Updated zlib to 1.2.7. I skipped updating the CMakeLists.txt because ours is probably set up to work with the rest of the project.+

This probably doesn't fix anything important.

git-svn-id: http://pcsx2.googlecode.com/svn/trunk@5573 96395faa-99c1-11dd-bbfe-3dabce05a288
This commit is contained in:
gigaherz 2013-02-24 17:37:17 +00:00
parent 64474926f1
commit 6255f7d8a8
25 changed files with 3233 additions and 2525 deletions

2539
3rdparty/zlib/ChangeLog vendored

File diff suppressed because it is too large Load Diff

734
3rdparty/zlib/FAQ vendored
View File

@ -1,366 +1,368 @@
Frequently Asked Questions about zlib
If your question is not there, please check the zlib home page
http://zlib.net/ which may have more recent information.
The lastest zlib FAQ is at http://zlib.net/zlib_faq.html
1. Is zlib Y2K-compliant?
Yes. zlib doesn't handle dates.
2. Where can I get a Windows DLL version?
The zlib sources can be compiled without change to produce a DLL. See the
file win32/DLL_FAQ.txt in the zlib distribution. Pointers to the
precompiled DLL are found in the zlib web site at http://zlib.net/ .
3. Where can I get a Visual Basic interface to zlib?
See
* http://marknelson.us/1997/01/01/zlib-engine/
* win32/DLL_FAQ.txt in the zlib distribution
4. compress() returns Z_BUF_ERROR.
Make sure that before the call of compress(), the length of the compressed
buffer is equal to the available size of the compressed buffer and not
zero. For Visual Basic, check that this parameter is passed by reference
("as any"), not by value ("as long").
5. deflate() or inflate() returns Z_BUF_ERROR.
Before making the call, make sure that avail_in and avail_out are not zero.
When setting the parameter flush equal to Z_FINISH, also make sure that
avail_out is big enough to allow processing all pending input. Note that a
Z_BUF_ERROR is not fatal--another call to deflate() or inflate() can be
made with more input or output space. A Z_BUF_ERROR may in fact be
unavoidable depending on how the functions are used, since it is not
possible to tell whether or not there is more output pending when
strm.avail_out returns with zero. See http://zlib.net/zlib_how.html for a
heavily annotated example.
6. Where's the zlib documentation (man pages, etc.)?
It's in zlib.h . Examples of zlib usage are in the files example.c and
minigzip.c, with more in examples/ .
7. Why don't you use GNU autoconf or libtool or ...?
Because we would like to keep zlib as a very small and simple package.
zlib is rather portable and doesn't need much configuration.
8. I found a bug in zlib.
Most of the time, such problems are due to an incorrect usage of zlib.
Please try to reproduce the problem with a small program and send the
corresponding source to us at zlib@gzip.org . Do not send multi-megabyte
data files without prior agreement.
9. Why do I get "undefined reference to gzputc"?
If "make test" produces something like
example.o(.text+0x154): undefined reference to `gzputc'
check that you don't have old files libz.* in /usr/lib, /usr/local/lib or
/usr/X11R6/lib. Remove any old versions, then do "make install".
10. I need a Delphi interface to zlib.
See the contrib/delphi directory in the zlib distribution.
11. Can zlib handle .zip archives?
Not by itself, no. See the directory contrib/minizip in the zlib
distribution.
12. Can zlib handle .Z files?
No, sorry. You have to spawn an uncompress or gunzip subprocess, or adapt
the code of uncompress on your own.
13. How can I make a Unix shared library?
make clean
./configure -s
make
14. How do I install a shared zlib library on Unix?
After the above, then:
make install
However, many flavors of Unix come with a shared zlib already installed.
Before going to the trouble of compiling a shared version of zlib and
trying to install it, you may want to check if it's already there! If you
can #include <zlib.h>, it's there. The -lz option will probably link to
it. You can check the version at the top of zlib.h or with the
ZLIB_VERSION symbol defined in zlib.h .
15. I have a question about OttoPDF.
We are not the authors of OttoPDF. The real author is on the OttoPDF web
site: Joel Hainley, jhainley@myndkryme.com.
16. Can zlib decode Flate data in an Adobe PDF file?
Yes. See http://www.pdflib.com/ . To modify PDF forms, see
http://sourceforge.net/projects/acroformtool/ .
17. Why am I getting this "register_frame_info not found" error on Solaris?
After installing zlib 1.1.4 on Solaris 2.6, running applications using zlib
generates an error such as:
ld.so.1: rpm: fatal: relocation error: file /usr/local/lib/libz.so:
symbol __register_frame_info: referenced symbol not found
The symbol __register_frame_info is not part of zlib, it is generated by
the C compiler (cc or gcc). You must recompile applications using zlib
which have this problem. This problem is specific to Solaris. See
http://www.sunfreeware.com for Solaris versions of zlib and applications
using zlib.
18. Why does gzip give an error on a file I make with compress/deflate?
The compress and deflate functions produce data in the zlib format, which
is different and incompatible with the gzip format. The gz* functions in
zlib on the other hand use the gzip format. Both the zlib and gzip formats
use the same compressed data format internally, but have different headers
and trailers around the compressed data.
19. Ok, so why are there two different formats?
The gzip format was designed to retain the directory information about a
single file, such as the name and last modification date. The zlib format
on the other hand was designed for in-memory and communication channel
applications, and has a much more compact header and trailer and uses a
faster integrity check than gzip.
20. Well that's nice, but how do I make a gzip file in memory?
You can request that deflate write the gzip format instead of the zlib
format using deflateInit2(). You can also request that inflate decode the
gzip format using inflateInit2(). Read zlib.h for more details.
21. Is zlib thread-safe?
Yes. However any library routines that zlib uses and any application-
provided memory allocation routines must also be thread-safe. zlib's gz*
functions use stdio library routines, and most of zlib's functions use the
library memory allocation routines by default. zlib's *Init* functions
allow for the application to provide custom memory allocation routines.
Of course, you should only operate on any given zlib or gzip stream from a
single thread at a time.
22. Can I use zlib in my commercial application?
Yes. Please read the license in zlib.h.
23. Is zlib under the GNU license?
No. Please read the license in zlib.h.
24. The license says that altered source versions must be "plainly marked". So
what exactly do I need to do to meet that requirement?
You need to change the ZLIB_VERSION and ZLIB_VERNUM #defines in zlib.h. In
particular, the final version number needs to be changed to "f", and an
identification string should be appended to ZLIB_VERSION. Version numbers
x.x.x.f are reserved for modifications to zlib by others than the zlib
maintainers. For example, if the version of the base zlib you are altering
is "1.2.3.4", then in zlib.h you should change ZLIB_VERNUM to 0x123f, and
ZLIB_VERSION to something like "1.2.3.f-zachary-mods-v3". You can also
update the version strings in deflate.c and inftrees.c.
For altered source distributions, you should also note the origin and
nature of the changes in zlib.h, as well as in ChangeLog and README, along
with the dates of the alterations. The origin should include at least your
name (or your company's name), and an email address to contact for help or
issues with the library.
Note that distributing a compiled zlib library along with zlib.h and
zconf.h is also a source distribution, and so you should change
ZLIB_VERSION and ZLIB_VERNUM and note the origin and nature of the changes
in zlib.h as you would for a full source distribution.
25. Will zlib work on a big-endian or little-endian architecture, and can I
exchange compressed data between them?
Yes and yes.
26. Will zlib work on a 64-bit machine?
Yes. It has been tested on 64-bit machines, and has no dependence on any
data types being limited to 32-bits in length. If you have any
difficulties, please provide a complete problem report to zlib@gzip.org
27. Will zlib decompress data from the PKWare Data Compression Library?
No. The PKWare DCL uses a completely different compressed data format than
does PKZIP and zlib. However, you can look in zlib's contrib/blast
directory for a possible solution to your problem.
28. Can I access data randomly in a compressed stream?
No, not without some preparation. If when compressing you periodically use
Z_FULL_FLUSH, carefully write all the pending data at those points, and
keep an index of those locations, then you can start decompression at those
points. You have to be careful to not use Z_FULL_FLUSH too often, since it
can significantly degrade compression. Alternatively, you can scan a
deflate stream once to generate an index, and then use that index for
random access. See examples/zran.c .
29. Does zlib work on MVS, OS/390, CICS, etc.?
It has in the past, but we have not heard of any recent evidence. There
were working ports of zlib 1.1.4 to MVS, but those links no longer work.
If you know of recent, successful applications of zlib on these operating
systems, please let us know. Thanks.
30. Is there some simpler, easier to read version of inflate I can look at to
understand the deflate format?
First off, you should read RFC 1951. Second, yes. Look in zlib's
contrib/puff directory.
31. Does zlib infringe on any patents?
As far as we know, no. In fact, that was originally the whole point behind
zlib. Look here for some more information:
http://www.gzip.org/#faq11
32. Can zlib work with greater than 4 GB of data?
Yes. inflate() and deflate() will process any amount of data correctly.
Each call of inflate() or deflate() is limited to input and output chunks
of the maximum value that can be stored in the compiler's "unsigned int"
type, but there is no limit to the number of chunks. Note however that the
strm.total_in and strm_total_out counters may be limited to 4 GB. These
counters are provided as a convenience and are not used internally by
inflate() or deflate(). The application can easily set up its own counters
updated after each call of inflate() or deflate() to count beyond 4 GB.
compress() and uncompress() may be limited to 4 GB, since they operate in a
single call. gzseek() and gztell() may be limited to 4 GB depending on how
zlib is compiled. See the zlibCompileFlags() function in zlib.h.
The word "may" appears several times above since there is a 4 GB limit only
if the compiler's "long" type is 32 bits. If the compiler's "long" type is
64 bits, then the limit is 16 exabytes.
33. Does zlib have any security vulnerabilities?
The only one that we are aware of is potentially in gzprintf(). If zlib is
compiled to use sprintf() or vsprintf(), then there is no protection
against a buffer overflow of an 8K string space (or other value as set by
gzbuffer()), other than the caller of gzprintf() assuring that the output
will not exceed 8K. On the other hand, if zlib is compiled to use
snprintf() or vsnprintf(), which should normally be the case, then there is
no vulnerability. The ./configure script will display warnings if an
insecure variation of sprintf() will be used by gzprintf(). Also the
zlibCompileFlags() function will return information on what variant of
sprintf() is used by gzprintf().
If you don't have snprintf() or vsnprintf() and would like one, you can
find a portable implementation here:
http://www.ijs.si/software/snprintf/
Note that you should be using the most recent version of zlib. Versions
1.1.3 and before were subject to a double-free vulnerability, and versions
1.2.1 and 1.2.2 were subject to an access exception when decompressing
invalid compressed data.
34. Is there a Java version of zlib?
Probably what you want is to use zlib in Java. zlib is already included
as part of the Java SDK in the java.util.zip package. If you really want
a version of zlib written in the Java language, look on the zlib home
page for links: http://zlib.net/ .
35. I get this or that compiler or source-code scanner warning when I crank it
up to maximally-pedantic. Can't you guys write proper code?
Many years ago, we gave up attempting to avoid warnings on every compiler
in the universe. It just got to be a waste of time, and some compilers
were downright silly as well as contradicted each other. So now, we simply
make sure that the code always works.
36. Valgrind (or some similar memory access checker) says that deflate is
performing a conditional jump that depends on an uninitialized value.
Isn't that a bug?
No. That is intentional for performance reasons, and the output of deflate
is not affected. This only started showing up recently since zlib 1.2.x
uses malloc() by default for allocations, whereas earlier versions used
calloc(), which zeros out the allocated memory. Even though the code was
correct, versions 1.2.4 and later was changed to not stimulate these
checkers.
37. Will zlib read the (insert any ancient or arcane format here) compressed
data format?
Probably not. Look in the comp.compression FAQ for pointers to various
formats and associated software.
38. How can I encrypt/decrypt zip files with zlib?
zlib doesn't support encryption. The original PKZIP encryption is very
weak and can be broken with freely available programs. To get strong
encryption, use GnuPG, http://www.gnupg.org/ , which already includes zlib
compression. For PKZIP compatible "encryption", look at
http://www.info-zip.org/
39. What's the difference between the "gzip" and "deflate" HTTP 1.1 encodings?
"gzip" is the gzip format, and "deflate" is the zlib format. They should
probably have called the second one "zlib" instead to avoid confusion with
the raw deflate compressed data format. While the HTTP 1.1 RFC 2616
correctly points to the zlib specification in RFC 1950 for the "deflate"
transfer encoding, there have been reports of servers and browsers that
incorrectly produce or expect raw deflate data per the deflate
specficiation in RFC 1951, most notably Microsoft. So even though the
"deflate" transfer encoding using the zlib format would be the more
efficient approach (and in fact exactly what the zlib format was designed
for), using the "gzip" transfer encoding is probably more reliable due to
an unfortunate choice of name on the part of the HTTP 1.1 authors.
Bottom line: use the gzip format for HTTP 1.1 encoding.
40. Does zlib support the new "Deflate64" format introduced by PKWare?
No. PKWare has apparently decided to keep that format proprietary, since
they have not documented it as they have previous compression formats. In
any case, the compression improvements are so modest compared to other more
modern approaches, that it's not worth the effort to implement.
41. I'm having a problem with the zip functions in zlib, can you help?
There are no zip functions in zlib. You are probably using minizip by
Giles Vollant, which is found in the contrib directory of zlib. It is not
part of zlib. In fact none of the stuff in contrib is part of zlib. The
files in there are not supported by the zlib authors. You need to contact
the authors of the respective contribution for help.
42. The match.asm code in contrib is under the GNU General Public License.
Since it's part of zlib, doesn't that mean that all of zlib falls under the
GNU GPL?
No. The files in contrib are not part of zlib. They were contributed by
other authors and are provided as a convenience to the user within the zlib
distribution. Each item in contrib has its own license.
43. Is zlib subject to export controls? What is its ECCN?
zlib is not subject to export controls, and so is classified as EAR99.
44. Can you please sign these lengthy legal documents and fax them back to us
so that we can use your software in our product?
No. Go away. Shoo.
Frequently Asked Questions about zlib
If your question is not there, please check the zlib home page
http://zlib.net/ which may have more recent information.
The lastest zlib FAQ is at http://zlib.net/zlib_faq.html
1. Is zlib Y2K-compliant?
Yes. zlib doesn't handle dates.
2. Where can I get a Windows DLL version?
The zlib sources can be compiled without change to produce a DLL. See the
file win32/DLL_FAQ.txt in the zlib distribution. Pointers to the
precompiled DLL are found in the zlib web site at http://zlib.net/ .
3. Where can I get a Visual Basic interface to zlib?
See
* http://marknelson.us/1997/01/01/zlib-engine/
* win32/DLL_FAQ.txt in the zlib distribution
4. compress() returns Z_BUF_ERROR.
Make sure that before the call of compress(), the length of the compressed
buffer is equal to the available size of the compressed buffer and not
zero. For Visual Basic, check that this parameter is passed by reference
("as any"), not by value ("as long").
5. deflate() or inflate() returns Z_BUF_ERROR.
Before making the call, make sure that avail_in and avail_out are not zero.
When setting the parameter flush equal to Z_FINISH, also make sure that
avail_out is big enough to allow processing all pending input. Note that a
Z_BUF_ERROR is not fatal--another call to deflate() or inflate() can be
made with more input or output space. A Z_BUF_ERROR may in fact be
unavoidable depending on how the functions are used, since it is not
possible to tell whether or not there is more output pending when
strm.avail_out returns with zero. See http://zlib.net/zlib_how.html for a
heavily annotated example.
6. Where's the zlib documentation (man pages, etc.)?
It's in zlib.h . Examples of zlib usage are in the files test/example.c
and test/minigzip.c, with more in examples/ .
7. Why don't you use GNU autoconf or libtool or ...?
Because we would like to keep zlib as a very small and simple package.
zlib is rather portable and doesn't need much configuration.
8. I found a bug in zlib.
Most of the time, such problems are due to an incorrect usage of zlib.
Please try to reproduce the problem with a small program and send the
corresponding source to us at zlib@gzip.org . Do not send multi-megabyte
data files without prior agreement.
9. Why do I get "undefined reference to gzputc"?
If "make test" produces something like
example.o(.text+0x154): undefined reference to `gzputc'
check that you don't have old files libz.* in /usr/lib, /usr/local/lib or
/usr/X11R6/lib. Remove any old versions, then do "make install".
10. I need a Delphi interface to zlib.
See the contrib/delphi directory in the zlib distribution.
11. Can zlib handle .zip archives?
Not by itself, no. See the directory contrib/minizip in the zlib
distribution.
12. Can zlib handle .Z files?
No, sorry. You have to spawn an uncompress or gunzip subprocess, or adapt
the code of uncompress on your own.
13. How can I make a Unix shared library?
By default a shared (and a static) library is built for Unix. So:
make distclean
./configure
make
14. How do I install a shared zlib library on Unix?
After the above, then:
make install
However, many flavors of Unix come with a shared zlib already installed.
Before going to the trouble of compiling a shared version of zlib and
trying to install it, you may want to check if it's already there! If you
can #include <zlib.h>, it's there. The -lz option will probably link to
it. You can check the version at the top of zlib.h or with the
ZLIB_VERSION symbol defined in zlib.h .
15. I have a question about OttoPDF.
We are not the authors of OttoPDF. The real author is on the OttoPDF web
site: Joel Hainley, jhainley@myndkryme.com.
16. Can zlib decode Flate data in an Adobe PDF file?
Yes. See http://www.pdflib.com/ . To modify PDF forms, see
http://sourceforge.net/projects/acroformtool/ .
17. Why am I getting this "register_frame_info not found" error on Solaris?
After installing zlib 1.1.4 on Solaris 2.6, running applications using zlib
generates an error such as:
ld.so.1: rpm: fatal: relocation error: file /usr/local/lib/libz.so:
symbol __register_frame_info: referenced symbol not found
The symbol __register_frame_info is not part of zlib, it is generated by
the C compiler (cc or gcc). You must recompile applications using zlib
which have this problem. This problem is specific to Solaris. See
http://www.sunfreeware.com for Solaris versions of zlib and applications
using zlib.
18. Why does gzip give an error on a file I make with compress/deflate?
The compress and deflate functions produce data in the zlib format, which
is different and incompatible with the gzip format. The gz* functions in
zlib on the other hand use the gzip format. Both the zlib and gzip formats
use the same compressed data format internally, but have different headers
and trailers around the compressed data.
19. Ok, so why are there two different formats?
The gzip format was designed to retain the directory information about a
single file, such as the name and last modification date. The zlib format
on the other hand was designed for in-memory and communication channel
applications, and has a much more compact header and trailer and uses a
faster integrity check than gzip.
20. Well that's nice, but how do I make a gzip file in memory?
You can request that deflate write the gzip format instead of the zlib
format using deflateInit2(). You can also request that inflate decode the
gzip format using inflateInit2(). Read zlib.h for more details.
21. Is zlib thread-safe?
Yes. However any library routines that zlib uses and any application-
provided memory allocation routines must also be thread-safe. zlib's gz*
functions use stdio library routines, and most of zlib's functions use the
library memory allocation routines by default. zlib's *Init* functions
allow for the application to provide custom memory allocation routines.
Of course, you should only operate on any given zlib or gzip stream from a
single thread at a time.
22. Can I use zlib in my commercial application?
Yes. Please read the license in zlib.h.
23. Is zlib under the GNU license?
No. Please read the license in zlib.h.
24. The license says that altered source versions must be "plainly marked". So
what exactly do I need to do to meet that requirement?
You need to change the ZLIB_VERSION and ZLIB_VERNUM #defines in zlib.h. In
particular, the final version number needs to be changed to "f", and an
identification string should be appended to ZLIB_VERSION. Version numbers
x.x.x.f are reserved for modifications to zlib by others than the zlib
maintainers. For example, if the version of the base zlib you are altering
is "1.2.3.4", then in zlib.h you should change ZLIB_VERNUM to 0x123f, and
ZLIB_VERSION to something like "1.2.3.f-zachary-mods-v3". You can also
update the version strings in deflate.c and inftrees.c.
For altered source distributions, you should also note the origin and
nature of the changes in zlib.h, as well as in ChangeLog and README, along
with the dates of the alterations. The origin should include at least your
name (or your company's name), and an email address to contact for help or
issues with the library.
Note that distributing a compiled zlib library along with zlib.h and
zconf.h is also a source distribution, and so you should change
ZLIB_VERSION and ZLIB_VERNUM and note the origin and nature of the changes
in zlib.h as you would for a full source distribution.
25. Will zlib work on a big-endian or little-endian architecture, and can I
exchange compressed data between them?
Yes and yes.
26. Will zlib work on a 64-bit machine?
Yes. It has been tested on 64-bit machines, and has no dependence on any
data types being limited to 32-bits in length. If you have any
difficulties, please provide a complete problem report to zlib@gzip.org
27. Will zlib decompress data from the PKWare Data Compression Library?
No. The PKWare DCL uses a completely different compressed data format than
does PKZIP and zlib. However, you can look in zlib's contrib/blast
directory for a possible solution to your problem.
28. Can I access data randomly in a compressed stream?
No, not without some preparation. If when compressing you periodically use
Z_FULL_FLUSH, carefully write all the pending data at those points, and
keep an index of those locations, then you can start decompression at those
points. You have to be careful to not use Z_FULL_FLUSH too often, since it
can significantly degrade compression. Alternatively, you can scan a
deflate stream once to generate an index, and then use that index for
random access. See examples/zran.c .
29. Does zlib work on MVS, OS/390, CICS, etc.?
It has in the past, but we have not heard of any recent evidence. There
were working ports of zlib 1.1.4 to MVS, but those links no longer work.
If you know of recent, successful applications of zlib on these operating
systems, please let us know. Thanks.
30. Is there some simpler, easier to read version of inflate I can look at to
understand the deflate format?
First off, you should read RFC 1951. Second, yes. Look in zlib's
contrib/puff directory.
31. Does zlib infringe on any patents?
As far as we know, no. In fact, that was originally the whole point behind
zlib. Look here for some more information:
http://www.gzip.org/#faq11
32. Can zlib work with greater than 4 GB of data?
Yes. inflate() and deflate() will process any amount of data correctly.
Each call of inflate() or deflate() is limited to input and output chunks
of the maximum value that can be stored in the compiler's "unsigned int"
type, but there is no limit to the number of chunks. Note however that the
strm.total_in and strm_total_out counters may be limited to 4 GB. These
counters are provided as a convenience and are not used internally by
inflate() or deflate(). The application can easily set up its own counters
updated after each call of inflate() or deflate() to count beyond 4 GB.
compress() and uncompress() may be limited to 4 GB, since they operate in a
single call. gzseek() and gztell() may be limited to 4 GB depending on how
zlib is compiled. See the zlibCompileFlags() function in zlib.h.
The word "may" appears several times above since there is a 4 GB limit only
if the compiler's "long" type is 32 bits. If the compiler's "long" type is
64 bits, then the limit is 16 exabytes.
33. Does zlib have any security vulnerabilities?
The only one that we are aware of is potentially in gzprintf(). If zlib is
compiled to use sprintf() or vsprintf(), then there is no protection
against a buffer overflow of an 8K string space (or other value as set by
gzbuffer()), other than the caller of gzprintf() assuring that the output
will not exceed 8K. On the other hand, if zlib is compiled to use
snprintf() or vsnprintf(), which should normally be the case, then there is
no vulnerability. The ./configure script will display warnings if an
insecure variation of sprintf() will be used by gzprintf(). Also the
zlibCompileFlags() function will return information on what variant of
sprintf() is used by gzprintf().
If you don't have snprintf() or vsnprintf() and would like one, you can
find a portable implementation here:
http://www.ijs.si/software/snprintf/
Note that you should be using the most recent version of zlib. Versions
1.1.3 and before were subject to a double-free vulnerability, and versions
1.2.1 and 1.2.2 were subject to an access exception when decompressing
invalid compressed data.
34. Is there a Java version of zlib?
Probably what you want is to use zlib in Java. zlib is already included
as part of the Java SDK in the java.util.zip package. If you really want
a version of zlib written in the Java language, look on the zlib home
page for links: http://zlib.net/ .
35. I get this or that compiler or source-code scanner warning when I crank it
up to maximally-pedantic. Can't you guys write proper code?
Many years ago, we gave up attempting to avoid warnings on every compiler
in the universe. It just got to be a waste of time, and some compilers
were downright silly as well as contradicted each other. So now, we simply
make sure that the code always works.
36. Valgrind (or some similar memory access checker) says that deflate is
performing a conditional jump that depends on an uninitialized value.
Isn't that a bug?
No. That is intentional for performance reasons, and the output of deflate
is not affected. This only started showing up recently since zlib 1.2.x
uses malloc() by default for allocations, whereas earlier versions used
calloc(), which zeros out the allocated memory. Even though the code was
correct, versions 1.2.4 and later was changed to not stimulate these
checkers.
37. Will zlib read the (insert any ancient or arcane format here) compressed
data format?
Probably not. Look in the comp.compression FAQ for pointers to various
formats and associated software.
38. How can I encrypt/decrypt zip files with zlib?
zlib doesn't support encryption. The original PKZIP encryption is very
weak and can be broken with freely available programs. To get strong
encryption, use GnuPG, http://www.gnupg.org/ , which already includes zlib
compression. For PKZIP compatible "encryption", look at
http://www.info-zip.org/
39. What's the difference between the "gzip" and "deflate" HTTP 1.1 encodings?
"gzip" is the gzip format, and "deflate" is the zlib format. They should
probably have called the second one "zlib" instead to avoid confusion with
the raw deflate compressed data format. While the HTTP 1.1 RFC 2616
correctly points to the zlib specification in RFC 1950 for the "deflate"
transfer encoding, there have been reports of servers and browsers that
incorrectly produce or expect raw deflate data per the deflate
specification in RFC 1951, most notably Microsoft. So even though the
"deflate" transfer encoding using the zlib format would be the more
efficient approach (and in fact exactly what the zlib format was designed
for), using the "gzip" transfer encoding is probably more reliable due to
an unfortunate choice of name on the part of the HTTP 1.1 authors.
Bottom line: use the gzip format for HTTP 1.1 encoding.
40. Does zlib support the new "Deflate64" format introduced by PKWare?
No. PKWare has apparently decided to keep that format proprietary, since
they have not documented it as they have previous compression formats. In
any case, the compression improvements are so modest compared to other more
modern approaches, that it's not worth the effort to implement.
41. I'm having a problem with the zip functions in zlib, can you help?
There are no zip functions in zlib. You are probably using minizip by
Giles Vollant, which is found in the contrib directory of zlib. It is not
part of zlib. In fact none of the stuff in contrib is part of zlib. The
files in there are not supported by the zlib authors. You need to contact
the authors of the respective contribution for help.
42. The match.asm code in contrib is under the GNU General Public License.
Since it's part of zlib, doesn't that mean that all of zlib falls under the
GNU GPL?
No. The files in contrib are not part of zlib. They were contributed by
other authors and are provided as a convenience to the user within the zlib
distribution. Each item in contrib has its own license.
43. Is zlib subject to export controls? What is its ECCN?
zlib is not subject to export controls, and so is classified as EAR99.
44. Can you please sign these lengthy legal documents and fax them back to us
so that we can use your software in our product?
No. Go away. Shoo.

229
3rdparty/zlib/README vendored
View File

@ -1,114 +1,115 @@
ZLIB DATA COMPRESSION LIBRARY
zlib 1.2.4 is a general purpose data compression library. All the code is
thread safe. The data format used by the zlib library is described by RFCs
(Request for Comments) 1950 to 1952 in the files
http://www.ietf.org/rfc/rfc1950.txt (zlib format), rfc1951.txt (deflate format)
and rfc1952.txt (gzip format).
All functions of the compression library are documented in the file zlib.h
(volunteer to write man pages welcome, contact zlib@gzip.org). A usage example
of the library is given in the file example.c which also tests that the library
is working correctly. Another example is given in the file minigzip.c. The
compression library itself is composed of all source files except example.c and
minigzip.c.
To compile all files and run the test program, follow the instructions given at
the top of Makefile.in. In short "./configure; make test", and if that goes
well, "make install" should work for most flavors of Unix. For Windows, use one
of the special makefiles in win32/ or projects/ . For VMS, use make_vms.com.
Questions about zlib should be sent to <zlib@gzip.org>, or to Gilles Vollant
<info@winimage.com> for the Windows DLL version. The zlib home page is
http://zlib.net/ . Before reporting a problem, please check this site to
verify that you have the latest version of zlib; otherwise get the latest
version and check whether the problem still exists or not.
PLEASE read the zlib FAQ http://zlib.net/zlib_faq.html before asking for help.
Mark Nelson <markn@ieee.org> wrote an article about zlib for the Jan. 1997
issue of Dr. Dobb's Journal; a copy of the article is available at
http://marknelson.us/1997/01/01/zlib-engine/ .
The changes made in version 1.2.4 are documented in the file ChangeLog.
Unsupported third party contributions are provided in directory contrib/ .
zlib is available in Java using the java.util.zip package, documented at
http://java.sun.com/developer/technicalArticles/Programming/compression/ .
A Perl interface to zlib written by Paul Marquess <pmqs@cpan.org> is available
at CPAN (Comprehensive Perl Archive Network) sites, including
http://search.cpan.org/~pmqs/IO-Compress-Zlib/ .
A Python interface to zlib written by A.M. Kuchling <amk@amk.ca> is
available in Python 1.5 and later versions, see
http://www.python.org/doc/lib/module-zlib.html .
zlib is built into tcl: http://wiki.tcl.tk/4610 .
An experimental package to read and write files in .zip format, written on top
of zlib by Gilles Vollant <info@winimage.com>, is available in the
contrib/minizip directory of zlib.
Notes for some targets:
- For Windows DLL versions, please see win32/DLL_FAQ.txt
- For 64-bit Irix, deflate.c must be compiled without any optimization. With
-O, one libpng test fails. The test works in 32 bit mode (with the -n32
compiler flag). The compiler bug has been reported to SGI.
- zlib doesn't work with gcc 2.6.3 on a DEC 3000/300LX under OSF/1 2.1 it works
when compiled with cc.
- On Digital Unix 4.0D (formely OSF/1) on AlphaServer, the cc option -std1 is
necessary to get gzprintf working correctly. This is done by configure.
- zlib doesn't work on HP-UX 9.05 with some versions of /bin/cc. It works with
other compilers. Use "make test" to check your compiler.
- gzdopen is not supported on RISCOS or BEOS.
- For PalmOs, see http://palmzlib.sourceforge.net/
Acknowledgments:
The deflate format used by zlib was defined by Phil Katz. The deflate and
zlib specifications were written by L. Peter Deutsch. Thanks to all the
people who reported problems and suggested various improvements in zlib; they
are too numerous to cite here.
Copyright notice:
(C) 1995-2010 Jean-loup Gailly and Mark Adler
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu
If you use the zlib library in a product, we would appreciate *not* receiving
lengthy legal documents to sign. The sources are provided for free but without
warranty of any kind. The library has been entirely written by Jean-loup
Gailly and Mark Adler; it does not include third-party code.
If you redistribute modified sources, we would appreciate that you include in
the file ChangeLog history information documenting your changes. Please read
the FAQ for more information on the distribution of modified source versions.
ZLIB DATA COMPRESSION LIBRARY
zlib 1.2.7 is a general purpose data compression library. All the code is
thread safe. The data format used by the zlib library is described by RFCs
(Request for Comments) 1950 to 1952 in the files
http://tools.ietf.org/html/rfc1950 (zlib format), rfc1951 (deflate format) and
rfc1952 (gzip format).
All functions of the compression library are documented in the file zlib.h
(volunteer to write man pages welcome, contact zlib@gzip.org). A usage example
of the library is given in the file test/example.c which also tests that
the library is working correctly. Another example is given in the file
test/minigzip.c. The compression library itself is composed of all source
files in the root directory.
To compile all files and run the test program, follow the instructions given at
the top of Makefile.in. In short "./configure; make test", and if that goes
well, "make install" should work for most flavors of Unix. For Windows, use
one of the special makefiles in win32/ or contrib/vstudio/ . For VMS, use
make_vms.com.
Questions about zlib should be sent to <zlib@gzip.org>, or to Gilles Vollant
<info@winimage.com> for the Windows DLL version. The zlib home page is
http://zlib.net/ . Before reporting a problem, please check this site to
verify that you have the latest version of zlib; otherwise get the latest
version and check whether the problem still exists or not.
PLEASE read the zlib FAQ http://zlib.net/zlib_faq.html before asking for help.
Mark Nelson <markn@ieee.org> wrote an article about zlib for the Jan. 1997
issue of Dr. Dobb's Journal; a copy of the article is available at
http://marknelson.us/1997/01/01/zlib-engine/ .
The changes made in version 1.2.7 are documented in the file ChangeLog.
Unsupported third party contributions are provided in directory contrib/ .
zlib is available in Java using the java.util.zip package, documented at
http://java.sun.com/developer/technicalArticles/Programming/compression/ .
A Perl interface to zlib written by Paul Marquess <pmqs@cpan.org> is available
at CPAN (Comprehensive Perl Archive Network) sites, including
http://search.cpan.org/~pmqs/IO-Compress-Zlib/ .
A Python interface to zlib written by A.M. Kuchling <amk@amk.ca> is
available in Python 1.5 and later versions, see
http://docs.python.org/library/zlib.html .
zlib is built into tcl: http://wiki.tcl.tk/4610 .
An experimental package to read and write files in .zip format, written on top
of zlib by Gilles Vollant <info@winimage.com>, is available in the
contrib/minizip directory of zlib.
Notes for some targets:
- For Windows DLL versions, please see win32/DLL_FAQ.txt
- For 64-bit Irix, deflate.c must be compiled without any optimization. With
-O, one libpng test fails. The test works in 32 bit mode (with the -n32
compiler flag). The compiler bug has been reported to SGI.
- zlib doesn't work with gcc 2.6.3 on a DEC 3000/300LX under OSF/1 2.1 it works
when compiled with cc.
- On Digital Unix 4.0D (formely OSF/1) on AlphaServer, the cc option -std1 is
necessary to get gzprintf working correctly. This is done by configure.
- zlib doesn't work on HP-UX 9.05 with some versions of /bin/cc. It works with
other compilers. Use "make test" to check your compiler.
- gzdopen is not supported on RISCOS or BEOS.
- For PalmOs, see http://palmzlib.sourceforge.net/
Acknowledgments:
The deflate format used by zlib was defined by Phil Katz. The deflate and
zlib specifications were written by L. Peter Deutsch. Thanks to all the
people who reported problems and suggested various improvements in zlib; they
are too numerous to cite here.
Copyright notice:
(C) 1995-2012 Jean-loup Gailly and Mark Adler
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu
If you use the zlib library in a product, we would appreciate *not* receiving
lengthy legal documents to sign. The sources are provided for free but without
warranty of any kind. The library has been entirely written by Jean-loup
Gailly and Mark Adler; it does not include third-party code.
If you redistribute modified sources, we would appreciate that you include in
the file ChangeLog history information documenting your changes. Please read
the FAQ for more information on the distribution of modified source versions.

View File

@ -1,5 +1,5 @@
/* adler32.c -- compute the Adler-32 checksum of a data stream
* Copyright (C) 1995-2007 Mark Adler
* Copyright (C) 1995-2011 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
@ -9,9 +9,9 @@
#define local static
local uLong adler32_combine_(uLong adler1, uLong adler2, z_off64_t len2);
local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
#define BASE 65521UL /* largest prime smaller than 65536 */
#define BASE 65521 /* largest prime smaller than 65536 */
#define NMAX 5552
/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
@ -21,39 +21,44 @@ local uLong adler32_combine_(uLong adler1, uLong adler2, z_off64_t len2);
#define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
#define DO16(buf) DO8(buf,0); DO8(buf,8);
/* use NO_DIVIDE if your processor does not do division in hardware */
/* use NO_DIVIDE if your processor does not do division in hardware --
try it both ways to see which is faster */
#ifdef NO_DIVIDE
# define MOD(a) \
/* note that this assumes BASE is 65521, where 65536 % 65521 == 15
(thank you to John Reiser for pointing this out) */
# define CHOP(a) \
do { \
if (a >= (BASE << 16)) a -= (BASE << 16); \
if (a >= (BASE << 15)) a -= (BASE << 15); \
if (a >= (BASE << 14)) a -= (BASE << 14); \
if (a >= (BASE << 13)) a -= (BASE << 13); \
if (a >= (BASE << 12)) a -= (BASE << 12); \
if (a >= (BASE << 11)) a -= (BASE << 11); \
if (a >= (BASE << 10)) a -= (BASE << 10); \
if (a >= (BASE << 9)) a -= (BASE << 9); \
if (a >= (BASE << 8)) a -= (BASE << 8); \
if (a >= (BASE << 7)) a -= (BASE << 7); \
if (a >= (BASE << 6)) a -= (BASE << 6); \
if (a >= (BASE << 5)) a -= (BASE << 5); \
if (a >= (BASE << 4)) a -= (BASE << 4); \
if (a >= (BASE << 3)) a -= (BASE << 3); \
if (a >= (BASE << 2)) a -= (BASE << 2); \
if (a >= (BASE << 1)) a -= (BASE << 1); \
unsigned long tmp = a >> 16; \
a &= 0xffffUL; \
a += (tmp << 4) - tmp; \
} while (0)
# define MOD28(a) \
do { \
CHOP(a); \
if (a >= BASE) a -= BASE; \
} while (0)
# define MOD4(a) \
# define MOD(a) \
do { \
if (a >= (BASE << 4)) a -= (BASE << 4); \
if (a >= (BASE << 3)) a -= (BASE << 3); \
if (a >= (BASE << 2)) a -= (BASE << 2); \
if (a >= (BASE << 1)) a -= (BASE << 1); \
CHOP(a); \
MOD28(a); \
} while (0)
# define MOD63(a) \
do { /* this assumes a is not negative */ \
z_off64_t tmp = a >> 32; \
a &= 0xffffffffL; \
a += (tmp << 8) - (tmp << 5) + tmp; \
tmp = a >> 16; \
a &= 0xffffL; \
a += (tmp << 4) - tmp; \
tmp = a >> 16; \
a &= 0xffffL; \
a += (tmp << 4) - tmp; \
if (a >= BASE) a -= BASE; \
} while (0)
#else
# define MOD(a) a %= BASE
# define MOD4(a) a %= BASE
# define MOD28(a) a %= BASE
# define MOD63(a) a %= BASE
#endif
/* ========================================================================= */
@ -92,7 +97,7 @@ uLong ZEXPORT adler32(adler, buf, len)
}
if (adler >= BASE)
adler -= BASE;
MOD4(sum2); /* only added so many BASE's */
MOD28(sum2); /* only added so many BASE's */
return adler | (sum2 << 16);
}
@ -137,8 +142,13 @@ local uLong adler32_combine_(adler1, adler2, len2)
unsigned long sum2;
unsigned rem;
/* for negative len, return invalid adler32 as a clue for debugging */
if (len2 < 0)
return 0xffffffffUL;
/* the derivation of this formula is left as an exercise for the reader */
rem = (unsigned)(len2 % BASE);
MOD63(len2); /* assumes len2 >= 0 */
rem = (unsigned)len2;
sum1 = adler1 & 0xffff;
sum2 = rem * sum1;
MOD(sum2);

85
3rdparty/zlib/crc32.c vendored
View File

@ -1,5 +1,5 @@
/* crc32.c -- compute the CRC-32 of a data stream
* Copyright (C) 1995-2006 Mark Adler
* Copyright (C) 1995-2006, 2010, 2011, 2012 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*
* Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
@ -17,6 +17,8 @@
of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
first call get_crc_table() to initialize the tables before allowing more than
one thread to use crc32().
DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h.
*/
#ifdef MAKECRCH
@ -30,31 +32,11 @@
#define local static
/* Find a four-byte integer type for crc32_little() and crc32_big(). */
#ifndef NOBYFOUR
# ifdef STDC /* need ANSI C limits.h to determine sizes */
# include <limits.h>
# define BYFOUR
# if (UINT_MAX == 0xffffffffUL)
typedef unsigned int u4;
# else
# if (ULONG_MAX == 0xffffffffUL)
typedef unsigned long u4;
# else
# if (USHRT_MAX == 0xffffffffUL)
typedef unsigned short u4;
# else
# undef BYFOUR /* can't find a four-byte integer type! */
# endif
# endif
# endif
# endif /* STDC */
#endif /* !NOBYFOUR */
/* Definitions for doing the crc four data bytes at a time. */
#if !defined(NOBYFOUR) && defined(Z_U4)
# define BYFOUR
#endif
#ifdef BYFOUR
# define REV(w) ((((w)>>24)&0xff)+(((w)>>8)&0xff00)+ \
(((w)&0xff00)<<8)+(((w)&0xff)<<24))
local unsigned long crc32_little OF((unsigned long,
const unsigned char FAR *, unsigned));
local unsigned long crc32_big OF((unsigned long,
@ -68,16 +50,16 @@
local unsigned long gf2_matrix_times OF((unsigned long *mat,
unsigned long vec));
local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
local uLong crc32_combine_(uLong crc1, uLong crc2, z_off64_t len2);
local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2));
#ifdef DYNAMIC_CRC_TABLE
local volatile int crc_table_empty = 1;
local unsigned long FAR crc_table[TBLS][256];
local z_crc_t FAR crc_table[TBLS][256];
local void make_crc_table OF((void));
#ifdef MAKECRCH
local void write_table OF((FILE *, const unsigned long FAR *));
local void write_table OF((FILE *, const z_crc_t FAR *));
#endif /* MAKECRCH */
/*
Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
@ -107,9 +89,9 @@ local void make_crc_table OF((void));
*/
local void make_crc_table()
{
unsigned long c;
z_crc_t c;
int n, k;
unsigned long poly; /* polynomial exclusive-or pattern */
z_crc_t poly; /* polynomial exclusive-or pattern */
/* terms of polynomial defining this crc (except x^32): */
static volatile int first = 1; /* flag to limit concurrent making */
static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
@ -121,13 +103,13 @@ local void make_crc_table()
first = 0;
/* make exclusive-or pattern from polynomial (0xedb88320UL) */
poly = 0UL;
for (n = 0; n < sizeof(p)/sizeof(unsigned char); n++)
poly |= 1UL << (31 - p[n]);
poly = 0;
for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++)
poly |= (z_crc_t)1 << (31 - p[n]);
/* generate a crc for every 8-bit value */
for (n = 0; n < 256; n++) {
c = (unsigned long)n;
c = (z_crc_t)n;
for (k = 0; k < 8; k++)
c = c & 1 ? poly ^ (c >> 1) : c >> 1;
crc_table[0][n] = c;
@ -138,11 +120,11 @@ local void make_crc_table()
and then the byte reversal of those as well as the first table */
for (n = 0; n < 256; n++) {
c = crc_table[0][n];
crc_table[4][n] = REV(c);
crc_table[4][n] = ZSWAP32(c);
for (k = 1; k < 4; k++) {
c = crc_table[0][c & 0xff] ^ (c >> 8);
crc_table[k][n] = c;
crc_table[k + 4][n] = REV(c);
crc_table[k + 4][n] = ZSWAP32(c);
}
}
#endif /* BYFOUR */
@ -164,7 +146,7 @@ local void make_crc_table()
if (out == NULL) return;
fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
fprintf(out, "local const unsigned long FAR ");
fprintf(out, "local const z_crc_t FAR ");
fprintf(out, "crc_table[TBLS][256] =\n{\n {\n");
write_table(out, crc_table[0]);
# ifdef BYFOUR
@ -184,12 +166,13 @@ local void make_crc_table()
#ifdef MAKECRCH
local void write_table(out, table)
FILE *out;
const unsigned long FAR *table;
const z_crc_t FAR *table;
{
int n;
for (n = 0; n < 256; n++)
fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", table[n],
fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ",
(unsigned long)(table[n]),
n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
}
#endif /* MAKECRCH */
@ -204,13 +187,13 @@ local void write_table(out, table)
/* =========================================================================
* This function can be used by asm versions of crc32()
*/
const unsigned long FAR * ZEXPORT get_crc_table()
const z_crc_t FAR * ZEXPORT get_crc_table()
{
#ifdef DYNAMIC_CRC_TABLE
if (crc_table_empty)
make_crc_table();
#endif /* DYNAMIC_CRC_TABLE */
return (const unsigned long FAR *)crc_table;
return (const z_crc_t FAR *)crc_table;
}
/* ========================================================================= */
@ -221,7 +204,7 @@ const unsigned long FAR * ZEXPORT get_crc_table()
unsigned long ZEXPORT crc32(crc, buf, len)
unsigned long crc;
const unsigned char FAR *buf;
unsigned len;
uInt len;
{
if (buf == Z_NULL) return 0UL;
@ -232,7 +215,7 @@ unsigned long ZEXPORT crc32(crc, buf, len)
#ifdef BYFOUR
if (sizeof(void *) == sizeof(ptrdiff_t)) {
u4 endian;
z_crc_t endian;
endian = 1;
if (*((unsigned char *)(&endian)))
@ -266,17 +249,17 @@ local unsigned long crc32_little(crc, buf, len)
const unsigned char FAR *buf;
unsigned len;
{
register u4 c;
register const u4 FAR *buf4;
register z_crc_t c;
register const z_crc_t FAR *buf4;
c = (u4)crc;
c = (z_crc_t)crc;
c = ~c;
while (len && ((ptrdiff_t)buf & 3)) {
c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
len--;
}
buf4 = (const u4 FAR *)(const void FAR *)buf;
buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
while (len >= 32) {
DOLIT32;
len -= 32;
@ -306,17 +289,17 @@ local unsigned long crc32_big(crc, buf, len)
const unsigned char FAR *buf;
unsigned len;
{
register u4 c;
register const u4 FAR *buf4;
register z_crc_t c;
register const z_crc_t FAR *buf4;
c = REV((u4)crc);
c = ZSWAP32((z_crc_t)crc);
c = ~c;
while (len && ((ptrdiff_t)buf & 3)) {
c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
len--;
}
buf4 = (const u4 FAR *)(const void FAR *)buf;
buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
buf4--;
while (len >= 32) {
DOBIG32;
@ -333,7 +316,7 @@ local unsigned long crc32_big(crc, buf, len)
c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
} while (--len);
c = ~c;
return (unsigned long)(REV(c));
return (unsigned long)(ZSWAP32(c));
}
#endif /* BYFOUR */

View File

@ -2,7 +2,7 @@
* Generated automatically by crc32.c
*/
local const unsigned long FAR crc_table[TBLS][256] =
local const z_crc_t FAR crc_table[TBLS][256] =
{
{
0x00000000UL, 0x77073096UL, 0xee0e612cUL, 0x990951baUL, 0x076dc419UL,

View File

@ -1,5 +1,5 @@
/* deflate.c -- compress data using the deflation algorithm
* Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler
* Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
@ -37,7 +37,7 @@
* REFERENCES
*
* Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
* Available in http://www.ietf.org/rfc/rfc1951.txt
* Available in http://tools.ietf.org/html/rfc1951
*
* A description of the Rabin and Karp algorithm is given in the book
* "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
@ -52,7 +52,7 @@
#include "deflate.h"
const char deflate_copyright[] =
" deflate 1.2.4 Copyright 1995-2010 Jean-loup Gailly and Mark Adler ";
" deflate 1.2.7 Copyright 1995-2012 Jean-loup Gailly and Mark Adler ";
/*
If you use the zlib library in a product, an acknowledgment is welcome
in the documentation of your product. If for some reason you cannot
@ -155,6 +155,9 @@ local const config configuration_table[10] = {
struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
#endif
/* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
#define RANK(f) (((f) << 1) - ((f) > 4 ? 9 : 0))
/* ===========================================================================
* Update a hash value with the given input byte
* IN assertion: all calls to to UPDATE_HASH are made with consecutive
@ -235,10 +238,19 @@ int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
strm->msg = Z_NULL;
if (strm->zalloc == (alloc_func)0) {
#ifdef Z_SOLO
return Z_STREAM_ERROR;
#else
strm->zalloc = zcalloc;
strm->opaque = (voidpf)0;
#endif
}
if (strm->zfree == (free_func)0) strm->zfree = zcfree;
if (strm->zfree == (free_func)0)
#ifdef Z_SOLO
return Z_STREAM_ERROR;
#else
strm->zfree = zcfree;
#endif
#ifdef FASTEST
if (level != 0) level = 1;
@ -314,43 +326,70 @@ int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
uInt dictLength;
{
deflate_state *s;
uInt length = dictLength;
uInt n;
IPos hash_head = 0;
uInt str, n;
int wrap;
unsigned avail;
unsigned char *next;
if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL ||
strm->state->wrap == 2 ||
(strm->state->wrap == 1 && strm->state->status != INIT_STATE))
if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
return Z_STREAM_ERROR;
s = strm->state;
wrap = s->wrap;
if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
return Z_STREAM_ERROR;
s = strm->state;
if (s->wrap)
/* when using zlib wrappers, compute Adler-32 for provided dictionary */
if (wrap == 1)
strm->adler = adler32(strm->adler, dictionary, dictLength);
s->wrap = 0; /* avoid computing Adler-32 in read_buf */
if (length < MIN_MATCH) return Z_OK;
if (length > s->w_size) {
length = s->w_size;
dictionary += dictLength - length; /* use the tail of the dictionary */
/* if dictionary would fill window, just replace the history */
if (dictLength >= s->w_size) {
if (wrap == 0) { /* already empty otherwise */
CLEAR_HASH(s);
s->strstart = 0;
s->block_start = 0L;
s->insert = 0;
}
dictionary += dictLength - s->w_size; /* use the tail */
dictLength = s->w_size;
}
zmemcpy(s->window, dictionary, length);
s->strstart = length;
s->block_start = (long)length;
/* Insert all strings in the hash table (except for the last two bytes).
* s->lookahead stays null, so s->ins_h will be recomputed at the next
* call of fill_window.
*/
s->ins_h = s->window[0];
UPDATE_HASH(s, s->ins_h, s->window[1]);
for (n = 0; n <= length - MIN_MATCH; n++) {
INSERT_STRING(s, n, hash_head);
/* insert dictionary into window and hash */
avail = strm->avail_in;
next = strm->next_in;
strm->avail_in = dictLength;
strm->next_in = (Bytef *)dictionary;
fill_window(s);
while (s->lookahead >= MIN_MATCH) {
str = s->strstart;
n = s->lookahead - (MIN_MATCH-1);
do {
UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
#ifndef FASTEST
s->prev[str & s->w_mask] = s->head[s->ins_h];
#endif
s->head[s->ins_h] = (Pos)str;
str++;
} while (--n);
s->strstart = str;
s->lookahead = MIN_MATCH-1;
fill_window(s);
}
if (hash_head) hash_head = 0; /* to make compiler happy */
s->strstart += s->lookahead;
s->block_start = (long)s->strstart;
s->insert = s->lookahead;
s->lookahead = 0;
s->match_length = s->prev_length = MIN_MATCH-1;
s->match_available = 0;
strm->next_in = next;
strm->avail_in = avail;
s->wrap = wrap;
return Z_OK;
}
/* ========================================================================= */
int ZEXPORT deflateReset (strm)
int ZEXPORT deflateResetKeep (strm)
z_streamp strm;
{
deflate_state *s;
@ -380,11 +419,22 @@ int ZEXPORT deflateReset (strm)
s->last_flush = Z_NO_FLUSH;
_tr_init(s);
lm_init(s);
return Z_OK;
}
/* ========================================================================= */
int ZEXPORT deflateReset (strm)
z_streamp strm;
{
int ret;
ret = deflateResetKeep(strm);
if (ret == Z_OK)
lm_init(strm->state);
return ret;
}
/* ========================================================================= */
int ZEXPORT deflateSetHeader (strm, head)
z_streamp strm;
@ -396,15 +446,43 @@ int ZEXPORT deflateSetHeader (strm, head)
return Z_OK;
}
/* ========================================================================= */
int ZEXPORT deflatePending (strm, pending, bits)
unsigned *pending;
int *bits;
z_streamp strm;
{
if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
if (pending != Z_NULL)
*pending = strm->state->pending;
if (bits != Z_NULL)
*bits = strm->state->bi_valid;
return Z_OK;
}
/* ========================================================================= */
int ZEXPORT deflatePrime (strm, bits, value)
z_streamp strm;
int bits;
int value;
{
deflate_state *s;
int put;
if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
strm->state->bi_valid = bits;
strm->state->bi_buf = (ush)(value & ((1 << bits) - 1));
s = strm->state;
if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3))
return Z_BUF_ERROR;
do {
put = Buf_size - s->bi_valid;
if (put > bits)
put = bits;
s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
s->bi_valid += put;
_tr_flush_bits(s);
value >>= put;
bits -= put;
} while (bits);
return Z_OK;
}
@ -562,19 +640,22 @@ local void putShortMSB (s, b)
local void flush_pending(strm)
z_streamp strm;
{
unsigned len = strm->state->pending;
unsigned len;
deflate_state *s = strm->state;
_tr_flush_bits(s);
len = s->pending;
if (len > strm->avail_out) len = strm->avail_out;
if (len == 0) return;
zmemcpy(strm->next_out, strm->state->pending_out, len);
zmemcpy(strm->next_out, s->pending_out, len);
strm->next_out += len;
strm->state->pending_out += len;
s->pending_out += len;
strm->total_out += len;
strm->avail_out -= len;
strm->state->pending -= len;
if (strm->state->pending == 0) {
strm->state->pending_out = strm->state->pending_buf;
s->pending -= len;
if (s->pending == 0) {
s->pending_out = s->pending_buf;
}
}
@ -801,7 +882,7 @@ int ZEXPORT deflate (strm, flush)
* flushes. For repeated and useless calls with Z_FINISH, we keep
* returning Z_STREAM_END instead of Z_BUF_ERROR.
*/
} else if (strm->avail_in == 0 && flush <= old_flush &&
} else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
flush != Z_FINISH) {
ERR_RETURN(strm, Z_BUF_ERROR);
}
@ -850,6 +931,7 @@ int ZEXPORT deflate (strm, flush)
if (s->lookahead == 0) {
s->strstart = 0;
s->block_start = 0L;
s->insert = 0;
}
}
}
@ -945,12 +1027,12 @@ int ZEXPORT deflateCopy (dest, source)
ss = source->state;
zmemcpy(dest, source, sizeof(z_stream));
zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
if (ds == Z_NULL) return Z_MEM_ERROR;
dest->state = (struct internal_state FAR *) ds;
zmemcpy(ds, ss, sizeof(deflate_state));
zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
ds->strm = dest;
ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
@ -966,8 +1048,8 @@ int ZEXPORT deflateCopy (dest, source)
}
/* following zmemcpy do not work for 16-bit MSDOS */
zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
@ -1001,15 +1083,15 @@ local int read_buf(strm, buf, size)
strm->avail_in -= len;
zmemcpy(buf, strm->next_in, len);
if (strm->state->wrap == 1) {
strm->adler = adler32(strm->adler, strm->next_in, len);
strm->adler = adler32(strm->adler, buf, len);
}
#ifdef GZIP
else if (strm->state->wrap == 2) {
strm->adler = crc32(strm->adler, strm->next_in, len);
strm->adler = crc32(strm->adler, buf, len);
}
#endif
zmemcpy(buf, strm->next_in, len);
strm->next_in += len;
strm->total_in += len;
@ -1036,6 +1118,7 @@ local void lm_init (s)
s->strstart = 0;
s->block_start = 0L;
s->lookahead = 0;
s->insert = 0;
s->match_length = s->prev_length = MIN_MATCH-1;
s->match_available = 0;
s->ins_h = 0;
@ -1310,6 +1393,8 @@ local void fill_window(s)
unsigned more; /* Amount of free space at the end of the window. */
uInt wsize = s->w_size;
Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
do {
more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
@ -1362,7 +1447,7 @@ local void fill_window(s)
#endif
more += wsize;
}
if (s->strm->avail_in == 0) return;
if (s->strm->avail_in == 0) break;
/* If there was no sliding:
* strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
@ -1381,12 +1466,24 @@ local void fill_window(s)
s->lookahead += n;
/* Initialize the hash value now that we have some input: */
if (s->lookahead >= MIN_MATCH) {
s->ins_h = s->window[s->strstart];
UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
if (s->lookahead + s->insert >= MIN_MATCH) {
uInt str = s->strstart - s->insert;
s->ins_h = s->window[str];
UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
#if MIN_MATCH != 3
Call UPDATE_HASH() MIN_MATCH-3 more times
#endif
while (s->insert) {
UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
#ifndef FASTEST
s->prev[str & s->w_mask] = s->head[s->ins_h];
#endif
s->head[s->ins_h] = (Pos)str;
str++;
s->insert--;
if (s->lookahead + s->insert < MIN_MATCH)
break;
}
}
/* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
* but this is not important since only literal bytes will be emitted.
@ -1427,6 +1524,9 @@ local void fill_window(s)
s->high_water += init;
}
}
Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
"not enough room for search");
}
/* ===========================================================================
@ -1506,8 +1606,14 @@ local block_state deflate_stored(s, flush)
FLUSH_BLOCK(s, 0);
}
}
FLUSH_BLOCK(s, flush == Z_FINISH);
return flush == Z_FINISH ? finish_done : block_done;
s->insert = 0;
if (flush == Z_FINISH) {
FLUSH_BLOCK(s, 1);
return finish_done;
}
if ((long)s->strstart > s->block_start)
FLUSH_BLOCK(s, 0);
return block_done;
}
/* ===========================================================================
@ -1603,8 +1709,14 @@ local block_state deflate_fast(s, flush)
}
if (bflush) FLUSH_BLOCK(s, 0);
}
FLUSH_BLOCK(s, flush == Z_FINISH);
return flush == Z_FINISH ? finish_done : block_done;
s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
if (flush == Z_FINISH) {
FLUSH_BLOCK(s, 1);
return finish_done;
}
if (s->last_lit)
FLUSH_BLOCK(s, 0);
return block_done;
}
#ifndef FASTEST
@ -1728,8 +1840,14 @@ local block_state deflate_slow(s, flush)
_tr_tally_lit(s, s->window[s->strstart-1], bflush);
s->match_available = 0;
}
FLUSH_BLOCK(s, flush == Z_FINISH);
return flush == Z_FINISH ? finish_done : block_done;
s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
if (flush == Z_FINISH) {
FLUSH_BLOCK(s, 1);
return finish_done;
}
if (s->last_lit)
FLUSH_BLOCK(s, 0);
return block_done;
}
#endif /* FASTEST */
@ -1749,11 +1867,11 @@ local block_state deflate_rle(s, flush)
for (;;) {
/* Make sure that we always have enough lookahead, except
* at the end of the input file. We need MAX_MATCH bytes
* for the longest encodable run.
* for the longest run, plus one for the unrolled loop.
*/
if (s->lookahead < MAX_MATCH) {
if (s->lookahead <= MAX_MATCH) {
fill_window(s);
if (s->lookahead < MAX_MATCH && flush == Z_NO_FLUSH) {
if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
return need_more;
}
if (s->lookahead == 0) break; /* flush the current block */
@ -1776,6 +1894,7 @@ local block_state deflate_rle(s, flush)
if (s->match_length > s->lookahead)
s->match_length = s->lookahead;
}
Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
}
/* Emit match if have run of MIN_MATCH or longer, else emit literal */
@ -1796,8 +1915,14 @@ local block_state deflate_rle(s, flush)
}
if (bflush) FLUSH_BLOCK(s, 0);
}
FLUSH_BLOCK(s, flush == Z_FINISH);
return flush == Z_FINISH ? finish_done : block_done;
s->insert = 0;
if (flush == Z_FINISH) {
FLUSH_BLOCK(s, 1);
return finish_done;
}
if (s->last_lit)
FLUSH_BLOCK(s, 0);
return block_done;
}
/* ===========================================================================
@ -1829,6 +1954,12 @@ local block_state deflate_huff(s, flush)
s->strstart++;
if (bflush) FLUSH_BLOCK(s, 0);
}
FLUSH_BLOCK(s, flush == Z_FINISH);
return flush == Z_FINISH ? finish_done : block_done;
s->insert = 0;
if (flush == Z_FINISH) {
FLUSH_BLOCK(s, 1);
return finish_done;
}
if (s->last_lit)
FLUSH_BLOCK(s, 0);
return block_done;
}

View File

@ -1,5 +1,5 @@
/* deflate.h -- internal compression state
* Copyright (C) 1995-2009 Jean-loup Gailly
* Copyright (C) 1995-2012 Jean-loup Gailly
* For conditions of distribution and use, see copyright notice in zlib.h
*/
@ -48,6 +48,9 @@
#define MAX_BITS 15
/* All codes must not exceed MAX_BITS bits */
#define Buf_size 16
/* size of bit buffer in bi_buf */
#define INIT_STATE 42
#define EXTRA_STATE 69
#define NAME_STATE 73
@ -188,7 +191,7 @@ typedef struct internal_state {
int nice_match; /* Stop searching when current match exceeds this */
/* used by trees.c: */
/* Didn't use ct_data typedef below to supress compiler warning */
/* Didn't use ct_data typedef below to suppress compiler warning */
struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */
struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */
@ -244,7 +247,7 @@ typedef struct internal_state {
ulg opt_len; /* bit length of current block with optimal trees */
ulg static_len; /* bit length of current block with static trees */
uInt matches; /* number of string matches in current block */
int last_eob_len; /* bit length of EOB code for last block */
uInt insert; /* bytes at end of window left to insert */
#ifdef DEBUG
ulg compressed_len; /* total bit length of compressed file mod 2^32 */
@ -290,13 +293,14 @@ typedef struct internal_state {
memory checker errors from longest match routines */
/* in trees.c */
void _tr_init OF((deflate_state *s));
int _tr_tally OF((deflate_state *s, unsigned dist, unsigned lc));
void _tr_flush_block OF((deflate_state *s, charf *buf, ulg stored_len,
int last));
void _tr_align OF((deflate_state *s));
void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
int last));
void ZLIB_INTERNAL _tr_init OF((deflate_state *s));
int ZLIB_INTERNAL _tr_tally OF((deflate_state *s, unsigned dist, unsigned lc));
void ZLIB_INTERNAL _tr_flush_block OF((deflate_state *s, charf *buf,
ulg stored_len, int last));
void ZLIB_INTERNAL _tr_flush_bits OF((deflate_state *s));
void ZLIB_INTERNAL _tr_align OF((deflate_state *s));
void ZLIB_INTERNAL _tr_stored_block OF((deflate_state *s, charf *buf,
ulg stored_len, int last));
#define d_code(dist) \
((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)])
@ -309,11 +313,11 @@ void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
/* Inline versions of _tr_tally for speed: */
#if defined(GEN_TREES_H) || !defined(STDC)
extern uch _length_code[];
extern uch _dist_code[];
extern uch ZLIB_INTERNAL _length_code[];
extern uch ZLIB_INTERNAL _dist_code[];
#else
extern const uch _length_code[];
extern const uch _dist_code[];
extern const uch ZLIB_INTERNAL _length_code[];
extern const uch ZLIB_INTERNAL _dist_code[];
#endif
# define _tr_tally_lit(s, c, flush) \

113
3rdparty/zlib/gzguts.h vendored
View File

@ -1,18 +1,22 @@
/* gzguts.h -- zlib internal header definitions for gz* operations
* Copyright (C) 2004, 2005, 2010 Mark Adler
* Copyright (C) 2004, 2005, 2010, 2011, 2012 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#ifdef _LARGEFILE64_SOURCE
# ifndef _LARGEFILE_SOURCE
# define _LARGEFILE_SOURCE
# define _LARGEFILE_SOURCE 1
# endif
# ifdef _FILE_OFFSET_BITS
# undef _FILE_OFFSET_BITS
# endif
#endif
#define ZLIB_INTERNAL
#ifdef HAVE_HIDDEN
# define ZLIB_INTERNAL __attribute__((visibility ("hidden")))
#else
# define ZLIB_INTERNAL
#endif
#include <stdio.h>
#include "zlib.h"
@ -23,13 +27,65 @@
#endif
#include <fcntl.h>
#ifdef _WIN32
# include <stddef.h>
#endif
#if defined(__TURBOC__) || defined(_MSC_VER) || defined(_WIN32)
# include <io.h>
#endif
#ifdef NO_DEFLATE /* for compatibility with old definition */
# define NO_GZCOMPRESS
#endif
#ifdef _MSC_VER
# include <io.h>
# define vsnprintf _vsnprintf
#if defined(STDC99) || (defined(__TURBOC__) && __TURBOC__ >= 0x550)
# ifndef HAVE_VSNPRINTF
# define HAVE_VSNPRINTF
# endif
#endif
#if defined(__CYGWIN__)
# ifndef HAVE_VSNPRINTF
# define HAVE_VSNPRINTF
# endif
#endif
#if defined(MSDOS) && defined(__BORLANDC__) && (BORLANDC > 0x410)
# ifndef HAVE_VSNPRINTF
# define HAVE_VSNPRINTF
# endif
#endif
#ifndef HAVE_VSNPRINTF
# ifdef MSDOS
/* vsnprintf may exist on some MS-DOS compilers (DJGPP?),
but for now we just assume it doesn't. */
# define NO_vsnprintf
# endif
# ifdef __TURBOC__
# define NO_vsnprintf
# endif
# ifdef WIN32
/* In Win32, vsnprintf is available as the "non-ANSI" _vsnprintf. */
# if !defined(vsnprintf) && !defined(NO_vsnprintf)
# if !defined(_MSC_VER) || ( defined(_MSC_VER) && _MSC_VER < 1500 )
# define vsnprintf _vsnprintf
# endif
# endif
# endif
# ifdef __SASC
# define NO_vsnprintf
# endif
# ifdef VMS
# define NO_vsnprintf
# endif
# ifdef __OS400__
# define NO_vsnprintf
# endif
# ifdef __MVS__
# define NO_vsnprintf
# endif
#endif
#ifndef local
@ -44,11 +100,11 @@
#endif
/* get errno and strerror definition */
#if defined UNDER_CE && defined NO_ERRNO_H
#if defined UNDER_CE
# include <windows.h>
# define zstrerror() gz_strwinerror((DWORD)GetLastError())
#else
# ifdef STDC
# ifndef NO_STRERROR
# include <errno.h>
# define zstrerror() strerror(errno)
# else
@ -56,16 +112,19 @@
# endif
#endif
/* MVS fdopen() */
#ifdef __MVS__
#pragma map (fdopen , "\174\174FDOPEN")
FILE *fdopen(int, const char *);
/* provide prototypes for these when building zlib without LFS */
#if !defined(_LARGEFILE64_SOURCE) || _LFS64_LARGEFILE-0 == 0
ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *));
ZEXTERN z_off64_t ZEXPORT gzseek64 OF((gzFile, z_off64_t, int));
ZEXTERN z_off64_t ZEXPORT gztell64 OF((gzFile));
ZEXTERN z_off64_t ZEXPORT gzoffset64 OF((gzFile));
#endif
#ifdef _LARGEFILE64_SOURCE
# define z_off64_t off64_t
/* default memLevel */
#if MAX_MEM_LEVEL >= 8
# define DEF_MEM_LEVEL 8
#else
# define z_off64_t z_off_t
# define DEF_MEM_LEVEL MAX_MEM_LEVEL
#endif
/* default i/o buffer size -- double this for output when reading */
@ -84,23 +143,25 @@
/* internal gzip file state data structure */
typedef struct {
/* exposed contents for gzgetc() macro */
struct gzFile_s x; /* "x" for exposed */
/* x.have: number of bytes available at x.next */
/* x.next: next output data to deliver or write */
/* x.pos: current position in uncompressed data */
/* used for both reading and writing */
int mode; /* see gzip modes above */
int fd; /* file descriptor */
char *path; /* path or fd for error messages */
z_off64_t pos; /* current position in uncompressed data */
unsigned size; /* buffer size, zero if not allocated yet */
unsigned want; /* requested buffer size, default is GZBUFSIZE */
unsigned char *in; /* input buffer */
unsigned char *out; /* output buffer (double-sized when reading) */
unsigned char *next; /* next output data to deliver or write */
int direct; /* 0 if processing gzip, 1 if transparent */
/* just for reading */
unsigned have; /* amount of output data unused at next */
int eof; /* true if end of input file reached */
z_off64_t start; /* where the gzip data started, for rewinding */
z_off64_t raw; /* where the raw data started, for seeking */
int how; /* 0: get header, 1: copy, 2: decompress */
int direct; /* true if last read direct, false if gzip */
z_off64_t start; /* where the gzip data started, for rewinding */
int eof; /* true if end of input file reached */
int past; /* true if read requested past end */
/* just for writing */
int level; /* compression level */
int strategy; /* compression strategy */
@ -116,9 +177,9 @@ typedef struct {
typedef gz_state FAR *gz_statep;
/* shared functions */
ZEXTERN void ZEXPORT gz_error OF((gz_statep, int, const char *));
#if defined UNDER_CE && defined NO_ERRNO_H
ZEXTERN char ZEXPORT *gz_strwinerror OF((DWORD error));
void ZLIB_INTERNAL gz_error OF((gz_statep, int, const char *));
#if defined UNDER_CE
char ZLIB_INTERNAL *gz_strwinerror OF((DWORD error));
#endif
/* GT_OFF(x), where x is an unsigned value, is true if x > maximum z_off64_t
@ -127,6 +188,6 @@ ZEXTERN char ZEXPORT *gz_strwinerror OF((DWORD error));
#ifdef INT_MAX
# define GT_OFF(x) (sizeof(int) == sizeof(z_off64_t) && (x) > INT_MAX)
#else
ZEXTERN unsigned ZEXPORT gz_intmax OF((void));
unsigned ZLIB_INTERNAL gz_intmax OF((void));
# define GT_OFF(x) (sizeof(int) == sizeof(z_off64_t) && (x) > gz_intmax())
#endif

179
3rdparty/zlib/gzlib.c vendored
View File

@ -1,21 +1,25 @@
/* gzlib.c -- zlib functions common to reading and writing gzip files
* Copyright (C) 2004, 2010 Mark Adler
* Copyright (C) 2004, 2010, 2011, 2012 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#include "gzguts.h"
#ifdef _LARGEFILE64_SOURCE
#if defined(_WIN32) && !defined(__BORLANDC__)
# define LSEEK _lseeki64
#else
#if defined(_LARGEFILE64_SOURCE) && _LFS64_LARGEFILE-0
# define LSEEK lseek64
#else
# define LSEEK lseek
#endif
#endif
/* Local functions */
local void gz_reset OF((gz_statep));
local gzFile gz_open OF((const char *, int, const char *));
local gzFile gz_open OF((const void *, int, const char *));
#if defined UNDER_CE && defined NO_ERRNO_H
#if defined UNDER_CE
/* Map the Windows error number in ERROR to a locale-dependent error message
string and return a pointer to it. Typically, the values for ERROR come
@ -26,7 +30,7 @@ local gzFile gz_open OF((const char *, int, const char *));
The gz_strwinerror function does not change the current setting of
GetLastError. */
char ZEXPORT *gz_strwinerror (error)
char ZLIB_INTERNAL *gz_strwinerror (error)
DWORD error;
{
static char buf[1024];
@ -65,31 +69,43 @@ char ZEXPORT *gz_strwinerror (error)
return buf;
}
#endif /* UNDER_CE && NO_ERRNO_H */
#endif /* UNDER_CE */
/* Reset gzip file state */
local void gz_reset(state)
gz_statep state;
{
state->x.have = 0; /* no output data available */
if (state->mode == GZ_READ) { /* for reading ... */
state->have = 0; /* no output data available */
state->eof = 0; /* not at end of file */
state->past = 0; /* have not read past end yet */
state->how = LOOK; /* look for gzip header */
state->direct = 1; /* default for empty file */
}
state->seek = 0; /* no seek request pending */
gz_error(state, Z_OK, NULL); /* clear error */
state->pos = 0; /* no uncompressed data yet */
state->x.pos = 0; /* no uncompressed data yet */
state->strm.avail_in = 0; /* no input data yet */
}
/* Open a gzip file either by name or file descriptor. */
local gzFile gz_open(path, fd, mode)
const char *path;
const void *path;
int fd;
const char *mode;
{
gz_statep state;
size_t len;
int oflag;
#ifdef O_CLOEXEC
int cloexec = 0;
#endif
#ifdef O_EXCL
int exclusive = 0;
#endif
/* check input */
if (path == NULL)
return NULL;
/* allocate gzFile structure to return */
state = malloc(sizeof(gz_state));
@ -103,6 +119,7 @@ local gzFile gz_open(path, fd, mode)
state->mode = GZ_NONE;
state->level = Z_DEFAULT_COMPRESSION;
state->strategy = Z_DEFAULT_STRATEGY;
state->direct = 0;
while (*mode) {
if (*mode >= '0' && *mode <= '9')
state->level = *mode - '0';
@ -124,6 +141,16 @@ local gzFile gz_open(path, fd, mode)
return NULL;
case 'b': /* ignore -- will request binary anyway */
break;
#ifdef O_CLOEXEC
case 'e':
cloexec = 1;
break;
#endif
#ifdef O_EXCL
case 'x':
exclusive = 1;
break;
#endif
case 'f':
state->strategy = Z_FILTERED;
break;
@ -135,6 +162,8 @@ local gzFile gz_open(path, fd, mode)
break;
case 'F':
state->strategy = Z_FIXED;
case 'T':
state->direct = 1;
default: /* could consider as an error, but just ignore */
;
}
@ -147,31 +176,69 @@ local gzFile gz_open(path, fd, mode)
return NULL;
}
/* can't force transparent read */
if (state->mode == GZ_READ) {
if (state->direct) {
free(state);
return NULL;
}
state->direct = 1; /* for empty file */
}
/* save the path name for error messages */
state->path = malloc(strlen(path) + 1);
#ifdef _WIN32
if (fd == -2) {
len = wcstombs(NULL, path, 0);
if (len == (size_t)-1)
len = 0;
}
else
#endif
len = strlen(path);
state->path = malloc(len + 1);
if (state->path == NULL) {
free(state);
return NULL;
}
strcpy(state->path, path);
#ifdef _WIN32
if (fd == -2)
if (len)
wcstombs(state->path, path, len + 1);
else
*(state->path) = 0;
else
#endif
strcpy(state->path, path);
/* open the file with the appropriate mode (or just use fd) */
state->fd = fd != -1 ? fd :
open(path,
/* compute the flags for open() */
oflag =
#ifdef O_LARGEFILE
O_LARGEFILE |
O_LARGEFILE |
#endif
#ifdef O_BINARY
O_BINARY |
O_BINARY |
#endif
(state->mode == GZ_READ ?
O_RDONLY :
(O_WRONLY | O_CREAT | (
state->mode == GZ_WRITE ?
O_TRUNC :
O_APPEND))),
0666);
#ifdef O_CLOEXEC
(cloexec ? O_CLOEXEC : 0) |
#endif
(state->mode == GZ_READ ?
O_RDONLY :
(O_WRONLY | O_CREAT |
#ifdef O_EXCL
(exclusive ? O_EXCL : 0) |
#endif
(state->mode == GZ_WRITE ?
O_TRUNC :
O_APPEND)));
/* open the file with the appropriate flags (or just use fd) */
state->fd = fd > -1 ? fd : (
#ifdef _WIN32
fd == -2 ? _wopen(path, oflag, 0666) :
#endif
open(path, oflag, 0666));
if (state->fd == -1) {
free(state->path);
free(state);
return NULL;
}
@ -217,12 +284,22 @@ gzFile ZEXPORT gzdopen(fd, mode)
if (fd == -1 || (path = malloc(7 + 3 * sizeof(int))) == NULL)
return NULL;
sprintf(path, "<fd:%d>", fd);
sprintf(path, "<fd:%d>", fd); /* for debugging */
gz = gz_open(path, fd, mode);
free(path);
return gz;
}
/* -- see zlib.h -- */
#ifdef _WIN32
gzFile ZEXPORT gzopen_w(path, mode)
const wchar_t *path;
const char *mode;
{
return gz_open(path, -2, mode);
}
#endif
/* -- see zlib.h -- */
int ZEXPORT gzbuffer(file, size)
gzFile file;
@ -242,8 +319,8 @@ int ZEXPORT gzbuffer(file, size)
return -1;
/* check and set requested size */
if (size == 0)
return -1;
if (size < 2)
size = 2; /* need two bytes to check magic header */
state->want = size;
return 0;
}
@ -260,7 +337,8 @@ int ZEXPORT gzrewind(file)
state = (gz_statep)file;
/* check that we're reading and that there's no error */
if (state->mode != GZ_READ || state->err != Z_OK)
if (state->mode != GZ_READ ||
(state->err != Z_OK && state->err != Z_BUF_ERROR))
return -1;
/* back up and start over */
@ -288,7 +366,7 @@ z_off64_t ZEXPORT gzseek64(file, offset, whence)
return -1;
/* check that there's no error */
if (state->err != Z_OK)
if (state->err != Z_OK && state->err != Z_BUF_ERROR)
return -1;
/* can only seek from start or relative to current position */
@ -297,31 +375,32 @@ z_off64_t ZEXPORT gzseek64(file, offset, whence)
/* normalize offset to a SEEK_CUR specification */
if (whence == SEEK_SET)
offset -= state->pos;
offset -= state->x.pos;
else if (state->seek)
offset += state->skip;
state->seek = 0;
/* if within raw area while reading, just go there */
if (state->mode == GZ_READ && state->how == COPY &&
state->pos + offset >= state->raw) {
ret = LSEEK(state->fd, offset, SEEK_CUR);
state->x.pos + offset >= 0) {
ret = LSEEK(state->fd, offset - state->x.have, SEEK_CUR);
if (ret == -1)
return -1;
state->have = 0;
state->x.have = 0;
state->eof = 0;
state->past = 0;
state->seek = 0;
gz_error(state, Z_OK, NULL);
state->strm.avail_in = 0;
state->pos += offset;
return state->pos;
state->x.pos += offset;
return state->x.pos;
}
/* calculate skip amount, rewinding if needed for back seek when reading */
if (offset < 0) {
if (state->mode != GZ_READ) /* writing -- can't go backwards */
return -1;
offset += state->pos;
offset += state->x.pos;
if (offset < 0) /* before start of file! */
return -1;
if (gzrewind(file) == -1) /* rewind, then skip to offset */
@ -330,11 +409,11 @@ z_off64_t ZEXPORT gzseek64(file, offset, whence)
/* if reading, skip what's in output buffer (one less gzgetc() check) */
if (state->mode == GZ_READ) {
n = GT_OFF(state->have) || (z_off64_t)state->have > offset ?
(unsigned)offset : state->have;
state->have -= n;
state->next += n;
state->pos += n;
n = GT_OFF(state->x.have) || (z_off64_t)state->x.have > offset ?
(unsigned)offset : state->x.have;
state->x.have -= n;
state->x.next += n;
state->x.pos += n;
offset -= n;
}
@ -343,7 +422,7 @@ z_off64_t ZEXPORT gzseek64(file, offset, whence)
state->seek = 1;
state->skip = offset;
}
return state->pos + offset;
return state->x.pos + offset;
}
/* -- see zlib.h -- */
@ -372,7 +451,7 @@ z_off64_t ZEXPORT gztell64(file)
return -1;
/* return position */
return state->pos + (state->seek ? state->skip : 0);
return state->x.pos + (state->seek ? state->skip : 0);
}
/* -- see zlib.h -- */
@ -432,7 +511,7 @@ int ZEXPORT gzeof(file)
return 0;
/* return end-of-file state */
return state->mode == GZ_READ ? (state->eof && state->have == 0) : 0;
return state->mode == GZ_READ ? state->past : 0;
}
/* -- see zlib.h -- */
@ -469,8 +548,10 @@ void ZEXPORT gzclearerr(file)
return;
/* clear error and end-of-file */
if (state->mode == GZ_READ)
if (state->mode == GZ_READ) {
state->eof = 0;
state->past = 0;
}
gz_error(state, Z_OK, NULL);
}
@ -480,7 +561,7 @@ void ZEXPORT gzclearerr(file)
memory). Simply save the error message as a static string. If there is an
allocation failure constructing the error message, then convert the error to
out of memory. */
void ZEXPORT gz_error(state, err, msg)
void ZLIB_INTERNAL gz_error(state, err, msg)
gz_statep state;
int err;
const char *msg;
@ -492,6 +573,10 @@ void ZEXPORT gz_error(state, err, msg)
state->msg = NULL;
}
/* if fatal, set state->x.have to 0 so that the gzgetc() macro fails */
if (err != Z_OK && err != Z_BUF_ERROR)
state->x.have = 0;
/* set error code, and if no message, then done */
state->err = err;
if (msg == NULL)
@ -520,7 +605,7 @@ void ZEXPORT gz_error(state, err, msg)
available) -- we need to do this to cover cases where 2's complement not
used, since C standard permits 1's complement and sign-bit representations,
otherwise we could just use ((unsigned)-1) >> 1 */
unsigned ZEXPORT gz_intmax()
unsigned ZLIB_INTERNAL gz_intmax()
{
unsigned p, q;

417
3rdparty/zlib/gzread.c vendored
View File

@ -1,5 +1,5 @@
/* gzread.c -- zlib functions for reading gzip files
* Copyright (C) 2004, 2005, 2010 Mark Adler
* Copyright (C) 2004, 2005, 2010, 2011, 2012 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
@ -8,10 +8,9 @@
/* Local functions */
local int gz_load OF((gz_statep, unsigned char *, unsigned, unsigned *));
local int gz_avail OF((gz_statep));
local int gz_next4 OF((gz_statep, unsigned long *));
local int gz_head OF((gz_statep));
local int gz_look OF((gz_statep));
local int gz_decomp OF((gz_statep));
local int gz_make OF((gz_statep));
local int gz_fetch OF((gz_statep));
local int gz_skip OF((gz_statep, z_off64_t));
/* Use read() to load a buffer -- return -1 on error, otherwise 0. Read from
@ -46,66 +45,47 @@ local int gz_load(state, buf, len, have)
error, 0 otherwise. Note that the eof flag is set when the end of the input
file is reached, even though there may be unused data in the buffer. Once
that data has been used, no more attempts will be made to read the file.
gz_avail() assumes that strm->avail_in == 0. */
If strm->avail_in != 0, then the current data is moved to the beginning of
the input buffer, and then the remainder of the buffer is loaded with the
available data from the input file. */
local int gz_avail(state)
gz_statep state;
{
unsigned got;
z_streamp strm = &(state->strm);
if (state->err != Z_OK)
if (state->err != Z_OK && state->err != Z_BUF_ERROR)
return -1;
if (state->eof == 0) {
if (gz_load(state, state->in, state->size, &(strm->avail_in)) == -1)
if (strm->avail_in) { /* copy what's there to the start */
unsigned char *p = state->in, *q = strm->next_in;
unsigned n = strm->avail_in;
do {
*p++ = *q++;
} while (--n);
}
if (gz_load(state, state->in + strm->avail_in,
state->size - strm->avail_in, &got) == -1)
return -1;
strm->avail_in += got;
strm->next_in = state->in;
}
return 0;
}
/* Get next byte from input, or -1 if end or error. */
#define NEXT() ((strm->avail_in == 0 && gz_avail(state) == -1) ? -1 : \
(strm->avail_in == 0 ? -1 : \
(strm->avail_in--, *(strm->next_in)++)))
/* Get a four-byte little-endian integer and return 0 on success and the value
in *ret. Otherwise -1 is returned and *ret is not modified. */
local int gz_next4(state, ret)
gz_statep state;
unsigned long *ret;
{
int ch;
unsigned long val;
z_streamp strm = &(state->strm);
val = NEXT();
val += (unsigned)NEXT() << 8;
val += (unsigned long)NEXT() << 16;
ch = NEXT();
if (ch == -1)
return -1;
val += (unsigned long)ch << 24;
*ret = val;
return 0;
}
/* Look for gzip header, set up for inflate or copy. state->have must be zero.
/* Look for gzip header, set up for inflate or copy. state->x.have must be 0.
If this is the first time in, allocate required memory. state->how will be
left unchanged if there is no more input data available, will be set to COPY
if there is no gzip header and direct copying will be performed, or it will
be set to GZIP for decompression, and the gzip header will be skipped so
that the next available input data is the raw deflate stream. If direct
copying, then leftover input data from the input buffer will be copied to
the output buffer. In that case, all further file reads will be directly to
either the output buffer or a user buffer. If decompressing, the inflate
state and the check value will be initialized. gz_head() will return 0 on
success or -1 on failure. Failures may include read errors or gzip header
errors. */
local int gz_head(state)
be set to GZIP for decompression. If direct copying, then leftover input
data from the input buffer will be copied to the output buffer. In that
case, all further file reads will be directly to either the output buffer or
a user buffer. If decompressing, the inflate state will be initialized.
gz_look() will return 0 on success or -1 on failure. */
local int gz_look(state)
gz_statep state;
{
z_streamp strm = &(state->strm);
int flags;
unsigned len;
/* allocate read buffers and inflate memory */
if (state->size == 0) {
@ -128,7 +108,7 @@ local int gz_head(state)
state->strm.opaque = Z_NULL;
state->strm.avail_in = 0;
state->strm.next_in = Z_NULL;
if (inflateInit2(&(state->strm), -15) != Z_OK) { /* raw inflate */
if (inflateInit2(&(state->strm), 15 + 16) != Z_OK) { /* gunzip */
free(state->out);
free(state->in);
state->size = 0;
@ -137,83 +117,45 @@ local int gz_head(state)
}
}
/* get some data in the input buffer */
if (strm->avail_in == 0) {
/* get at least the magic bytes in the input buffer */
if (strm->avail_in < 2) {
if (gz_avail(state) == -1)
return -1;
if (strm->avail_in == 0)
return 0;
}
/* look for the gzip magic header bytes 31 and 139 */
if (strm->next_in[0] == 31) {
strm->avail_in--;
strm->next_in++;
if (strm->avail_in == 0 && gz_avail(state) == -1)
return -1;
if (strm->avail_in && strm->next_in[0] == 139) {
/* we have a gzip header, woo hoo! */
strm->avail_in--;
strm->next_in++;
/* skip rest of header */
if (NEXT() != 8) { /* compression method */
gz_error(state, Z_DATA_ERROR, "unknown compression method");
return -1;
}
flags = NEXT();
if (flags & 0xe0) { /* reserved flag bits */
gz_error(state, Z_DATA_ERROR, "unknown header flags set");
return -1;
}
NEXT(); /* modification time */
NEXT();
NEXT();
NEXT();
NEXT(); /* extra flags */
NEXT(); /* operating system */
if (flags & 4) { /* extra field */
len = (unsigned)NEXT();
len += (unsigned)NEXT() << 8;
while (len--)
if (NEXT() < 0)
break;
}
if (flags & 8) /* file name */
while (NEXT() > 0)
;
if (flags & 16) /* comment */
while (NEXT() > 0)
;
if (flags & 2) { /* header crc */
NEXT();
NEXT();
}
/* an unexpected end of file is not checked for here -- it will be
noticed on the first request for uncompressed data */
/* set up for decompression */
inflateReset(strm);
strm->adler = crc32(0L, Z_NULL, 0);
state->how = GZIP;
state->direct = 0;
return 0;
}
else {
/* not a gzip file -- save first byte (31) and fall to raw i/o */
state->out[0] = 31;
state->have = 1;
}
/* look for gzip magic bytes -- if there, do gzip decoding (note: there is
a logical dilemma here when considering the case of a partially written
gzip file, to wit, if a single 31 byte is written, then we cannot tell
whether this is a single-byte file, or just a partially written gzip
file -- for here we assume that if a gzip file is being written, then
the header will be written in a single operation, so that reading a
single byte is sufficient indication that it is not a gzip file) */
if (strm->avail_in > 1 &&
strm->next_in[0] == 31 && strm->next_in[1] == 139) {
inflateReset(strm);
state->how = GZIP;
state->direct = 0;
return 0;
}
/* doing raw i/o, save start of raw data for seeking, copy any leftover
input to output -- this assumes that the output buffer is larger than
the input buffer, which also assures space for gzungetc() */
state->raw = state->pos;
state->next = state->out;
/* no gzip header -- if we were decoding gzip before, then this is trailing
garbage. Ignore the trailing garbage and finish. */
if (state->direct == 0) {
strm->avail_in = 0;
state->eof = 1;
state->x.have = 0;
return 0;
}
/* doing raw i/o, copy any leftover input to output -- this assumes that
the output buffer is larger than the input buffer, which also assures
space for gzungetc() */
state->x.next = state->out;
if (strm->avail_in) {
memcpy(state->next + state->have, strm->next_in, strm->avail_in);
state->have += strm->avail_in;
memcpy(state->x.next, strm->next_in, strm->avail_in);
state->x.have = strm->avail_in;
strm->avail_in = 0;
}
state->how = COPY;
@ -222,19 +164,15 @@ local int gz_head(state)
}
/* Decompress from input to the provided next_out and avail_out in the state.
If the end of the compressed data is reached, then verify the gzip trailer
check value and length (modulo 2^32). state->have and state->next are set
to point to the just decompressed data, and the crc is updated. If the
trailer is verified, state->how is reset to LOOK to look for the next gzip
stream or raw data, once state->have is depleted. Returns 0 on success, -1
on failure. Failures may include invalid compressed data or a failed gzip
trailer verification. */
On return, state->x.have and state->x.next point to the just decompressed
data. If the gzip stream completes, state->how is reset to LOOK to look for
the next gzip stream or raw data, once state->x.have is depleted. Returns 0
on success, -1 on failure. */
local int gz_decomp(state)
gz_statep state;
{
int ret;
int ret = Z_OK;
unsigned had;
unsigned long crc, len;
z_streamp strm = &(state->strm);
/* fill output buffer up to end of deflate stream */
@ -244,15 +182,15 @@ local int gz_decomp(state)
if (strm->avail_in == 0 && gz_avail(state) == -1)
return -1;
if (strm->avail_in == 0) {
gz_error(state, Z_DATA_ERROR, "unexpected end of file");
return -1;
gz_error(state, Z_BUF_ERROR, "unexpected end of file");
break;
}
/* decompress and handle errors */
ret = inflate(strm, Z_NO_FLUSH);
if (ret == Z_STREAM_ERROR || ret == Z_NEED_DICT) {
gz_error(state, Z_STREAM_ERROR,
"internal error: inflate stream corrupt");
"internal error: inflate stream corrupt");
return -1;
}
if (ret == Z_MEM_ERROR) {
@ -261,67 +199,55 @@ local int gz_decomp(state)
}
if (ret == Z_DATA_ERROR) { /* deflate stream invalid */
gz_error(state, Z_DATA_ERROR,
strm->msg == NULL ? "compressed data error" : strm->msg);
strm->msg == NULL ? "compressed data error" : strm->msg);
return -1;
}
} while (strm->avail_out && ret != Z_STREAM_END);
/* update available output and crc check value */
state->have = had - strm->avail_out;
state->next = strm->next_out - state->have;
strm->adler = crc32(strm->adler, state->next, state->have);
/* update available output */
state->x.have = had - strm->avail_out;
state->x.next = strm->next_out - state->x.have;
/* check gzip trailer if at end of deflate stream */
if (ret == Z_STREAM_END) {
if (gz_next4(state, &crc) == -1 || gz_next4(state, &len) == -1) {
gz_error(state, Z_DATA_ERROR, "unexpected end of file");
return -1;
}
if (crc != strm->adler) {
gz_error(state, Z_DATA_ERROR, "incorrect data check");
return -1;
}
if (len != (strm->total_out & 0xffffffffL)) {
gz_error(state, Z_DATA_ERROR, "incorrect length check");
return -1;
}
state->how = LOOK; /* ready for next stream, once have is 0 (leave
state->direct unchanged to remember how) */
}
/* if the gzip stream completed successfully, look for another */
if (ret == Z_STREAM_END)
state->how = LOOK;
/* good decompression */
return 0;
}
/* Make data and put in the output buffer. Assumes that state->have == 0.
/* Fetch data and put it in the output buffer. Assumes state->x.have is 0.
Data is either copied from the input file or decompressed from the input
file depending on state->how. If state->how is LOOK, then a gzip header is
looked for (and skipped if found) to determine wither to copy or decompress.
Returns -1 on error, otherwise 0. gz_make() will leave state->have as COPY
or GZIP unless the end of the input file has been reached and all data has
been processed. */
local int gz_make(state)
looked for to determine whether to copy or decompress. Returns -1 on error,
otherwise 0. gz_fetch() will leave state->how as COPY or GZIP unless the
end of the input file has been reached and all data has been processed. */
local int gz_fetch(state)
gz_statep state;
{
z_streamp strm = &(state->strm);
if (state->how == LOOK) { /* look for gzip header */
if (gz_head(state) == -1)
return -1;
if (state->have) /* got some data from gz_head() */
do {
switch(state->how) {
case LOOK: /* -> LOOK, COPY (only if never GZIP), or GZIP */
if (gz_look(state) == -1)
return -1;
if (state->how == LOOK)
return 0;
break;
case COPY: /* -> COPY */
if (gz_load(state, state->out, state->size << 1, &(state->x.have))
== -1)
return -1;
state->x.next = state->out;
return 0;
}
if (state->how == COPY) { /* straight copy */
if (gz_load(state, state->out, state->size << 1, &(state->have)) == -1)
return -1;
state->next = state->out;
}
else if (state->how == GZIP) { /* decompress */
strm->avail_out = state->size << 1;
strm->next_out = state->out;
if (gz_decomp(state) == -1)
return -1;
}
case GZIP: /* -> GZIP or LOOK (if end of gzip stream) */
strm->avail_out = state->size << 1;
strm->next_out = state->out;
if (gz_decomp(state) == -1)
return -1;
}
} while (state->x.have == 0 && (!state->eof || strm->avail_in));
return 0;
}
@ -335,12 +261,12 @@ local int gz_skip(state, len)
/* skip over len bytes or reach end-of-file, whichever comes first */
while (len)
/* skip over whatever is in output buffer */
if (state->have) {
n = GT_OFF(state->have) || (z_off64_t)state->have > len ?
(unsigned)len : state->have;
state->have -= n;
state->next += n;
state->pos += n;
if (state->x.have) {
n = GT_OFF(state->x.have) || (z_off64_t)state->x.have > len ?
(unsigned)len : state->x.have;
state->x.have -= n;
state->x.next += n;
state->x.pos += n;
len -= n;
}
@ -351,7 +277,7 @@ local int gz_skip(state, len)
/* need more data to skip -- load up output buffer */
else {
/* get more output, looking for header if required */
if (gz_make(state) == -1)
if (gz_fetch(state) == -1)
return -1;
}
return 0;
@ -373,14 +299,15 @@ int ZEXPORT gzread(file, buf, len)
state = (gz_statep)file;
strm = &(state->strm);
/* check that we're reading and that there's no error */
if (state->mode != GZ_READ || state->err != Z_OK)
/* check that we're reading and that there's no (serious) error */
if (state->mode != GZ_READ ||
(state->err != Z_OK && state->err != Z_BUF_ERROR))
return -1;
/* since an int is returned, make sure len fits in one, otherwise return
with an error (this avoids the flaw in the interface) */
if ((int)len < 0) {
gz_error(state, Z_BUF_ERROR, "requested length does not fit in int");
gz_error(state, Z_DATA_ERROR, "requested length does not fit in int");
return -1;
}
@ -399,24 +326,26 @@ int ZEXPORT gzread(file, buf, len)
got = 0;
do {
/* first just try copying data from the output buffer */
if (state->have) {
n = state->have > len ? len : state->have;
memcpy(buf, state->next, n);
state->next += n;
state->have -= n;
if (state->x.have) {
n = state->x.have > len ? len : state->x.have;
memcpy(buf, state->x.next, n);
state->x.next += n;
state->x.have -= n;
}
/* output buffer empty -- return if we're at the end of the input */
else if (state->eof && strm->avail_in == 0)
else if (state->eof && strm->avail_in == 0) {
state->past = 1; /* tried to read past end */
break;
}
/* need output data -- for small len or new stream load up our output
buffer */
else if (state->how == LOOK || len < (state->size << 1)) {
/* get more output, looking for header if required */
if (gz_make(state) == -1)
if (gz_fetch(state) == -1)
return -1;
continue; /* no progress yet -- go back to memcpy() above */
continue; /* no progress yet -- go back to copy above */
/* the copy above assures that we will leave with space in the
output buffer, allowing at least one gzungetc() to succeed */
}
@ -433,15 +362,15 @@ int ZEXPORT gzread(file, buf, len)
strm->next_out = buf;
if (gz_decomp(state) == -1)
return -1;
n = state->have;
state->have = 0;
n = state->x.have;
state->x.have = 0;
}
/* update progress */
len -= n;
buf = (char *)buf + n;
got += n;
state->pos += n;
state->x.pos += n;
} while (len);
/* return number of bytes read into user buffer (will fit in int) */
@ -449,6 +378,7 @@ int ZEXPORT gzread(file, buf, len)
}
/* -- see zlib.h -- */
#undef gzgetc
int ZEXPORT gzgetc(file)
gzFile file;
{
@ -461,15 +391,16 @@ int ZEXPORT gzgetc(file)
return -1;
state = (gz_statep)file;
/* check that we're reading and that there's no error */
if (state->mode != GZ_READ || state->err != Z_OK)
/* check that we're reading and that there's no (serious) error */
if (state->mode != GZ_READ ||
(state->err != Z_OK && state->err != Z_BUF_ERROR))
return -1;
/* try output buffer (no need to check for skip request) */
if (state->have) {
state->have--;
state->pos++;
return *(state->next)++;
if (state->x.have) {
state->x.have--;
state->x.pos++;
return *(state->x.next)++;
}
/* nothing there -- try gzread() */
@ -477,6 +408,12 @@ int ZEXPORT gzgetc(file)
return ret < 1 ? -1 : buf[0];
}
int ZEXPORT gzgetc_(file)
gzFile file;
{
return gzgetc(file);
}
/* -- see zlib.h -- */
int ZEXPORT gzungetc(c, file)
int c;
@ -489,8 +426,9 @@ int ZEXPORT gzungetc(c, file)
return -1;
state = (gz_statep)file;
/* check that we're reading and that there's no error */
if (state->mode != GZ_READ || state->err != Z_OK)
/* check that we're reading and that there's no (serious) error */
if (state->mode != GZ_READ ||
(state->err != Z_OK && state->err != Z_BUF_ERROR))
return -1;
/* process a skip request */
@ -505,32 +443,34 @@ int ZEXPORT gzungetc(c, file)
return -1;
/* if output buffer empty, put byte at end (allows more pushing) */
if (state->have == 0) {
state->have = 1;
state->next = state->out + (state->size << 1) - 1;
state->next[0] = c;
state->pos--;
if (state->x.have == 0) {
state->x.have = 1;
state->x.next = state->out + (state->size << 1) - 1;
state->x.next[0] = c;
state->x.pos--;
state->past = 0;
return c;
}
/* if no room, give up (must have already done a gzungetc()) */
if (state->have == (state->size << 1)) {
gz_error(state, Z_BUF_ERROR, "out of room to push characters");
if (state->x.have == (state->size << 1)) {
gz_error(state, Z_DATA_ERROR, "out of room to push characters");
return -1;
}
/* slide output data if needed and insert byte before existing data */
if (state->next == state->out) {
unsigned char *src = state->out + state->have;
if (state->x.next == state->out) {
unsigned char *src = state->out + state->x.have;
unsigned char *dest = state->out + (state->size << 1);
while (src > state->out)
*--dest = *--src;
state->next = dest;
state->x.next = dest;
}
state->have++;
state->next--;
state->next[0] = c;
state->pos--;
state->x.have++;
state->x.next--;
state->x.next[0] = c;
state->x.pos--;
state->past = 0;
return c;
}
@ -550,8 +490,9 @@ char * ZEXPORT gzgets(file, buf, len)
return NULL;
state = (gz_statep)file;
/* check that we're reading and that there's no error */
if (state->mode != GZ_READ || state->err != Z_OK)
/* check that we're reading and that there's no (serious) error */
if (state->mode != GZ_READ ||
(state->err != Z_OK && state->err != Z_BUF_ERROR))
return NULL;
/* process a skip request */
@ -568,32 +509,31 @@ char * ZEXPORT gzgets(file, buf, len)
left = (unsigned)len - 1;
if (left) do {
/* assure that something is in the output buffer */
if (state->have == 0) {
if (gz_make(state) == -1)
return NULL; /* error */
if (state->have == 0) { /* end of file */
if (buf == str) /* got bupkus */
return NULL;
break; /* got something -- return it */
}
if (state->x.have == 0 && gz_fetch(state) == -1)
return NULL; /* error */
if (state->x.have == 0) { /* end of file */
state->past = 1; /* read past end */
break; /* return what we have */
}
/* look for end-of-line in current output buffer */
n = state->have > left ? left : state->have;
eol = memchr(state->next, '\n', n);
n = state->x.have > left ? left : state->x.have;
eol = memchr(state->x.next, '\n', n);
if (eol != NULL)
n = (unsigned)(eol - state->next) + 1;
n = (unsigned)(eol - state->x.next) + 1;
/* copy through end-of-line, or remainder if not found */
memcpy(buf, state->next, n);
state->have -= n;
state->next += n;
state->pos += n;
memcpy(buf, state->x.next, n);
state->x.have -= n;
state->x.next += n;
state->x.pos += n;
left -= n;
buf += n;
} while (left && eol == NULL);
/* found end-of-line or out of space -- terminate string and return it */
/* return terminated string, or if nothing, end of file */
if (buf == str)
return NULL;
buf[0] = 0;
return str;
}
@ -609,16 +549,12 @@ int ZEXPORT gzdirect(file)
return 0;
state = (gz_statep)file;
/* check that we're reading */
if (state->mode != GZ_READ)
return 0;
/* if the state is not known, but we can find out, then do so (this is
mainly for right after a gzopen() or gzdopen()) */
if (state->how == LOOK && state->have == 0)
(void)gz_head(state);
if (state->mode == GZ_READ && state->how == LOOK && state->x.have == 0)
(void)gz_look(state);
/* return 1 if reading direct, 0 if decompressing a gzip stream */
/* return 1 if transparent, 0 if processing a gzip stream */
return state->direct;
}
@ -626,7 +562,7 @@ int ZEXPORT gzdirect(file)
int ZEXPORT gzclose_r(file)
gzFile file;
{
int ret;
int ret, err;
gz_statep state;
/* get internal structure */
@ -644,9 +580,10 @@ int ZEXPORT gzclose_r(file)
free(state->out);
free(state->in);
}
err = state->err == Z_BUF_ERROR ? Z_BUF_ERROR : Z_OK;
gz_error(state, Z_OK, NULL);
free(state->path);
ret = close(state->fd);
free(state);
return ret ? Z_ERRNO : Z_OK;
return ret ? Z_ERRNO : err;
}

View File

@ -1,5 +1,5 @@
/* gzwrite.c -- zlib functions for writing gzip files
* Copyright (C) 2004, 2005, 2010 Mark Adler
* Copyright (C) 2004, 2005, 2010, 2011, 2012 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
@ -18,44 +18,55 @@ local int gz_init(state)
int ret;
z_streamp strm = &(state->strm);
/* allocate input and output buffers */
/* allocate input buffer */
state->in = malloc(state->want);
state->out = malloc(state->want);
if (state->in == NULL || state->out == NULL) {
if (state->out != NULL)
free(state->out);
if (state->in != NULL)
free(state->in);
if (state->in == NULL) {
gz_error(state, Z_MEM_ERROR, "out of memory");
return -1;
}
/* allocate deflate memory, set up for gzip compression */
strm->zalloc = Z_NULL;
strm->zfree = Z_NULL;
strm->opaque = Z_NULL;
ret = deflateInit2(strm, state->level, Z_DEFLATED,
15 + 16, 8, state->strategy);
if (ret != Z_OK) {
free(state->in);
gz_error(state, Z_MEM_ERROR, "out of memory");
return -1;
/* only need output buffer and deflate state if compressing */
if (!state->direct) {
/* allocate output buffer */
state->out = malloc(state->want);
if (state->out == NULL) {
free(state->in);
gz_error(state, Z_MEM_ERROR, "out of memory");
return -1;
}
/* allocate deflate memory, set up for gzip compression */
strm->zalloc = Z_NULL;
strm->zfree = Z_NULL;
strm->opaque = Z_NULL;
ret = deflateInit2(strm, state->level, Z_DEFLATED,
MAX_WBITS + 16, DEF_MEM_LEVEL, state->strategy);
if (ret != Z_OK) {
free(state->out);
free(state->in);
gz_error(state, Z_MEM_ERROR, "out of memory");
return -1;
}
}
/* mark state as initialized */
state->size = state->want;
/* initialize write buffer */
strm->avail_out = state->size;
strm->next_out = state->out;
state->next = strm->next_out;
/* initialize write buffer if compressing */
if (!state->direct) {
strm->avail_out = state->size;
strm->next_out = state->out;
state->x.next = strm->next_out;
}
return 0;
}
/* Compress whatever is at avail_in and next_in and write to the output file.
Return -1 if there is an error writing to the output file, otherwise 0.
flush is assumed to be a valid deflate() flush value. If flush is Z_FINISH,
then the deflate() state is reset to start a new gzip stream. */
then the deflate() state is reset to start a new gzip stream. If gz->direct
is true, then simply write to the output file without compressing, and
ignore flush. */
local int gz_comp(state, flush)
gz_statep state;
int flush;
@ -68,6 +79,17 @@ local int gz_comp(state, flush)
if (state->size == 0 && gz_init(state) == -1)
return -1;
/* write directly if requested */
if (state->direct) {
got = write(state->fd, strm->next_in, strm->avail_in);
if (got < 0 || (unsigned)got != strm->avail_in) {
gz_error(state, Z_ERRNO, zstrerror());
return -1;
}
strm->avail_in = 0;
return 0;
}
/* run deflate() on provided input until it produces no more output */
ret = Z_OK;
do {
@ -75,8 +97,8 @@ local int gz_comp(state, flush)
doing Z_FINISH then don't write until we get to Z_STREAM_END */
if (strm->avail_out == 0 || (flush != Z_NO_FLUSH &&
(flush != Z_FINISH || ret == Z_STREAM_END))) {
have = (unsigned)(strm->next_out - state->next);
if (have && ((got = write(state->fd, state->next, have)) < 0 ||
have = (unsigned)(strm->next_out - state->x.next);
if (have && ((got = write(state->fd, state->x.next, have)) < 0 ||
(unsigned)got != have)) {
gz_error(state, Z_ERRNO, zstrerror());
return -1;
@ -85,7 +107,7 @@ local int gz_comp(state, flush)
strm->avail_out = state->size;
strm->next_out = state->out;
}
state->next = strm->next_out;
state->x.next = strm->next_out;
}
/* compress */
@ -131,7 +153,7 @@ local int gz_zero(state, len)
}
strm->avail_in = n;
strm->next_in = state->in;
state->pos += n;
state->x.pos += n;
if (gz_comp(state, Z_NO_FLUSH) == -1)
return -1;
len -= n;
@ -163,7 +185,7 @@ int ZEXPORT gzwrite(file, buf, len)
/* since an int is returned, make sure len fits in one, otherwise return
with an error (this avoids the flaw in the interface) */
if ((int)len < 0) {
gz_error(state, Z_BUF_ERROR, "requested length does not fit in int");
gz_error(state, Z_DATA_ERROR, "requested length does not fit in int");
return 0;
}
@ -193,7 +215,7 @@ int ZEXPORT gzwrite(file, buf, len)
n = len;
memcpy(strm->next_in + strm->avail_in, buf, n);
strm->avail_in += n;
state->pos += n;
state->x.pos += n;
buf = (char *)buf + n;
len -= n;
if (len && gz_comp(state, Z_NO_FLUSH) == -1)
@ -208,7 +230,7 @@ int ZEXPORT gzwrite(file, buf, len)
/* directly compress user buffer to file */
strm->avail_in = len;
strm->next_in = (voidp)buf;
state->pos += len;
state->x.pos += len;
if (gz_comp(state, Z_NO_FLUSH) == -1)
return 0;
}
@ -249,15 +271,15 @@ int ZEXPORT gzputc(file, c)
if (strm->avail_in == 0)
strm->next_in = state->in;
strm->next_in[strm->avail_in++] = c;
state->pos++;
return c;
state->x.pos++;
return c & 0xff;
}
/* no room in buffer or not initialized, use gz_write() */
buf[0] = c;
if (gzwrite(file, buf, 1) != 1)
return -1;
return c;
return c & 0xff;
}
/* -- see zlib.h -- */
@ -274,7 +296,7 @@ int ZEXPORT gzputs(file, str)
return ret == 0 && len != 0 ? -1 : ret;
}
#ifdef STDC
#if defined(STDC) || defined(Z_HAVE_STDARG_H)
#include <stdarg.h>
/* -- see zlib.h -- */
@ -316,19 +338,19 @@ int ZEXPORTVA gzprintf (gzFile file, const char *format, ...)
va_start(va, format);
#ifdef NO_vsnprintf
# ifdef HAS_vsprintf_void
(void)vsprintf(state->in, format, va);
(void)vsprintf((char *)(state->in), format, va);
va_end(va);
for (len = 0; len < size; len++)
if (state->in[len] == 0) break;
# else
len = vsprintf(state->in, format, va);
len = vsprintf((char *)(state->in), format, va);
va_end(va);
# endif
#else
# ifdef HAS_vsnprintf_void
(void)vsnprintf(state->in, size, format, va);
(void)vsnprintf((char *)(state->in), size, format, va);
va_end(va);
len = strlen(state->in);
len = strlen((char *)(state->in));
# else
len = vsnprintf((char *)(state->in), size, format, va);
va_end(va);
@ -342,11 +364,11 @@ int ZEXPORTVA gzprintf (gzFile file, const char *format, ...)
/* update buffer and position, defer compression until needed */
strm->avail_in = (unsigned)len;
strm->next_in = state->in;
state->pos += len;
state->x.pos += len;
return len;
}
#else /* !STDC */
#else /* !STDC && !Z_HAVE_STDARG_H */
/* -- see zlib.h -- */
int ZEXPORTVA gzprintf (file, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10,
@ -366,6 +388,10 @@ int ZEXPORTVA gzprintf (file, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10,
state = (gz_statep)file;
strm = &(state->strm);
/* check that can really pass pointer in ints */
if (sizeof(int) != sizeof(void *))
return 0;
/* check that we're writing and that there's no error */
if (state->mode != GZ_WRITE || state->err != Z_OK)
return 0;
@ -390,22 +416,23 @@ int ZEXPORTVA gzprintf (file, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10,
state->in[size - 1] = 0;
#ifdef NO_snprintf
# ifdef HAS_sprintf_void
sprintf(state->in, format, a1, a2, a3, a4, a5, a6, a7, a8,
sprintf((char *)(state->in), format, a1, a2, a3, a4, a5, a6, a7, a8,
a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20);
for (len = 0; len < size; len++)
if (state->in[len] == 0) break;
# else
len = sprintf(state->in, format, a1, a2, a3, a4, a5, a6, a7, a8,
a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20);
len = sprintf((char *)(state->in), format, a1, a2, a3, a4, a5, a6, a7, a8,
a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20);
# endif
#else
# ifdef HAS_snprintf_void
snprintf(state->in, size, format, a1, a2, a3, a4, a5, a6, a7, a8,
snprintf((char *)(state->in), size, format, a1, a2, a3, a4, a5, a6, a7, a8,
a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20);
len = strlen(state->in);
len = strlen((char *)(state->in));
# else
len = snprintf(state->in, size, format, a1, a2, a3, a4, a5, a6, a7, a8,
a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20);
len = snprintf((char *)(state->in), size, format, a1, a2, a3, a4, a5, a6,
a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18,
a19, a20);
# endif
#endif
@ -416,7 +443,7 @@ int ZEXPORTVA gzprintf (file, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10,
/* update buffer and position, defer compression until needed */
strm->avail_in = (unsigned)len;
strm->next_in = state->in;
state->pos += len;
state->x.pos += len;
return len;
}
@ -500,7 +527,7 @@ int ZEXPORT gzsetparams(file, level, strategy)
int ZEXPORT gzclose_w(file)
gzFile file;
{
int ret = 0;
int ret = Z_OK;
gz_statep state;
/* get internal structure */
@ -515,17 +542,24 @@ int ZEXPORT gzclose_w(file)
/* check for seek request */
if (state->seek) {
state->seek = 0;
ret += gz_zero(state, state->skip);
if (gz_zero(state, state->skip) == -1)
ret = state->err;
}
/* flush, free memory, and close file */
ret += gz_comp(state, Z_FINISH);
(void)deflateEnd(&(state->strm));
free(state->out);
free(state->in);
if (state->size) {
if (gz_comp(state, Z_FINISH) == -1)
ret = state->err;
if (!state->direct) {
(void)deflateEnd(&(state->strm));
free(state->out);
}
free(state->in);
}
gz_error(state, Z_OK, NULL);
free(state->path);
ret += close(state->fd);
if (close(state->fd) == -1)
ret = Z_ERRNO;
free(state);
return ret ? Z_ERRNO : Z_OK;
return ret;
}

View File

@ -1,5 +1,5 @@
/* infback.c -- inflate using a call-back interface
* Copyright (C) 1995-2009 Mark Adler
* Copyright (C) 1995-2011 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
@ -42,10 +42,19 @@ int stream_size;
return Z_STREAM_ERROR;
strm->msg = Z_NULL; /* in case we return an error */
if (strm->zalloc == (alloc_func)0) {
#ifdef Z_SOLO
return Z_STREAM_ERROR;
#else
strm->zalloc = zcalloc;
strm->opaque = (voidpf)0;
#endif
}
if (strm->zfree == (free_func)0) strm->zfree = zcfree;
if (strm->zfree == (free_func)0)
#ifdef Z_SOLO
return Z_STREAM_ERROR;
#else
strm->zfree = zcfree;
#endif
state = (struct inflate_state FAR *)ZALLOC(strm, 1,
sizeof(struct inflate_state));
if (state == Z_NULL) return Z_MEM_ERROR;
@ -394,7 +403,6 @@ void FAR *out_desc;
PULLBYTE();
}
if (here.val < 16) {
NEEDBITS(here.bits);
DROPBITS(here.bits);
state->lens[state->have++] = here.val;
}

View File

@ -1,5 +1,5 @@
/* inffast.c -- fast decoding
* Copyright (C) 1995-2008 Mark Adler
* Copyright (C) 1995-2008, 2010 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
@ -64,7 +64,7 @@
requires strm->avail_out >= 258 for each loop to avoid checking for
output space.
*/
void inflate_fast(strm, start)
void ZLIB_INTERNAL inflate_fast(strm, start)
z_streamp strm;
unsigned start; /* inflate()'s starting value for strm->avail_out */
{

View File

@ -1,5 +1,5 @@
/* inffast.h -- header to use inffast.c
* Copyright (C) 1995-2003 Mark Adler
* Copyright (C) 1995-2003, 2010 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
@ -8,4 +8,4 @@
subject to change. Applications should only use zlib.h.
*/
void inflate_fast OF((z_streamp strm, unsigned start));
void ZLIB_INTERNAL inflate_fast OF((z_streamp strm, unsigned start));

View File

@ -2,9 +2,9 @@
* Generated automatically by makefixed().
*/
/* WARNING: this file should *not* be used by applications. It
is part of the implementation of the compression library and
is subject to change. Applications should only use zlib.h.
/* WARNING: this file should *not* be used by applications.
It is part of the implementation of this library and is
subject to change. Applications should only use zlib.h.
*/
static const code lenfix[512] = {

View File

@ -1,5 +1,5 @@
/* inflate.c -- zlib decompression
* Copyright (C) 1995-2010 Mark Adler
* Copyright (C) 1995-2012 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
@ -100,7 +100,7 @@ local int updatewindow OF((z_streamp strm, unsigned out));
local unsigned syncsearch OF((unsigned FAR *have, unsigned char FAR *buf,
unsigned len));
int ZEXPORT inflateReset(strm)
int ZEXPORT inflateResetKeep(strm)
z_streamp strm;
{
struct inflate_state FAR *state;
@ -109,15 +109,13 @@ z_streamp strm;
state = (struct inflate_state FAR *)strm->state;
strm->total_in = strm->total_out = state->total = 0;
strm->msg = Z_NULL;
strm->adler = 1; /* to support ill-conceived Java test suite */
if (state->wrap) /* to support ill-conceived Java test suite */
strm->adler = state->wrap & 1;
state->mode = HEAD;
state->last = 0;
state->havedict = 0;
state->dmax = 32768U;
state->head = Z_NULL;
state->wsize = 0;
state->whave = 0;
state->wnext = 0;
state->hold = 0;
state->bits = 0;
state->lencode = state->distcode = state->next = state->codes;
@ -127,6 +125,19 @@ z_streamp strm;
return Z_OK;
}
int ZEXPORT inflateReset(strm)
z_streamp strm;
{
struct inflate_state FAR *state;
if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
state = (struct inflate_state FAR *)strm->state;
state->wsize = 0;
state->whave = 0;
state->wnext = 0;
return inflateResetKeep(strm);
}
int ZEXPORT inflateReset2(strm, windowBits)
z_streamp strm;
int windowBits;
@ -180,10 +191,19 @@ int stream_size;
if (strm == Z_NULL) return Z_STREAM_ERROR;
strm->msg = Z_NULL; /* in case we return an error */
if (strm->zalloc == (alloc_func)0) {
#ifdef Z_SOLO
return Z_STREAM_ERROR;
#else
strm->zalloc = zcalloc;
strm->opaque = (voidpf)0;
#endif
}
if (strm->zfree == (free_func)0) strm->zfree = zcfree;
if (strm->zfree == (free_func)0)
#ifdef Z_SOLO
return Z_STREAM_ERROR;
#else
strm->zfree = zcfree;
#endif
state = (struct inflate_state FAR *)
ZALLOC(strm, 1, sizeof(struct inflate_state));
if (state == Z_NULL) return Z_MEM_ERROR;
@ -321,8 +341,8 @@ void makefixed()
low = 0;
for (;;) {
if ((low % 7) == 0) printf("\n ");
printf("{%u,%u,%d}", state.lencode[low].op, state.lencode[low].bits,
state.lencode[low].val);
printf("{%u,%u,%d}", (low & 127) == 99 ? 64 : state.lencode[low].op,
state.lencode[low].bits, state.lencode[low].val);
if (++low == size) break;
putchar(',');
}
@ -499,11 +519,6 @@ unsigned out;
bits -= bits & 7; \
} while (0)
/* Reverse the bytes in a 32-bit value */
#define REVERSE(q) \
((((q) >> 24) & 0xff) + (((q) >> 8) & 0xff00) + \
(((q) & 0xff00) << 8) + (((q) & 0xff) << 24))
/*
inflate() uses a state machine to process as much input data and generate as
much output data as possible before returning. The state machine is
@ -797,7 +812,7 @@ int flush;
#endif
case DICTID:
NEEDBITS(32);
strm->adler = state->check = REVERSE(hold);
strm->adler = state->check = ZSWAP32(hold);
INITBITS();
state->mode = DICT;
case DICT:
@ -925,7 +940,6 @@ int flush;
PULLBYTE();
}
if (here.val < 16) {
NEEDBITS(here.bits);
DROPBITS(here.bits);
state->lens[state->have++] = here.val;
}
@ -1170,7 +1184,7 @@ int flush;
#ifdef GUNZIP
state->flags ? hold :
#endif
REVERSE(hold)) != state->check) {
ZSWAP32(hold)) != state->check) {
strm->msg = (char *)"incorrect data check";
state->mode = BAD;
break;
@ -1214,7 +1228,8 @@ int flush;
*/
inf_leave:
RESTORE();
if (state->wsize || (state->mode < CHECK && out != strm->avail_out))
if (state->wsize || (out != strm->avail_out && state->mode < BAD &&
(state->mode < CHECK || flush != Z_FINISH)))
if (updatewindow(strm, out)) {
state->mode = MEM;
return Z_MEM_ERROR;
@ -1255,7 +1270,10 @@ const Bytef *dictionary;
uInt dictLength;
{
struct inflate_state FAR *state;
unsigned long id;
unsigned long dictid;
unsigned char *next;
unsigned avail;
int ret;
/* check state */
if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
@ -1263,29 +1281,27 @@ uInt dictLength;
if (state->wrap != 0 && state->mode != DICT)
return Z_STREAM_ERROR;
/* check for correct dictionary id */
/* check for correct dictionary identifier */
if (state->mode == DICT) {
id = adler32(0L, Z_NULL, 0);
id = adler32(id, dictionary, dictLength);
if (id != state->check)
dictid = adler32(0L, Z_NULL, 0);
dictid = adler32(dictid, dictionary, dictLength);
if (dictid != state->check)
return Z_DATA_ERROR;
}
/* copy dictionary to window */
if (updatewindow(strm, strm->avail_out)) {
/* copy dictionary to window using updatewindow(), which will amend the
existing dictionary if appropriate */
next = strm->next_out;
avail = strm->avail_out;
strm->next_out = (Bytef *)dictionary + dictLength;
strm->avail_out = 0;
ret = updatewindow(strm, dictLength);
strm->avail_out = avail;
strm->next_out = next;
if (ret) {
state->mode = MEM;
return Z_MEM_ERROR;
}
if (dictLength > state->wsize) {
zmemcpy(state->window, dictionary + dictLength - state->wsize,
state->wsize);
state->whave = state->wsize;
}
else {
zmemcpy(state->window + state->wsize - dictLength, dictionary,
dictLength);
state->whave = dictLength;
}
state->havedict = 1;
Tracev((stderr, "inflate: dictionary set\n"));
return Z_OK;
@ -1433,8 +1449,8 @@ z_streamp source;
}
/* copy state */
zmemcpy(dest, source, sizeof(z_stream));
zmemcpy(copy, state, sizeof(struct inflate_state));
zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
zmemcpy((voidpf)copy, (voidpf)state, sizeof(struct inflate_state));
if (state->lencode >= state->codes &&
state->lencode <= state->codes + ENOUGH - 1) {
copy->lencode = copy->codes + (state->lencode - state->codes);

View File

@ -1,5 +1,5 @@
/* inftrees.c -- generate Huffman trees for efficient decoding
* Copyright (C) 1995-2010 Mark Adler
* Copyright (C) 1995-2012 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
@ -9,7 +9,7 @@
#define MAXBITS 15
const char inflate_copyright[] =
" inflate 1.2.4 Copyright 1995-2010 Mark Adler ";
" inflate 1.2.7 Copyright 1995-2012 Mark Adler ";
/*
If you use the zlib library in a product, an acknowledgment is welcome
in the documentation of your product. If for some reason you cannot
@ -29,7 +29,7 @@ const char inflate_copyright[] =
table index bits. It will differ if the request is greater than the
longest code or if it is less than the shortest code.
*/
int inflate_table(type, lens, codes, table, bits, work)
int ZLIB_INTERNAL inflate_table(type, lens, codes, table, bits, work)
codetype type;
unsigned short FAR *lens;
unsigned codes;
@ -62,7 +62,7 @@ unsigned short FAR *work;
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
static const unsigned short lext[31] = { /* Length codes 257..285 extra */
16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 64, 195};
19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 78, 68};
static const unsigned short dbase[32] = { /* Distance codes 0..29 base */
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
@ -289,38 +289,14 @@ unsigned short FAR *work;
}
}
/*
Fill in rest of table for incomplete codes. This loop is similar to the
loop above in incrementing huff for table indices. It is assumed that
len is equal to curr + drop, so there is no loop needed to increment
through high index bits. When the current sub-table is filled, the loop
drops back to the root table to fill in any remaining entries there.
*/
here.op = (unsigned char)64; /* invalid code marker */
here.bits = (unsigned char)(len - drop);
here.val = (unsigned short)0;
while (huff != 0) {
/* when done with sub-table, drop back to root table */
if (drop != 0 && (huff & mask) != low) {
drop = 0;
len = root;
next = *table;
here.bits = (unsigned char)len;
}
/* put invalid code marker in table */
next[huff >> drop] = here;
/* backwards increment the len-bit code huff */
incr = 1U << (len - 1);
while (huff & incr)
incr >>= 1;
if (incr != 0) {
huff &= incr - 1;
huff += incr;
}
else
huff = 0;
/* fill in remaining table entry if code is incomplete (guaranteed to have
at most one remaining entry, since if the code is incomplete, the
maximum code length that was allowed to get this far is one bit) */
if (huff != 0) {
here.op = (unsigned char)64; /* invalid code marker */
here.bits = (unsigned char)(len - drop);
here.val = (unsigned short)0;
next[huff] = here;
}
/* set return parameters */

View File

@ -1,5 +1,5 @@
/* inftrees.h -- header to use inftrees.c
* Copyright (C) 1995-2005 Mark Adler
* Copyright (C) 1995-2005, 2010 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
@ -57,6 +57,6 @@ typedef enum {
DISTS
} codetype;
extern int inflate_table OF((codetype type, unsigned short FAR *lens,
int ZLIB_INTERNAL inflate_table OF((codetype type, unsigned short FAR *lens,
unsigned codes, code FAR * FAR *table,
unsigned FAR *bits, unsigned short FAR *work));

55
3rdparty/zlib/trees.c vendored
View File

@ -1,5 +1,5 @@
/* trees.c -- output deflated data using Huffman coding
* Copyright (C) 1995-2009 Jean-loup Gailly
* Copyright (C) 1995-2012 Jean-loup Gailly
* detect_data_type() function provided freely by Cosmin Truta, 2006
* For conditions of distribution and use, see copyright notice in zlib.h
*/
@ -74,11 +74,6 @@ local const uch bl_order[BL_CODES]
* probability, to avoid transmitting the lengths for unused bit length codes.
*/
#define Buf_size (8 * 2*sizeof(char))
/* Number of bits used within bi_buf. (bi_buf might be implemented on
* more than 16 bits on some systems.)
*/
/* ===========================================================================
* Local data. These are initialized only once.
*/
@ -351,13 +346,14 @@ void gen_trees_header()
static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
}
fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
for (i = 0; i < DIST_CODE_LEN; i++) {
fprintf(header, "%2u%s", _dist_code[i],
SEPARATOR(i, DIST_CODE_LEN-1, 20));
}
fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
fprintf(header,
"const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
fprintf(header, "%2u%s", _length_code[i],
SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
@ -382,7 +378,7 @@ void gen_trees_header()
/* ===========================================================================
* Initialize the tree data structures for a new zlib stream.
*/
void _tr_init(s)
void ZLIB_INTERNAL _tr_init(s)
deflate_state *s;
{
tr_static_init();
@ -398,7 +394,6 @@ void _tr_init(s)
s->bi_buf = 0;
s->bi_valid = 0;
s->last_eob_len = 8; /* enough lookahead for inflate */
#ifdef DEBUG
s->compressed_len = 0L;
s->bits_sent = 0L;
@ -867,7 +862,7 @@ local void send_all_trees(s, lcodes, dcodes, blcodes)
/* ===========================================================================
* Send a stored block
*/
void _tr_stored_block(s, buf, stored_len, last)
void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
deflate_state *s;
charf *buf; /* input block */
ulg stored_len; /* length of input block */
@ -881,18 +876,20 @@ void _tr_stored_block(s, buf, stored_len, last)
copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
}
/* ===========================================================================
* Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
*/
void ZLIB_INTERNAL _tr_flush_bits(s)
deflate_state *s;
{
bi_flush(s);
}
/* ===========================================================================
* Send one empty static block to give enough lookahead for inflate.
* This takes 10 bits, of which 7 may remain in the bit buffer.
* The current inflate code requires 9 bits of lookahead. If the
* last two codes for the previous block (real code plus EOB) were coded
* on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
* the last real code. In this case we send two empty static blocks instead
* of one. (There are no problems if the previous block is stored or fixed.)
* To simplify the code, we assume the worst case of last real code encoded
* on one bit only.
*/
void _tr_align(s)
void ZLIB_INTERNAL _tr_align(s)
deflate_state *s;
{
send_bits(s, STATIC_TREES<<1, 3);
@ -901,27 +898,13 @@ void _tr_align(s)
s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
#endif
bi_flush(s);
/* Of the 10 bits for the empty block, we have already sent
* (10 - bi_valid) bits. The lookahead for the last real code (before
* the EOB of the previous block) was thus at least one plus the length
* of the EOB plus what we have just sent of the empty static block.
*/
if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
send_bits(s, STATIC_TREES<<1, 3);
send_code(s, END_BLOCK, static_ltree);
#ifdef DEBUG
s->compressed_len += 10L;
#endif
bi_flush(s);
}
s->last_eob_len = 7;
}
/* ===========================================================================
* Determine the best encoding for the current block: dynamic trees, static
* trees or store, and output the encoded block to the zip file.
*/
void _tr_flush_block(s, buf, stored_len, last)
void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
deflate_state *s;
charf *buf; /* input block, or NULL if too old */
ulg stored_len; /* length of input block */
@ -1022,7 +1005,7 @@ void _tr_flush_block(s, buf, stored_len, last)
* Save the match info and tally the frequency counts. Return true if
* the current block must be flushed.
*/
int _tr_tally (s, dist, lc)
int ZLIB_INTERNAL _tr_tally (s, dist, lc)
deflate_state *s;
unsigned dist; /* distance of matched string */
unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
@ -1117,7 +1100,6 @@ local void compress_block(s, ltree, dtree)
} while (lx < s->last_lit);
send_code(s, END_BLOCK, ltree);
s->last_eob_len = ltree[END_BLOCK].Len;
}
/* ===========================================================================
@ -1225,7 +1207,6 @@ local void copy_block(s, buf, len, header)
int header; /* true if block header must be written */
{
bi_windup(s); /* align on byte boundary */
s->last_eob_len = 8; /* enough lookahead for inflate */
if (header) {
put_short(s, (ush)len);

View File

@ -70,7 +70,7 @@ local const ct_data static_dtree[D_CODES] = {
{{19},{ 5}}, {{11},{ 5}}, {{27},{ 5}}, {{ 7},{ 5}}, {{23},{ 5}}
};
const uch _dist_code[DIST_CODE_LEN] = {
const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {
0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8,
8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
@ -99,7 +99,7 @@ const uch _dist_code[DIST_CODE_LEN] = {
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29
};
const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {
const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {
0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12,
13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16,
17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19,

210
3rdparty/zlib/zconf.h vendored
View File

@ -1,5 +1,5 @@
/* zconf.h -- configuration of the zlib compression library
* Copyright (C) 1995-2010 Jean-loup Gailly.
* Copyright (C) 1995-2012 Jean-loup Gailly.
* For conditions of distribution and use, see copyright notice in zlib.h
*/
@ -15,6 +15,7 @@
* this permanently in zconf.h using "./configure --zprefix".
*/
#ifdef Z_PREFIX /* may be set to #if 1 by ./configure */
# define Z_PREFIX_SET
/* all linked symbols */
# define _dist_code z__dist_code
@ -27,9 +28,11 @@
# define adler32 z_adler32
# define adler32_combine z_adler32_combine
# define adler32_combine64 z_adler32_combine64
# define compress z_compress
# define compress2 z_compress2
# define compressBound z_compressBound
# ifndef Z_SOLO
# define compress z_compress
# define compress2 z_compress2
# define compressBound z_compressBound
# endif
# define crc32 z_crc32
# define crc32_combine z_crc32_combine
# define crc32_combine64 z_crc32_combine64
@ -40,44 +43,52 @@
# define deflateInit2_ z_deflateInit2_
# define deflateInit_ z_deflateInit_
# define deflateParams z_deflateParams
# define deflatePending z_deflatePending
# define deflatePrime z_deflatePrime
# define deflateReset z_deflateReset
# define deflateResetKeep z_deflateResetKeep
# define deflateSetDictionary z_deflateSetDictionary
# define deflateSetHeader z_deflateSetHeader
# define deflateTune z_deflateTune
# define deflate_copyright z_deflate_copyright
# define get_crc_table z_get_crc_table
# define gz_error z_gz_error
# define gz_intmax z_gz_intmax
# define gz_strwinerror z_gz_strwinerror
# define gzbuffer z_gzbuffer
# define gzclearerr z_gzclearerr
# define gzclose z_gzclose
# define gzclose_r z_gzclose_r
# define gzclose_w z_gzclose_w
# define gzdirect z_gzdirect
# define gzdopen z_gzdopen
# define gzeof z_gzeof
# define gzerror z_gzerror
# define gzflush z_gzflush
# define gzgetc z_gzgetc
# define gzgets z_gzgets
# define gzoffset z_gzoffset
# define gzoffset64 z_gzoffset64
# define gzopen z_gzopen
# define gzopen64 z_gzopen64
# define gzprintf z_gzprintf
# define gzputc z_gzputc
# define gzputs z_gzputs
# define gzread z_gzread
# define gzrewind z_gzrewind
# define gzseek z_gzseek
# define gzseek64 z_gzseek64
# define gzsetparams z_gzsetparams
# define gztell z_gztell
# define gztell64 z_gztell64
# define gzungetc z_gzungetc
# define gzwrite z_gzwrite
# ifndef Z_SOLO
# define gz_error z_gz_error
# define gz_intmax z_gz_intmax
# define gz_strwinerror z_gz_strwinerror
# define gzbuffer z_gzbuffer
# define gzclearerr z_gzclearerr
# define gzclose z_gzclose
# define gzclose_r z_gzclose_r
# define gzclose_w z_gzclose_w
# define gzdirect z_gzdirect
# define gzdopen z_gzdopen
# define gzeof z_gzeof
# define gzerror z_gzerror
# define gzflush z_gzflush
# define gzgetc z_gzgetc
# define gzgetc_ z_gzgetc_
# define gzgets z_gzgets
# define gzoffset z_gzoffset
# define gzoffset64 z_gzoffset64
# define gzopen z_gzopen
# define gzopen64 z_gzopen64
# ifdef _WIN32
# define gzopen_w z_gzopen_w
# endif
# define gzprintf z_gzprintf
# define gzputc z_gzputc
# define gzputs z_gzputs
# define gzread z_gzread
# define gzrewind z_gzrewind
# define gzseek z_gzseek
# define gzseek64 z_gzseek64
# define gzsetparams z_gzsetparams
# define gztell z_gztell
# define gztell64 z_gztell64
# define gzungetc z_gzungetc
# define gzwrite z_gzwrite
# endif
# define inflate z_inflate
# define inflateBack z_inflateBack
# define inflateBackEnd z_inflateBackEnd
@ -95,13 +106,18 @@
# define inflateSync z_inflateSync
# define inflateSyncPoint z_inflateSyncPoint
# define inflateUndermine z_inflateUndermine
# define inflateResetKeep z_inflateResetKeep
# define inflate_copyright z_inflate_copyright
# define inflate_fast z_inflate_fast
# define inflate_table z_inflate_table
# define uncompress z_uncompress
# ifndef Z_SOLO
# define uncompress z_uncompress
# endif
# define zError z_zError
# define zcalloc z_zcalloc
# define zcfree z_zcfree
# ifndef Z_SOLO
# define zcalloc z_zcalloc
# define zcfree z_zcfree
# endif
# define zlibCompileFlags z_zlibCompileFlags
# define zlibVersion z_zlibVersion
@ -111,7 +127,9 @@
# define alloc_func z_alloc_func
# define charf z_charf
# define free_func z_free_func
# define gzFile z_gzFile
# ifndef Z_SOLO
# define gzFile z_gzFile
# endif
# define gz_header z_gz_header
# define gz_headerp z_gz_headerp
# define in_func z_in_func
@ -197,6 +215,12 @@
# endif
#endif
#if defined(ZLIB_CONST) && !defined(z_const)
# define z_const const
#else
# define z_const
#endif
/* Some Mac compilers merge all .h files incorrectly: */
#if defined(__MWERKS__)||defined(applec)||defined(THINK_C)||defined(__SC__)
# define NO_DUMMY_DECL
@ -243,6 +267,14 @@
# endif
#endif
#ifndef Z_ARG /* function prototypes for stdarg */
# if defined(STDC) || defined(Z_HAVE_STDARG_H)
# define Z_ARG(args) args
# else
# define Z_ARG(args) ()
# endif
#endif
/* The following definitions for FAR are needed only for MSDOS mixed
* model programming (small or medium model with some far allocations).
* This was tested only with MSC; for other MSDOS compilers you may have
@ -315,10 +347,6 @@
# endif
#endif
#ifdef HAVE_VISIBILITY_PRAGMA
# define ZEXTERN __attribute__((visibility ("default"))) extern
#endif
#ifndef ZEXTERN
# define ZEXTERN extern
#endif
@ -360,40 +388,102 @@ typedef uLong FAR uLongf;
typedef Byte *voidp;
#endif
/* ./configure may #define Z_U4 here */
#if !defined(Z_U4) && !defined(Z_SOLO) && defined(STDC)
# include <limits.h>
# if (UINT_MAX == 0xffffffffUL)
# define Z_U4 unsigned
# else
# if (ULONG_MAX == 0xffffffffUL)
# define Z_U4 unsigned long
# else
# if (USHRT_MAX == 0xffffffffUL)
# define Z_U4 unsigned short
# endif
# endif
# endif
#endif
#ifdef Z_U4
typedef Z_U4 z_crc_t;
#else
typedef unsigned long z_crc_t;
#endif
#ifdef HAVE_UNISTD_H /* may be set to #if 1 by ./configure */
# define Z_HAVE_UNISTD_H
#endif
#ifdef Z_HAVE_UNISTD_H
# include <sys/types.h> /* for off_t */
# include <unistd.h> /* for SEEK_* and off_t */
# ifdef VMS
# include <unixio.h> /* for off_t */
# endif
# ifndef z_off_t
# define z_off_t off_t
#ifdef HAVE_STDARG_H /* may be set to #if 1 by ./configure */
# define Z_HAVE_STDARG_H
#endif
#ifdef STDC
# ifndef Z_SOLO
# include <sys/types.h> /* for off_t */
# endif
#endif
#ifdef _LARGEFILE64_SOURCE
# include <sys/types.h>
#ifdef _WIN32
# include <stddef.h> /* for wchar_t */
#endif
#ifndef SEEK_SET
/* a little trick to accommodate both "#define _LARGEFILE64_SOURCE" and
* "#define _LARGEFILE64_SOURCE 1" as requesting 64-bit operations, (even
* though the former does not conform to the LFS document), but considering
* both "#undef _LARGEFILE64_SOURCE" and "#define _LARGEFILE64_SOURCE 0" as
* equivalently requesting no 64-bit operations
*/
#if defined(LARGEFILE64_SOURCE) && -_LARGEFILE64_SOURCE - -1 == 1
# undef _LARGEFILE64_SOURCE
#endif
#if defined(__WATCOMC__) && !defined(Z_HAVE_UNISTD_H)
# define Z_HAVE_UNISTD_H
#endif
#ifndef Z_SOLO
# if defined(Z_HAVE_UNISTD_H) || defined(LARGEFILE64_SOURCE)
# include <unistd.h> /* for SEEK_*, off_t, and _LFS64_LARGEFILE */
# ifdef VMS
# include <unixio.h> /* for off_t */
# endif
# ifndef z_off_t
# define z_off_t off_t
# endif
# endif
#endif
#if defined(_LFS64_LARGEFILE) && _LFS64_LARGEFILE-0
# define Z_LFS64
#endif
#if defined(_LARGEFILE64_SOURCE) && defined(Z_LFS64)
# define Z_LARGE64
#endif
#if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS-0 == 64 && defined(Z_LFS64)
# define Z_WANT64
#endif
#if !defined(SEEK_SET) && !defined(Z_SOLO)
# define SEEK_SET 0 /* Seek from beginning of file. */
# define SEEK_CUR 1 /* Seek from current position. */
# define SEEK_END 2 /* Set file pointer to EOF plus "offset" */
#endif
#ifndef z_off_t
# define z_off_t long
#endif
#if defined(__OS400__)
# define NO_vsnprintf
#endif
#if defined(__MVS__)
# define NO_vsnprintf
#if !defined(_WIN32) && defined(Z_LARGE64)
# define z_off64_t off64_t
#else
# if defined(_WIN32) && !defined(__GNUC__) && !defined(Z_SOLO)
# define z_off64_t __int64
# else
# define z_off64_t z_off_t
# endif
#endif
/* MVS linker does not support external names larger than 8 bytes */

339
3rdparty/zlib/zlib.h vendored
View File

@ -1,7 +1,7 @@
/* zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.4, Mar 14th, 2010
version 1.2.7, May 2nd, 2012
Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler
Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
@ -24,8 +24,8 @@
The data format used by the zlib library is described by RFCs (Request for
Comments) 1950 to 1952 in the files http://www.ietf.org/rfc/rfc1950.txt
(zlib format), rfc1951.txt (deflate format) and rfc1952.txt (gzip format).
Comments) 1950 to 1952 in the files http://tools.ietf.org/html/rfc1950
(zlib format), rfc1951 (deflate format) and rfc1952 (gzip format).
*/
#ifndef ZLIB_H
@ -37,11 +37,11 @@
extern "C" {
#endif
#define ZLIB_VERSION "1.2.4"
#define ZLIB_VERNUM 0x1240
#define ZLIB_VERSION "1.2.7"
#define ZLIB_VERNUM 0x1270
#define ZLIB_VER_MAJOR 1
#define ZLIB_VER_MINOR 2
#define ZLIB_VER_REVISION 4
#define ZLIB_VER_REVISION 7
#define ZLIB_VER_SUBREVISION 0
/*
@ -83,15 +83,15 @@ typedef void (*free_func) OF((voidpf opaque, voidpf address));
struct internal_state;
typedef struct z_stream_s {
Bytef *next_in; /* next input byte */
z_const Bytef *next_in; /* next input byte */
uInt avail_in; /* number of bytes available at next_in */
uLong total_in; /* total nb of input bytes read so far */
uLong total_in; /* total number of input bytes read so far */
Bytef *next_out; /* next output byte should be put there */
uInt avail_out; /* remaining free space at next_out */
uLong total_out; /* total nb of bytes output so far */
uLong total_out; /* total number of bytes output so far */
char *msg; /* last error message, NULL if no error */
z_const char *msg; /* last error message, NULL if no error */
struct internal_state FAR *state; /* not visible by applications */
alloc_func zalloc; /* used to allocate the internal state */
@ -327,8 +327,9 @@ ZEXTERN int ZEXPORT deflate OF((z_streamp strm, int flush));
Z_FINISH can be used immediately after deflateInit if all the compression
is to be done in a single step. In this case, avail_out must be at least the
value returned by deflateBound (see below). If deflate does not return
Z_STREAM_END, then it must be called again as described above.
value returned by deflateBound (see below). Then deflate is guaranteed to
return Z_STREAM_END. If not enough output space is provided, deflate will
not return Z_STREAM_END, and it must be called again as described above.
deflate() sets strm->adler to the adler32 checksum of all input read
so far (that is, total_in bytes).
@ -451,23 +452,29 @@ ZEXTERN int ZEXPORT inflate OF((z_streamp strm, int flush));
error. However if all decompression is to be performed in a single step (a
single call of inflate), the parameter flush should be set to Z_FINISH. In
this case all pending input is processed and all pending output is flushed;
avail_out must be large enough to hold all the uncompressed data. (The size
of the uncompressed data may have been saved by the compressor for this
purpose.) The next operation on this stream must be inflateEnd to deallocate
the decompression state. The use of Z_FINISH is never required, but can be
used to inform inflate that a faster approach may be used for the single
inflate() call.
avail_out must be large enough to hold all of the uncompressed data for the
operation to complete. (The size of the uncompressed data may have been
saved by the compressor for this purpose.) The use of Z_FINISH is not
required to perform an inflation in one step. However it may be used to
inform inflate that a faster approach can be used for the single inflate()
call. Z_FINISH also informs inflate to not maintain a sliding window if the
stream completes, which reduces inflate's memory footprint. If the stream
does not complete, either because not all of the stream is provided or not
enough output space is provided, then a sliding window will be allocated and
inflate() can be called again to continue the operation as if Z_NO_FLUSH had
been used.
In this implementation, inflate() always flushes as much output as
possible to the output buffer, and always uses the faster approach on the
first call. So the only effect of the flush parameter in this implementation
is on the return value of inflate(), as noted below, or when it returns early
because Z_BLOCK or Z_TREES is used.
first call. So the effects of the flush parameter in this implementation are
on the return value of inflate() as noted below, when inflate() returns early
when Z_BLOCK or Z_TREES is used, and when inflate() avoids the allocation of
memory for a sliding window when Z_FINISH is used.
If a preset dictionary is needed after this call (see inflateSetDictionary
below), inflate sets strm->adler to the adler32 checksum of the dictionary
below), inflate sets strm->adler to the Adler-32 checksum of the dictionary
chosen by the compressor and returns Z_NEED_DICT; otherwise it sets
strm->adler to the adler32 checksum of all output produced so far (that is,
strm->adler to the Adler-32 checksum of all output produced so far (that is,
total_out bytes) and returns Z_OK, Z_STREAM_END or an error code as described
below. At the end of the stream, inflate() checks that its computed adler32
checksum is equal to that saved by the compressor and returns Z_STREAM_END
@ -478,7 +485,9 @@ ZEXTERN int ZEXPORT inflate OF((z_streamp strm, int flush));
initializing with inflateInit2(). Any information contained in the gzip
header is not retained, so applications that need that information should
instead use raw inflate, see inflateInit2() below, or inflateBack() and
perform their own processing of the gzip header and trailer.
perform their own processing of the gzip header and trailer. When processing
gzip-wrapped deflate data, strm->adler32 is set to the CRC-32 of the output
producted so far. The CRC-32 is checked against the gzip trailer.
inflate() returns Z_OK if some progress has been made (more input processed
or more output produced), Z_STREAM_END if the end of the compressed data has
@ -580,10 +589,15 @@ ZEXTERN int ZEXPORT deflateSetDictionary OF((z_streamp strm,
uInt dictLength));
/*
Initializes the compression dictionary from the given byte sequence
without producing any compressed output. This function must be called
immediately after deflateInit, deflateInit2 or deflateReset, before any call
of deflate. The compressor and decompressor must use exactly the same
dictionary (see inflateSetDictionary).
without producing any compressed output. When using the zlib format, this
function must be called immediately after deflateInit, deflateInit2 or
deflateReset, and before any call of deflate. When doing raw deflate, this
function must be called either before any call of deflate, or immediately
after the completion of a deflate block, i.e. after all input has been
consumed and all output has been delivered when using any of the flush
options Z_BLOCK, Z_PARTIAL_FLUSH, Z_SYNC_FLUSH, or Z_FULL_FLUSH. The
compressor and decompressor must use exactly the same dictionary (see
inflateSetDictionary).
The dictionary should consist of strings (byte sequences) that are likely
to be encountered later in the data to be compressed, with the most commonly
@ -610,8 +624,8 @@ ZEXTERN int ZEXPORT deflateSetDictionary OF((z_streamp strm,
deflateSetDictionary returns Z_OK if success, or Z_STREAM_ERROR if a
parameter is invalid (e.g. dictionary being Z_NULL) or the stream state is
inconsistent (for example if deflate has already been called for this stream
or if the compression method is bsort). deflateSetDictionary does not
perform any compression: this will be done by deflate().
or if not at a block boundary for raw deflate). deflateSetDictionary does
not perform any compression: this will be done by deflate().
*/
ZEXTERN int ZEXPORT deflateCopy OF((z_streamp dest,
@ -688,9 +702,29 @@ ZEXTERN uLong ZEXPORT deflateBound OF((z_streamp strm,
deflation of sourceLen bytes. It must be called after deflateInit() or
deflateInit2(), and after deflateSetHeader(), if used. This would be used
to allocate an output buffer for deflation in a single pass, and so would be
called before deflate().
called before deflate(). If that first deflate() call is provided the
sourceLen input bytes, an output buffer allocated to the size returned by
deflateBound(), and the flush value Z_FINISH, then deflate() is guaranteed
to return Z_STREAM_END. Note that it is possible for the compressed size to
be larger than the value returned by deflateBound() if flush options other
than Z_FINISH or Z_NO_FLUSH are used.
*/
ZEXTERN int ZEXPORT deflatePending OF((z_streamp strm,
unsigned *pending,
int *bits));
/*
deflatePending() returns the number of bytes and bits of output that have
been generated, but not yet provided in the available output. The bytes not
provided would be due to the available output space having being consumed.
The number of bits of output not provided are between 0 and 7, where they
await more bits to join them in order to fill out a full byte. If pending
or bits are Z_NULL, then those values are not set.
deflatePending returns Z_OK if success, or Z_STREAM_ERROR if the source
stream state was inconsistent.
*/
ZEXTERN int ZEXPORT deflatePrime OF((z_streamp strm,
int bits,
int value));
@ -703,8 +737,9 @@ ZEXTERN int ZEXPORT deflatePrime OF((z_streamp strm,
than or equal to 16, and that many of the least significant bits of value
will be inserted in the output.
deflatePrime returns Z_OK if success, or Z_STREAM_ERROR if the source
stream state was inconsistent.
deflatePrime returns Z_OK if success, Z_BUF_ERROR if there was not enough
room in the internal buffer to insert the bits, or Z_STREAM_ERROR if the
source stream state was inconsistent.
*/
ZEXTERN int ZEXPORT deflateSetHeader OF((z_streamp strm,
@ -790,10 +825,11 @@ ZEXTERN int ZEXPORT inflateSetDictionary OF((z_streamp strm,
if that call returned Z_NEED_DICT. The dictionary chosen by the compressor
can be determined from the adler32 value returned by that call of inflate.
The compressor and decompressor must use exactly the same dictionary (see
deflateSetDictionary). For raw inflate, this function can be called
immediately after inflateInit2() or inflateReset() and before any call of
inflate() to set the dictionary. The application must insure that the
dictionary that was used for compression is provided.
deflateSetDictionary). For raw inflate, this function can be called at any
time to set the dictionary. If the provided dictionary is smaller than the
window and there is already data in the window, then the provided dictionary
will amend what's there. The application must insure that the dictionary
that was used for compression is provided.
inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a
parameter is invalid (e.g. dictionary being Z_NULL) or the stream state is
@ -805,17 +841,21 @@ ZEXTERN int ZEXPORT inflateSetDictionary OF((z_streamp strm,
ZEXTERN int ZEXPORT inflateSync OF((z_streamp strm));
/*
Skips invalid compressed data until a full flush point (see above the
description of deflate with Z_FULL_FLUSH) can be found, or until all
Skips invalid compressed data until a possible full flush point (see above
for the description of deflate with Z_FULL_FLUSH) can be found, or until all
available input is skipped. No output is provided.
inflateSync returns Z_OK if a full flush point has been found, Z_BUF_ERROR
if no more input was provided, Z_DATA_ERROR if no flush point has been
found, or Z_STREAM_ERROR if the stream structure was inconsistent. In the
success case, the application may save the current current value of total_in
which indicates where valid compressed data was found. In the error case,
the application may repeatedly call inflateSync, providing more input each
time, until success or end of the input data.
inflateSync searches for a 00 00 FF FF pattern in the compressed data.
All full flush points have this pattern, but not all occurences of this
pattern are full flush points.
inflateSync returns Z_OK if a possible full flush point has been found,
Z_BUF_ERROR if no more input was provided, Z_DATA_ERROR if no flush point
has been found, or Z_STREAM_ERROR if the stream structure was inconsistent.
In the success case, the application may save the current current value of
total_in which indicates where valid compressed data was found. In the
error case, the application may repeatedly call inflateSync, providing more
input each time, until success or end of the input data.
*/
ZEXTERN int ZEXPORT inflateCopy OF((z_streamp dest,
@ -962,7 +1002,7 @@ ZEXTERN int ZEXPORT inflateBackInit OF((z_streamp strm, int windowBits,
See inflateBack() for the usage of these routines.
inflateBackInit will return Z_OK on success, Z_STREAM_ERROR if any of
the paramaters are invalid, Z_MEM_ERROR if the internal state could not be
the parameters are invalid, Z_MEM_ERROR if the internal state could not be
allocated, or Z_VERSION_ERROR if the version of the library does not match
the version of the header file.
*/
@ -1088,6 +1128,7 @@ ZEXTERN uLong ZEXPORT zlibCompileFlags OF((void));
27-31: 0 (reserved)
*/
#ifndef Z_SOLO
/* utility functions */
@ -1149,10 +1190,11 @@ ZEXTERN int ZEXPORT uncompress OF((Bytef *dest, uLongf *destLen,
uncompress returns Z_OK if success, Z_MEM_ERROR if there was not
enough memory, Z_BUF_ERROR if there was not enough room in the output
buffer, or Z_DATA_ERROR if the input data was corrupted or incomplete.
buffer, or Z_DATA_ERROR if the input data was corrupted or incomplete. In
the case where there is not enough room, uncompress() will fill the output
buffer with the uncompressed data up to that point.
*/
/* gzip file access functions */
/*
@ -1162,7 +1204,7 @@ ZEXTERN int ZEXPORT uncompress OF((Bytef *dest, uLongf *destLen,
wrapper, documented in RFC 1952, wrapped around a deflate stream.
*/
typedef voidp gzFile; /* opaque gzip file descriptor */
typedef struct gzFile_s *gzFile; /* semi-opaque gzip file descriptor */
/*
ZEXTERN gzFile ZEXPORT gzopen OF((const char *path, const char *mode));
@ -1172,13 +1214,28 @@ ZEXTERN gzFile ZEXPORT gzopen OF((const char *path, const char *mode));
a strategy: 'f' for filtered data as in "wb6f", 'h' for Huffman-only
compression as in "wb1h", 'R' for run-length encoding as in "wb1R", or 'F'
for fixed code compression as in "wb9F". (See the description of
deflateInit2 for more information about the strategy parameter.) Also "a"
can be used instead of "w" to request that the gzip stream that will be
written be appended to the file. "+" will result in an error, since reading
and writing to the same gzip file is not supported.
deflateInit2 for more information about the strategy parameter.) 'T' will
request transparent writing or appending with no compression and not using
the gzip format.
"a" can be used instead of "w" to request that the gzip stream that will
be written be appended to the file. "+" will result in an error, since
reading and writing to the same gzip file is not supported. The addition of
"x" when writing will create the file exclusively, which fails if the file
already exists. On systems that support it, the addition of "e" when
reading or writing will set the flag to close the file on an execve() call.
These functions, as well as gzip, will read and decode a sequence of gzip
streams in a file. The append function of gzopen() can be used to create
such a file. (Also see gzflush() for another way to do this.) When
appending, gzopen does not test whether the file begins with a gzip stream,
nor does it look for the end of the gzip streams to begin appending. gzopen
will simply append a gzip stream to the existing file.
gzopen can be used to read a file which is not in gzip format; in this
case gzread will directly read from the file without decompression.
case gzread will directly read from the file without decompression. When
reading, this will be detected automatically by looking for the magic two-
byte gzip header.
gzopen returns NULL if the file could not be opened, if there was
insufficient memory to allocate the gzFile state, or if an invalid mode was
@ -1197,7 +1254,11 @@ ZEXTERN gzFile ZEXPORT gzdopen OF((int fd, const char *mode));
descriptor fd, just like fclose(fdopen(fd, mode)) closes the file descriptor
fd. If you want to keep fd open, use fd = dup(fd_keep); gz = gzdopen(fd,
mode);. The duplicated descriptor should be saved to avoid a leak, since
gzdopen does not close fd if it fails.
gzdopen does not close fd if it fails. If you are using fileno() to get the
file descriptor from a FILE *, then you will have to use dup() to avoid
double-close()ing the file descriptor. Both gzclose() and fclose() will
close the associated file descriptor, so they need to have different file
descriptors.
gzdopen returns NULL if there was insufficient memory to allocate the
gzFile state, if an invalid mode was specified (an 'r', 'w', or 'a' was not
@ -1235,14 +1296,26 @@ ZEXTERN int ZEXPORT gzsetparams OF((gzFile file, int level, int strategy));
ZEXTERN int ZEXPORT gzread OF((gzFile file, voidp buf, unsigned len));
/*
Reads the given number of uncompressed bytes from the compressed file. If
the input file was not in gzip format, gzread copies the given number of
bytes into the buffer.
the input file is not in gzip format, gzread copies the given number of
bytes into the buffer directly from the file.
After reaching the end of a gzip stream in the input, gzread will continue
to read, looking for another gzip stream, or failing that, reading the rest
of the input file directly without decompression. The entire input file
will be read if gzread is called until it returns less than the requested
len.
to read, looking for another gzip stream. Any number of gzip streams may be
concatenated in the input file, and will all be decompressed by gzread().
If something other than a gzip stream is encountered after a gzip stream,
that remaining trailing garbage is ignored (and no error is returned).
gzread can be used to read a gzip file that is being concurrently written.
Upon reaching the end of the input, gzread will return with the available
data. If the error code returned by gzerror is Z_OK or Z_BUF_ERROR, then
gzclearerr can be used to clear the end of file indicator in order to permit
gzread to be tried again. Z_OK indicates that a gzip stream was completed
on the last gzread. Z_BUF_ERROR indicates that the input file ended in the
middle of a gzip stream. Note that gzread does not return -1 in the event
of an incomplete gzip stream. This error is deferred until gzclose(), which
will return Z_BUF_ERROR if the last gzread ended in the middle of a gzip
stream. Alternatively, gzerror can be used before gzclose to detect this
case.
gzread returns the number of uncompressed bytes actually read, less than
len for end of file, or -1 for error.
@ -1256,7 +1329,7 @@ ZEXTERN int ZEXPORT gzwrite OF((gzFile file,
error.
*/
ZEXTERN int ZEXPORTVA gzprintf OF((gzFile file, const char *format, ...));
ZEXTERN int ZEXPORTVA gzprintf Z_ARG((gzFile file, const char *format, ...));
/*
Converts, formats, and writes the arguments to the compressed file under
control of the format string, as in fprintf. gzprintf returns the number of
@ -1301,7 +1374,10 @@ ZEXTERN int ZEXPORT gzputc OF((gzFile file, int c));
ZEXTERN int ZEXPORT gzgetc OF((gzFile file));
/*
Reads one byte from the compressed file. gzgetc returns this byte or -1
in case of end of file or error.
in case of end of file or error. This is implemented as a macro for speed.
As such, it does not do all of the checking the other functions do. I.e.
it does not check to see if file is NULL, nor whether the structure file
points to has been clobbered or not.
*/
ZEXTERN int ZEXPORT gzungetc OF((int c, gzFile file));
@ -1397,9 +1473,7 @@ ZEXTERN int ZEXPORT gzeof OF((gzFile file));
ZEXTERN int ZEXPORT gzdirect OF((gzFile file));
/*
Returns true (1) if file is being copied directly while reading, or false
(0) if file is a gzip stream being decompressed. This state can change from
false to true while reading the input file if the end of a gzip stream is
reached, but is followed by data that is not another gzip stream.
(0) if file is a gzip stream being decompressed.
If the input file is empty, gzdirect() will return true, since the input
does not contain a gzip stream.
@ -1408,6 +1482,13 @@ ZEXTERN int ZEXPORT gzdirect OF((gzFile file));
cause buffers to be allocated to allow reading the file to determine if it
is a gzip file. Therefore if gzbuffer() is used, it should be called before
gzdirect().
When writing, gzdirect() returns true (1) if transparent writing was
requested ("wT" for the gzopen() mode), or false (0) otherwise. (Note:
gzdirect() is not needed when writing. Transparent writing must be
explicitly requested, so the application already knows the answer. When
linking statically, using gzdirect() will include all of the zlib code for
gzip file reading and decompression, which may not be desired.)
*/
ZEXTERN int ZEXPORT gzclose OF((gzFile file));
@ -1419,7 +1500,8 @@ ZEXTERN int ZEXPORT gzclose OF((gzFile file));
must not be called more than once on the same allocation.
gzclose will return Z_STREAM_ERROR if file is not valid, Z_ERRNO on a
file operation error, or Z_OK on success.
file operation error, Z_MEM_ERROR if out of memory, Z_BUF_ERROR if the
last read ended in the middle of a gzip stream, or Z_OK on success.
*/
ZEXTERN int ZEXPORT gzclose_r OF((gzFile file));
@ -1457,6 +1539,7 @@ ZEXTERN void ZEXPORT gzclearerr OF((gzFile file));
file that is being written concurrently.
*/
#endif /* !Z_SOLO */
/* checksum functions */
@ -1492,16 +1575,17 @@ ZEXTERN uLong ZEXPORT adler32_combine OF((uLong adler1, uLong adler2,
Combine two Adler-32 checksums into one. For two sequences of bytes, seq1
and seq2 with lengths len1 and len2, Adler-32 checksums were calculated for
each, adler1 and adler2. adler32_combine() returns the Adler-32 checksum of
seq1 and seq2 concatenated, requiring only adler1, adler2, and len2.
seq1 and seq2 concatenated, requiring only adler1, adler2, and len2. Note
that the z_off_t type (like off_t) is a signed integer. If len2 is
negative, the result has no meaning or utility.
*/
ZEXTERN uLong ZEXPORT crc32 OF((uLong crc, const Bytef *buf, uInt len));
/*
Update a running CRC-32 with the bytes buf[0..len-1] and return the
updated CRC-32. If buf is Z_NULL, this function returns the required
initial value for the for the crc. Pre- and post-conditioning (one's
complement) is performed within this function so it shouldn't be done by the
application.
initial value for the crc. Pre- and post-conditioning (one's complement) is
performed within this function so it shouldn't be done by the application.
Usage example:
@ -1544,41 +1628,81 @@ ZEXTERN int ZEXPORT inflateBackInit_ OF((z_streamp strm, int windowBits,
const char *version,
int stream_size));
#define deflateInit(strm, level) \
deflateInit_((strm), (level), ZLIB_VERSION, sizeof(z_stream))
deflateInit_((strm), (level), ZLIB_VERSION, (int)sizeof(z_stream))
#define inflateInit(strm) \
inflateInit_((strm), ZLIB_VERSION, sizeof(z_stream))
inflateInit_((strm), ZLIB_VERSION, (int)sizeof(z_stream))
#define deflateInit2(strm, level, method, windowBits, memLevel, strategy) \
deflateInit2_((strm),(level),(method),(windowBits),(memLevel),\
(strategy), ZLIB_VERSION, sizeof(z_stream))
(strategy), ZLIB_VERSION, (int)sizeof(z_stream))
#define inflateInit2(strm, windowBits) \
inflateInit2_((strm), (windowBits), ZLIB_VERSION, sizeof(z_stream))
inflateInit2_((strm), (windowBits), ZLIB_VERSION, \
(int)sizeof(z_stream))
#define inflateBackInit(strm, windowBits, window) \
inflateBackInit_((strm), (windowBits), (window), \
ZLIB_VERSION, sizeof(z_stream))
ZLIB_VERSION, (int)sizeof(z_stream))
#ifdef _LARGEFILE64_SOURCE
ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *));
ZEXTERN off64_t ZEXPORT gzseek64 OF((gzFile, off64_t, int));
ZEXTERN off64_t ZEXPORT gztell64 OF((gzFile));
ZEXTERN off64_t ZEXPORT gzoffset64 OF((gzFile));
ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, off64_t));
ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, off64_t));
#ifndef Z_SOLO
/* gzgetc() macro and its supporting function and exposed data structure. Note
* that the real internal state is much larger than the exposed structure.
* This abbreviated structure exposes just enough for the gzgetc() macro. The
* user should not mess with these exposed elements, since their names or
* behavior could change in the future, perhaps even capriciously. They can
* only be used by the gzgetc() macro. You have been warned.
*/
struct gzFile_s {
unsigned have;
unsigned char *next;
z_off64_t pos;
};
ZEXTERN int ZEXPORT gzgetc_ OF((gzFile file)); /* backward compatibility */
#ifdef Z_PREFIX_SET
# undef z_gzgetc
# define z_gzgetc(g) \
((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : gzgetc(g))
#else
# define gzgetc(g) \
((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : gzgetc(g))
#endif
#if !defined(ZLIB_INTERNAL) && _FILE_OFFSET_BITS == 64
# define gzopen gzopen64
# define gzseek gzseek64
# define gztell gztell64
# define gzoffset gzoffset64
# define adler32_combine adler32_combine64
# define crc32_combine crc32_combine64
# ifndef _LARGEFILE64_SOURCE
/* provide 64-bit offset functions if _LARGEFILE64_SOURCE defined, and/or
* change the regular functions to 64 bits if _FILE_OFFSET_BITS is 64 (if
* both are true, the application gets the *64 functions, and the regular
* functions are changed to 64 bits) -- in case these are set on systems
* without large file support, _LFS64_LARGEFILE must also be true
*/
#ifdef Z_LARGE64
ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *));
ZEXTERN z_off64_t ZEXPORT gzseek64 OF((gzFile, z_off64_t, int));
ZEXTERN z_off64_t ZEXPORT gztell64 OF((gzFile));
ZEXTERN z_off64_t ZEXPORT gzoffset64 OF((gzFile));
ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off64_t));
ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off64_t));
#endif
#if !defined(ZLIB_INTERNAL) && defined(Z_WANT64)
# ifdef Z_PREFIX_SET
# define z_gzopen z_gzopen64
# define z_gzseek z_gzseek64
# define z_gztell z_gztell64
# define z_gzoffset z_gzoffset64
# define z_adler32_combine z_adler32_combine64
# define z_crc32_combine z_crc32_combine64
# else
# define gzopen gzopen64
# define gzseek gzseek64
# define gztell gztell64
# define gzoffset gzoffset64
# define adler32_combine adler32_combine64
# define crc32_combine crc32_combine64
# endif
# ifndef Z_LARGE64
ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *));
ZEXTERN off_t ZEXPORT gzseek64 OF((gzFile, off_t, int));
ZEXTERN off_t ZEXPORT gztell64 OF((gzFile));
ZEXTERN off_t ZEXPORT gzoffset64 OF((gzFile));
ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, off_t));
ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, off_t));
ZEXTERN z_off_t ZEXPORT gzseek64 OF((gzFile, z_off_t, int));
ZEXTERN z_off_t ZEXPORT gztell64 OF((gzFile));
ZEXTERN z_off_t ZEXPORT gzoffset64 OF((gzFile));
ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off_t));
ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off_t));
# endif
#else
ZEXTERN gzFile ZEXPORT gzopen OF((const char *, const char *));
@ -1589,14 +1713,29 @@ ZEXTERN int ZEXPORT inflateBackInit_ OF((z_streamp strm, int windowBits,
ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t));
#endif
#else /* Z_SOLO */
ZEXTERN uLong ZEXPORT adler32_combine OF((uLong, uLong, z_off_t));
ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t));
#endif /* !Z_SOLO */
/* hack for buggy compilers */
#if !defined(ZUTIL_H) && !defined(NO_DUMMY_DECL)
struct internal_state {int dummy;}; /* hack for buggy compilers */
struct internal_state {int dummy;};
#endif
/* undocumented functions */
ZEXTERN const char * ZEXPORT zError OF((int));
ZEXTERN int ZEXPORT inflateSyncPoint OF((z_streamp));
ZEXTERN const uLongf * ZEXPORT get_crc_table OF((void));
ZEXTERN const z_crc_t FAR * ZEXPORT get_crc_table OF((void));
ZEXTERN int ZEXPORT inflateUndermine OF((z_streamp, int));
ZEXTERN int ZEXPORT inflateResetKeep OF((z_streamp));
ZEXTERN int ZEXPORT deflateResetKeep OF((z_streamp));
#if defined(_WIN32) && !defined(Z_SOLO)
ZEXTERN gzFile ZEXPORT gzopen_w OF((const wchar_t *path,
const char *mode));
#endif
#ifdef __cplusplus
}

46
3rdparty/zlib/zutil.c vendored
View File

@ -1,11 +1,14 @@
/* zutil.c -- target dependent utility functions for the compression library
* Copyright (C) 1995-2005 Jean-loup Gailly.
* Copyright (C) 1995-2005, 2010, 2011, 2012 Jean-loup Gailly.
* For conditions of distribution and use, see copyright notice in zlib.h
*/
/* @(#) $Id$ */
#include "zutil.h"
#ifndef Z_SOLO
# include "gzguts.h"
#endif
#ifndef NO_DUMMY_DECL
struct internal_state {int dummy;}; /* for buggy compilers */
@ -85,27 +88,27 @@ uLong ZEXPORT zlibCompileFlags()
#ifdef FASTEST
flags += 1L << 21;
#endif
#ifdef STDC
#if defined(STDC) || defined(Z_HAVE_STDARG_H)
# ifdef NO_vsnprintf
flags += 1L << 25;
flags += 1L << 25;
# ifdef HAS_vsprintf_void
flags += 1L << 26;
flags += 1L << 26;
# endif
# else
# ifdef HAS_vsnprintf_void
flags += 1L << 26;
flags += 1L << 26;
# endif
# endif
#else
flags += 1L << 24;
flags += 1L << 24;
# ifdef NO_snprintf
flags += 1L << 25;
flags += 1L << 25;
# ifdef HAS_sprintf_void
flags += 1L << 26;
flags += 1L << 26;
# endif
# else
# ifdef HAS_snprintf_void
flags += 1L << 26;
flags += 1L << 26;
# endif
# endif
#endif
@ -117,9 +120,9 @@ uLong ZEXPORT zlibCompileFlags()
# ifndef verbose
# define verbose 0
# endif
int z_verbose = verbose;
int ZLIB_INTERNAL z_verbose = verbose;
void z_error (m)
void ZLIB_INTERNAL z_error (m)
char *m;
{
fprintf(stderr, "%s\n", m);
@ -146,7 +149,7 @@ const char * ZEXPORT zError(err)
#ifndef HAVE_MEMCPY
void zmemcpy(dest, source, len)
void ZLIB_INTERNAL zmemcpy(dest, source, len)
Bytef* dest;
const Bytef* source;
uInt len;
@ -157,7 +160,7 @@ void zmemcpy(dest, source, len)
} while (--len != 0);
}
int zmemcmp(s1, s2, len)
int ZLIB_INTERNAL zmemcmp(s1, s2, len)
const Bytef* s1;
const Bytef* s2;
uInt len;
@ -170,7 +173,7 @@ int zmemcmp(s1, s2, len)
return 0;
}
void zmemzero(dest, len)
void ZLIB_INTERNAL zmemzero(dest, len)
Bytef* dest;
uInt len;
{
@ -181,6 +184,7 @@ void zmemzero(dest, len)
}
#endif
#ifndef Z_SOLO
#ifdef SYS16BIT
@ -213,7 +217,7 @@ local ptr_table table[MAX_PTR];
* a protected system like OS/2. Use Microsoft C instead.
*/
voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
voidpf ZLIB_INTERNAL zcalloc (voidpf opaque, unsigned items, unsigned size)
{
voidpf buf = opaque; /* just to make some compilers happy */
ulg bsize = (ulg)items*size;
@ -237,7 +241,7 @@ voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
return buf;
}
void zcfree (voidpf opaque, voidpf ptr)
void ZLIB_INTERNAL zcfree (voidpf opaque, voidpf ptr)
{
int n;
if (*(ush*)&ptr != 0) { /* object < 64K */
@ -272,13 +276,13 @@ void zcfree (voidpf opaque, voidpf ptr)
# define _hfree hfree
#endif
voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
voidpf ZLIB_INTERNAL zcalloc (voidpf opaque, uInt items, uInt size)
{
if (opaque) opaque = 0; /* to make compiler happy */
return _halloc((long)items, size);
}
void zcfree (voidpf opaque, voidpf ptr)
void ZLIB_INTERNAL zcfree (voidpf opaque, voidpf ptr)
{
if (opaque) opaque = 0; /* to make compiler happy */
_hfree(ptr);
@ -297,7 +301,7 @@ extern voidp calloc OF((uInt items, uInt size));
extern void free OF((voidpf ptr));
#endif
voidpf zcalloc (opaque, items, size)
voidpf ZLIB_INTERNAL zcalloc (opaque, items, size)
voidpf opaque;
unsigned items;
unsigned size;
@ -307,7 +311,7 @@ voidpf zcalloc (opaque, items, size)
(voidpf)calloc(items, size);
}
void zcfree (opaque, ptr)
void ZLIB_INTERNAL zcfree (opaque, ptr)
voidpf opaque;
voidpf ptr;
{
@ -316,3 +320,5 @@ void zcfree (opaque, ptr)
}
#endif /* MY_ZCALLOC */
#endif /* !Z_SOLO */

133
3rdparty/zlib/zutil.h vendored
View File

@ -1,5 +1,5 @@
/* zutil.h -- internal interface and configuration of the compression library
* Copyright (C) 1995-2010 Jean-loup Gailly.
* Copyright (C) 1995-2012 Jean-loup Gailly.
* For conditions of distribution and use, see copyright notice in zlib.h
*/
@ -13,10 +13,15 @@
#ifndef ZUTIL_H
#define ZUTIL_H
#define ZLIB_INTERNAL
#ifdef HAVE_HIDDEN
# define ZLIB_INTERNAL __attribute__((visibility ("hidden")))
#else
# define ZLIB_INTERNAL
#endif
#include "zlib.h"
#ifdef STDC
#if defined(STDC) && !defined(Z_SOLO)
# if !(defined(_WIN32_WCE) && defined(_MSC_VER))
# include <stddef.h>
# endif
@ -24,17 +29,8 @@
# include <stdlib.h>
#endif
#if defined(UNDER_CE) && defined(NO_ERRNO_H)
# define zseterrno(ERR) SetLastError((DWORD)(ERR))
# define zerrno() ((int)GetLastError())
#else
# ifdef NO_ERRNO_H
extern int errno;
# else
# include <errno.h>
# endif
# define zseterrno(ERR) do { errno = (ERR); } while (0)
# define zerrno() errno
#ifdef Z_SOLO
typedef long ptrdiff_t; /* guess -- will be caught if guess is wrong */
#endif
#ifndef local
@ -86,16 +82,18 @@ extern const char * const z_errmsg[10]; /* indexed by 2-zlib_error */
#if defined(MSDOS) || (defined(WINDOWS) && !defined(WIN32))
# define OS_CODE 0x00
# if defined(__TURBOC__) || defined(__BORLANDC__)
# if (__STDC__ == 1) && (defined(__LARGE__) || defined(__COMPACT__))
/* Allow compilation with ANSI keywords only enabled */
void _Cdecl farfree( void *block );
void *_Cdecl farmalloc( unsigned long nbytes );
# else
# include <alloc.h>
# ifndef Z_SOLO
# if defined(__TURBOC__) || defined(__BORLANDC__)
# if (__STDC__ == 1) && (defined(__LARGE__) || defined(__COMPACT__))
/* Allow compilation with ANSI keywords only enabled */
void _Cdecl farfree( void *block );
void *_Cdecl farmalloc( unsigned long nbytes );
# else
# include <alloc.h>
# endif
# else /* MSC or DJGPP */
# include <malloc.h>
# endif
# else /* MSC or DJGPP */
# include <malloc.h>
# endif
#endif
@ -115,18 +113,20 @@ extern const char * const z_errmsg[10]; /* indexed by 2-zlib_error */
#ifdef OS2
# define OS_CODE 0x06
# ifdef M_I86
# if defined(M_I86) && !defined(Z_SOLO)
# include <malloc.h>
# endif
#endif
#if defined(MACOS) || defined(TARGET_OS_MAC)
# define OS_CODE 0x07
# if defined(__MWERKS__) && __dest_os != __be_os && __dest_os != __win32_os
# include <unix.h> /* for fdopen */
# else
# ifndef fdopen
# define fdopen(fd,mode) NULL /* No fdopen() */
# ifndef Z_SOLO
# if defined(__MWERKS__) && __dest_os != __be_os && __dest_os != __win32_os
# include <unix.h> /* for fdopen */
# else
# ifndef fdopen
# define fdopen(fd,mode) NULL /* No fdopen() */
# endif
# endif
# endif
#endif
@ -161,16 +161,16 @@ extern const char * const z_errmsg[10]; /* indexed by 2-zlib_error */
# endif
#endif
#if defined(__BORLANDC__)
#if defined(__BORLANDC__) && !defined(MSDOS)
#pragma warn -8004
#pragma warn -8008
#pragma warn -8066
#endif
#ifdef _LARGEFILE64_SOURCE
# define z_off64_t off64_t
#else
# define z_off64_t z_off_t
/* provide prototypes for these when building zlib without LFS */
#if !defined(_WIN32) && (!defined(_LARGEFILE64_SOURCE) || _LFS64_LARGEFILE-0 == 0)
ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off_t));
ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off_t));
#endif
/* common defaults */
@ -181,52 +181,11 @@ extern const char * const z_errmsg[10]; /* indexed by 2-zlib_error */
#ifndef F_OPEN
# define F_OPEN(name, mode) fopen((name), (mode))
#endif
#ifdef _LARGEFILE64_SOURCE
# define F_OPEN64(name, mode) fopen64((name), (mode))
#else
# define F_OPEN64(name, mode) fopen((name), (mode))
#endif
/* functions */
#if defined(STDC99) || (defined(__TURBOC__) && __TURBOC__ >= 0x550)
# ifndef HAVE_VSNPRINTF
# define HAVE_VSNPRINTF
# endif
#endif
#if defined(__CYGWIN__)
# ifndef HAVE_VSNPRINTF
# define HAVE_VSNPRINTF
# endif
#endif
#ifndef HAVE_VSNPRINTF
# ifdef MSDOS
/* vsnprintf may exist on some MS-DOS compilers (DJGPP?),
but for now we just assume it doesn't. */
# define NO_vsnprintf
# endif
# ifdef __TURBOC__
# define NO_vsnprintf
# endif
# ifdef WIN32
/* In Win32, vsnprintf is available as the "non-ANSI" _vsnprintf. */
# if !defined(vsnprintf) && !defined(NO_vsnprintf)
# if !defined(_MSC_VER) || ( defined(_MSC_VER) && _MSC_VER < 1500 )
# define vsnprintf _vsnprintf
# endif
# endif
# endif
# ifdef __SASC
# define NO_vsnprintf
# endif
#endif
#ifdef VMS
# define NO_vsnprintf
#endif
#if defined(pyr)
#if defined(pyr) || defined(Z_SOLO)
# define NO_MEMCPY
#endif
#if defined(SMALL_MEDIUM) && !defined(_MSC_VER) && !defined(__SC__)
@ -250,16 +209,16 @@ extern const char * const z_errmsg[10]; /* indexed by 2-zlib_error */
# define zmemzero(dest, len) memset(dest, 0, len)
# endif
#else
extern void zmemcpy OF((Bytef* dest, const Bytef* source, uInt len));
extern int zmemcmp OF((const Bytef* s1, const Bytef* s2, uInt len));
extern void zmemzero OF((Bytef* dest, uInt len));
void ZLIB_INTERNAL zmemcpy OF((Bytef* dest, const Bytef* source, uInt len));
int ZLIB_INTERNAL zmemcmp OF((const Bytef* s1, const Bytef* s2, uInt len));
void ZLIB_INTERNAL zmemzero OF((Bytef* dest, uInt len));
#endif
/* Diagnostic functions */
#ifdef DEBUG
# include <stdio.h>
extern int z_verbose;
extern void z_error OF((char *m));
extern int ZLIB_INTERNAL z_verbose;
extern void ZLIB_INTERNAL z_error OF((char *m));
# define Assert(cond,msg) {if(!(cond)) z_error(msg);}
# define Trace(x) {if (z_verbose>=0) fprintf x ;}
# define Tracev(x) {if (z_verbose>0) fprintf x ;}
@ -275,13 +234,19 @@ extern const char * const z_errmsg[10]; /* indexed by 2-zlib_error */
# define Tracecv(c,x)
#endif
voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size));
void zcfree OF((voidpf opaque, voidpf ptr));
#ifndef Z_SOLO
voidpf ZLIB_INTERNAL zcalloc OF((voidpf opaque, unsigned items,
unsigned size));
void ZLIB_INTERNAL zcfree OF((voidpf opaque, voidpf ptr));
#endif
#define ZALLOC(strm, items, size) \
(*((strm)->zalloc))((strm)->opaque, (items), (size))
#define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
#define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
/* Reverse the bytes in a 32-bit value */
#define ZSWAP32(q) ((((q) >> 24) & 0xff) + (((q) >> 8) & 0xff00) + \
(((q) & 0xff00) << 8) + (((q) & 0xff) << 24))
#endif /* ZUTIL_H */