = final_p; VSout.p = final_p;
gl_Position = final_p; // NOTE I don't know if it is possible to merge POSITION_OUT and gl_Position gl_Position = final_p; // NOTE I don't know if it is possible to merge POSITION_OUT and gl_Position
#if VS_RTCOPY #if VS_RTCOPY
VSout.tp = final_p * vec4(0.5, -0.5, 0, 0) + 0.5; VSout.tp = final_p * vec4(0.5, -0.5, 0, 0) + 0.5;
#endif #endif
if(VS_TME != 0) if(VS_TME != 0)
{ {
if(VS_FST != 0) if(VS_FST != 0)
{ {
//VSout.t.xy = i_t * TextureScale; //VSout.t.xy = i_t * TextureScale;
VSout.t.xy = i_uv * TextureScale; VSout.t.xy = i_uv * TextureScale;
VSout.t.w = 1.0f; VSout.t.w = 1.0f;
} }
else else
{ {
//VSout.t.xy = i_t; //VSout.t.xy = i_t;
VSout.t.xy = i_st; VSout.t.xy = i_st;
VSout.t.w = i_q; VSout.t.w = i_q;
} }
} }
else else
{ {
VSout.t.xy = vec2(0.0f, 0.0f); VSout.t.xy = vec2(0.0f, 0.0f);
VSout.t.w = 1.0f; VSout.t.w = 1.0f;
} }
VSout.c = i_c; VSout.c = i_c;
VSout.t.z = i_f.r; VSout.t.z = i_f.r;
} }
#endif #endif
@ -212,17 +213,17 @@ void gs_main()
lt.p.z = rb.p.z; lt.p.z = rb.p.z;
lt.t.zw = rb.t.zw; lt.t.zw = rb.t.zw;
#if GS_IIP == 0 #if GS_IIP == 0
lt.c = rb.c; lt.c = rb.c;
#endif #endif
vertex lb = rb; vertex lb = rb;
lb.p.x = lt.p.x; lb.p.x = lt.p.x;
lb.t.x = lt.t.x; lb.t.x = lt.t.x;
vertex rt = rb; vertex rt = rb;
rt.p.y = lt.p.y; rt.p.y = lt.p.y;
rt.t.y = lt.t.y; rt.t.y = lt.t.y;
// Triangle 1 // Triangle 1
gl_Position = lt.p; gl_Position = lt.p;
@ -237,9 +238,9 @@ void gs_main()
GSout = rt; GSout = rt;
EmitVertex(); EmitVertex();
EndPrimitive(); EndPrimitive();
// Triangle 2 // Triangle 2
gl_Position = lb.p; gl_Position = lb.p;
GSout = lb; GSout = lb;
EmitVertex(); EmitVertex();
@ -273,369 +274,366 @@ layout(binding = 2) uniform sampler2D RTCopySampler;
layout(std140, binding = 5) uniform cb1 layout(std140, binding = 5) uniform cb1
{ {
vec3 FogColor; vec3 FogColor;
float AREF; float AREF;
vec4 HalfTexel; vec4 HalfTexel;
vec4 WH; vec4 WH;
vec4 MinMax; vec4 MinMax;
vec2 MinF; vec2 MinF;
vec2 TA; vec2 TA;
uvec4 MskFix; uvec4 MskFix;
}; };
vec4 sample_c(vec2 uv) vec4 sample_c(vec2 uv)
{ {
// FIXME I'm not sure it is a good solution to flip texture // FIXME I'm not sure it is a good solution to flip texture
return texture(TextureSampler, uv); return texture(TextureSampler, uv);
//FIXME another way to FLIP vertically //FIXME another way to FLIP vertically
//return texture(TextureSampler, vec2(uv.x, 1.0f-uv.y) ); //return texture(TextureSampler, vec2(uv.x, 1.0f-uv.y) );
} }
vec4 sample_p(float u) vec4 sample_p(float u)
{ {
//FIXME do we need a 1D sampler. Big impact on opengl to find 1 dim //FIXME do we need a 1D sampler. Big impact on opengl to find 1 dim
// So for the moment cheat with 0.0f dunno if it work // So for the moment cheat with 0.0f dunno if it work
return texture(PaletteSampler, vec2(u, 0.0f)); return texture(PaletteSampler, vec2(u, 0.0f));
} }
vec4 sample_rt(vec2 uv) vec4 sample_rt(vec2 uv)
{ {
return texture(RTCopySampler, uv); return texture(RTCopySampler, uv);
} }
vec4 wrapuv(vec4 uv) vec4 wrapuv(vec4 uv)
{ {
vec4 uv_out = uv; vec4 uv_out = uv;
if(PS_WMS == PS_WMT) if(PS_WMS == PS_WMT)
{ {
if(PS_WMS == 2) if(PS_WMS == 2)
{ {
uv_out = clamp(uv, MinMax.xyxy, MinMax.zwzw); uv_out = clamp(uv, MinMax.xyxy, MinMax.zwzw);
} }
else if(PS_WMS == 3) else if(PS_WMS == 3)
{ {
uv_out = vec4(((ivec4(uv * WH.xyxy) & ivec4(MskFix.xyxy)) | ivec4(MskFix.zwzw)) / WH.xyxy); uv_out = vec4(((ivec4(uv * WH.xyxy) & ivec4(MskFix.xyxy)) | ivec4(MskFix.zwzw)) / WH.xyxy);
} }
} }
else else
{ {
if(PS_WMS == 2) if(PS_WMS == 2)
{ {
uv_out.xz = clamp(uv.xz, MinMax.xx, MinMax.zz); uv_out.xz = clamp(uv.xz, MinMax.xx, MinMax.zz);
} }
else if(PS_WMS == 3) else if(PS_WMS == 3)
{ {
uv_out.xz = vec2(((ivec2(uv.xz * WH.xx) & ivec2(MskFix.xx)) | ivec2(MskFix.zz)) / WH.xx); uv_out.xz = vec2(((ivec2(uv.xz * WH.xx) & ivec2(MskFix.xx)) | ivec2(MskFix.zz)) / WH.xx);
} }
if(PS_WMT == 2) if(PS_WMT == 2)
{ {
uv_out.yw = clamp(uv.yw, MinMax.yy, MinMax.ww); uv_out.yw = clamp(uv.yw, MinMax.yy, MinMax.ww);
} }
else if(PS_WMT == 3) else if(PS_WMT == 3)
{ {
uv_out.yw = vec2(((ivec2(uv.yw * WH.yy) & ivec2(MskFix.yy)) | ivec2(MskFix.ww)) / WH.yy); uv_out.yw = vec2(((ivec2(uv.yw * WH.yy) & ivec2(MskFix.yy)) | ivec2(MskFix.ww)) / WH.yy);
} }
} }
return uv_out; return uv_out;
} }
vec2 clampuv(vec2 uv) vec2 clampuv(vec2 uv)
{ {
vec2 uv_out = uv; vec2 uv_out = uv;
if(PS_WMS == 2 && PS_WMT == 2) if(PS_WMS == 2 && PS_WMT == 2)
{ {
uv_out = clamp(uv, MinF, MinMax.zw); uv_out = clamp(uv, MinF, MinMax.zw);
} }
else if(PS_WMS == 2) else if(PS_WMS == 2)
{ {
uv_out.x = clamp(uv.x, MinF.x, MinMax.z); uv_out.x = clamp(uv.x, MinF.x, MinMax.z);
} }
else if(PS_WMT == 2) else if(PS_WMT == 2)
{ {
uv_out.y = clamp(uv.y, MinF.y, MinMax.w); uv_out.y = clamp(uv.y, MinF.y, MinMax.w);
} }
return uv_out; return uv_out;
} }
mat4 sample_4c(vec4 uv) mat4 sample_4c(vec4 uv)
{ {
mat4 c; mat4 c;
c[0] = sample_c(uv.xy); c[0] = sample_c(uv.xy);
c[1] = sample_c(uv.zy); c[1] = sample_c(uv.zy);
c[2] = sample_c(uv.xw); c[2] = sample_c(uv.xw);
c[3] = sample_c(uv.zw); c[3] = sample_c(uv.zw);
return c; return c;
} }
vec4 sample_4a(vec4 uv) vec4 sample_4a(vec4 uv)
{ {
vec4 c; vec4 c;
c.x = sample_c(uv.xy).a; c.x = sample_c(uv.xy).a;
c.y = sample_c(uv.zy).a; c.y = sample_c(uv.zy).a;
c.z = sample_c(uv.xw).a; c.z = sample_c(uv.xw).a;
c.w = sample_c(uv.zw).a; c.w = sample_c(uv.zw).a;
return c; return c;
} }
mat4 sample_4p(vec4 u) mat4 sample_4p(vec4 u)
{ {
mat4 c; mat4 c;
c[0] = sample_p(u.x); c[0] = sample_p(u.x);
c[1] = sample_p(u.y); c[1] = sample_p(u.y);
c[2] = sample_p(u.z); c[2] = sample_p(u.z);
c[3] = sample_p(u.w); c[3] = sample_p(u.w);
return c; return c;
} }
vec4 sample_color(vec2 st, float q) vec4 sample_color(vec2 st, float q)
{ {
if(PS_FST == 0) if(PS_FST == 0)
{ {
st /= q; st /= q;
} }
vec4 t; vec4 t;
if((PS_FMT <= FMT_16) && (PS_WMS < 3) && (PS_WMT < 3)) if((PS_FMT <= FMT_16) && (PS_WMS < 3) && (PS_WMT < 3))
{ {
t = sample_c(clampuv(st)); t = sample_c(clampuv(st));
} }
else else
{ {
vec4 uv; vec4 uv;
vec2 dd; vec2 dd;
if(PS_LTF != 0) if(PS_LTF != 0)
{ {
uv = st.xyxy + HalfTexel; uv = st.xyxy + HalfTexel;
dd = fract(uv.xy * WH.zw); dd = fract(uv.xy * WH.zw);
} }
else else
{ {
uv = st.xyxy; uv = st.xyxy;
} }
uv = wrapuv(uv); uv = wrapuv(uv);
mat4 c; mat4 c;
if((PS_FMT & FMT_PAL) != 0) if((PS_FMT & FMT_PAL) != 0)
c = sample_4p(sample_4a(uv)); c = sample_4p(sample_4a(uv));
else else
c = sample_4c(uv); c = sample_4c(uv);
// PERF: see the impact of the exansion before/after the interpolation // PERF: see the impact of the exansion before/after the interpolation
for (int i = 0; i < 4; i++) { for (int i = 0; i < 4; i++) {
if((PS_FMT & ~FMT_PAL) == FMT_16) if((PS_FMT & ~FMT_PAL) == FMT_16)
{ {
// FIXME GLSL any only support bvec so try to mix it with notEqual // FIXME GLSL any only support bvec so try to mix it with notEqual
bvec3 rgb_check = notEqual( t.rgb, vec3(0.0f, 0.0f, 0.0f) ); bvec3 rgb_check = notEqual( t.rgb, vec3(0.0f, 0.0f, 0.0f) );
t.a = t.a >= 0.5 ? TA.y : ( (PS_AEM == 0) || any(rgb_check) ) ? TA.x : 0.0f; t.a = t.a >= 0.5 ? TA.y : ( (PS_AEM == 0) || any(rgb_check) ) ? TA.x : 0.0f;
} }
} }
if(PS_LTF != 0) if(PS_LTF != 0)
{ {
t = mix(mix(c[0], c[1], dd.x), mix(c[2], c[3], dd.x), dd.y); t = mix(mix(c[0], c[1], dd.x), mix(c[2], c[3], dd.x), dd.y);
} }
else else
{ {
t = c[0]; t = c[0];
} }
} }
if(PS_FMT == FMT_24) if(PS_FMT == FMT_24)
{ {
// FIXME GLSL any only support bvec so try to mix it with notEqual // FIXME GLSL any only support bvec so try to mix it with notEqual
bvec3 rgb_check = notEqual( t.rgb, vec3(0.0f, 0.0f, 0.0f) ); bvec3 rgb_check = notEqual( t.rgb, vec3(0.0f, 0.0f, 0.0f) );
t.a = ( (PS_AEM == 0) || any(rgb_check) ) ? TA.x : 0.0f; t.a = ( (PS_AEM == 0) || any(rgb_check) ) ? TA.x : 0.0f;
} }
else if(PS_FMT == FMT_16) else if(PS_FMT == FMT_16)
{ {
// a bit incompatible with up-scaling because the 1 bit alpha is interpolated // a bit incompatible with up-scaling because the 1 bit alpha is interpolated
// FIXME GLSL any only support bvec so try to mix it with notEqual // FIXME GLSL any only support bvec so try to mix it with notEqual
bvec3 rgb_check = notEqual( t.rgb, vec3(0.0f, 0.0f, 0.0f) ); bvec3 rgb_check = notEqual( t.rgb, vec3(0.0f, 0.0f, 0.0f) );
t.a = t.a >= 0.5 ? TA.y : ( (PS_AEM == 0) || any(rgb_check) ) ? TA.x : 0.0f; t.a = t.a >= 0.5 ? TA.y : ( (PS_AEM == 0) || any(rgb_check) ) ? TA.x : 0.0f;
} }
return t; return t;
} }
vec4 tfx(vec4 t, vec4 c) vec4 tfx(vec4 t, vec4 c)
{ {
vec4 c_out = c; vec4 c_out = c;
if(PS_TFX == 0) if(PS_TFX == 0)
{ {
if(PS_TCC != 0) if(PS_TCC != 0)
{ {
c_out = c * t * 255.0f / 128; c_out = c * t * 255.0f / 128;
} }
else else
{ {
c_out.rgb = c.rgb * t.rgb * 255.0f / 128; c_out.rgb = c.rgb * t.rgb * 255.0f / 128;
} }
} }
else if(PS_TFX == 1) else if(PS_TFX == 1)
{ {
if(PS_TCC != 0) if(PS_TCC != 0)
{ {
c_out = t; c_out = t;
} }
else else
{ {
c_out.rgb = t.rgb; c_out.rgb = t.rgb;
} }
} }
else if(PS_TFX == 2) else if(PS_TFX == 2)
{ {
c_out.rgb = c.rgb * t.rgb * 255.0f / 128 + c.a; c_out.rgb = c.rgb * t.rgb * 255.0f / 128 + c.a;
if(PS_TCC != 0) if(PS_TCC != 0)
{ {
c_out.a += t.a; c_out.a += t.a;
} }
} }
else if(PS_TFX == 3) else if(PS_TFX == 3)
{ {
c_out.rgb = c.rgb * t.rgb * 255.0f / 128 + c.a; c_out.rgb = c.rgb * t.rgb * 255.0f / 128 + c.a;
if(PS_TCC != 0) if(PS_TCC != 0)
{ {
c_out.a = t.a; c_out.a = t.a;
} }
} }
return clamp(c_out, vec4(0.0f, 0.0f, 0.0f, 0.0f), vec4(1.0f, 1.0f, 1.0f, 1.0f)); return clamp(c_out, vec4(0.0f, 0.0f, 0.0f, 0.0f), vec4(1.0f, 1.0f, 1.0f, 1.0f));
} }
void datst() void datst()
{ {
#if PS_DATE > 0 #if PS_DATE > 0
float alpha = sample_rt(PSin.tp.xy).a; float alpha = sample_rt(PSin.tp.xy).a;
float alpha0x80 = 128. / 255; float alpha0x80 = 128. / 255;
if (PS_DATE == 1 && alpha >= alpha0x80) if (PS_DATE == 1 && alpha >= alpha0x80)
discard; discard;
else if (PS_DATE == 2 && alpha < alpha0x80) else if (PS_DATE == 2 && alpha < alpha0x80)
discard; discard;
#endif #endif
} }
void atst(vec4 c) void atst(vec4 c)
{ {
float a = trunc(c.a * 255); float a = trunc(c.a * 255);
if(PS_ATST == 0) // never if(PS_ATST == 0) // never
{ {
discard; discard;
} }
else if(PS_ATST == 1) // always else if(PS_ATST == 1) // always
{ {
// nothing to do // nothing to do
} }
else if(PS_ATST == 2) else if(PS_ATST == 2 ) // l
{ {
} if (PS_SPRITEHACK == 0)
else if(PS_ATST == 2 ) // l if ((AREF - a) < 0.0f)
{ discard;
if (PS_SPRITEHACK == 0) }
if ((AREF - a) < 0.0f) else if(PS_ATST == 3 ) // le
discard; {
} if ((AREF - a) < 0.0f)
else if(PS_ATST == 2 ) // le
{
if ((AREF - a) < 0.0f)
discard; discard;
} }
else if(PS_ATST == 4) // e else if(PS_ATST == 4) // e
{ {
if ((0.5f - abs(a - AREF)) < 0.0f) if ((0.5f - abs(a - AREF)) < 0.0f)
discard; discard;
} }
else if(PS_ATST == 5 || PS_ATST == 6) // ge, g else if(PS_ATST == 5 || PS_ATST == 6) // ge, g
{ {
if ((a-AREF) < 0.0f) if ((a-AREF) < 0.0f)
discard; discard;
} }
else if(PS_ATST == 7) // ne else if(PS_ATST == 7) // ne
{ {
if ((abs(a - AREF) - 0.5f) < 0.0f) if ((abs(a - AREF) - 0.5f) < 0.0f)
discard; discard;
} }
} }
vec4 fog(vec4 c, float f) vec4 fog(vec4 c, float f)
{ {
vec4 c_out = c; vec4 c_out = c;
if(PS_FOG != 0) if(PS_FOG != 0)
{ {
c_out.rgb = mix(FogColor, c.rgb, f); c_out.rgb = mix(FogColor, c.rgb, f);
} }
return c_out; return c_out;
} }
vec4 ps_color() vec4 ps_color()
{ {
datst(); datst();
vec4 t = sample_color(PSin.t.xy, PSin.t.w); vec4 t = sample_color(PSin.t.xy, PSin.t.w);
vec4 c = tfx(t, PSin.c); vec4 c = tfx(t, PSin.c);
atst(c); atst(c);
c = fog(c, PSin.t.z); c = fog(c, PSin.t.z);
if (PS_COLCLIP == 2) if (PS_COLCLIP == 2)
{ {
c.rgb = 256.0f/255.0f - c.rgb; c.rgb = 256.0f/255.0f - c.rgb;
} }
if (PS_COLCLIP > 0) if (PS_COLCLIP > 0)
{ {
// FIXME !!!! // FIXME !!!!
//c.rgb *= c.rgb < 128./255; //c.rgb *= c.rgb < 128./255;
bvec3 factor = bvec3(128.0f/255.0f, 128.0f/255.0f, 128.0f/255.0f); bvec3 factor = bvec3(128.0f/255.0f, 128.0f/255.0f, 128.0f/255.0f);
c.rgb *= vec3(factor); c.rgb *= vec3(factor);
} }
if(PS_CLR1 != 0) // needed for Cd * (As/Ad/F + 1) blending modes if(PS_CLR1 != 0) // needed for Cd * (As/Ad/F + 1) blending modes
{ {
c.rgb = vec3(1.0f, 1.0f, 1.0f); c.rgb = vec3(1.0f, 1.0f, 1.0f);
} }
return c; return c;
} }
void ps_main() void ps_main()
{ {
//FIXME //FIXME
vec4 c = ps_color(); vec4 c = ps_color();
// FIXME: I'm not sure about the value of others field // FIXME: I'm not sure about the value of others field
// output.c1 = c.a * 2; // used for alpha blending // output.c1 = c.a * 2; // used for alpha blending
float alpha = c.a * 2; float alpha = c.a * 2;
if(PS_AOUT != 0) // 16 bit output if(PS_AOUT != 0) // 16 bit output
{ {
float a = 128.0f / 255; // alpha output will be 0x80 float a = 128.0f / 255; // alpha output will be 0x80
c.a = (PS_FBA != 0) ? a : step(0.5, c.a) * a; c.a = (PS_FBA != 0) ? a : step(0.5, c.a) * a;
} }
else if(PS_FBA != 0) else if(PS_FBA != 0)
{ {
if(c.a < 0.5) c.a += 0.5; if(c.a < 0.5) c.a += 0.5;
} }
SV_Target0 = c; SV_Target0 = c;
SV_Target1 = vec4(alpha, alpha, alpha, alpha); SV_Target1 = vec4(alpha, alpha, alpha, alpha);