EE/IOP Timers: Rewrote most of the gate handling to be better.

[SAVEVERSION+]
This commit is contained in:
refractionpcsx2 2024-04-28 05:49:51 +01:00
parent 4363255234
commit 5f7c2b7cd8
6 changed files with 233 additions and 287 deletions

View File

@ -21,9 +21,7 @@
#include "VMManager.h"
#include "VUmicro.h"
extern u8 psxhblankgate;
static const uint EECNT_FUTURE_TARGET = 0x10000000;
static int gates = 0;
uint g_FrameCount = 0;
@ -75,7 +73,7 @@ static __fi void _rcntSet(int cntidx)
const Counter& counter = counters[cntidx];
// Stopped or special hsync gate?
if (!counter.mode.IsCounting || (counter.mode.ClockSource == 0x3))
if (!rcntCanCount(cntidx) || (counter.mode.ClockSource == 0x3))
return;
if (!counter.mode.TargetInterrupt && !counter.mode.OverflowInterrupt)
@ -232,7 +230,7 @@ static void vSyncInfoCalc(vSyncTimingInfo* info, double framesPerSecond, u32 sca
{
hBlank /= 2;
hRender /= 2;
}
}
//TODO: Carry fixed-point math all the way through the entire vsync and hsync counting processes, and continually apply rounding
//as needed for each scheduled v/hsync related event. Much better to handle than this messed state.
@ -512,8 +510,7 @@ static __fi void VSyncStart(u32 sCycle)
// Memcard IO detection - Uses a tick system to determine when memcards are no longer being written.
MemcardBusy::Decrement();
if (gates)
rcntStartGate(true, sCycle); // Counters Start Gate code
rcntStartGate(true, sCycle); // Counters Start Gate code
// INTC - VB Blank Start Hack --
// Hack fix! This corrects a freezeup in Granda 2 where it decides to spin
@ -570,8 +567,7 @@ static __fi void VSyncEnd(u32 sCycle)
hwIntcIrq(INTC_VBLANK_E); // HW Irq
psxVBlankEnd(); // psxCounters vBlank End
if (gates)
rcntEndGate(true, sCycle); // Counters End Gate Code
rcntEndGate(true, sCycle); // Counters End Gate Code
// FolderMemoryCard needs information on how much time has passed since the last write
// Call it every 60 frames
@ -597,13 +593,14 @@ __fi void rcntUpdate_hScanline()
//iopEventAction = 1;
if (hsyncCounter.Mode == MODE_HBLANK)
{ //HBLANK Start
rcntStartGate(false, hsyncCounter.sCycle + hsyncCounter.CycleT);
psxHBlankStart();
// Setup the hRender's start and end cycle information:
hsyncCounter.sCycle += vSyncInfo.hBlank; // start (absolute cycle value)
hsyncCounter.CycleT = vSyncInfo.hRender; // endpoint (delta from start value)
hsyncCounter.Mode = MODE_HRENDER;
rcntStartGate(false, hsyncCounter.sCycle);
psxCheckStartGate16(0);
}
else
{ //HBLANK END / HRENDER Begin
@ -614,16 +611,15 @@ __fi void rcntUpdate_hScanline()
gsIrq();
}
rcntEndGate(false, hsyncCounter.sCycle + hsyncCounter.CycleT);
psxHBlankEnd();
// set up the hblank's start and end cycle information:
hsyncCounter.sCycle += vSyncInfo.hRender; // start (absolute cycle value)
hsyncCounter.CycleT = vSyncInfo.hBlank; // endpoint (delta from start value)
hsyncCounter.Mode = MODE_HBLANK;
if (gates)
rcntEndGate(false, hsyncCounter.sCycle);
if (psxhblankgate)
psxCheckEndGate16(0);
#ifdef VSYNC_DEBUG
hsc++;
#endif
@ -637,11 +633,11 @@ __fi void rcntUpdate_vSync()
if (vsyncCounter.Mode == MODE_VSYNC)
{
VSyncEnd(vsyncCounter.sCycle + vsyncCounter.CycleT);
vsyncCounter.sCycle += vSyncInfo.Blank;
vsyncCounter.CycleT = vSyncInfo.Render;
vsyncCounter.Mode = MODE_VRENDER;
VSyncEnd(vsyncCounter.sCycle);
vsyncCounter.Mode = MODE_VRENDER; // VSYNC END - Render begin
}
else if (vsyncCounter.Mode == MODE_GSBLANK) // GS CSR Swap and interrupt
{
@ -651,8 +647,10 @@ __fi void rcntUpdate_vSync()
// Don't set the start cycle, makes it easier to calculate the correct Vsync End time
vsyncCounter.CycleT = vSyncInfo.Blank;
}
else // VSYNC end / VRENDER begin
else // VSYNC Start
{
VSyncStart(vsyncCounter.sCycle + vsyncCounter.CycleT);
vsyncCounter.sCycle += vSyncInfo.Render;
vsyncCounter.CycleT = vSyncInfo.GSBlank;
vsyncCounter.Mode = MODE_GSBLANK;
@ -660,8 +658,6 @@ __fi void rcntUpdate_vSync()
// Accumulate hsync rounding errors:
hsyncCounter.sCycle += vSyncInfo.hSyncError;
VSyncStart(vsyncCounter.sCycle);
#ifdef VSYNC_DEBUG
vblankinc++;
if (vblankinc > 1)
@ -717,7 +713,20 @@ static __fi void _cpuTestOverflow(int i)
}
// forceinline note: this method is called from two locations, but one
__fi bool rcntCanCount(int i)
{
if (!counters[i].mode.IsCounting)
return false;
if (!counters[i].mode.EnableGate)
return true;
// If we're in gate mode, we can only count if it's not both gated and counting on HBLANK or GateMode is not 0 (Count only when low) or the signal is low.
return ((counters[i].mode.GateSource == 0 && counters[i].mode.ClockSource != 3 && (hsyncCounter.Mode == MODE_HRENDER || counters[i].mode.GateMode != 0)) ||
(counters[i].mode.GateSource == 1 && (vsyncCounter.Mode == MODE_VRENDER || counters[i].mode.GateMode != 0)));
}
// forceinline note: this method is called from two locations, but one
// of them is the interpreter, which doesn't count. ;) So might as
// well forceinline it!
__fi void rcntUpdate()
@ -730,12 +739,7 @@ __fi void rcntUpdate()
for (int i = 0; i <= 3; i++)
{
// We want to count gated counters (except the hblank which exclude below, and are
// counted by the hblank timer instead)
//if ( gates & (1<<i) ) continue;
if (!counters[i].mode.IsCounting)
if (!rcntCanCount(i))
continue;
if (counters[i].mode.ClockSource != 0x3) // don't count hblank sources
@ -761,34 +765,21 @@ static __fi void _rcntSetGate(int index)
if (counters[index].mode.EnableGate)
{
// If the Gate Source is hblank and the clock selection is also hblank
// then the gate is disabled and the counter acts as a normal hblank source.
// the timer completely turns off (HW Tested).
if (!(counters[index].mode.GateSource == 0 && counters[index].mode.ClockSource == 3))
{
EECNT_LOG("EE Counter[%d] Using Gate! Source=%s, Mode=%d.",
index, counters[index].mode.GateSource ? "vblank" : "hblank", counters[index].mode.GateMode);
gates |= (1 << index);
// FIXME: Test required - should the counter be stopped here? I feel like it should only stop and reset on the gate signal happening.
counters[index].mode.IsCounting = 0;
return;
}
else
EECNT_LOG("EE Counter[%d] GATE DISABLED because of hblank source.", index);
}
gates &= ~(1 << index);
}
// mode - 0 means hblank source, 8 means vblank source.
static __fi void rcntStartGate(bool isVblank, u32 sCycle)
{
int i;
for (i = 0; i <= 3; i++)
for (int i = 0; i < 4; i++)
{
//if ((mode == 0) && ((counters[i].mode & 0x83) == 0x83))
if (!isVblank && counters[i].mode.IsCounting && (counters[i].mode.ClockSource == 3))
if (!isVblank && (counters[i].mode.ClockSource == 3) && rcntCanCount(i))
{
// Update counters using the hblank as the clock. This keeps the hblank source
// nicely in sync with the counters and serves as an optimization also, since these
@ -802,35 +793,31 @@ static __fi void rcntStartGate(bool isVblank, u32 sCycle)
_cpuTestTarget(i);
}
if (!(gates & (1 << i)))
if (!counters[i].mode.EnableGate)
continue;
if ((!!counters[i].mode.GateSource) != isVblank)
continue;
switch (counters[i].mode.GateMode)
{
case 0x0: //Count When Signal is low (off)
case 0x0: //Count When Signal is low (V_RENDER ONLY)
// Just set the start cycle (sCycleT) -- counting will be done as needed
// for events (overflows, targets, mode changes, and the gate off below)
counters[i].count = rcntRcount(i);
counters[i].mode.IsCounting = 0;
counters[i].sCycleT = sCycle;
EECNT_LOG("EE Counter[%d] %s StartGate Type0, count = %x", i,
isVblank ? "vblank" : "hblank", counters[i].count);
break;
case 0x2: // reset and start counting on vsync end
// this is the vsync start so do nothing.
case 0x2: // Reset on Vsync end
// This is the vsync start so do nothing.
break;
case 0x1: //Reset and start counting on Vsync start
case 0x3: //Reset and start counting on Vsync start and end
counters[i].mode.IsCounting = 1;
case 0x1: // Reset on Vsync start
case 0x3: // Reset on Vsync start and end
counters[i].count = 0;
counters[i].target &= 0xffff;
counters[i].sCycleT = sCycle;
EECNT_LOG("EE Counter[%d] %s StartGate Type%d, count = %x", i,
isVblank ? "vblank" : "hblank", counters[i].mode.GateMode, counters[i].count);
break;
@ -848,41 +835,33 @@ static __fi void rcntStartGate(bool isVblank, u32 sCycle)
// mode - 0 means hblank signal, 8 means vblank signal.
static __fi void rcntEndGate(bool isVblank, u32 sCycle)
{
int i;
for (i = 0; i <= 3; i++)
{ //Gates for counters
if (!(gates & (1 << i)))
for (int i = 0; i < 4; i++)
{
if (!counters[i].mode.EnableGate)
continue;
if ((!!counters[i].mode.GateSource) != isVblank)
continue;
switch (counters[i].mode.GateMode)
{
case 0x0: //Count When Signal is low (off)
// Set the count here. Since the timer is being turned off it's
// important to record its count at this point (it won't be counted by
// calls to rcntUpdate).
counters[i].mode.IsCounting = 1;
counters[i].sCycleT = cpuRegs.cycle;
case 0x0: //Count When Signal is low (V_RENDER ONLY)
counters[i].sCycleT = sCycle;
EECNT_LOG("EE Counter[%d] %s EndGate Type0, count = %x", i,
isVblank ? "vblank" : "hblank", counters[i].count);
break;
case 0x1: // Reset and start counting on Vsync start
// this is the vsync end so do nothing
case 0x1: // Reset on Vsync start
// This is the vsync end so do nothing
break;
case 0x2: //Reset and start counting on Vsync end
case 0x3: //Reset and start counting on Vsync start and end
counters[i].mode.IsCounting = 1;
case 0x2: // Reset on Vsync end
case 0x3: // Reset on Vsync start and end
EECNT_LOG("EE Counter[%d] %s EndGate Type%d, count = %x", i,
isVblank ? "vblank" : "hblank", counters[i].mode.GateMode, counters[i].count);
counters[i].count = 0;
counters[i].target &= 0xffff;
counters[i].sCycleT = sCycle;
EECNT_LOG("EE Counter[%d] %s EndGate Type%d, count = %x", i,
isVblank ? "vblank" : "hblank", counters[i].mode.GateMode, counters[i].count);
break;
}
}
@ -892,7 +871,7 @@ static __fi void rcntEndGate(bool isVblank, u32 sCycle)
static __fi void rcntWmode(int index, u32 value)
{
if (counters[index].mode.IsCounting)
if (rcntCanCount(index))
{
if (counters[index].mode.ClockSource != 0x3)
{
@ -909,7 +888,7 @@ static __fi void rcntWmode(int index, u32 value)
counters[index].modeval &= ~(value & 0xc00);
counters[index].modeval = (counters[index].modeval & 0xc00) | (value & 0x3ff);
EECNT_LOG("EE Counter[%d] writeMode = %x passed value=%x", index, counters[index].modeval, value);
EECNT_LOG("EE Counter[%d] writeMode = %x passed value=%x", index, counters[index].modeval, value);
switch (counters[index].mode.ClockSource) { //Clock rate divisers *2, they use BUSCLK speed not PS2CLK
case 0: counters[index].rate = 2; break;
@ -927,7 +906,7 @@ static __fi void rcntWcount(int index, u32 value)
EECNT_LOG("EE Counter[%d] writeCount = %x, oldcount=%x, target=%x", index, value, counters[index].count, counters[index].target);
// re-calculate the start cycle of the counter based on elapsed time since the last counter update:
if (counters[index].mode.IsCounting)
if (rcntCanCount(index))
{
if (counters[index].mode.ClockSource != 0x3)
{
@ -959,7 +938,7 @@ static __fi void rcntWtarget(int index, u32 value)
// If the target is behind the current count, set it up so that the counter must
// overflow first before the target fires:
if (counters[index].mode.IsCounting)
if (rcntCanCount(index))
{
if (counters[index].mode.ClockSource != 0x3)
{
@ -986,7 +965,7 @@ __fi u32 rcntRcount(int index)
u32 ret;
// only count if the counter is turned on (0x80) and is not an hsync gate (!0x03)
if (counters[index].mode.IsCounting && (counters[index].mode.ClockSource != 0x3))
if (rcntCanCount(index) && (counters[index].mode.ClockSource != 0x3))
ret = counters[index].count + ((cpuRegs.cycle - counters[index].sCycleT) / counters[index].rate);
else
ret = counters[index].count;
@ -1076,7 +1055,6 @@ bool SaveStateBase::rcntFreeze()
Freeze(vSyncInfo);
Freeze(gsVideoMode);
Freeze(gsIsInterlaced);
Freeze(gates);
if (IsLoading())
cpuRcntSet();

View File

@ -22,9 +22,9 @@ struct EECNT_MODE
u32 GateSource:1;
// 0 - count when the gate signal is low
// 1 - reset and start counting at the signal's rising edge (h/v blank end)
// 2 - reset and start counting at the signal's falling edge (h/v blank start)
// 3 - reset and start counting at both signal edges
// 1 - reset at the signal's rising edge (h/v blank start)
// 2 - reset at the signal's falling edge (h/v blank end)
// 3 - reset at both signal edges
u32 GateMode:2;
// Counter cleared to zero when target reached.
@ -126,6 +126,7 @@ extern uint g_FrameCount;
extern void rcntUpdate_hScanline();
extern void rcntUpdate_vSync();
extern bool rcntCanCount(int i);
extern void rcntUpdate();
extern void rcntInit();

View File

@ -27,14 +27,16 @@
HBlank 15.73426573 KHz */
// Misc IOP Clocks
#define PSXPIXEL ((int)(PSXCLK / 13500000))
// FIXME: this divider is actually 2.73 (36864000 / 13500000), but not sure what uses it, so this'll do, we should maybe change things to float.
#define PSXPIXEL 3
#define PSXSOUNDCLK ((int)(48000))
psxCounter psxCounters[NUM_COUNTERS];
s32 psxNextCounter;
u32 psxNextsCounter;
u8 psxhblankgate = 0;
u8 psxvblankgate = 0;
bool hBlanking = false;
bool vBlanking = false;
// flags when the gate is off or counter disabled. (do not count)
#define IOPCNT_STOPPED (0x10000000ul)
@ -71,6 +73,32 @@ static void psxRcntReset(int index)
}
#endif
static bool psxRcntCanCount(int cntidx)
{
if (psxCounters[cntidx].mode & IOPCNT_STOPPED)
return false;
if (!(psxCounters[cntidx].mode & IOPCNT_ENABLE_GATE))
return true;
const u32 gateMode = (psxCounters[cntidx].mode & IOPCNT_MODE_GATE) >> 1;
if (cntidx == 2 || cntidx == 4 || cntidx == 5)
{
// Gates being enabled on these counters forces it to disable the counter if being on or off depends on a gate being on or off.
return (gateMode & 1);
}
const bool blanking = cntidx == 0 ? hBlanking : vBlanking;
// Stop counting if Gate mode 0 (only count when rendering) and blanking or Gate mode 2 (only count when blanking) when not blanking
if ((gateMode == 0 && blanking == true) || (gateMode == 2 && blanking == false))
return false;
// All other cases allow counting.
return true;
}
static void _rcntSet(int cntidx)
{
u64 overflowCap = (cntidx >= 3) ? 0x100000000ULL : 0x10000;
@ -83,7 +111,7 @@ static void _rcntSet(int cntidx)
// that into account. Adding the difference from that cycle count to the current one
// will do the trick!
if (counter.mode & IOPCNT_STOPPED || counter.rate == PSXHBLANK)
if (counter.rate == PSXHBLANK || !psxRcntCanCount(cntidx))
return;
if (!(counter.mode & (IOPCNT_INT_TARGET | IOPCNT_INT_OVERFLOW)))
@ -256,6 +284,9 @@ Gate:
TM_GATE_ON_Clear_OFF_Start 101
TM_GATE_ON_Start 111
= means counting
- means not counting
V-blank ----+ +----------------------------+ +------
| | | |
| | | |
@ -266,19 +297,19 @@ Gate:
TM_GATE_ON_Count:
<---->0==========================><---->0=====
<---->===========================><---->======
TM_GATE_ON_ClearStart:
0====>0================================>0=====
=====>0================================>0=====
TM_GATE_ON_Clear_OFF_Start:
0====><-------------------------->0====><-----
0====>0-------------------------->0====>0-----
TM_GATE_ON_Start:
<---->0==========================>============
<---->===========================>============
*/
static void _psxCheckStartGate(int i)
@ -288,30 +319,32 @@ static void _psxCheckStartGate(int i)
switch ((psxCounters[i].mode & 0x6) >> 1)
{
case 0x0: // GATE_ON_count - stop count on gate start:
case 0x0: // GATE_ON_count - count while gate signal is low (RENDER)
// get the current count at the time of stoppage:
psxCounters[i].count = (i < 3) ?
psxRcntRcount16(i) :
psxRcntRcount32(i);
psxCounters[i].mode |= IOPCNT_STOPPED;
return;
case 0x1: // GATE_ON_ClearStart - count normally with resets after every end gate
// do nothing - All counting will be done on a need-to-count basis.
return;
case 0x2: // GATE_ON_Clear_OFF_Start - start counting on gate start, stop on gate end
psxCounters[i].count = 0;
// Not strictly necessary.
psxCounters[i].sCycleT = psxRegs.cycle;
psxCounters[i].mode &= ~IOPCNT_STOPPED;
break;
case 0x3: //GATE_ON_Start - start and count normally on gate end (no restarts or stops or clears)
case 0x1: // GATE_ON_ClearStart - Counts constantly, clears on Blank END
// do nothing!
return;
break;
case 0x2: // GATE_ON_Clear_OFF_Start - Counts only when Blanking, clears on both ends, starts counting on next Blank Start.
psxCounters[i].mode &= ~IOPCNT_STOPPED;
psxCounters[i].count = 0;
psxCounters[i].target &= ~IOPCNT_FUTURE_TARGET;
psxCounters[i].sCycleT = psxRegs.cycle;
break;
case 0x3: //GATE_ON_Start - Starts counting when the next Blank Ends, no clear.
// do nothing!
break;
}
_rcntSet(i);
}
static void _psxCheckEndGate(int i)
@ -319,105 +352,94 @@ static void _psxCheckEndGate(int i)
if (!(psxCounters[i].mode & IOPCNT_ENABLE_GATE))
return; // Ignore Gate
// NOTE: Starting and stopping of modes 0 and 2 are checked in psxRcntCanCount(), only need to update the start cycle and counts.
switch ((psxCounters[i].mode & 0x6) >> 1)
{
case 0x0: // GATE_ON_count - reset and start counting
case 0x1: // GATE_ON_ClearStart - count normally with resets after every end gate
psxCounters[i].count = 0;
case 0x0: // GATE_ON_count - count while gate signal is low (RENDER)
psxCounters[i].sCycleT = psxRegs.cycle;
psxCounters[i].mode &= ~IOPCNT_STOPPED;
break;
case 0x2: // GATE_ON_Clear_OFF_Start - start counting on gate start, stop on gate end
psxCounters[i].count = (i < 3) ? psxRcntRcount16(i) : psxRcntRcount32(i);
psxCounters[i].mode |= IOPCNT_STOPPED;
return; // do not set the counter
case 0x1: // GATE_ON_ClearStart - Counts constantly, clears on Blank END
psxCounters[i].count = 0;
psxCounters[i].target &= ~IOPCNT_FUTURE_TARGET;
break;
case 0x3: // GATE_ON_Start - start and count normally (no restarts or stops or clears)
case 0x2: // GATE_ON_Clear_OFF_Start - Counts only when Blanking, clears on both ends, starts counting on next Blank Start.
// No point in updating the count, since we're gonna clear it.
psxCounters[i].count = 0;
psxCounters[i].target &= ~IOPCNT_FUTURE_TARGET;
psxCounters[i].sCycleT = psxRegs.cycle;
break; // do not set the counter
case 0x3: // GATE_ON_Start - Starts counting when the next Blank Ends, no clear.
if (psxCounters[i].mode & IOPCNT_STOPPED)
{
psxCounters[i].count = 0;
psxCounters[i].sCycleT = psxRegs.cycle;
psxCounters[i].mode &= ~IOPCNT_STOPPED;
}
break;
}
_rcntSet(i);
}
void psxCheckStartGate16(int i)
void psxHBlankStart()
{
pxAssert(i < 3);
if (i == 0) // hSync counting
// AlternateSource/scanline counters for Gates 1 and 3.
// We count them here so that they stay nicely synced with the EE's hsync.
if ((psxCounters[1].rate == PSXHBLANK) && psxRcntCanCount(1))
{
// AlternateSource/scanline counters for Gates 1 and 3.
// We count them here so that they stay nicely synced with the EE's hsync.
const u32 altSourceCheck = IOPCNT_ALT_SOURCE | IOPCNT_ENABLE_GATE;
const u32 stoppedGateCheck = (IOPCNT_STOPPED | altSourceCheck);
// count if alt source is enabled and either:
// * the gate is enabled and not stopped.
// * the gate is disabled.
if ((psxCounters[1].mode & altSourceCheck) == IOPCNT_ALT_SOURCE ||
(psxCounters[1].mode & stoppedGateCheck) == altSourceCheck)
{
psxCounters[1].count++;
_rcntTestOverflow(1);
_rcntTestTarget(1);
}
if ((psxCounters[3].mode & altSourceCheck) == IOPCNT_ALT_SOURCE ||
(psxCounters[3].mode & stoppedGateCheck) == altSourceCheck)
{
psxCounters[3].count++;
_rcntTestOverflow(3);
_rcntTestTarget(3);
}
psxCounters[1].count++;
_rcntTestOverflow(1);
_rcntTestTarget(1);
}
_psxCheckStartGate(i);
if ((psxCounters[3].rate == PSXHBLANK) && psxRcntCanCount(3))
{
psxCounters[3].count++;
_rcntTestOverflow(3);
_rcntTestTarget(3);
}
_psxCheckStartGate(0);
hBlanking = true;
_rcntSet(0);
}
void psxCheckEndGate16(int i)
void psxHBlankEnd()
{
pxAssert(i < 3);
_psxCheckEndGate(i);
}
_psxCheckEndGate(0);
static void psxCheckStartGate32(int i)
{
// 32 bit gate is called for gate 3 only. Ever.
pxAssert(i == 3);
_psxCheckStartGate(i);
}
hBlanking = false;
static void psxCheckEndGate32(int i)
{
pxAssert(i == 3);
_psxCheckEndGate(i);
_rcntSet(0);
}
void psxVBlankStart()
{
cdvdVsync();
iopIntcIrq(0);
if (psxvblankgate & (1 << 1))
psxCheckStartGate16(1);
if (psxvblankgate & (1 << 3))
psxCheckStartGate32(3);
_psxCheckStartGate(1);
_psxCheckStartGate(3);
vBlanking = true;
_rcntSet(1);
_rcntSet(3);
}
void psxVBlankEnd()
{
iopIntcIrq(11);
if (psxvblankgate & (1 << 1))
psxCheckEndGate16(1);
if (psxvblankgate & (1 << 3))
psxCheckEndGate32(3);
_psxCheckEndGate(1);
_psxCheckEndGate(3);
vBlanking = false;
_rcntSet(1);
_rcntSet(3);
}
void psxRcntUpdate()
@ -427,13 +449,13 @@ void psxRcntUpdate()
psxNextCounter = 0x7fffffff;
psxNextsCounter = psxRegs.cycle;
for (i = 0; i <= 5; i++)
for (i = 0; i < 6; i++)
{
// don't count disabled or hblank counters...
// We can't check the ALTSOURCE flag because the PSXCLOCK source *should*
// be counted here.
if (psxCounters[i].mode & IOPCNT_STOPPED)
if (!psxRcntCanCount(i))
continue;
if ((psxCounters[i].mode & IOPCNT_INT_REPEAT) && !(psxCounters[i].mode & IOPCNT_INT_TOGGLE))
@ -448,39 +470,20 @@ void psxRcntUpdate()
{
const u32 change = (psxRegs.cycle - psxCounters[i].sCycleT) / psxCounters[i].rate;
if (change <= 0)
continue;
psxCounters[i].count += change;
psxCounters[i].sCycleT += change * psxCounters[i].rate;
if (change > 0)
{
psxCounters[i].count += change;
psxCounters[i].sCycleT += change * psxCounters[i].rate;
}
}
else
{
psxCounters[i].count += psxRegs.cycle - psxCounters[i].sCycleT;
psxCounters[i].sCycleT = psxRegs.cycle;
}
}
// Do target/overflow testing
// Optimization Note: This approach is very sound. Please do not try to unroll it
// as the size of the Test functions will cause code cache clutter and slowness.
for (i = 0; i < 6; i++)
{
// don't do target/oveflow checks for hblankers. Those
// checks are done when the counters are updated.
if (psxCounters[i].rate == PSXHBLANK)
continue;
if (psxCounters[i].mode & IOPCNT_STOPPED)
continue;
_rcntTestOverflow(i);
_rcntTestTarget(i);
// perform second target test because if we overflowed above it's possible we
// already shot past our target if it was very near zero.
//if( psxCounters[i].count >= psxCounters[i].target ) _rcntTestTarget( i );
}
const u32 spu2_delta = (psxRegs.cycle - lClocks) % 768;
@ -615,11 +618,6 @@ __fi void psxRcntWmode16(int index, u32 value)
break;
jNO_DEFAULT;
}
if ((counter.mode & 0x7) == 0x7 || (counter.mode & 0x7) == 0x1)
{
counter.mode |= IOPCNT_STOPPED;
}
}
else
{
@ -629,26 +627,22 @@ __fi void psxRcntWmode16(int index, u32 value)
if (value & IOPCNT_ALT_SOURCE)
counter.rate = (index == 0) ? PSXPIXEL : PSXHBLANK;
if (counter.rate == PSXPIXEL)
Console.Warning("PSX Pixel clock set to time 0, sync may be incorrect");
if (counter.mode & IOPCNT_ENABLE_GATE)
{
// gated counters are added up as per the h/vblank timers.
// (the PIXEL alt source becomes a vsync gate)
counter.mode |= IOPCNT_STOPPED;
// If set to gate mode 3, the counting starts at the end of the next blank depending on which counter.
if ((counter.mode & IOPCNT_MODE_GATE) == 0x4 && !psxRcntCanCount(index))
counter.mode |= IOPCNT_STOPPED;
else if ((counter.mode & IOPCNT_MODE_GATE) == 0x6)
counter.mode |= IOPCNT_STOPPED;
PSXCNT_LOG("IOP Counter[%d] Gate Check set, value = 0x%04X", index, value);
if (index == 0)
psxhblankgate |= 1; // fixme: these gate flags should be one var >_<
else
psxvblankgate |= 1 << 1;
}
else
{
if (index == 0)
psxhblankgate &= ~1;
else
psxvblankgate &= ~(1 << 1);
}
}
// Current counter *always* resets on mode write.
counter.count = 0;
counter.sCycleT = psxRegs.cycle;
@ -703,11 +697,10 @@ __fi void psxRcntWmode32(int index, u32 value)
if (counter.mode & IOPCNT_ENABLE_GATE)
{
PSXCNT_LOG("IOP Counter[3] Gate Check set, value = %x", value);
counter.mode |= IOPCNT_STOPPED;
psxvblankgate |= 1 << 3;
// If set to gate mode 2 or 3, the counting starts at the start and end of the next blank respectively depending on which counter.
if ((counter.mode & IOPCNT_MODE_GATE) > 0x2)
counter.mode |= IOPCNT_STOPPED;
}
else
psxvblankgate &= ~(1 << 3);
}
else
{
@ -726,15 +719,9 @@ __fi void psxRcntWmode32(int index, u32 value)
counter.rate = 256;
break;
}
// Need to set a rate and target
if ((counter.mode & 0x7) == 0x7 || (counter.mode & 0x7) == 0x1)
{
Console.WriteLn("Gate set on IOP Counter %d, disabling", index);
counter.mode |= IOPCNT_STOPPED;
}
}
// Current counter *always* resets on mode write.
counter.count = 0;
counter.sCycleT = psxRegs.cycle;
counter.target &= 0xffffffff;
@ -755,7 +742,7 @@ void psxRcntWtarget16(int index, u32 value)
psxCounters[index].mode |= IOPCNT_INT_REQ; // Interrupt flag reset to high
}
if (!(psxCounters[index].mode & IOPCNT_STOPPED) &&
if (psxRcntCanCount(index) &&
(psxCounters[index].rate != PSXHBLANK))
{
// Re-adjust the sCycleT to match where the counter is currently
@ -789,7 +776,7 @@ void psxRcntWtarget32(int index, u32 value)
psxCounters[index].mode |= IOPCNT_INT_REQ; // Interrupt flag reset to high
}
if (!(psxCounters[index].mode & IOPCNT_STOPPED) &&
if (psxRcntCanCount(index) &&
(psxCounters[index].rate != PSXHBLANK))
{
// Re-adjust the sCycleT to match where the counter is currently
@ -819,14 +806,15 @@ u16 psxRcntRcount16(int index)
// Don't count HBLANK timers
// Don't count stopped gates either.
if (!(psxCounters[index].mode & IOPCNT_STOPPED) &&
(psxCounters[index].rate != PSXHBLANK))
const bool canCount = psxRcntCanCount(index);
if ((psxCounters[index].rate != PSXHBLANK) && canCount)
{
u32 delta = (u32)((psxRegs.cycle - psxCounters[index].sCycleT) / psxCounters[index].rate);
retval += delta;
PSXCNT_LOG(" (delta = %lx)", delta);
}
else if (!canCount && (psxCounters[index].mode & IOPCNT_ENABLE_GATE) && (psxCounters[index].mode & IOPCNT_MODE_GATE) == 4)
retval = 0;
return (u16)retval;
}
@ -839,35 +827,19 @@ u32 psxRcntRcount32(int index)
PSXCNT_LOG("IOP Counter[%d] readCount32 = %lx", index, retval);
if (!(psxCounters[index].mode & IOPCNT_STOPPED) &&
(psxCounters[index].rate != PSXHBLANK))
const bool canCount = psxRcntCanCount(index);
if ((psxCounters[index].rate != PSXHBLANK) && canCount)
{
u32 delta = (u32)((psxRegs.cycle - psxCounters[index].sCycleT) / psxCounters[index].rate);
retval += delta;
PSXCNT_LOG(" (delta = %lx)", delta);
}
else if (!canCount && (psxCounters[index].mode & IOPCNT_ENABLE_GATE) && (psxCounters[index].mode & IOPCNT_MODE_GATE) == 4)
retval = 0;
return retval;
}
void psxRcntSetGates()
{
if (psxCounters[0].mode & IOPCNT_ENABLE_GATE)
psxhblankgate |= 1;
else
psxhblankgate &= ~1;
if (psxCounters[1].mode & IOPCNT_ENABLE_GATE)
psxvblankgate |= 1 << 1;
else
psxvblankgate &= ~(1 << 1);
if (psxCounters[3].mode & IOPCNT_ENABLE_GATE)
psxvblankgate |= 1 << 3;
else
psxvblankgate &= ~(1 << 3);
}
bool SaveStateBase::psxRcntFreeze()
{
if (!FreezeTag("iopCounters"))
@ -876,8 +848,8 @@ bool SaveStateBase::psxRcntFreeze()
Freeze(psxCounters);
Freeze(psxNextCounter);
Freeze(psxNextsCounter);
Freeze(psxvblankgate);
Freeze(psxhblankgate);
Freeze(hBlanking);
Freeze(vBlanking);
if (!IsOkay())
return false;

View File

@ -29,7 +29,7 @@ extern u16 psxRcntRcount16(int index);
extern u32 psxRcntRcount32(int index);
extern u64 psxRcntCycles(int index);
extern void psxHBlankStart();
extern void psxHBlankEnd();
extern void psxVBlankStart();
extern void psxVBlankEnd();
extern void psxCheckStartGate16(int i);
extern void psxCheckEndGate16(int i);

View File

@ -370,11 +370,33 @@ __fi void _cpuEventTest_Shared()
if (cpuIntsEnabled(mask))
cpuException(mask, cpuRegs.branch);
// ---- IOP -------------
// * It's important to run a iopEventTest before calling ExecuteBlock. This
// is because the IOP does not always perform branch tests before returning
// (during the prev branch) and also so it can act on the state the EE has
// given it before executing any code.
//
// * The IOP cannot always be run. If we run IOP code every time through the
// cpuEventTest, the IOP generally starts to run way ahead of the EE.
// ---- Counters -------------
// Important: the vsync counter must be the first to be checked. It includes emulation
// escape/suspend hooks, and it's really a good idea to suspend/resume emulation before
// doing any actual meaningful branchtest logic.
// It's also important to sync up the IOP before updating the timers, since gates will depend on starting/stopping in the right place!
EEsCycle += cpuRegs.cycle - EEoCycle;
EEoCycle = cpuRegs.cycle;
if (EEsCycle > 0)
iopEventAction = true;
if (iopEventAction)
{
//if( EEsCycle < -450 )
// Console.WriteLn( " IOP ahead by: %d cycles", -EEsCycle );
EEsCycle = psxCpu->ExecuteBlock(EEsCycle);
iopEventAction = false;
}
iopEventTest();
if (cpuTestCycle(nextsCounter, nextCounter))
{
@ -403,33 +425,6 @@ __fi void _cpuEventTest_Shared()
_cpuTestInterrupts();
}
// ---- IOP -------------
// * It's important to run a iopEventTest before calling ExecuteBlock. This
// is because the IOP does not always perform branch tests before returning
// (during the prev branch) and also so it can act on the state the EE has
// given it before executing any code.
//
// * The IOP cannot always be run. If we run IOP code every time through the
// cpuEventTest, the IOP generally starts to run way ahead of the EE.
EEsCycle += cpuRegs.cycle - EEoCycle;
EEoCycle = cpuRegs.cycle;
if (EEsCycle > 0)
iopEventAction = true;
if (iopEventAction)
{
//if( EEsCycle < -450 )
// Console.WriteLn( " IOP ahead by: %d cycles", -EEsCycle );
EEsCycle = psxCpu->ExecuteBlock(EEsCycle);
iopEventAction = false;
}
iopEventTest();
// ---- VU Sync -------------
// We're in a EventTest. All dynarec registers are flushed
// so there is no need to freeze registers here.

View File

@ -25,7 +25,7 @@ enum class FreezeAction
// [SAVEVERSION+]
// This informs the auto updater that the users savestates will be invalidated.
static const u32 g_SaveVersion = (0x9A4B << 16) | 0x0000;
static const u32 g_SaveVersion = (0x9A4C << 16) | 0x0000;
// the freezing data between submodules and core