SPU: Fix bugs in recent commits, redesign DMA slightly

Savestate bump, sorry
This commit is contained in:
refractionpcsx2 2021-01-02 05:10:32 +00:00
parent ddffd9acd6
commit 5cf5f40c65
7 changed files with 149 additions and 130 deletions

View File

@ -506,9 +506,9 @@ void psxRcntUpdate()
if (difference >= psxCounters[6].CycleT)
{
SPU2async(difference);
psxCounters[6].sCycleT = psxRegs.cycle;
psxCounters[6].CycleT = psxCounters[6].rate;
SPU2async(difference);
}
else
c -= difference;

View File

@ -138,14 +138,17 @@ void V_Core::StartADMAWrite(u16* pMem, u32 sz)
{
int size = (sz) & (~511);
if (cyclePtr != nullptr)
TimeUpdate(*cyclePtr);
if (MsgAutoDMA())
ConLog("* SPU2: DMA%c AutoDMA Transfer of %d bytes to %x (%02x %x %04x).\n",
GetDmaIndexChar(), size << 1, TSA, DMABits, AutoDMACtrl, (~Regs.ATTR) & 0xffff);
GetDmaIndexChar(), size << 1, ActiveTSA, DMABits, AutoDMACtrl, (~Regs.ATTR) & 0xffff);
InputDataProgress = 0;
if ((AutoDMACtrl & (Index + 1)) == 0)
{
TSA = 0x2000 + (Index << 10);
ActiveTSA = 0x2000 + (Index << 10);
DMAICounter = size * 4;
LastClock = *cyclePtr;
}
@ -189,60 +192,8 @@ void V_Core::StartADMAWrite(u16* pMem, u32 sz)
TADR = MADR + (size << 1);
}
// HACKFIX: The BIOS breaks if we check the IRQA for both cores when issuing DMA writes. The
// breakage is a null psxRegs.pc being loaded form some memory address (haven't traced it deeper
// yet). We get around it by only checking the current core's IRQA, instead of doing the
// *correct* thing and checking both. This might break some games, but having a working BIOS
// is more important for now, until a proper fix can be uncovered.
//
// This problem might be caused by bad DMA timings in the IOP or a lack of proper IRQ
// handling by the Effects Processor. After those are implemented, let's hope it gets
// magically fixed?
//
// Note: This appears to affect DMA Writes only, so DMA Read DMAs are left intact (both core
// IRQAs are tested). Very few games use DMA reads tho, so it could just be a case of "works
// by the grace of not being used."
//
// Update: This hack is no longer needed when we don't do a core reset. Guess the null pc was in spu2 memory?
#define NO_BIOS_HACKFIX 1 // set to 1 to disable the hackfix
void V_Core::PlainDMAWrite(u16* pMem, u32 size)
{
if (cyclePtr != nullptr)
TimeUpdate(*cyclePtr);
TSA &= 0xfffff;
ReadSize = size;
IsDMARead = false;
LastClock = *cyclePtr;
DMAICounter = std::min(ReadSize, (u32)0x100) * 4;
Regs.STATX &= ~0x80;
Regs.STATX |= 0x400;
TADR = MADR + (size << 1);
if (((psxCounters[6].sCycleT + psxCounters[6].CycleT) - psxRegs.cycle) > DMAICounter)
{
psxCounters[6].sCycleT = psxRegs.cycle;
psxCounters[6].CycleT = DMAICounter;
psxNextCounter -= (psxRegs.cycle - psxNextsCounter);
psxNextsCounter = psxRegs.cycle;
if (psxCounters[6].CycleT < psxNextCounter)
psxNextCounter = psxCounters[6].CycleT;
}
if (MsgDMA())
ConLog("* SPU2: DMA%c Write Transfer of %d bytes to %x (%02x %x %04x). IRQE = %d IRQA = %x \n",
GetDmaIndexChar(), size << 1, TSA, DMABits, AutoDMACtrl, Regs.ATTR & 0xffff,
Cores[Index].IRQEnable, Cores[Index].IRQA);
}
void V_Core::FinishDMAwrite()
{
// Perform an alignment check.
// Not really important. Everything should work regardless,
// but it could be indicative of an emulation foopah elsewhere.
if (MsgToConsole())
{
// Don't need this anymore. Target may still be good to know though.
@ -251,20 +202,45 @@ void V_Core::FinishDMAwrite()
ConLog("* SPU2 DMA Write > Misaligned source. Core: %d IOP: %p TSA: 0x%x Size: 0x%x\n", Index, (void*)pMem, TSA, size);
}*/
if (TSA & 7)
if (ActiveTSA & 7)
{
ConLog("* SPU2 DMA Write > Misaligned target. Core: %d IOP: %p TSA: 0x%x Size: 0x%x\n", Index, (void*)DMAPtr, TSA, ReadSize);
ConLog("* SPU2 DMA Write > Misaligned target. Core: %d IOP: %p TSA: 0x%x Size: 0x%x\n", Index, (void*)DMAPtr, ActiveTSA, ReadSize);
}
}
if (cyclePtr != nullptr)
TimeUpdate(*cyclePtr);
ReadSize = size;
IsDMARead = false;
DMAICounter = 0;
LastClock = *cyclePtr;
Regs.STATX &= ~0x80;
Regs.STATX |= 0x400;
TADR = MADR + (size << 1);
if (MsgDMA())
ConLog("* SPU2: DMA%c Write Transfer of %d bytes to %x (%02x %x %04x). IRQE = %d IRQA = %x \n",
GetDmaIndexChar(), size << 1, ActiveTSA, DMABits, AutoDMACtrl, Regs.ATTR & 0xffff,
Cores[Index].IRQEnable, Cores[Index].IRQA);
FinishDMAwrite();
if (ReadSize == 0) //DMA Finished right away so we need a DMAICounter size to trigger the interrupt
DMAICounter = size * 4;
}
void V_Core::FinishDMAwrite()
{
if (ActiveTSA != TSA)
ConLog("Write WTF TSA %x Active %x\n", TSA, ActiveTSA);
if (Index == 0)
DMA4LogWrite(DMAPtr, ReadSize << 1);
else
DMA7LogWrite(DMAPtr, ReadSize << 1);
TSA &= 0xfffff;
u32 buff1end = TSA + std::min(ReadSize, (u32)0x100);
u32 buff1end = ActiveTSA + std::min(ReadSize, (u32)0x100 + std::abs(DMAICounter / 4));
u32 start = ActiveTSA;
u32 buff2end = 0;
if (buff1end > 0x100000)
{
@ -272,7 +248,7 @@ void V_Core::FinishDMAwrite()
buff1end = 0x100000;
}
const int cacheIdxStart = TSA / pcm_WordsPerBlock;
const int cacheIdxStart = ActiveTSA / pcm_WordsPerBlock;
const int cacheIdxEnd = (buff1end + pcm_WordsPerBlock - 1) / pcm_WordsPerBlock;
PcmCacheEntry* cacheLine = &pcm_cache_data[cacheIdxStart];
PcmCacheEntry& cacheEnd = pcm_cache_data[cacheIdxEnd];
@ -284,14 +260,14 @@ void V_Core::FinishDMAwrite()
} while (cacheLine != &cacheEnd);
//ConLog( "* SPU2: Cache Clear Range! TSA=0x%x, TDA=0x%x (low8=0x%x, high8=0x%x, len=0x%x)\n",
// TSA, buff1end, flagTSA, flagTDA, clearLen );
// ActiveTSA, buff1end, flagTSA, flagTDA, clearLen );
// First Branch needs cleared:
// It starts at TSA and goes to buff1end.
const u32 buff1size = (buff1end - TSA);
memcpy(GetMemPtr(TSA), DMAPtr, buff1size * 2);
const u32 buff1size = (buff1end - ActiveTSA);
memcpy(GetMemPtr(ActiveTSA), DMAPtr, buff1size * 2);
u32 TDA;
@ -304,17 +280,20 @@ void V_Core::FinishDMAwrite()
// memory below 0x2800 (registers and such)
//const u32 endpt2 = (buff2end + roundUp) / indexer_scalar;
//memset( pcm_cache_flags, 0, endpt2 );
TDA = buff1end;
DMAPtr += TDA - ActiveTSA;
ReadSize -= TDA - ActiveTSA;
ActiveTSA = 0;
// Emulation Grayarea: Should addresses wrap around to zero, or wrap around to
// 0x2800? Hard to know for sure (almost no games depend on this)
memcpy(GetMemPtr(0), &DMAPtr[buff1size], buff2end * 2);
memcpy(GetMemPtr(0), DMAPtr, buff2end * 2);
TDA = (buff2end) & 0xfffff;
// Flag interrupt? If IRQA occurs between start and dest, flag it.
// Important: Test both core IRQ settings for either DMA!
// Note: Because this buffer wraps, we use || instead of &&
#if NO_BIOS_HACKFIX
for (int i = 0; i < 2; i++)
{
// Start is exclusive and end is inclusive... maybe? The end is documented to be inclusive,
@ -326,49 +305,34 @@ void V_Core::FinishDMAwrite()
// understanding would trigger the interrupt early causing it to switch buffers again immediately
// and an interrupt never fires again, leaving the voices looping the same samples forever.
if (Cores[i].IRQEnable && (Cores[i].IRQA > TSA || Cores[i].IRQA <= TDA))
if (Cores[i].IRQEnable && (Cores[i].IRQA > start || Cores[i].IRQA <= TDA))
{
//ConLog("DMAwrite Core %d: IRQ Called (IRQ passed). IRQA = %x Cycles = %d\n", i, Cores[i].IRQA, Cycles );
SetIrqCallDMA(i);
}
}
#else
if ((IRQEnable && (IRQA > TSA || IRQA <= TDA))
{
SetIrqCall(Index);
}
#endif
}
else
{
// Buffer doesn't wrap/overflow!
// Just set the TDA and check for an IRQ...
TDA = (buff1end) & 0xfffff;
TDA = buff1end;
// Flag interrupt? If IRQA occurs between start and dest, flag it.
// Important: Test both core IRQ settings for either DMA!
#if NO_BIOS_HACKFIX
for (int i = 0; i < 2; i++)
{
if (Cores[i].IRQEnable && (Cores[i].IRQA > TSA && Cores[i].IRQA <= TDA))
if (Cores[i].IRQEnable && (Cores[i].IRQA > ActiveTSA && Cores[i].IRQA <= TDA))
{
//ConLog("DMAwrite Core %d: IRQ Called (IRQ passed). IRQA = %x Cycles = %d\n", i, Cores[i].IRQA, Cycles );
SetIrqCallDMA(i);
}
}
#else
if (IRQEnable && (IRQA > TSA) && (IRQA <= TDA))
{
SetIrqCall(Index);
}
#endif
}
TSA = TDA;
DMAPtr += std::min(ReadSize, (u32)0x100);
ReadSize -= std::min(ReadSize, (u32)0x100);
DMAPtr += TDA - ActiveTSA;
ReadSize -= TDA - ActiveTSA;
if (ReadSize == 0)
DMAICounter = 0;
else
@ -386,11 +350,17 @@ void V_Core::FinishDMAwrite()
psxNextCounter = psxCounters[6].CycleT;
}
}
ActiveTSA = TDA;
ActiveTSA &= 0xfffff;
TSA = ActiveTSA;
}
void V_Core::FinishDMAread()
{
u32 buff1end = TSA + std::min(ReadSize, (u32)0x100);
if (ActiveTSA != TSA)
ConLog("Read WTF TSA %x Active %x\n", TSA, ActiveTSA);
u32 buff1end = ActiveTSA + std::min(ReadSize, (u32)0x100 + std::abs(DMAICounter / 4));
u32 start = ActiveTSA;
u32 buff2end = 0;
if (buff1end > 0x100000)
{
@ -398,8 +368,8 @@ void V_Core::FinishDMAread()
buff1end = 0x100000;
}
const u32 buff1size = (buff1end - TSA);
memcpy(DMARPtr, GetMemPtr(TSA), buff1size * 2);
const u32 buff1size = (buff1end - ActiveTSA);
memcpy(DMARPtr, GetMemPtr(ActiveTSA), buff1size * 2);
// Note on TSA's position after our copy finishes:
// IRQA should be measured by the end of the writepos+0x20. But the TDA
// should be written back at the precise endpoint of the xfer.
@ -407,9 +377,16 @@ void V_Core::FinishDMAread()
if (buff2end > 0)
{
TDA = buff1end;
DMARPtr += TDA - ActiveTSA;
ReadSize -= TDA - ActiveTSA;
ActiveTSA = 0;
// second branch needs cleared:
// It starts at the beginning of memory and moves forward to buff2end
memcpy(&DMARPtr[buff1size], GetMemPtr(0), buff2end * 2);
memcpy(DMARPtr, GetMemPtr(0), buff2end * 2);
TDA = (buff2end) & 0xfffff;
@ -419,7 +396,7 @@ void V_Core::FinishDMAread()
for (int i = 0; i < 2; i++)
{
if (Cores[i].IRQEnable && (Cores[i].IRQA > TSA || Cores[i].IRQA <= TDA))
if (Cores[i].IRQEnable && (Cores[i].IRQA > start || Cores[i].IRQA <= TDA))
{
SetIrqCallDMA(i);
}
@ -430,23 +407,23 @@ void V_Core::FinishDMAread()
// Buffer doesn't wrap/overflow!
// Just set the TDA and check for an IRQ...
TDA = (buff1end) & 0xfffff;
TDA = buff1end;
// Flag interrupt? If IRQA occurs between start and dest, flag it.
// Important: Test both core IRQ settings for either DMA!
for (int i = 0; i < 2; i++)
{
if (Cores[i].IRQEnable && (Cores[i].IRQA > TSA && Cores[i].IRQA <= TDA))
if (Cores[i].IRQEnable && (Cores[i].IRQA > ActiveTSA && Cores[i].IRQA <= TDA))
{
SetIrqCallDMA(i);
}
}
}
TSA = TDA;
DMARPtr += std::min(ReadSize, (u32)0x100);
ReadSize -= std::min(ReadSize, (u32)0x100);
DMARPtr += TDA - ActiveTSA;
ReadSize -= TDA - ActiveTSA;
if (ReadSize == 0)
{
IsDMARead = false;
@ -467,6 +444,9 @@ void V_Core::FinishDMAread()
psxNextCounter = psxCounters[6].CycleT;
}
}
ActiveTSA = TDA;
ActiveTSA &= 0xfffff;
TSA = ActiveTSA;
}
void V_Core::DoDMAread(u16* pMem, u32 size)
@ -475,7 +455,7 @@ void V_Core::DoDMAread(u16* pMem, u32 size)
TimeUpdate(*cyclePtr);
DMARPtr = pMem;
TSA &= 0xfffff;
ActiveTSA = TSA & 0xfffff;
ReadSize = size;
IsDMARead = true;
LastClock = *cyclePtr;
@ -498,7 +478,7 @@ void V_Core::DoDMAread(u16* pMem, u32 size)
if (MsgDMA())
ConLog("* SPU2: DMA%c Read Transfer of %d bytes from %x (%02x %x %04x). IRQE = %d IRQA = %x \n",
GetDmaIndexChar(), size << 1, TSA, DMABits, AutoDMACtrl, Regs.ATTR & 0xffff,
GetDmaIndexChar(), size << 1, ActiveTSA, DMABits, AutoDMACtrl, Regs.ATTR & 0xffff,
Cores[Index].IRQEnable, Cores[Index].IRQA);
}
@ -529,13 +509,12 @@ void V_Core::DoDMAwrite(u16* pMem, u32 size)
}
}
TSA &= 0xfffff;
ActiveTSA = TSA & 0xfffff;
bool adma_enable = ((AutoDMACtrl & (Index + 1)) == (Index + 1));
if (adma_enable)
{
TSA &= 0x1fff;
StartADMAWrite(pMem, size);
}
else

View File

@ -78,8 +78,8 @@ StereoOut32 V_Core::ReadInput_HiFi()
#endif
AdmaInProgress = 1;
TSA = (Index << 10) + InputPosRead;
ActiveTSA = (Index << 10) + InputPosRead;
TSA = ActiveTSA;
if (InputDataLeft < 0x200)
{
FileLog("[%10d] %s AutoDMA%c block end.\n", (Index == 1) ? "CDDA" : "SPDIF", Cycles, GetDmaIndexChar());
@ -142,7 +142,7 @@ StereoOut32 V_Core::ReadInput()
InputPosRead++;
if (AutoDMACtrl & (Index + 1) && (InputPosRead == 0x180 || InputPosRead == 0x80))
if (((AutoDMACtrl & (Index + 1)) || AdmaInProgress) && (InputPosRead == 0x100 || InputPosRead == 0x200))
{
AdmaInProgress = 0;
if (InputDataLeft >= 0x200)
@ -152,11 +152,12 @@ StereoOut32 V_Core::ReadInput()
AutoDMAReadBuffer(0);
AdmaInProgress = 1;
TSA = (Index << 10) + InputPosRead;
ActiveTSA = (Index << 10) + InputPosRead;
TSA = ActiveTSA;
if (InputDataLeft < 0x200)
{
AutoDMACtrl |= ~3;
if((AutoDMACtrl & (Index + 1)))
AutoDMACtrl |= ~3;
if (IsDevBuild)
{

View File

@ -391,6 +391,7 @@ struct V_Core
u32 IRQA; // Interrupt Address
u32 TSA; // DMA Transfer Start Address
u32 ActiveTSA; // Active DMA TSA - Required for NFL 2k5 which overwrites it mid transfer
bool IRQEnable; // Interrupt Enable
bool FxEnable; // Effect Enable
@ -506,17 +507,19 @@ struct V_Core
__forceinline u16 DmaRead()
{
const u16 ret = (u16)spu2M_Read(TSA);
++TSA;
TSA &= 0xfffff;
const u16 ret = (u16)spu2M_Read(ActiveTSA);
++ActiveTSA;
ActiveTSA &= 0xfffff;
TSA = ActiveTSA;
return ret;
}
__forceinline void DmaWrite(u16 value)
{
spu2M_Write(TSA, value);
++TSA;
TSA &= 0xfffff;
spu2M_Write(ActiveTSA, value);
++ActiveTSA;
ActiveTSA &= 0xfffff;
TSA = ActiveTSA;
}
void LogAutoDMA(FILE* fp);

View File

@ -134,6 +134,7 @@ void SPU2interruptDMA4()
FileLog("[%10d] SPU2 interruptDMA4\n", Cycles);
Cores[0].Regs.STATX |= 0x80;
Cores[0].Regs.STATX &= ~0x400;
Cores[0].TSA = Cores[0].ActiveTSA;
}
void SPU2interruptDMA7()
@ -141,6 +142,7 @@ void SPU2interruptDMA7()
FileLog("[%10d] SPU2 interruptDMA7\n", Cycles);
Cores[1].Regs.STATX |= 0x80;
Cores[1].Regs.STATX &= ~0x400;
Cores[1].TSA = Cores[1].ActiveTSA;
}
void SPU2readDMA7Mem(u16* pMem, u32 size)
@ -538,6 +540,14 @@ u16 SPU2read(u32 rmem)
if (omem == 0x1f9001AC)
{
Cores[core].ActiveTSA = Cores[core].TSA;
for (int i = 0; i < 2; i++)
{
if (Cores[i].IRQEnable && (Cores[i].IRQA == Cores[core].ActiveTSA))
{
SetIrqCall(i);
}
}
ret = Cores[core].DmaRead();
}
else

View File

@ -24,6 +24,7 @@
#include "Global.h"
#include "Dma.h"
#include "IopDma.h"
#include "IopCommon.h"
#include "spu2.h" // needed until I figure out a nice solution for irqcallback dependencies.
@ -410,7 +411,7 @@ __forceinline void TimeUpdate(u32 cClocks)
Cores[0].MADR += amt / 2;
if (Cores[0].DMAICounter <= 0)
{
if (((Cores[0].AutoDMACtrl & 1) != 1))
if (((Cores[0].AutoDMACtrl & 1) != 1) && Cores[0].ReadSize)
{
if (Cores[0].IsDMARead)
Cores[0].FinishDMAread();
@ -424,7 +425,7 @@ __forceinline void TimeUpdate(u32 cClocks)
{
//ConLog("* SPU2: Irq Called (%04x) at cycle %d.\n", Spdif.Info, Cycles);
has_to_call_irq_dma[i] = false;
if (!(Spdif.Info & (4 << i)))
if (!(Spdif.Info & (4 << i)) && Cores[i].IRQEnable)
{
Spdif.Info |= (4 << i);
if (!SPU2_dummy_callback)
@ -441,6 +442,19 @@ __forceinline void TimeUpdate(u32 cClocks)
SPU2interruptDMA4();
}
}
else
{
if (((psxCounters[6].sCycleT + psxCounters[6].CycleT) - psxRegs.cycle) > Cores[0].DMAICounter)
{
psxCounters[6].sCycleT = psxRegs.cycle;
psxCounters[6].CycleT = Cores[0].DMAICounter;
psxNextCounter -= (psxRegs.cycle - psxNextsCounter);
psxNextsCounter = psxRegs.cycle;
if (psxCounters[6].CycleT < psxNextCounter)
psxNextCounter = psxCounters[6].CycleT;
}
}
}
//Update DMA7 interrupt delay counter
@ -452,7 +466,7 @@ __forceinline void TimeUpdate(u32 cClocks)
Cores[1].MADR += amt / 2;
if (Cores[1].DMAICounter <= 0)
{
if (((Cores[1].AutoDMACtrl & 2) != 2))
if (((Cores[1].AutoDMACtrl & 2) != 2) && Cores[1].ReadSize)
{
if (Cores[1].IsDMARead)
Cores[1].FinishDMAread();
@ -466,7 +480,7 @@ __forceinline void TimeUpdate(u32 cClocks)
{
//ConLog("* SPU2: Irq Called (%04x) at cycle %d.\n", Spdif.Info, Cycles);
has_to_call_irq_dma[i] = false;
if (!(Spdif.Info & (4 << i)))
if (!(Spdif.Info & (4 << i)) && Cores[i].IRQEnable)
{
Spdif.Info |= (4 << i);
if (!SPU2_dummy_callback)
@ -484,6 +498,19 @@ __forceinline void TimeUpdate(u32 cClocks)
SPU2interruptDMA7();
}
}
else
{
if (((psxCounters[6].sCycleT + psxCounters[6].CycleT) - psxRegs.cycle) > Cores[1].DMAICounter)
{
psxCounters[6].sCycleT = psxRegs.cycle;
psxCounters[6].CycleT = Cores[1].DMAICounter;
psxNextCounter -= (psxRegs.cycle - psxNextsCounter);
psxNextsCounter = psxRegs.cycle;
if (psxCounters[6].CycleT < psxNextCounter)
psxNextCounter = psxCounters[6].CycleT;
}
}
}
//Update Mixing Progress
@ -495,7 +522,7 @@ __forceinline void TimeUpdate(u32 cClocks)
{
//ConLog("* SPU2: Irq Called (%04x) at cycle %d.\n", Spdif.Info, Cycles);
has_to_call_irq[i] = false;
if (!(Spdif.Info & (4 << i)))
if (!(Spdif.Info & (4 << i)) && Cores[i].IRQEnable)
{
Spdif.Info |= (4 << i);
if (!SPU2_dummy_callback)
@ -755,12 +782,13 @@ void V_Core::WriteRegPS1(u32 mem, u16 value)
case 0x1da6:
TSA = map_spu1to2(value);
//ConLog("SPU2 Setting TSA to %x \n", TSA);
ConLog("SPU2 Setting TSA to %x \n", TSA);
break;
case 0x1da8: // Spu Write to Memory
//ConLog("SPU direct DMA Write. Current TSA = %x\n", TSA);
if (Cores[0].IRQEnable && (Cores[0].IRQA <= Cores[0].TSA))
Cores[0].ActiveTSA = Cores[0].TSA;
if (Cores[0].IRQEnable && (Cores[0].IRQA <= Cores[0].ActiveTSA))
{
SetIrqCall(0);
if (!SPU2_dummy_callback)
@ -1029,6 +1057,7 @@ u16 V_Core::ReadRegPS1(u32 mem)
//ConLog("SPU2 TSA read: 0x1da6 = %x , (TSA = %x)\n", value, TSA);
break;
case 0x1da8:
ActiveTSA = TSA;
value = DmaRead();
show = false;
break;
@ -1217,10 +1246,10 @@ static void __fastcall RegWrite_Core(u16 value)
// Performance Note: The PS2 Bios uses this extensively right before booting games,
// causing massive slowdown if we don't shortcut it here.
thiscore.ActiveTSA = thiscore.TSA;
for (int i = 0; i < 2; i++)
{
if (Cores[i].IRQEnable && (Cores[i].IRQA == thiscore.TSA))
if (Cores[i].IRQEnable && (Cores[i].IRQA == thiscore.ActiveTSA))
{
SetIrqCall(i);
}
@ -1255,11 +1284,13 @@ static void __fastcall RegWrite_Core(u16 value)
thiscore.RevBuffers.NeedsUpdated = true;
}
if (!thiscore.DmaMode)
if (!thiscore.DmaMode && !(thiscore.Regs.STATX & 0x400))
thiscore.Regs.STATX &= ~0x80;
else if(!oldDmaMode)
else if(!oldDmaMode && thiscore.DmaMode)
thiscore.Regs.STATX |= 0x80;
thiscore.ActiveTSA = thiscore.TSA;
if (value & 0x000E)
{
if (MsgToConsole())
@ -1488,11 +1519,6 @@ static void __fastcall RegWrite_Core(u16 value)
return;
}
thiscore.AutoDMACtrl = value;
if (value == 0)
{
thiscore.AdmaInProgress = 0;
}
break;
default:

View File

@ -24,7 +24,7 @@
// the lower 16 bit value. IF the change is breaking of all compatibility with old
// states, increment the upper 16 bit value, and clear the lower 16 bits to 0.
static const u32 g_SaveVersion = (0x9A16 << 16) | 0x0000;
static const u32 g_SaveVersion = (0x9A17 << 16) | 0x0000;
// this function is meant to be used in the place of GSfreeze, and provides a safe layer
// between the GS saving function and the MTGS's needs. :)