mirror of https://github.com/PCSX2/pcsx2.git
Core: Format recompilers
This commit is contained in:
parent
7aa85960ba
commit
5260d63565
|
@ -22,8 +22,8 @@ BASEBLOCKEX* BaseBlocks::New(u32 startpc, uptr fnptr)
|
|||
std::pair<linkiter_t, linkiter_t> range = links.equal_range(startpc);
|
||||
for (linkiter_t i = range.first; i != range.second; ++i)
|
||||
*(u32*)i->second = fnptr - (i->second + 4);
|
||||
|
||||
return blocks.insert(startpc, fnptr);;
|
||||
|
||||
return blocks.insert(startpc, fnptr);
|
||||
}
|
||||
|
||||
int BaseBlocks::LastIndex(u32 startpc) const
|
||||
|
@ -33,8 +33,9 @@ int BaseBlocks::LastIndex(u32 startpc) const
|
|||
|
||||
int imin = 0, imax = blocks.size() - 1, imid;
|
||||
|
||||
while(imin != imax) {
|
||||
imid = (imin+imax+1)>>1;
|
||||
while (imin != imax)
|
||||
{
|
||||
imid = (imin + imax + 1) >> 1;
|
||||
|
||||
if (blocks[imid].startpc > startpc)
|
||||
imax = imid - 1;
|
||||
|
@ -72,11 +73,10 @@ BASEBLOCKEX* BaseBlocks::GetByX86(uptr ip)
|
|||
|
||||
void BaseBlocks::Link(u32 pc, s32* jumpptr)
|
||||
{
|
||||
BASEBLOCKEX *targetblock = Get(pc);
|
||||
BASEBLOCKEX* targetblock = Get(pc);
|
||||
if (targetblock && targetblock->startpc == pc)
|
||||
*jumpptr = (s32)(targetblock->fnptr - (sptr)(jumpptr + 1));
|
||||
else
|
||||
*jumpptr = (s32)(recompiler - (sptr)(jumpptr + 1));
|
||||
links.insert(std::pair<u32, uptr>(pc, (uptr)jumpptr));
|
||||
}
|
||||
|
||||
|
|
|
@ -15,7 +15,7 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <map> // used by BaseBlockEx
|
||||
#include <map> // used by BaseBlockEx
|
||||
|
||||
// Every potential jump point in the PS2's addressable memory has a BASEBLOCK
|
||||
// associated with it. So that means a BASEBLOCK for every 4 bytes of PS2
|
||||
|
@ -25,35 +25,36 @@ struct BASEBLOCK
|
|||
uptr m_pFnptr;
|
||||
|
||||
__inline uptr GetFnptr() const { return m_pFnptr; }
|
||||
void __inline SetFnptr( uptr ptr ) { m_pFnptr = ptr; }
|
||||
void __inline SetFnptr(uptr ptr) { m_pFnptr = ptr; }
|
||||
};
|
||||
|
||||
// extra block info (only valid for start of fn)
|
||||
struct BASEBLOCKEX
|
||||
{
|
||||
u32 startpc;
|
||||
u32 startpc;
|
||||
uptr fnptr;
|
||||
u16 size; // The size in dwords (equivalent to the number of instructions)
|
||||
u16 x86size; // The size in byte of the translated x86 instructions
|
||||
u16 size; // The size in dwords (equivalent to the number of instructions)
|
||||
u16 x86size; // The size in byte of the translated x86 instructions
|
||||
|
||||
#ifdef PCSX2_DEVBUILD
|
||||
// Could be useful to instrument the block
|
||||
//u32 visited; // number of times called
|
||||
//u64 ltime; // regs it assumes to have set already
|
||||
#endif
|
||||
|
||||
};
|
||||
|
||||
class BaseBlockArray {
|
||||
class BaseBlockArray
|
||||
{
|
||||
s32 _Reserved;
|
||||
s32 _Size;
|
||||
BASEBLOCKEX *blocks;
|
||||
BASEBLOCKEX* blocks;
|
||||
|
||||
__fi void resize(s32 size)
|
||||
{
|
||||
pxAssert(size > 0);
|
||||
BASEBLOCKEX *newMem = new BASEBLOCKEX[size];
|
||||
if(blocks) {
|
||||
BASEBLOCKEX* newMem = new BASEBLOCKEX[size];
|
||||
if (blocks)
|
||||
{
|
||||
memcpy(newMem, blocks, _Reserved * sizeof(BASEBLOCKEX));
|
||||
delete[] blocks;
|
||||
}
|
||||
|
@ -66,41 +67,46 @@ class BaseBlockArray {
|
|||
resize(size);
|
||||
_Reserved = size;
|
||||
}
|
||||
|
||||
public:
|
||||
~BaseBlockArray()
|
||||
{
|
||||
if(blocks) {
|
||||
if (blocks)
|
||||
delete[] blocks;
|
||||
}
|
||||
}
|
||||
|
||||
BaseBlockArray (s32 size) : _Reserved(0),
|
||||
_Size(0), blocks(NULL)
|
||||
BaseBlockArray(s32 size)
|
||||
: _Reserved(0)
|
||||
, _Size(0)
|
||||
, blocks(NULL)
|
||||
{
|
||||
reserve(size);
|
||||
}
|
||||
|
||||
BASEBLOCKEX *insert(u32 startpc, uptr fnptr)
|
||||
BASEBLOCKEX* insert(u32 startpc, uptr fnptr)
|
||||
{
|
||||
if(_Size + 1 >= _Reserved) {
|
||||
if (_Size + 1 >= _Reserved)
|
||||
{
|
||||
reserve(_Reserved + 0x2000); // some games requires even more!
|
||||
}
|
||||
|
||||
// Insert the the new BASEBLOCKEX by startpc order
|
||||
int imin = 0, imax = _Size, imid;
|
||||
|
||||
while (imin < imax) {
|
||||
imid = (imin+imax)>>1;
|
||||
while (imin < imax)
|
||||
{
|
||||
imid = (imin + imax) >> 1;
|
||||
|
||||
if (blocks[imid].startpc > startpc)
|
||||
imax = imid;
|
||||
else
|
||||
imin = imid + 1;
|
||||
}
|
||||
|
||||
|
||||
pxAssert(imin == _Size || blocks[imin].startpc > startpc);
|
||||
|
||||
if(imin < _Size) {
|
||||
if (imin < _Size)
|
||||
{
|
||||
// make a hole for a new block.
|
||||
memmove(blocks + imin + 1, blocks + imin, (_Size - imin) * sizeof(BASEBLOCKEX));
|
||||
}
|
||||
|
@ -113,7 +119,7 @@ public:
|
|||
return &blocks[imin];
|
||||
}
|
||||
|
||||
__fi BASEBLOCKEX &operator[](int idx) const
|
||||
__fi BASEBLOCKEX& operator[](int idx) const
|
||||
{
|
||||
return *(blocks + idx);
|
||||
}
|
||||
|
@ -132,7 +138,8 @@ public:
|
|||
{
|
||||
int range = last - first;
|
||||
|
||||
if(last < _Size) {
|
||||
if (last < _Size)
|
||||
{
|
||||
memmove(blocks + first, blocks + last, (_Size - last) * sizeof(BASEBLOCKEX));
|
||||
}
|
||||
|
||||
|
@ -151,22 +158,22 @@ protected:
|
|||
BaseBlockArray blocks;
|
||||
|
||||
public:
|
||||
BaseBlocks() :
|
||||
recompiler(0)
|
||||
, blocks(0x4000)
|
||||
BaseBlocks()
|
||||
: recompiler(0)
|
||||
, blocks(0x4000)
|
||||
{
|
||||
}
|
||||
|
||||
void SetJITCompile( void (*recompiler_)() )
|
||||
void SetJITCompile(void (*recompiler_)())
|
||||
{
|
||||
recompiler = (uptr)recompiler_;
|
||||
}
|
||||
|
||||
BASEBLOCKEX* New(u32 startpc, uptr fnptr);
|
||||
int LastIndex (u32 startpc) const;
|
||||
int LastIndex(u32 startpc) const;
|
||||
//BASEBLOCKEX* GetByX86(uptr ip);
|
||||
|
||||
__fi int Index (u32 startpc) const
|
||||
__fi int Index(u32 startpc) const
|
||||
{
|
||||
int idx = LastIndex(startpc);
|
||||
|
||||
|
@ -194,7 +201,8 @@ public:
|
|||
{
|
||||
pxAssert(first <= last);
|
||||
int idx = first;
|
||||
do{
|
||||
do
|
||||
{
|
||||
pxAssert(idx <= last);
|
||||
|
||||
//u32 startpc = blocks[idx].startpc;
|
||||
|
@ -202,18 +210,17 @@ public:
|
|||
for (linkiter_t i = range.first; i != range.second; ++i)
|
||||
*(u32*)i->second = recompiler - (i->second + 4);
|
||||
|
||||
if( IsDevBuild )
|
||||
if (IsDevBuild)
|
||||
{
|
||||
// Clear the first instruction to 0xcc (breakpoint), as a way to assert if some
|
||||
// static jumps get left behind to this block. Note: Do not clear more than the
|
||||
// first byte, since this code is called during exception handlers and event handlers
|
||||
// both of which expect to be able to return to the recompiled code.
|
||||
|
||||
BASEBLOCKEX effu( blocks[idx] );
|
||||
memset( (void*)effu.fnptr, 0xcc, 1 );
|
||||
BASEBLOCKEX effu(blocks[idx]);
|
||||
memset((void*)effu.fnptr, 0xcc, 1);
|
||||
}
|
||||
}
|
||||
while(idx++ < last);
|
||||
} while (idx++ < last);
|
||||
|
||||
// TODO: remove links from this block?
|
||||
blocks.erase(first, last + 1);
|
||||
|
@ -228,7 +235,7 @@ public:
|
|||
}
|
||||
};
|
||||
|
||||
#define PC_GETBLOCK_(x, reclut) ((BASEBLOCK*)(reclut[((u32)(x)) >> 16] + (x)*(sizeof(BASEBLOCK)/4)))
|
||||
#define PC_GETBLOCK_(x, reclut) ((BASEBLOCK*)(reclut[((u32)(x)) >> 16] + (x) * (sizeof(BASEBLOCK) / 4)))
|
||||
|
||||
/**
|
||||
* Add a page to the recompiler lookup table
|
||||
|
@ -237,19 +244,19 @@ public:
|
|||
* Will associate `hwlut[pagebase + pageidx]` with `pageidx << 16`
|
||||
*/
|
||||
static void recLUT_SetPage(uptr reclut[0x10000], u32 hwlut[0x10000],
|
||||
BASEBLOCK *mapbase, uint pagebase, uint pageidx, uint mappage)
|
||||
BASEBLOCK* mapbase, uint pagebase, uint pageidx, uint mappage)
|
||||
{
|
||||
// this value is in 64k pages!
|
||||
uint page = pagebase + pageidx;
|
||||
|
||||
pxAssert( page < 0x10000 );
|
||||
pxAssert(page < 0x10000);
|
||||
reclut[page] = (uptr)&mapbase[((s32)mappage - (s32)page) << 14];
|
||||
if (hwlut)
|
||||
hwlut[page] = 0u - (pagebase << 16);
|
||||
}
|
||||
|
||||
#if defined(_M_X86_64)
|
||||
static_assert( sizeof(BASEBLOCK) == 8, "BASEBLOCK is not 8 bytes" );
|
||||
static_assert(sizeof(BASEBLOCK) == 8, "BASEBLOCK is not 8 bytes");
|
||||
#else
|
||||
static_assert( sizeof(BASEBLOCK) == 4, "BASEBLOCK is not 4 bytes" );
|
||||
static_assert(sizeof(BASEBLOCK) == 4, "BASEBLOCK is not 4 bytes");
|
||||
#endif
|
||||
|
|
|
@ -20,7 +20,8 @@
|
|||
#define MOVZ MOVZtemp
|
||||
#define MOVN MOVNtemp
|
||||
|
||||
enum class eeOpcode {
|
||||
enum class eeOpcode
|
||||
{
|
||||
// Core
|
||||
special , regimm , J , JAL , BEQ , BNE , BLEZ , BGTZ ,
|
||||
ADDI , ADDIU , SLTI , SLTIU , ANDI , ORI , XORI , LUI ,
|
||||
|
@ -100,22 +101,22 @@ enum class eeOpcode {
|
|||
// ADD COP0 ??
|
||||
|
||||
// "COP1"
|
||||
MFC1, /* , */ CFC1, /* , */ MTC1, /* , */ CTC1 , /* , */
|
||||
MFC1 , /*,*/ CFC1 , /*,*/ MTC1 , /*,*/ CTC1 , /*,*/
|
||||
|
||||
// "COP1 BC1"
|
||||
BC1F, BC1T, BC1FL, BC1TL, /* , */ /* , */ /* , */ /* , */
|
||||
BC1F , BC1T , BC1FL , BC1TL , /*,*/ /*,*/ /*,*/ /*,*/
|
||||
|
||||
// "COP1 S"
|
||||
ADD_F, SUB_F, MUL_F, DIV_F, SQRT_F, ABS_F, MOV_F, NEG_F,
|
||||
/* , */ /* , */ /* , */ /* , */ /* , */ /* , */ /* , */ /* , */
|
||||
/* , */ /* , */ /* , */ /* , */ /* , */ /* , */ RSQRT_F, /* , */
|
||||
ADDA_F, SUBA_F, MULA_F, /* , */ MADD_F, MSUB_F, MADDA_F, MSUBA_F,
|
||||
/* , */ /* , */ /* , */ /* , */ CVTW, /* , */ /* , */ /* , */
|
||||
MAX_F, MIN_F, /* , */ /* , */ /* , */ /* , */ /* , */ /* , */
|
||||
CF_F, /* , */ CEQ_F, /* , */ CLT_F, /* , */ CLE_F, /* , */
|
||||
ADD_F , SUB_F , MUL_F , DIV_F , SQRT_F , ABS_F , MOV_F , NEG_F ,
|
||||
/*,*/ /*,*/ /*,*/ /*,*/ /*,*/ /*,*/ /*,*/ /*,*/
|
||||
/*,*/ /*,*/ /*,*/ /*,*/ /*,*/ /*,*/ RSQRT_F , /*,*/
|
||||
ADDA_F , SUBA_F , MULA_F , /*,*/ MADD_F , MSUB_F , MADDA_F , MSUBA_F ,
|
||||
/*,*/ /*,*/ /*,*/ /*,*/ CVTW , /*,*/ /*,*/ /*,*/
|
||||
MAX_F , MIN_F , /*,*/ /*,*/ /*,*/ /*,*/ /*,*/ /*,*/
|
||||
CF_F, /*,*/ CEQ_F , /*,*/ CLT_F , /*,*/ CLE_F , /*,*/
|
||||
|
||||
// "COP1 W"
|
||||
CVTS_F, /* , */ /* , */ /* , */ /* , */ /* , */ /* , */ /* , */
|
||||
CVTS_F, /*,*/ /*,*/ /*,*/ /*,*/ /*,*/ /*,*/ /*,*/
|
||||
|
||||
LAST
|
||||
};
|
||||
|
@ -201,22 +202,22 @@ static const char eeOpcodeName[][16] = {
|
|||
/* , */ /* , */ "PEXCW" , /* , */
|
||||
|
||||
// "COP1"
|
||||
"MFC1" , /* , */ "CFC1" , /* , */ "MTC1" , /* , */ "CTC1" , /* , */
|
||||
"MFC1" , /* , */ "CFC1" , /* , */ "MTC1" , /* , */ "CTC1" , /* , */
|
||||
|
||||
// "COP1 BC1"
|
||||
"BC1F" , "BC1T" , "BC1FL" , "BC1TL" , /* , */ /* , */ /* , */ /* , */
|
||||
"BC1F" , "BC1T" , "BC1FL" , "BC1TL" , /* , */ /* , */ /* , */ /* , */
|
||||
|
||||
// "COP1 S"
|
||||
"ADD_F" , "SUB_F" , "MUL_F" , "DIV_F" , "SQRT_F" , "ABS_F" , "MOV_F" , "NEG_F" ,
|
||||
/* , */ /* , */ /* , */ /* , */ /* , */ /* , */ /* , */ /* , */
|
||||
/* , */ /* , */ /* , */ /* , */ /* , */ /* , */ "RSQRT_F" , /* , */
|
||||
"ADDA_F" , "SUBA_F" , "MULA_F" , /* , */ "MADD_F" , "MSUB_F" , "MADDA_F" , "MSUBA_F" ,
|
||||
/* , */ /* , */ /* , */ /* , */ "CVTW" , /* , */ /* , */ /* , */
|
||||
"MAX_F" , "MIN_F" , /* , */ /* , */ /* , */ /* , */ /* , */ /* , */
|
||||
"C.F" , /* , */ "C.EQ" , /* , */ "C.LT" , /* , */ "C.LE" , /* , */
|
||||
"ADD_F" , "SUB_F" , "MUL_F" , "DIV_F" , "SQRT_F" , "ABS_F" , "MOV_F" , "NEG_F" ,
|
||||
/* , */ /* , */ /* , */ /* , */ /* , */ /* , */ /* , */ /* , */
|
||||
/* , */ /* , */ /* , */ /* , */ /* , */ /* , */ "RSQRT_F" , /* , */
|
||||
"ADDA_F" , "SUBA_F" , "MULA_F" , /* , */ "MADD_F" , "MSUB_F" , "MADDA_F" , "MSUBA_F" ,
|
||||
/* , */ /* , */ /* , */ /* , */ "CVTW" , /* , */ /* , */ /* , */
|
||||
"MAX_F" , "MIN_F" , /* , */ /* , */ /* , */ /* , */ /* , */ /* , */
|
||||
"C.F" , /* , */ "C.EQ" , /* , */ "C.LT" , /* , */ "C.LE" , /* , */
|
||||
|
||||
// "COP1 W"
|
||||
"CVTS_F" , /* , */ /* , */ /* , */ /* , */ /* , */ /* , */ /* , */
|
||||
"CVTS_F" , /* , */ /* , */ /* , */ /* , */ /* , */ /* , */ /* , */
|
||||
|
||||
"!"
|
||||
};
|
||||
|
@ -229,7 +230,8 @@ static const char eeOpcodeName[][16] = {
|
|||
|
||||
using namespace x86Emitter;
|
||||
|
||||
struct eeProfiler {
|
||||
struct eeProfiler
|
||||
{
|
||||
static const u32 memSpace = 1 << 19;
|
||||
|
||||
u64 opStats[static_cast<int>(eeOpcode::LAST)];
|
||||
|
@ -239,7 +241,8 @@ struct eeProfiler {
|
|||
u64 memStatsFast;
|
||||
u32 memMask;
|
||||
|
||||
void Reset() {
|
||||
void Reset()
|
||||
{
|
||||
memzero(opStats);
|
||||
memzero(memStats);
|
||||
memzero(memStatsConst);
|
||||
|
@ -249,34 +252,39 @@ struct eeProfiler {
|
|||
pxAssert(eeOpcodeName[static_cast<int>(eeOpcode::LAST)][0] == '!');
|
||||
}
|
||||
|
||||
void EmitOp(eeOpcode opcode) {
|
||||
void EmitOp(eeOpcode opcode)
|
||||
{
|
||||
int op = static_cast<int>(opcode);
|
||||
xADD(ptr32[&(((u32*)opStats)[op*2+0])], 1);
|
||||
xADC(ptr32[&(((u32*)opStats)[op*2+1])], 0);
|
||||
xADD(ptr32[&(((u32*)opStats)[op * 2 + 0])], 1);
|
||||
xADC(ptr32[&(((u32*)opStats)[op * 2 + 1])], 0);
|
||||
}
|
||||
|
||||
double per(u64 part, u64 total) {
|
||||
return (double) part / (double) total * 100.0;
|
||||
double per(u64 part, u64 total)
|
||||
{
|
||||
return (double)part / (double)total * 100.0;
|
||||
}
|
||||
|
||||
void Print() {
|
||||
void Print()
|
||||
{
|
||||
// Compute opcode stat
|
||||
u64 total = 0;
|
||||
std::vector< std::pair<u32, u32> > v;
|
||||
std::vector< std::pair<u32, u32> > vc;
|
||||
for(int i = 0; i < static_cast<int>(eeOpcode::LAST); i++) {
|
||||
std::vector<std::pair<u32, u32>> v;
|
||||
std::vector<std::pair<u32, u32>> vc;
|
||||
for (int i = 0; i < static_cast<int>(eeOpcode::LAST); i++)
|
||||
{
|
||||
total += opStats[i];
|
||||
v.push_back(std::make_pair(opStats[i], i));
|
||||
}
|
||||
std::sort (v.begin(), v.end());
|
||||
std::sort(v.begin(), v.end());
|
||||
std::reverse(v.begin(), v.end());
|
||||
|
||||
DevCon.WriteLn("EE Profiler:");
|
||||
for(u32 i = 0; i < v.size(); i++) {
|
||||
u64 count = v[i].first;
|
||||
double stat = (double)count / (double)total * 100.0;
|
||||
for (u32 i = 0; i < v.size(); i++)
|
||||
{
|
||||
u64 count = v[i].first;
|
||||
double stat = (double)count / (double)total * 100.0;
|
||||
DevCon.WriteLn("%-8s - [%3.4f%%][count=%u]",
|
||||
eeOpcodeName[v[i].second], stat, (u32)count);
|
||||
eeOpcodeName[v[i].second], stat, (u32)count);
|
||||
if (stat < 0.01)
|
||||
break;
|
||||
}
|
||||
|
@ -288,10 +296,10 @@ struct eeProfiler {
|
|||
u64 gs = 0;
|
||||
u64 vu = 0;
|
||||
// FIXME: MAYBE count the scratch pad
|
||||
for (size_t i = 0; i < memSpace ; i++)
|
||||
for (size_t i = 0; i < memSpace; i++)
|
||||
total += memStats[i];
|
||||
|
||||
int ou = 32 * _1kb; // user segment (0x10000000)
|
||||
int ou = 32 * _1kb; // user segment (0x10000000)
|
||||
int ok = 352 * _1kb; // kernel segment (0xB0000000)
|
||||
for (int i = 0; i < 4 * _1kb; i++) reg += memStats[ou + 0 * _1kb + i] + memStats[ok + 0 * _1kb + i];
|
||||
for (int i = 0; i < 4 * _1kb; i++) gs += memStats[ou + 4 * _1kb + i] + memStats[ok + 4 * _1kb + i];
|
||||
|
@ -301,35 +309,37 @@ struct eeProfiler {
|
|||
u64 ram = total - reg - gs - vu;
|
||||
double ram_p = per(ram, total);
|
||||
double reg_p = per(reg, total);
|
||||
double gs_p = per(gs , total);
|
||||
double vu_p = per(vu , total);
|
||||
double gs_p = per(gs, total);
|
||||
double vu_p = per(vu, total);
|
||||
|
||||
// Compute const memory stat
|
||||
u64 total_const = 0;
|
||||
u64 reg_const = 0;
|
||||
for (size_t i = 0; i < memSpace ; i++)
|
||||
for (size_t i = 0; i < memSpace; i++)
|
||||
total_const += memStatsConst[i];
|
||||
|
||||
for (int i = 0; i < 4 * _1kb; i++) reg_const += memStatsConst[ou + i] + memStatsConst[ok + i];
|
||||
for (int i = 0; i < 4 * _1kb; i++)
|
||||
reg_const += memStatsConst[ou + i] + memStatsConst[ok + i];
|
||||
u64 ram_const = total_const - reg_const; // value is slightly wrong but good enough
|
||||
|
||||
double ram_const_p = per(ram_const, ram);
|
||||
double reg_const_p = per(reg_const, reg);
|
||||
|
||||
DevCon.WriteLn("\nEE Memory Profiler:");
|
||||
DevCon.WriteLn("Total = 0x%08x_%08x", (u32)(u64)(total>>32),(u32)total);
|
||||
DevCon.WriteLn(" RAM = 0x%08x_%08x [%3.4f%%] Const[%3.4f%%]", (u32)(u64)(ram>>32),(u32)ram, ram_p, ram_const_p);
|
||||
DevCon.WriteLn(" REG = 0x%08x_%08x [%3.4f%%] Const[%3.4f%%]", (u32)(u64)(reg>>32),(u32)reg, reg_p, reg_const_p);
|
||||
DevCon.WriteLn(" GS = 0x%08x_%08x [%3.4f%%]", (u32)(u64)( gs>>32),(u32) gs, gs_p);
|
||||
DevCon.WriteLn(" VU = 0x%08x_%08x [%3.4f%%]", (u32)(u64) (vu>>32),(u32) vu, vu_p);
|
||||
DevCon.WriteLn("Total = 0x%08x_%08x", (u32)(u64)(total >> 32), (u32)total);
|
||||
DevCon.WriteLn(" RAM = 0x%08x_%08x [%3.4f%%] Const[%3.4f%%]", (u32)(u64)(ram >> 32), (u32)ram, ram_p, ram_const_p);
|
||||
DevCon.WriteLn(" REG = 0x%08x_%08x [%3.4f%%] Const[%3.4f%%]", (u32)(u64)(reg >> 32), (u32)reg, reg_p, reg_const_p);
|
||||
DevCon.WriteLn(" GS = 0x%08x_%08x [%3.4f%%]", (u32)(u64)(gs >> 32), (u32)gs, gs_p);
|
||||
DevCon.WriteLn(" VU = 0x%08x_%08x [%3.4f%%]", (u32)(u64)(vu >> 32), (u32)vu, vu_p);
|
||||
|
||||
u64 total_ram = memStatsSlow + memStatsFast;
|
||||
DevCon.WriteLn("\n RAM Fast [%3.4f%%] RAM Slow [%3.4f%%]. Total 0x%08x_%08x [%3.4f%%]",
|
||||
per(memStatsFast, total_ram), per(memStatsSlow, total_ram), (u32)(u64)(total_ram>>32),(u32)total_ram, per(total_ram, total));
|
||||
per(memStatsFast, total_ram), per(memStatsSlow, total_ram), (u32)(u64)(total_ram >> 32), (u32)total_ram, per(total_ram, total));
|
||||
|
||||
v.clear();
|
||||
vc.clear();
|
||||
for (int i = 0; i < 4 * _1kb; i++) {
|
||||
for (int i = 0; i < 4 * _1kb; i++)
|
||||
{
|
||||
u32 reg_c = memStatsConst[ou + i] + memStatsConst[ok + i];
|
||||
u32 reg = memStats[ok + i] + memStats[ou + i] - reg_c;
|
||||
if (reg)
|
||||
|
@ -337,63 +347,71 @@ struct eeProfiler {
|
|||
if (reg_c)
|
||||
vc.push_back(std::make_pair(reg_c, i * 16));
|
||||
}
|
||||
std::sort (v.begin(), v.end());
|
||||
std::sort(v.begin(), v.end());
|
||||
std::reverse(v.begin(), v.end());
|
||||
|
||||
std::sort (vc.begin(), vc.end());
|
||||
std::sort(vc.begin(), vc.end());
|
||||
std::reverse(vc.begin(), vc.end());
|
||||
|
||||
DevCon.WriteLn("\nEE Reg Profiler:");
|
||||
for(u32 i = 0; i < v.size(); i++) {
|
||||
for (u32 i = 0; i < v.size(); i++)
|
||||
{
|
||||
u64 count = v[i].first;
|
||||
double stat = (double)count / (double)(reg - reg_const) * 100.0;
|
||||
DevCon.WriteLn("%04x - [%3.4f%%][count=%u]",
|
||||
v[i].second, stat, (u32)count);
|
||||
v[i].second, stat, (u32)count);
|
||||
if (stat < 0.01)
|
||||
break;
|
||||
}
|
||||
|
||||
DevCon.WriteLn("\nEE Const Reg Profiler:");
|
||||
for(u32 i = 0; i < vc.size(); i++) {
|
||||
for (u32 i = 0; i < vc.size(); i++)
|
||||
{
|
||||
u64 count = vc[i].first;
|
||||
double stat = (double)count / (double)reg_const * 100.0;
|
||||
DevCon.WriteLn("%04x - [%3.4f%%][count=%u]",
|
||||
vc[i].second, stat, (u32)count);
|
||||
vc[i].second, stat, (u32)count);
|
||||
if (stat < 0.01)
|
||||
break;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// Warning dirty ebx
|
||||
void EmitMem() {
|
||||
void EmitMem()
|
||||
{
|
||||
// Compact the 4GB virtual address to a 512KB virtual address
|
||||
if (x86caps.hasBMI2) {
|
||||
if (x86caps.hasBMI2)
|
||||
{
|
||||
xPEXT(ebx, ecx, ptr[&memMask]);
|
||||
xADD(ptr32[(rbx*4) + memStats], 1);
|
||||
xADD(ptr32[(rbx * 4) + memStats], 1);
|
||||
}
|
||||
}
|
||||
|
||||
void EmitConstMem(u32 add) {
|
||||
if (x86caps.hasBMI2) {
|
||||
void EmitConstMem(u32 add)
|
||||
{
|
||||
if (x86caps.hasBMI2)
|
||||
{
|
||||
u32 a = _pext_u32(add, memMask);
|
||||
xADD(ptr32[a + memStats], 1);
|
||||
xADD(ptr32[a + memStatsConst], 1);
|
||||
}
|
||||
}
|
||||
|
||||
void EmitSlowMem() {
|
||||
void EmitSlowMem()
|
||||
{
|
||||
xADD(ptr32[(u32*)&memStatsSlow], 1);
|
||||
xADC(ptr32[(u32*)&memStatsSlow + 1], 0);
|
||||
}
|
||||
|
||||
void EmitFastMem() {
|
||||
void EmitFastMem()
|
||||
{
|
||||
xADD(ptr32[(u32*)&memStatsFast], 1);
|
||||
xADC(ptr32[(u32*)&memStatsFast + 1], 0);
|
||||
}
|
||||
};
|
||||
#else
|
||||
struct eeProfiler {
|
||||
struct eeProfiler
|
||||
{
|
||||
__fi void Reset() {}
|
||||
__fi void EmitOp(eeOpcode op) {}
|
||||
__fi void Print() {}
|
||||
|
@ -404,6 +422,7 @@ struct eeProfiler {
|
|||
};
|
||||
#endif
|
||||
|
||||
namespace EE {
|
||||
namespace EE
|
||||
{
|
||||
extern eeProfiler Profiler;
|
||||
}
|
||||
|
|
|
@ -54,10 +54,10 @@ static void _setupBranchTest()
|
|||
// But using 32-bit loads here is ok (and faster), because we mask off
|
||||
// everything except the lower 10 bits away.
|
||||
|
||||
xMOV(eax, ptr[(&psHu32(DMAC_PCR) )]);
|
||||
xMOV(ecx, 0x3ff ); // ECX is our 10-bit mask var
|
||||
xMOV(eax, ptr[(&psHu32(DMAC_PCR))]);
|
||||
xMOV(ecx, 0x3ff); // ECX is our 10-bit mask var
|
||||
xNOT(eax);
|
||||
xOR(eax, ptr[(&psHu32(DMAC_STAT) )]);
|
||||
xOR(eax, ptr[(&psHu32(DMAC_STAT))]);
|
||||
xAND(eax, ecx);
|
||||
xCMP(eax, ecx);
|
||||
}
|
||||
|
@ -93,14 +93,14 @@ void recTLBWR() { recCall(Interp::TLBWR); }
|
|||
|
||||
void recERET()
|
||||
{
|
||||
recBranchCall( Interp::ERET );
|
||||
recBranchCall(Interp::ERET);
|
||||
}
|
||||
|
||||
void recEI()
|
||||
{
|
||||
// must branch after enabling interrupts, so that anything
|
||||
// pending gets triggered properly.
|
||||
recBranchCall( Interp::EI );
|
||||
recBranchCall(Interp::EI);
|
||||
}
|
||||
|
||||
void recDI()
|
||||
|
@ -117,7 +117,7 @@ void recDI()
|
|||
// Fixes booting issues in the following games:
|
||||
// Jak X, Namco 50th anniversary, Spongebob the Movie, Spongebob Battle for Bikini Bottom,
|
||||
// The Incredibles, The Incredibles rize of the underminer, Soukou kihei armodyne, Garfield Saving Arlene, Tales of Fandom Vol. 2.
|
||||
if(!g_recompilingDelaySlot)
|
||||
if (!g_recompilingDelaySlot)
|
||||
recompileNextInstruction(0); // DI execution is delayed by one instruction
|
||||
|
||||
xMOV(eax, ptr[&cpuRegs.CP0.n.Status]);
|
||||
|
@ -134,27 +134,28 @@ void recDI()
|
|||
|
||||
#ifndef CP0_RECOMPILE
|
||||
|
||||
REC_SYS( MFC0 );
|
||||
REC_SYS( MTC0 );
|
||||
REC_SYS(MFC0);
|
||||
REC_SYS(MTC0);
|
||||
|
||||
#else
|
||||
|
||||
void recMFC0()
|
||||
{
|
||||
if( _Rd_ == 9 )
|
||||
if (_Rd_ == 9)
|
||||
{
|
||||
// This case needs to be handled even if the write-back is ignored (_Rt_ == 0 )
|
||||
xMOV(ecx, ptr[&cpuRegs.cycle]);
|
||||
xMOV(eax, ecx);
|
||||
xMOV(ecx, ptr[&cpuRegs.cycle]);
|
||||
xMOV(eax, ecx);
|
||||
xSUB(eax, ptr[&s_iLastCOP0Cycle]);
|
||||
u8* skipInc = JNZ8( 0 );
|
||||
u8* skipInc = JNZ8(0);
|
||||
xINC(eax);
|
||||
x86SetJ8( skipInc );
|
||||
xADD(ptr[&cpuRegs.CP0.n.Count], eax);
|
||||
x86SetJ8(skipInc);
|
||||
xADD(ptr[&cpuRegs.CP0.n.Count], eax);
|
||||
xMOV(ptr[&s_iLastCOP0Cycle], ecx);
|
||||
xMOV(eax, ptr[&cpuRegs.CP0.r[ _Rd_ ] ]);
|
||||
xMOV(eax, ptr[&cpuRegs.CP0.r[_Rd_]]);
|
||||
|
||||
if( !_Rt_ ) return;
|
||||
if (!_Rt_)
|
||||
return;
|
||||
|
||||
_deleteEEreg(_Rt_, 0);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rt_].UL[0]], eax);
|
||||
|
@ -164,9 +165,10 @@ void recMFC0()
|
|||
return;
|
||||
}
|
||||
|
||||
if ( !_Rt_ ) return;
|
||||
if (!_Rt_)
|
||||
return;
|
||||
|
||||
if( _Rd_ == 25 )
|
||||
if (_Rd_ == 25)
|
||||
{
|
||||
if (0 == (_Imm_ & 1)) // MFPS, register value ignored
|
||||
{
|
||||
|
@ -192,13 +194,14 @@ void recMFC0()
|
|||
|
||||
return;
|
||||
}
|
||||
else if(_Rd_ == 24){
|
||||
else if (_Rd_ == 24)
|
||||
{
|
||||
COP0_LOG("MFC0 Breakpoint debug Registers code = %x\n", cpuRegs.code & 0x3FF);
|
||||
return;
|
||||
return;
|
||||
}
|
||||
_eeOnWriteReg(_Rt_, 1);
|
||||
_deleteEEreg(_Rt_, 0);
|
||||
xMOV(eax, ptr[&cpuRegs.CP0.r[ _Rd_ ]]);
|
||||
xMOV(eax, ptr[&cpuRegs.CP0.r[_Rd_]]);
|
||||
xCDQ();
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rt_].UL[0]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rt_].UL[1]], edx);
|
||||
|
@ -206,25 +209,25 @@ void recMFC0()
|
|||
|
||||
void recMTC0()
|
||||
{
|
||||
if( GPR_IS_CONST1(_Rt_) )
|
||||
if (GPR_IS_CONST1(_Rt_))
|
||||
{
|
||||
switch (_Rd_)
|
||||
{
|
||||
case 12:
|
||||
iFlushCall(FLUSH_INTERPRETER);
|
||||
xFastCall((void*)WriteCP0Status, g_cpuConstRegs[_Rt_].UL[0]);
|
||||
break;
|
||||
break;
|
||||
|
||||
case 16:
|
||||
iFlushCall(FLUSH_INTERPRETER);
|
||||
xFastCall((void*)WriteCP0Config, g_cpuConstRegs[_Rt_].UL[0]);
|
||||
break;
|
||||
break;
|
||||
|
||||
case 9:
|
||||
xMOV(ecx, ptr[&cpuRegs.cycle]);
|
||||
xMOV(ptr[&s_iLastCOP0Cycle], ecx);
|
||||
xMOV(ptr32[&cpuRegs.CP0.r[9]], g_cpuConstRegs[_Rt_].UL[0]);
|
||||
break;
|
||||
break;
|
||||
|
||||
case 25:
|
||||
if (0 == (_Imm_ & 1)) // MTPS
|
||||
|
@ -249,15 +252,15 @@ void recMTC0()
|
|||
xMOV(ptr32[&cpuRegs.PERF.n.pcr1], g_cpuConstRegs[_Rt_].UL[0]);
|
||||
xMOV(ptr[&s_iLastPERFCycle[1]], eax);
|
||||
}
|
||||
break;
|
||||
break;
|
||||
|
||||
case 24:
|
||||
COP0_LOG("MTC0 Breakpoint debug Registers code = %x\n", cpuRegs.code & 0x3FF);
|
||||
break;
|
||||
break;
|
||||
|
||||
default:
|
||||
xMOV(ptr32[&cpuRegs.CP0.r[_Rd_]], g_cpuConstRegs[_Rt_].UL[0]);
|
||||
break;
|
||||
break;
|
||||
}
|
||||
}
|
||||
else
|
||||
|
@ -267,20 +270,20 @@ void recMTC0()
|
|||
case 12:
|
||||
iFlushCall(FLUSH_INTERPRETER);
|
||||
_eeMoveGPRtoR(ecx, _Rt_);
|
||||
xFastCall((void*)WriteCP0Status, ecx );
|
||||
break;
|
||||
xFastCall((void*)WriteCP0Status, ecx);
|
||||
break;
|
||||
|
||||
case 16:
|
||||
iFlushCall(FLUSH_INTERPRETER);
|
||||
_eeMoveGPRtoR(ecx, _Rt_);
|
||||
xFastCall((void*)WriteCP0Config, ecx);
|
||||
break;
|
||||
break;
|
||||
|
||||
case 9:
|
||||
xMOV(ecx, ptr[&cpuRegs.cycle]);
|
||||
_eeMoveGPRtoM((uptr)&cpuRegs.CP0.r[9], _Rt_);
|
||||
xMOV(ptr[&s_iLastCOP0Cycle], ecx);
|
||||
break;
|
||||
break;
|
||||
|
||||
case 25:
|
||||
if (0 == (_Imm_ & 1)) // MTPS
|
||||
|
@ -304,15 +307,15 @@ void recMTC0()
|
|||
_eeMoveGPRtoM((uptr)&cpuRegs.PERF.n.pcr1, _Rt_);
|
||||
xMOV(ptr[&s_iLastPERFCycle[1]], ecx);
|
||||
}
|
||||
break;
|
||||
break;
|
||||
|
||||
case 24:
|
||||
COP0_LOG("MTC0 Breakpoint debug Registers code = %x\n", cpuRegs.code & 0x3FF);
|
||||
break;
|
||||
break;
|
||||
|
||||
default:
|
||||
_eeMoveGPRtoM((uptr)&cpuRegs.CP0.r[_Rd_], _Rt_);
|
||||
break;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -346,4 +349,7 @@ void rec(TLBWR) {
|
|||
void rec(TLBP) {
|
||||
}*/
|
||||
|
||||
}}}}
|
||||
} // namespace COP0
|
||||
} // namespace OpcodeImpl
|
||||
} // namespace Dynarec
|
||||
} // namespace R5900
|
||||
|
|
|
@ -26,8 +26,8 @@
|
|||
namespace R5900 {
|
||||
namespace Dynarec {
|
||||
namespace OpcodeImpl {
|
||||
namespace COP0
|
||||
{
|
||||
namespace COP0 {
|
||||
|
||||
void recMFC0();
|
||||
void recMTC0();
|
||||
void recBC0F();
|
||||
|
@ -42,5 +42,8 @@ namespace COP0
|
|||
void recDI();
|
||||
void recEI();
|
||||
|
||||
}}}}
|
||||
} // namespace COP0
|
||||
} // namespace OpcodeImpl
|
||||
} // namespace Dynarec
|
||||
} // namespace R5900
|
||||
#endif
|
||||
|
|
|
@ -24,8 +24,8 @@
|
|||
|
||||
using namespace x86Emitter;
|
||||
|
||||
__tls_emit u8 *j8Ptr[32];
|
||||
__tls_emit u32 *j32Ptr[32];
|
||||
__tls_emit u8* j8Ptr[32];
|
||||
__tls_emit u32* j32Ptr[32];
|
||||
|
||||
u16 g_x86AllocCounter = 0;
|
||||
u16 g_xmmAllocCounter = 0;
|
||||
|
@ -42,23 +42,25 @@ _xmmregs xmmregs[iREGCNT_XMM], s_saveXMMregs[iREGCNT_XMM];
|
|||
_x86regs x86regs[iREGCNT_GPR], s_saveX86regs[iREGCNT_GPR];
|
||||
|
||||
// XMM Caching
|
||||
#define VU_VFx_ADDR(x) (uptr)&VU->VF[x].UL[0]
|
||||
#define VU_ACCx_ADDR (uptr)&VU->ACC.UL[0]
|
||||
#define VU_VFx_ADDR(x) (uptr)&VU->VF[x].UL[0]
|
||||
#define VU_ACCx_ADDR (uptr)&VU->ACC.UL[0]
|
||||
|
||||
static int s_xmmchecknext = 0;
|
||||
|
||||
// Clear current register mapping structure
|
||||
// Clear allocation counter
|
||||
void _initXMMregs() {
|
||||
memzero( xmmregs );
|
||||
void _initXMMregs()
|
||||
{
|
||||
memzero(xmmregs);
|
||||
g_xmmAllocCounter = 0;
|
||||
s_xmmchecknext = 0;
|
||||
}
|
||||
|
||||
// Get a pointer to the physical register (GPR / FPU / VU etc..)
|
||||
__fi void* _XMMGetAddr(int type, int reg, VURegs *VU)
|
||||
__fi void* _XMMGetAddr(int type, int reg, VURegs* VU)
|
||||
{
|
||||
switch (type) {
|
||||
switch (type)
|
||||
{
|
||||
case XMMTYPE_VFREG:
|
||||
return (void*)VU_VFx_ADDR(reg);
|
||||
|
||||
|
@ -66,8 +68,8 @@ __fi void* _XMMGetAddr(int type, int reg, VURegs *VU)
|
|||
return (void*)VU_ACCx_ADDR;
|
||||
|
||||
case XMMTYPE_GPRREG:
|
||||
if( reg < 32 )
|
||||
pxAssert( !(g_cpuHasConstReg & (1<<reg)) || (g_cpuFlushedConstReg & (1<<reg)) );
|
||||
if (reg < 32)
|
||||
pxAssert(!(g_cpuHasConstReg & (1 << reg)) || (g_cpuFlushedConstReg & (1 << reg)));
|
||||
return &cpuRegs.GPR.r[reg].UL[0];
|
||||
|
||||
case XMMTYPE_FPREG:
|
||||
|
@ -90,24 +92,30 @@ __fi void* _XMMGetAddr(int type, int reg, VURegs *VU)
|
|||
//
|
||||
// Note: I don't understand why we don't check register that aren't useful anymore
|
||||
// (i.e EEINST_USED is cleared)
|
||||
int _getFreeXMMreg()
|
||||
int _getFreeXMMreg()
|
||||
{
|
||||
int i, tempi;
|
||||
u32 bestcount = 0x10000;
|
||||
|
||||
for (i=0; (uint)i<iREGCNT_XMM; i++) {
|
||||
if (xmmregs[(i+s_xmmchecknext)%iREGCNT_XMM].inuse == 0) {
|
||||
int ret = (s_xmmchecknext+i)%iREGCNT_XMM;
|
||||
s_xmmchecknext = (s_xmmchecknext+i+1)%iREGCNT_XMM;
|
||||
for (i = 0; (uint)i < iREGCNT_XMM; i++)
|
||||
{
|
||||
if (xmmregs[(i + s_xmmchecknext) % iREGCNT_XMM].inuse == 0)
|
||||
{
|
||||
int ret = (s_xmmchecknext + i) % iREGCNT_XMM;
|
||||
s_xmmchecknext = (s_xmmchecknext + i + 1) % iREGCNT_XMM;
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
// check for dead regs
|
||||
for (i=0; (uint)i<iREGCNT_XMM; i++) {
|
||||
if (xmmregs[i].needed) continue;
|
||||
if (xmmregs[i].type == XMMTYPE_GPRREG ) {
|
||||
if (!(EEINST_ISLIVEXMM(xmmregs[i].reg))) {
|
||||
for (i = 0; (uint)i < iREGCNT_XMM; i++)
|
||||
{
|
||||
if (xmmregs[i].needed)
|
||||
continue;
|
||||
if (xmmregs[i].type == XMMTYPE_GPRREG)
|
||||
{
|
||||
if (!(EEINST_ISLIVEXMM(xmmregs[i].reg)))
|
||||
{
|
||||
_freeXMMreg(i);
|
||||
return i;
|
||||
}
|
||||
|
@ -115,10 +123,14 @@ int _getFreeXMMreg()
|
|||
}
|
||||
|
||||
// check for future xmm usage
|
||||
for (i=0; (uint)i<iREGCNT_XMM; i++) {
|
||||
if (xmmregs[i].needed) continue;
|
||||
if (xmmregs[i].type == XMMTYPE_GPRREG ) {
|
||||
if( !(g_pCurInstInfo->regs[xmmregs[i].reg] & EEINST_XMM) ) {
|
||||
for (i = 0; (uint)i < iREGCNT_XMM; i++)
|
||||
{
|
||||
if (xmmregs[i].needed)
|
||||
continue;
|
||||
if (xmmregs[i].type == XMMTYPE_GPRREG)
|
||||
{
|
||||
if (!(g_pCurInstInfo->regs[xmmregs[i].reg] & EEINST_XMM))
|
||||
{
|
||||
_freeXMMreg(i);
|
||||
return i;
|
||||
}
|
||||
|
@ -127,11 +139,15 @@ int _getFreeXMMreg()
|
|||
|
||||
tempi = -1;
|
||||
bestcount = 0xffff;
|
||||
for (i=0; (uint)i<iREGCNT_XMM; i++) {
|
||||
if (xmmregs[i].needed) continue;
|
||||
if (xmmregs[i].type != XMMTYPE_TEMP) {
|
||||
for (i = 0; (uint)i < iREGCNT_XMM; i++)
|
||||
{
|
||||
if (xmmregs[i].needed)
|
||||
continue;
|
||||
if (xmmregs[i].type != XMMTYPE_TEMP)
|
||||
{
|
||||
|
||||
if( xmmregs[i].counter < bestcount ) {
|
||||
if (xmmregs[i].counter < bestcount)
|
||||
{
|
||||
tempi = i;
|
||||
bestcount = xmmregs[i].counter;
|
||||
}
|
||||
|
@ -142,7 +158,8 @@ int _getFreeXMMreg()
|
|||
return i;
|
||||
}
|
||||
|
||||
if( tempi != -1 ) {
|
||||
if (tempi != -1)
|
||||
{
|
||||
_freeXMMreg(tempi);
|
||||
return tempi;
|
||||
}
|
||||
|
@ -152,7 +169,8 @@ int _getFreeXMMreg()
|
|||
}
|
||||
|
||||
// Reserve a XMM register for temporary operation.
|
||||
int _allocTempXMMreg(XMMSSEType type, int xmmreg) {
|
||||
int _allocTempXMMreg(XMMSSEType type, int xmmreg)
|
||||
{
|
||||
if (xmmreg == -1)
|
||||
xmmreg = _getFreeXMMreg();
|
||||
else
|
||||
|
@ -177,22 +195,27 @@ int _checkXMMreg(int type, int reg, int mode)
|
|||
{
|
||||
int i;
|
||||
|
||||
for (i=0; (uint)i<iREGCNT_XMM; i++) {
|
||||
if (xmmregs[i].inuse && (xmmregs[i].type == (type&0xff)) && (xmmregs[i].reg == reg)) {
|
||||
for (i = 0; (uint)i < iREGCNT_XMM; i++)
|
||||
{
|
||||
if (xmmregs[i].inuse && (xmmregs[i].type == (type & 0xff)) && (xmmregs[i].reg == reg))
|
||||
{
|
||||
|
||||
if ( !(xmmregs[i].mode & MODE_READ) ) {
|
||||
if (mode & MODE_READ) {
|
||||
if (!(xmmregs[i].mode & MODE_READ))
|
||||
{
|
||||
if (mode & MODE_READ)
|
||||
{
|
||||
xMOVDQA(xRegisterSSE(i), ptr[_XMMGetAddr(xmmregs[i].type, xmmregs[i].reg, xmmregs[i].VU ? &VU1 : &VU0)]);
|
||||
}
|
||||
else if (mode & MODE_READHALF) {
|
||||
if( g_xmmtypes[i] == XMMT_INT )
|
||||
else if (mode & MODE_READHALF)
|
||||
{
|
||||
if (g_xmmtypes[i] == XMMT_INT)
|
||||
xMOVQZX(xRegisterSSE(i), ptr[(void*)(uptr)_XMMGetAddr(xmmregs[i].type, xmmregs[i].reg, xmmregs[i].VU ? &VU1 : &VU0)]);
|
||||
else
|
||||
xMOVL.PS(xRegisterSSE(i), ptr[(void*)(uptr)_XMMGetAddr(xmmregs[i].type, xmmregs[i].reg, xmmregs[i].VU ? &VU1 : &VU0)]);
|
||||
}
|
||||
}
|
||||
|
||||
xmmregs[i].mode |= mode&~MODE_READHALF;
|
||||
xmmregs[i].mode |= mode & ~MODE_READHALF;
|
||||
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
|
||||
xmmregs[i].needed = 1;
|
||||
return i;
|
||||
|
@ -209,15 +232,21 @@ int _checkXMMreg(int type, int reg, int mode)
|
|||
// reserve a new reg, then populate it if we read it
|
||||
//
|
||||
// Note: FPU are always in XMM register
|
||||
int _allocFPtoXMMreg(int xmmreg, int fpreg, int mode) {
|
||||
int _allocFPtoXMMreg(int xmmreg, int fpreg, int mode)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i=0; (uint)i<iREGCNT_XMM; i++) {
|
||||
if (xmmregs[i].inuse == 0) continue;
|
||||
if (xmmregs[i].type != XMMTYPE_FPREG) continue;
|
||||
if (xmmregs[i].reg != fpreg) continue;
|
||||
for (i = 0; (uint)i < iREGCNT_XMM; i++)
|
||||
{
|
||||
if (xmmregs[i].inuse == 0)
|
||||
continue;
|
||||
if (xmmregs[i].type != XMMTYPE_FPREG)
|
||||
continue;
|
||||
if (xmmregs[i].reg != fpreg)
|
||||
continue;
|
||||
|
||||
if( !(xmmregs[i].mode & MODE_READ) && (mode & MODE_READ)) {
|
||||
if (!(xmmregs[i].mode & MODE_READ) && (mode & MODE_READ))
|
||||
{
|
||||
xMOVSSZX(xRegisterSSE(i), ptr[&fpuRegs.fpr[fpreg].f]);
|
||||
xmmregs[i].mode |= MODE_READ;
|
||||
}
|
||||
|
@ -225,7 +254,7 @@ int _allocFPtoXMMreg(int xmmreg, int fpreg, int mode) {
|
|||
g_xmmtypes[i] = XMMT_FPS;
|
||||
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
|
||||
xmmregs[i].needed = 1;
|
||||
xmmregs[i].mode|= mode;
|
||||
xmmregs[i].mode |= mode;
|
||||
return i;
|
||||
}
|
||||
|
||||
|
@ -252,17 +281,20 @@ int _allocGPRtoXMMreg(int xmmreg, int gprreg, int mode)
|
|||
{
|
||||
int i;
|
||||
|
||||
for (i=0; (uint)i<iREGCNT_XMM; i++)
|
||||
for (i = 0; (uint)i < iREGCNT_XMM; i++)
|
||||
{
|
||||
if (xmmregs[i].inuse == 0) continue;
|
||||
if (xmmregs[i].type != XMMTYPE_GPRREG) continue;
|
||||
if (xmmregs[i].reg != gprreg) continue;
|
||||
if (xmmregs[i].inuse == 0)
|
||||
continue;
|
||||
if (xmmregs[i].type != XMMTYPE_GPRREG)
|
||||
continue;
|
||||
if (xmmregs[i].reg != gprreg)
|
||||
continue;
|
||||
|
||||
g_xmmtypes[i] = XMMT_INT;
|
||||
|
||||
if (!(xmmregs[i].mode & MODE_READ) && (mode & MODE_READ))
|
||||
{
|
||||
if (gprreg == 0 )
|
||||
if (gprreg == 0)
|
||||
{
|
||||
xPXOR(xRegisterSSE(i), xRegisterSSE(i));
|
||||
}
|
||||
|
@ -275,15 +307,15 @@ int _allocGPRtoXMMreg(int xmmreg, int gprreg, int mode)
|
|||
xmmregs[i].mode |= MODE_READ;
|
||||
}
|
||||
|
||||
if ((mode & MODE_WRITE) && (gprreg < 32))
|
||||
if ((mode & MODE_WRITE) && (gprreg < 32))
|
||||
{
|
||||
g_cpuHasConstReg &= ~(1<<gprreg);
|
||||
g_cpuHasConstReg &= ~(1 << gprreg);
|
||||
//pxAssert( !(g_cpuHasConstReg & (1<<gprreg)) );
|
||||
}
|
||||
|
||||
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
|
||||
xmmregs[i].needed = 1;
|
||||
xmmregs[i].mode|= mode;
|
||||
xmmregs[i].mode |= mode;
|
||||
return i;
|
||||
}
|
||||
|
||||
|
@ -292,7 +324,7 @@ int _allocGPRtoXMMreg(int xmmreg, int gprreg, int mode)
|
|||
if ((mode & MODE_WRITE) && gprreg < 32)
|
||||
{
|
||||
//pxAssert( !(g_cpuHasConstReg & (1<<gprreg)) );
|
||||
g_cpuHasConstReg &= ~(1<<gprreg);
|
||||
g_cpuHasConstReg &= ~(1 << gprreg);
|
||||
}
|
||||
|
||||
if (xmmreg == -1)
|
||||
|
@ -308,14 +340,15 @@ int _allocGPRtoXMMreg(int xmmreg, int gprreg, int mode)
|
|||
|
||||
if (mode & MODE_READ)
|
||||
{
|
||||
if (gprreg == 0 )
|
||||
if (gprreg == 0)
|
||||
{
|
||||
xPXOR(xRegisterSSE(xmmreg), xRegisterSSE(xmmreg));
|
||||
}
|
||||
else
|
||||
{
|
||||
// DOX86
|
||||
if (mode & MODE_READ) _flushConstReg(gprreg);
|
||||
if (mode & MODE_READ)
|
||||
_flushConstReg(gprreg);
|
||||
|
||||
xMOVDQA(xRegisterSSE(xmmreg), ptr[&cpuRegs.GPR.r[gprreg].UL[0]]);
|
||||
}
|
||||
|
@ -330,11 +363,15 @@ int _allocFPACCtoXMMreg(int xmmreg, int mode)
|
|||
{
|
||||
int i;
|
||||
|
||||
for (i=0; (uint)i<iREGCNT_XMM; i++) {
|
||||
if (xmmregs[i].inuse == 0) continue;
|
||||
if (xmmregs[i].type != XMMTYPE_FPACC) continue;
|
||||
for (i = 0; (uint)i < iREGCNT_XMM; i++)
|
||||
{
|
||||
if (xmmregs[i].inuse == 0)
|
||||
continue;
|
||||
if (xmmregs[i].type != XMMTYPE_FPACC)
|
||||
continue;
|
||||
|
||||
if( !(xmmregs[i].mode & MODE_READ) && (mode&MODE_READ)) {
|
||||
if (!(xmmregs[i].mode & MODE_READ) && (mode & MODE_READ))
|
||||
{
|
||||
xMOVSSZX(xRegisterSSE(i), ptr[&fpuRegs.ACC.f]);
|
||||
xmmregs[i].mode |= MODE_READ;
|
||||
}
|
||||
|
@ -342,7 +379,7 @@ int _allocFPACCtoXMMreg(int xmmreg, int mode)
|
|||
g_xmmtypes[i] = XMMT_FPS;
|
||||
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
|
||||
xmmregs[i].needed = 1;
|
||||
xmmregs[i].mode|= mode;
|
||||
xmmregs[i].mode |= mode;
|
||||
return i;
|
||||
}
|
||||
|
||||
|
@ -357,7 +394,8 @@ int _allocFPACCtoXMMreg(int xmmreg, int mode)
|
|||
xmmregs[xmmreg].reg = 0;
|
||||
xmmregs[xmmreg].counter = g_xmmAllocCounter++;
|
||||
|
||||
if (mode & MODE_READ) {
|
||||
if (mode & MODE_READ)
|
||||
{
|
||||
xMOVSSZX(xRegisterSSE(xmmreg), ptr[&fpuRegs.ACC.f]);
|
||||
}
|
||||
|
||||
|
@ -370,10 +408,14 @@ void _addNeededGPRtoXMMreg(int gprreg)
|
|||
{
|
||||
int i;
|
||||
|
||||
for (i=0; (uint)i<iREGCNT_XMM; i++) {
|
||||
if (xmmregs[i].inuse == 0) continue;
|
||||
if (xmmregs[i].type != XMMTYPE_GPRREG) continue;
|
||||
if (xmmregs[i].reg != gprreg) continue;
|
||||
for (i = 0; (uint)i < iREGCNT_XMM; i++)
|
||||
{
|
||||
if (xmmregs[i].inuse == 0)
|
||||
continue;
|
||||
if (xmmregs[i].type != XMMTYPE_GPRREG)
|
||||
continue;
|
||||
if (xmmregs[i].reg != gprreg)
|
||||
continue;
|
||||
|
||||
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
|
||||
xmmregs[i].needed = 1;
|
||||
|
@ -383,13 +425,18 @@ void _addNeededGPRtoXMMreg(int gprreg)
|
|||
|
||||
// Mark reserved FPU reg as needed. It won't be evicted anymore.
|
||||
// You must use _clearNeededXMMregs to clear the flag
|
||||
void _addNeededFPtoXMMreg(int fpreg) {
|
||||
void _addNeededFPtoXMMreg(int fpreg)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i=0; (uint)i<iREGCNT_XMM; i++) {
|
||||
if (xmmregs[i].inuse == 0) continue;
|
||||
if (xmmregs[i].type != XMMTYPE_FPREG) continue;
|
||||
if (xmmregs[i].reg != fpreg) continue;
|
||||
for (i = 0; (uint)i < iREGCNT_XMM; i++)
|
||||
{
|
||||
if (xmmregs[i].inuse == 0)
|
||||
continue;
|
||||
if (xmmregs[i].type != XMMTYPE_FPREG)
|
||||
continue;
|
||||
if (xmmregs[i].reg != fpreg)
|
||||
continue;
|
||||
|
||||
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
|
||||
xmmregs[i].needed = 1;
|
||||
|
@ -399,12 +446,16 @@ void _addNeededFPtoXMMreg(int fpreg) {
|
|||
|
||||
// Mark reserved FPU ACC reg as needed. It won't be evicted anymore.
|
||||
// You must use _clearNeededXMMregs to clear the flag
|
||||
void _addNeededFPACCtoXMMreg() {
|
||||
void _addNeededFPACCtoXMMreg()
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i=0; (uint)i<iREGCNT_XMM; i++) {
|
||||
if (xmmregs[i].inuse == 0) continue;
|
||||
if (xmmregs[i].type != XMMTYPE_FPACC) continue;
|
||||
for (i = 0; (uint)i < iREGCNT_XMM; i++)
|
||||
{
|
||||
if (xmmregs[i].inuse == 0)
|
||||
continue;
|
||||
if (xmmregs[i].type != XMMTYPE_FPACC)
|
||||
continue;
|
||||
|
||||
xmmregs[i].counter = g_xmmAllocCounter++; // update counter
|
||||
xmmregs[i].needed = 1;
|
||||
|
@ -414,21 +465,25 @@ void _addNeededFPACCtoXMMreg() {
|
|||
|
||||
// Clear needed flags of all registers
|
||||
// Written register will set MODE_READ (aka data is valid, no need to load it)
|
||||
void _clearNeededXMMregs() {
|
||||
void _clearNeededXMMregs()
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i=0; (uint)i<iREGCNT_XMM; i++) {
|
||||
for (i = 0; (uint)i < iREGCNT_XMM; i++)
|
||||
{
|
||||
|
||||
if( xmmregs[i].needed ) {
|
||||
if (xmmregs[i].needed)
|
||||
{
|
||||
|
||||
// setup read to any just written regs
|
||||
if( xmmregs[i].inuse && (xmmregs[i].mode&MODE_WRITE) )
|
||||
if (xmmregs[i].inuse && (xmmregs[i].mode & MODE_WRITE))
|
||||
xmmregs[i].mode |= MODE_READ;
|
||||
xmmregs[i].needed = 0;
|
||||
}
|
||||
|
||||
if( xmmregs[i].inuse ) {
|
||||
pxAssert( xmmregs[i].type != XMMTYPE_TEMP );
|
||||
if (xmmregs[i].inuse)
|
||||
{
|
||||
pxAssert(xmmregs[i].type != XMMTYPE_TEMP);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -440,18 +495,22 @@ void _clearNeededXMMregs() {
|
|||
void _deleteGPRtoXMMreg(int reg, int flush)
|
||||
{
|
||||
int i;
|
||||
for (i=0; (uint)i<iREGCNT_XMM; i++) {
|
||||
for (i = 0; (uint)i < iREGCNT_XMM; i++)
|
||||
{
|
||||
|
||||
if (xmmregs[i].inuse && xmmregs[i].type == XMMTYPE_GPRREG && xmmregs[i].reg == reg ) {
|
||||
if (xmmregs[i].inuse && xmmregs[i].type == XMMTYPE_GPRREG && xmmregs[i].reg == reg)
|
||||
{
|
||||
|
||||
switch(flush) {
|
||||
switch (flush)
|
||||
{
|
||||
case 0:
|
||||
_freeXMMreg(i);
|
||||
break;
|
||||
case 1:
|
||||
case 2:
|
||||
if( xmmregs[i].mode & MODE_WRITE ) {
|
||||
pxAssert( reg != 0 );
|
||||
if (xmmregs[i].mode & MODE_WRITE)
|
||||
{
|
||||
pxAssert(reg != 0);
|
||||
|
||||
//pxAssert( g_xmmtypes[i] == XMMT_INT );
|
||||
xMOVDQA(ptr[&cpuRegs.GPR.r[reg].UL[0]], xRegisterSSE(i));
|
||||
|
@ -461,7 +520,7 @@ void _deleteGPRtoXMMreg(int reg, int flush)
|
|||
xmmregs[i].mode |= MODE_READ;
|
||||
}
|
||||
|
||||
if( flush == 2 )
|
||||
if (flush == 2)
|
||||
xmmregs[i].inuse = 0;
|
||||
break;
|
||||
|
||||
|
@ -481,15 +540,19 @@ void _deleteGPRtoXMMreg(int reg, int flush)
|
|||
void _deleteFPtoXMMreg(int reg, int flush)
|
||||
{
|
||||
int i;
|
||||
for (i=0; (uint)i<iREGCNT_XMM; i++) {
|
||||
if (xmmregs[i].inuse && xmmregs[i].type == XMMTYPE_FPREG && xmmregs[i].reg == reg ) {
|
||||
switch(flush) {
|
||||
for (i = 0; (uint)i < iREGCNT_XMM; i++)
|
||||
{
|
||||
if (xmmregs[i].inuse && xmmregs[i].type == XMMTYPE_FPREG && xmmregs[i].reg == reg)
|
||||
{
|
||||
switch (flush)
|
||||
{
|
||||
case 0:
|
||||
_freeXMMreg(i);
|
||||
return;
|
||||
|
||||
case 1:
|
||||
if (xmmregs[i].mode & MODE_WRITE) {
|
||||
if (xmmregs[i].mode & MODE_WRITE)
|
||||
{
|
||||
xMOVSS(ptr[&fpuRegs.fpr[reg].UL], xRegisterSSE(i));
|
||||
// get rid of MODE_WRITE since don't want to flush again
|
||||
xmmregs[i].mode &= ~MODE_WRITE;
|
||||
|
@ -510,114 +573,121 @@ void _deleteFPtoXMMreg(int reg, int flush)
|
|||
// Step 2: clear 'inuse' field
|
||||
void _freeXMMreg(u32 xmmreg)
|
||||
{
|
||||
pxAssert( xmmreg < iREGCNT_XMM );
|
||||
pxAssert(xmmreg < iREGCNT_XMM);
|
||||
|
||||
if (!xmmregs[xmmreg].inuse) return;
|
||||
if (!xmmregs[xmmreg].inuse)
|
||||
return;
|
||||
|
||||
if (xmmregs[xmmreg].mode & MODE_WRITE) {
|
||||
switch (xmmregs[xmmreg].type) {
|
||||
case XMMTYPE_VFREG:
|
||||
if (xmmregs[xmmreg].mode & MODE_WRITE)
|
||||
{
|
||||
switch (xmmregs[xmmreg].type)
|
||||
{
|
||||
const VURegs *VU = xmmregs[xmmreg].VU ? &VU1 : &VU0;
|
||||
if( xmmregs[xmmreg].mode & MODE_VUXYZ )
|
||||
case XMMTYPE_VFREG:
|
||||
{
|
||||
if( xmmregs[xmmreg].mode & MODE_VUZ )
|
||||
const VURegs* VU = xmmregs[xmmreg].VU ? &VU1 : &VU0;
|
||||
if (xmmregs[xmmreg].mode & MODE_VUXYZ)
|
||||
{
|
||||
// don't destroy w
|
||||
uint t0reg;
|
||||
for(t0reg = 0; t0reg < iREGCNT_XMM; ++t0reg ) {
|
||||
if( !xmmregs[t0reg].inuse ) break;
|
||||
}
|
||||
|
||||
if( t0reg < iREGCNT_XMM )
|
||||
if (xmmregs[xmmreg].mode & MODE_VUZ)
|
||||
{
|
||||
xMOVHL.PS(xRegisterSSE(t0reg), xRegisterSSE(xmmreg));
|
||||
xMOVL.PS(ptr[(void*)(VU_VFx_ADDR(xmmregs[xmmreg].reg))], xRegisterSSE(xmmreg));
|
||||
xMOVSS(ptr[(void*)(VU_VFx_ADDR(xmmregs[xmmreg].reg)+8)], xRegisterSSE(t0reg));
|
||||
// don't destroy w
|
||||
uint t0reg;
|
||||
for (t0reg = 0; t0reg < iREGCNT_XMM; ++t0reg)
|
||||
{
|
||||
if (!xmmregs[t0reg].inuse)
|
||||
break;
|
||||
}
|
||||
|
||||
if (t0reg < iREGCNT_XMM)
|
||||
{
|
||||
xMOVHL.PS(xRegisterSSE(t0reg), xRegisterSSE(xmmreg));
|
||||
xMOVL.PS(ptr[(void*)(VU_VFx_ADDR(xmmregs[xmmreg].reg))], xRegisterSSE(xmmreg));
|
||||
xMOVSS(ptr[(void*)(VU_VFx_ADDR(xmmregs[xmmreg].reg) + 8)], xRegisterSSE(t0reg));
|
||||
}
|
||||
else
|
||||
{
|
||||
// no free reg
|
||||
xMOVL.PS(ptr[(void*)(VU_VFx_ADDR(xmmregs[xmmreg].reg))], xRegisterSSE(xmmreg));
|
||||
xSHUF.PS(xRegisterSSE(xmmreg), xRegisterSSE(xmmreg), 0xc6);
|
||||
//xMOVHL.PS(xRegisterSSE(xmmreg), xRegisterSSE(xmmreg));
|
||||
xMOVSS(ptr[(void*)(VU_VFx_ADDR(xmmregs[xmmreg].reg) + 8)], xRegisterSSE(xmmreg));
|
||||
xSHUF.PS(xRegisterSSE(xmmreg), xRegisterSSE(xmmreg), 0xc6);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// no free reg
|
||||
xMOVL.PS(ptr[(void*)(VU_VFx_ADDR(xmmregs[xmmreg].reg))], xRegisterSSE(xmmreg));
|
||||
xSHUF.PS(xRegisterSSE(xmmreg), xRegisterSSE(xmmreg), 0xc6);
|
||||
//xMOVHL.PS(xRegisterSSE(xmmreg), xRegisterSSE(xmmreg));
|
||||
xMOVSS(ptr[(void*)(VU_VFx_ADDR(xmmregs[xmmreg].reg)+8)], xRegisterSSE(xmmreg));
|
||||
xSHUF.PS(xRegisterSSE(xmmreg), xRegisterSSE(xmmreg), 0xc6);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
xMOVL.PS(ptr[(void*)(VU_VFx_ADDR(xmmregs[xmmreg].reg))], xRegisterSSE(xmmreg));
|
||||
xMOVAPS(ptr[(void*)(VU_VFx_ADDR(xmmregs[xmmreg].reg))], xRegisterSSE(xmmreg));
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
xMOVAPS(ptr[(void*)(VU_VFx_ADDR(xmmregs[xmmreg].reg))], xRegisterSSE(xmmreg));
|
||||
}
|
||||
}
|
||||
break;
|
||||
break;
|
||||
|
||||
case XMMTYPE_ACC:
|
||||
{
|
||||
const VURegs *VU = xmmregs[xmmreg].VU ? &VU1 : &VU0;
|
||||
if( xmmregs[xmmreg].mode & MODE_VUXYZ )
|
||||
case XMMTYPE_ACC:
|
||||
{
|
||||
if( xmmregs[xmmreg].mode & MODE_VUZ )
|
||||
const VURegs* VU = xmmregs[xmmreg].VU ? &VU1 : &VU0;
|
||||
if (xmmregs[xmmreg].mode & MODE_VUXYZ)
|
||||
{
|
||||
// don't destroy w
|
||||
uint t0reg;
|
||||
|
||||
for(t0reg = 0; t0reg < iREGCNT_XMM; ++t0reg ) {
|
||||
if( !xmmregs[t0reg].inuse ) break;
|
||||
}
|
||||
|
||||
if( t0reg < iREGCNT_XMM )
|
||||
if (xmmregs[xmmreg].mode & MODE_VUZ)
|
||||
{
|
||||
xMOVHL.PS(xRegisterSSE(t0reg), xRegisterSSE(xmmreg));
|
||||
xMOVL.PS(ptr[(void*)(VU_ACCx_ADDR)], xRegisterSSE(xmmreg));
|
||||
xMOVSS(ptr[(void*)(VU_ACCx_ADDR+8)], xRegisterSSE(t0reg));
|
||||
// don't destroy w
|
||||
uint t0reg;
|
||||
|
||||
for (t0reg = 0; t0reg < iREGCNT_XMM; ++t0reg)
|
||||
{
|
||||
if (!xmmregs[t0reg].inuse)
|
||||
break;
|
||||
}
|
||||
|
||||
if (t0reg < iREGCNT_XMM)
|
||||
{
|
||||
xMOVHL.PS(xRegisterSSE(t0reg), xRegisterSSE(xmmreg));
|
||||
xMOVL.PS(ptr[(void*)(VU_ACCx_ADDR)], xRegisterSSE(xmmreg));
|
||||
xMOVSS(ptr[(void*)(VU_ACCx_ADDR + 8)], xRegisterSSE(t0reg));
|
||||
}
|
||||
else
|
||||
{
|
||||
// no free reg
|
||||
xMOVL.PS(ptr[(void*)(VU_ACCx_ADDR)], xRegisterSSE(xmmreg));
|
||||
xSHUF.PS(xRegisterSSE(xmmreg), xRegisterSSE(xmmreg), 0xc6);
|
||||
//xMOVHL.PS(xRegisterSSE(xmmreg), xRegisterSSE(xmmreg));
|
||||
xMOVSS(ptr[(void*)(VU_ACCx_ADDR + 8)], xRegisterSSE(xmmreg));
|
||||
xSHUF.PS(xRegisterSSE(xmmreg), xRegisterSSE(xmmreg), 0xc6);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// no free reg
|
||||
xMOVL.PS(ptr[(void*)(VU_ACCx_ADDR)], xRegisterSSE(xmmreg));
|
||||
xSHUF.PS(xRegisterSSE(xmmreg), xRegisterSSE(xmmreg), 0xc6);
|
||||
//xMOVHL.PS(xRegisterSSE(xmmreg), xRegisterSSE(xmmreg));
|
||||
xMOVSS(ptr[(void*)(VU_ACCx_ADDR+8)], xRegisterSSE(xmmreg));
|
||||
xSHUF.PS(xRegisterSSE(xmmreg), xRegisterSSE(xmmreg), 0xc6);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
xMOVL.PS(ptr[(void*)(VU_ACCx_ADDR)], xRegisterSSE(xmmreg));
|
||||
xMOVAPS(ptr[(void*)(VU_ACCx_ADDR)], xRegisterSSE(xmmreg));
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
xMOVAPS(ptr[(void*)(VU_ACCx_ADDR)], xRegisterSSE(xmmreg));
|
||||
}
|
||||
break;
|
||||
|
||||
case XMMTYPE_GPRREG:
|
||||
pxAssert(xmmregs[xmmreg].reg != 0);
|
||||
//pxAssert( g_xmmtypes[xmmreg] == XMMT_INT );
|
||||
xMOVDQA(ptr[&cpuRegs.GPR.r[xmmregs[xmmreg].reg].UL[0]], xRegisterSSE(xmmreg));
|
||||
break;
|
||||
|
||||
case XMMTYPE_FPREG:
|
||||
xMOVSS(ptr[&fpuRegs.fpr[xmmregs[xmmreg].reg]], xRegisterSSE(xmmreg));
|
||||
break;
|
||||
|
||||
case XMMTYPE_FPACC:
|
||||
xMOVSS(ptr[&fpuRegs.ACC.f], xRegisterSSE(xmmreg));
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
break;
|
||||
|
||||
case XMMTYPE_GPRREG:
|
||||
pxAssert( xmmregs[xmmreg].reg != 0 );
|
||||
//pxAssert( g_xmmtypes[xmmreg] == XMMT_INT );
|
||||
xMOVDQA(ptr[&cpuRegs.GPR.r[xmmregs[xmmreg].reg].UL[0]], xRegisterSSE(xmmreg));
|
||||
break;
|
||||
|
||||
case XMMTYPE_FPREG:
|
||||
xMOVSS(ptr[&fpuRegs.fpr[xmmregs[xmmreg].reg]], xRegisterSSE(xmmreg));
|
||||
break;
|
||||
|
||||
case XMMTYPE_FPACC:
|
||||
xMOVSS(ptr[&fpuRegs.ACC.f], xRegisterSSE(xmmreg));
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
xmmregs[xmmreg].mode &= ~(MODE_WRITE|MODE_VUXYZ);
|
||||
xmmregs[xmmreg].mode &= ~(MODE_WRITE | MODE_VUXYZ);
|
||||
xmmregs[xmmreg].inuse = 0;
|
||||
}
|
||||
|
||||
|
@ -625,8 +695,10 @@ void _freeXMMreg(u32 xmmreg)
|
|||
int _getNumXMMwrite()
|
||||
{
|
||||
int num = 0, i;
|
||||
for (i=0; (uint)i<iREGCNT_XMM; i++) {
|
||||
if( xmmregs[i].inuse && (xmmregs[i].mode&MODE_WRITE) ) ++num;
|
||||
for (i = 0; (uint)i < iREGCNT_XMM; i++)
|
||||
{
|
||||
if (xmmregs[i].inuse && (xmmregs[i].mode & MODE_WRITE))
|
||||
++num;
|
||||
}
|
||||
|
||||
return num;
|
||||
|
@ -639,25 +711,35 @@ u8 _hasFreeXMMreg()
|
|||
{
|
||||
int i;
|
||||
|
||||
for (i=0; (uint)i<iREGCNT_XMM; i++) {
|
||||
if (!xmmregs[i].inuse) return 1;
|
||||
for (i = 0; (uint)i < iREGCNT_XMM; i++)
|
||||
{
|
||||
if (!xmmregs[i].inuse)
|
||||
return 1;
|
||||
}
|
||||
|
||||
// check for dead regs
|
||||
for (i=0; (uint)i<iREGCNT_XMM; i++) {
|
||||
if (xmmregs[i].needed) continue;
|
||||
if (xmmregs[i].type == XMMTYPE_GPRREG ) {
|
||||
if( !EEINST_ISLIVEXMM(xmmregs[i].reg) ) {
|
||||
for (i = 0; (uint)i < iREGCNT_XMM; i++)
|
||||
{
|
||||
if (xmmregs[i].needed)
|
||||
continue;
|
||||
if (xmmregs[i].type == XMMTYPE_GPRREG)
|
||||
{
|
||||
if (!EEINST_ISLIVEXMM(xmmregs[i].reg))
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// check for dead regs
|
||||
for (i=0; (uint)i<iREGCNT_XMM; i++) {
|
||||
if (xmmregs[i].needed) continue;
|
||||
if (xmmregs[i].type == XMMTYPE_GPRREG ) {
|
||||
if( !(g_pCurInstInfo->regs[xmmregs[i].reg]&EEINST_USED) ) {
|
||||
for (i = 0; (uint)i < iREGCNT_XMM; i++)
|
||||
{
|
||||
if (xmmregs[i].needed)
|
||||
continue;
|
||||
if (xmmregs[i].type == XMMTYPE_GPRREG)
|
||||
{
|
||||
if (!(g_pCurInstInfo->regs[xmmregs[i].reg] & EEINST_USED))
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
@ -670,11 +752,13 @@ void _flushXMMregs()
|
|||
{
|
||||
int i;
|
||||
|
||||
for (i=0; (uint)i<iREGCNT_XMM; i++) {
|
||||
if (xmmregs[i].inuse == 0) continue;
|
||||
for (i = 0; (uint)i < iREGCNT_XMM; i++)
|
||||
{
|
||||
if (xmmregs[i].inuse == 0)
|
||||
continue;
|
||||
|
||||
pxAssert( xmmregs[i].type != XMMTYPE_TEMP );
|
||||
pxAssert( xmmregs[i].mode & (MODE_READ|MODE_WRITE) );
|
||||
pxAssert(xmmregs[i].type != XMMTYPE_TEMP);
|
||||
pxAssert(xmmregs[i].mode & (MODE_READ | MODE_WRITE));
|
||||
|
||||
_freeXMMreg(i);
|
||||
xmmregs[i].inuse = 1;
|
||||
|
@ -688,10 +772,12 @@ void _freeXMMregs()
|
|||
{
|
||||
int i;
|
||||
|
||||
for (i=0; (uint)i<iREGCNT_XMM; i++) {
|
||||
if (xmmregs[i].inuse == 0) continue;
|
||||
for (i = 0; (uint)i < iREGCNT_XMM; i++)
|
||||
{
|
||||
if (xmmregs[i].inuse == 0)
|
||||
continue;
|
||||
|
||||
pxAssert( xmmregs[i].type != XMMTYPE_TEMP );
|
||||
pxAssert(xmmregs[i].type != XMMTYPE_TEMP);
|
||||
//pxAssert( xmmregs[i].mode & (MODE_READ|MODE_WRITE) );
|
||||
|
||||
_freeXMMreg(i);
|
||||
|
@ -702,48 +788,55 @@ int _signExtendXMMtoM(uptr to, x86SSERegType from, int candestroy)
|
|||
{
|
||||
int t0reg;
|
||||
g_xmmtypes[from] = XMMT_INT;
|
||||
if( candestroy ) {
|
||||
if( g_xmmtypes[from] == XMMT_FPS ) xMOVSS(ptr[(void*)(to)], xRegisterSSE(from));
|
||||
else xMOVD(ptr[(void*)(to)], xRegisterSSE(from));
|
||||
if (candestroy)
|
||||
{
|
||||
if (g_xmmtypes[from] == XMMT_FPS)
|
||||
xMOVSS(ptr[(void*)(to)], xRegisterSSE(from));
|
||||
else
|
||||
xMOVD(ptr[(void*)(to)], xRegisterSSE(from));
|
||||
|
||||
xPSRA.D(xRegisterSSE(from), 31);
|
||||
xMOVD(ptr[(void*)(to+4)], xRegisterSSE(from));
|
||||
xMOVD(ptr[(void*)(to + 4)], xRegisterSSE(from));
|
||||
return 1;
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
// can't destroy and type is int
|
||||
pxAssert( g_xmmtypes[from] == XMMT_INT );
|
||||
pxAssert(g_xmmtypes[from] == XMMT_INT);
|
||||
|
||||
|
||||
if( _hasFreeXMMreg() ) {
|
||||
if (_hasFreeXMMreg())
|
||||
{
|
||||
xmmregs[from].needed = 1;
|
||||
t0reg = _allocTempXMMreg(XMMT_INT, -1);
|
||||
xMOVDQA(xRegisterSSE(t0reg), xRegisterSSE(from));
|
||||
xPSRA.D(xRegisterSSE(from), 31);
|
||||
xMOVD(ptr[(void*)(to)], xRegisterSSE(t0reg));
|
||||
xMOVD(ptr[(void*)(to+4)], xRegisterSSE(from));
|
||||
xMOVD(ptr[(void*)(to + 4)], xRegisterSSE(from));
|
||||
|
||||
// swap xmm regs.. don't ask
|
||||
xmmregs[t0reg] = xmmregs[from];
|
||||
xmmregs[from].inuse = 0;
|
||||
}
|
||||
else {
|
||||
xMOVD(ptr[(void*)(to+4)], xRegisterSSE(from));
|
||||
else
|
||||
{
|
||||
xMOVD(ptr[(void*)(to + 4)], xRegisterSSE(from));
|
||||
xMOVD(ptr[(void*)(to)], xRegisterSSE(from));
|
||||
xSAR(ptr32[(u32*)(to+4)], 31);
|
||||
xSAR(ptr32[(u32*)(to + 4)], 31);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
pxAssume( false );
|
||||
pxAssume(false);
|
||||
}
|
||||
|
||||
// Seem related to the mix between XMM/x86 in order to avoid a couple of move
|
||||
// But it is quite obscure !!!
|
||||
int _allocCheckGPRtoXMM(EEINST* pinst, int gprreg, int mode)
|
||||
{
|
||||
if( pinst->regs[gprreg] & EEINST_XMM ) return _allocGPRtoXMMreg(-1, gprreg, mode);
|
||||
if (pinst->regs[gprreg] & EEINST_XMM)
|
||||
return _allocGPRtoXMMreg(-1, gprreg, mode);
|
||||
|
||||
return _checkXMMreg(XMMTYPE_GPRREG, gprreg, mode);
|
||||
}
|
||||
|
@ -752,33 +845,36 @@ int _allocCheckGPRtoXMM(EEINST* pinst, int gprreg, int mode)
|
|||
// But it is quite obscure !!!
|
||||
int _allocCheckFPUtoXMM(EEINST* pinst, int fpureg, int mode)
|
||||
{
|
||||
if( pinst->fpuregs[fpureg] & EEINST_XMM ) return _allocFPtoXMMreg(-1, fpureg, mode);
|
||||
if (pinst->fpuregs[fpureg] & EEINST_XMM)
|
||||
return _allocFPtoXMMreg(-1, fpureg, mode);
|
||||
|
||||
return _checkXMMreg(XMMTYPE_FPREG, fpureg, mode);
|
||||
}
|
||||
|
||||
int _allocCheckGPRtoX86(EEINST* pinst, int gprreg, int mode)
|
||||
{
|
||||
if( pinst->regs[gprreg] & EEINST_USED )
|
||||
return _allocX86reg(xEmptyReg, X86TYPE_GPR, gprreg, mode);
|
||||
if (pinst->regs[gprreg] & EEINST_USED)
|
||||
return _allocX86reg(xEmptyReg, X86TYPE_GPR, gprreg, mode);
|
||||
|
||||
return _checkX86reg(X86TYPE_GPR, gprreg, mode);
|
||||
}
|
||||
|
||||
void _recClearInst(EEINST* pinst)
|
||||
{
|
||||
memzero( *pinst );
|
||||
memset8<EEINST_LIVE0|EEINST_LIVE2>( pinst->regs );
|
||||
memset8<EEINST_LIVE0>( pinst->fpuregs );
|
||||
memzero(*pinst);
|
||||
memset8<EEINST_LIVE0 | EEINST_LIVE2>(pinst->regs);
|
||||
memset8<EEINST_LIVE0>(pinst->fpuregs);
|
||||
}
|
||||
|
||||
// returns nonzero value if reg has been written between [startpc, endpc-4]
|
||||
u32 _recIsRegWritten(EEINST* pinst, int size, u8 xmmtype, u8 reg)
|
||||
{
|
||||
u32 i, inst = 1;
|
||||
u32 i, inst = 1;
|
||||
|
||||
while(size-- > 0) {
|
||||
for(i = 0; i < ArraySize(pinst->writeType); ++i) {
|
||||
while (size-- > 0)
|
||||
{
|
||||
for (i = 0; i < ArraySize(pinst->writeType); ++i)
|
||||
{
|
||||
if ((pinst->writeType[i] == xmmtype) && (pinst->writeReg[i] == reg))
|
||||
return inst;
|
||||
}
|
||||
|
@ -792,24 +888,30 @@ u32 _recIsRegWritten(EEINST* pinst, int size, u8 xmmtype, u8 reg)
|
|||
void _recFillRegister(EEINST& pinst, int type, int reg, int write)
|
||||
{
|
||||
u32 i = 0;
|
||||
if (write ) {
|
||||
for(i = 0; i < ArraySize(pinst.writeType); ++i) {
|
||||
if( pinst.writeType[i] == XMMTYPE_TEMP ) {
|
||||
if (write)
|
||||
{
|
||||
for (i = 0; i < ArraySize(pinst.writeType); ++i)
|
||||
{
|
||||
if (pinst.writeType[i] == XMMTYPE_TEMP)
|
||||
{
|
||||
pinst.writeType[i] = type;
|
||||
pinst.writeReg[i] = reg;
|
||||
return;
|
||||
}
|
||||
}
|
||||
pxAssume( false );
|
||||
pxAssume(false);
|
||||
}
|
||||
else {
|
||||
for(i = 0; i < ArraySize(pinst.readType); ++i) {
|
||||
if( pinst.readType[i] == XMMTYPE_TEMP ) {
|
||||
else
|
||||
{
|
||||
for (i = 0; i < ArraySize(pinst.readType); ++i)
|
||||
{
|
||||
if (pinst.readType[i] == XMMTYPE_TEMP)
|
||||
{
|
||||
pinst.readType[i] = type;
|
||||
pinst.readReg[i] = reg;
|
||||
return;
|
||||
}
|
||||
}
|
||||
pxAssume( false );
|
||||
pxAssume(false);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -25,51 +25,51 @@
|
|||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Shared Register allocation flags (apply to X86, XMM, MMX, etc).
|
||||
|
||||
#define MODE_READ 1
|
||||
#define MODE_WRITE 2
|
||||
#define MODE_READHALF 4 // read only low 64 bits
|
||||
#define MODE_VUXY 0x8 // vector only has xy valid (real zw are in mem), not the same as MODE_READHALF
|
||||
#define MODE_VUZ 0x10 // z only doesn't work for now
|
||||
#define MODE_VUXYZ (MODE_VUZ|MODE_VUXY) // vector only has xyz valid (real w is in memory)
|
||||
#define MODE_NOFLUSH 0x20 // can't flush reg to mem
|
||||
#define MODE_NOFRAME 0x40 // when allocating x86regs, don't use ebp reg
|
||||
#define MODE_8BITREG 0x80 // when allocating x86regs, use only eax, ecx, edx, and ebx
|
||||
#define MODE_READ 1
|
||||
#define MODE_WRITE 2
|
||||
#define MODE_READHALF 4 // read only low 64 bits
|
||||
#define MODE_VUXY 8 // vector only has xy valid (real zw are in mem), not the same as MODE_READHALF
|
||||
#define MODE_VUZ 0x10 // z only doesn't work for now
|
||||
#define MODE_VUXYZ (MODE_VUZ | MODE_VUXY) // vector only has xyz valid (real w is in memory)
|
||||
#define MODE_NOFLUSH 0x20 // can't flush reg to mem
|
||||
#define MODE_NOFRAME 0x40 // when allocating x86regs, don't use ebp reg
|
||||
#define MODE_8BITREG 0x80 // when allocating x86regs, use only eax, ecx, edx, and ebx
|
||||
|
||||
#define PROCESS_EE_XMM 0x02
|
||||
|
||||
// currently only used in FPU
|
||||
#define PROCESS_EE_S 0x04 // S is valid, otherwise take from mem
|
||||
#define PROCESS_EE_T 0x08 // T is valid, otherwise take from mem
|
||||
#define PROCESS_EE_S 0x04 // S is valid, otherwise take from mem
|
||||
#define PROCESS_EE_T 0x08 // T is valid, otherwise take from mem
|
||||
|
||||
// not used in VU recs
|
||||
#define PROCESS_EE_MODEWRITES 0x10 // if s is a reg, set if not in cpuRegs
|
||||
#define PROCESS_EE_MODEWRITET 0x20 // if t is a reg, set if not in cpuRegs
|
||||
#define PROCESS_EE_LO 0x40 // lo reg is valid
|
||||
#define PROCESS_EE_HI 0x80 // hi reg is valid
|
||||
#define PROCESS_EE_ACC 0x40 // acc reg is valid
|
||||
#define PROCESS_EE_LO 0x40 // lo reg is valid
|
||||
#define PROCESS_EE_HI 0x80 // hi reg is valid
|
||||
#define PROCESS_EE_ACC 0x40 // acc reg is valid
|
||||
|
||||
// used in VU recs
|
||||
#define PROCESS_VU_UPDATEFLAGS 0x10
|
||||
#define PROCESS_VU_COP2 0x80 // simple cop2
|
||||
#define PROCESS_VU_COP2 0x80 // simple cop2
|
||||
|
||||
#define EEREC_S (((info)>>8)&0xf)
|
||||
#define EEREC_T (((info)>>12)&0xf)
|
||||
#define EEREC_D (((info)>>16)&0xf)
|
||||
#define EEREC_LO (((info)>>20)&0xf)
|
||||
#define EEREC_HI (((info)>>24)&0xf)
|
||||
#define EEREC_ACC (((info)>>20)&0xf)
|
||||
#define EEREC_TEMP (((info)>>24)&0xf)
|
||||
#define EEREC_S (((info) >> 8) & 0xf)
|
||||
#define EEREC_T (((info) >> 12) & 0xf)
|
||||
#define EEREC_D (((info) >> 16) & 0xf)
|
||||
#define EEREC_LO (((info) >> 20) & 0xf)
|
||||
#define EEREC_HI (((info) >> 24) & 0xf)
|
||||
#define EEREC_ACC (((info) >> 20) & 0xf)
|
||||
#define EEREC_TEMP (((info) >> 24) & 0xf)
|
||||
#define VUREC_FMAC ((info)&0x80000000)
|
||||
|
||||
#define PROCESS_EE_SET_S(reg) ((reg)<<8)
|
||||
#define PROCESS_EE_SET_T(reg) ((reg)<<12)
|
||||
#define PROCESS_EE_SET_D(reg) ((reg)<<16)
|
||||
#define PROCESS_EE_SET_LO(reg) ((reg)<<20)
|
||||
#define PROCESS_EE_SET_HI(reg) ((reg)<<24)
|
||||
#define PROCESS_EE_SET_ACC(reg) ((reg)<<20)
|
||||
#define PROCESS_EE_SET_S(reg) ((reg) << 8)
|
||||
#define PROCESS_EE_SET_T(reg) ((reg) << 12)
|
||||
#define PROCESS_EE_SET_D(reg) ((reg) << 16)
|
||||
#define PROCESS_EE_SET_LO(reg) ((reg) << 20)
|
||||
#define PROCESS_EE_SET_HI(reg) ((reg) << 24)
|
||||
#define PROCESS_EE_SET_ACC(reg) ((reg) << 20)
|
||||
|
||||
#define PROCESS_VU_SET_ACC(reg) PROCESS_EE_SET_ACC(reg)
|
||||
#define PROCESS_VU_SET_TEMP(reg) ((reg)<<24)
|
||||
#define PROCESS_VU_SET_TEMP(reg) ((reg) << 24)
|
||||
|
||||
#define PROCESS_VU_SET_FMAC() 0x80000000
|
||||
|
||||
|
@ -91,19 +91,20 @@
|
|||
#define X86TYPE_VUPWRITE 8
|
||||
#define X86TYPE_PSX 9
|
||||
#define X86TYPE_PCWRITEBACK 10
|
||||
#define X86TYPE_VUJUMP 12 // jump from random mem (g_recWriteback)
|
||||
#define X86TYPE_VUJUMP 12 // jump from random mem (g_recWriteback)
|
||||
#define X86TYPE_VITEMP 13
|
||||
#define X86TYPE_FNARG 14 // function parameter, max is 4
|
||||
#define X86TYPE_FNARG 14 // function parameter, max is 4
|
||||
|
||||
#define X86TYPE_VU1 0x80
|
||||
|
||||
//#define X86_ISVI(type) ((type&~X86TYPE_VU1) == X86TYPE_VI)
|
||||
static __fi int X86_ISVI(int type)
|
||||
{
|
||||
return ((type&~X86TYPE_VU1) == X86TYPE_VI);
|
||||
return ((type & ~X86TYPE_VU1) == X86TYPE_VI);
|
||||
}
|
||||
|
||||
struct _x86regs {
|
||||
struct _x86regs
|
||||
{
|
||||
u8 inuse;
|
||||
u8 reg; // value of 0 - not used
|
||||
u8 mode;
|
||||
|
@ -117,8 +118,8 @@ extern _x86regs x86regs[iREGCNT_GPR], s_saveX86regs[iREGCNT_GPR];
|
|||
|
||||
uptr _x86GetAddr(int type, int reg);
|
||||
void _initX86regs();
|
||||
int _getFreeX86reg(int mode);
|
||||
int _allocX86reg(x86Emitter::xRegister32 x86reg, int type, int reg, int mode);
|
||||
int _getFreeX86reg(int mode);
|
||||
int _allocX86reg(x86Emitter::xRegister32 x86reg, int type, int reg, int mode);
|
||||
void _deleteX86reg(int type, int reg, int flush);
|
||||
int _checkX86reg(int type, int reg, int mode);
|
||||
void _addNeededX86reg(int type, int reg);
|
||||
|
@ -133,21 +134,22 @@ void _flushConstReg(int reg);
|
|||
////////////////////////////////////////////////////////////////////////////////
|
||||
// XMM (128-bit) Register Allocation Tools
|
||||
|
||||
#define XMM_CONV_VU(VU) (VU==&VU1)
|
||||
#define XMM_CONV_VU(VU) (VU == &VU1)
|
||||
|
||||
#define XMMTYPE_TEMP 0 // has to be 0
|
||||
#define XMMTYPE_VFREG 1
|
||||
#define XMMTYPE_ACC 2
|
||||
#define XMMTYPE_FPREG 3
|
||||
#define XMMTYPE_FPACC 4
|
||||
#define XMMTYPE_GPRREG 5
|
||||
#define XMMTYPE_TEMP 0 // has to be 0
|
||||
#define XMMTYPE_VFREG 1
|
||||
#define XMMTYPE_ACC 2
|
||||
#define XMMTYPE_FPREG 3
|
||||
#define XMMTYPE_FPACC 4
|
||||
#define XMMTYPE_GPRREG 5
|
||||
|
||||
// lo and hi regs
|
||||
#define XMMGPR_LO 33
|
||||
#define XMMGPR_HI 32
|
||||
#define XMMFPU_ACC 32
|
||||
#define XMMGPR_LO 33
|
||||
#define XMMGPR_HI 32
|
||||
#define XMMFPU_ACC 32
|
||||
|
||||
struct _xmmregs {
|
||||
struct _xmmregs
|
||||
{
|
||||
u8 inuse;
|
||||
u8 reg;
|
||||
u8 type;
|
||||
|
@ -158,12 +160,12 @@ struct _xmmregs {
|
|||
};
|
||||
|
||||
void _initXMMregs();
|
||||
int _getFreeXMMreg();
|
||||
int _allocTempXMMreg(XMMSSEType type, int xmmreg);
|
||||
int _allocFPtoXMMreg(int xmmreg, int fpreg, int mode);
|
||||
int _allocGPRtoXMMreg(int xmmreg, int gprreg, int mode);
|
||||
int _allocFPACCtoXMMreg(int xmmreg, int mode);
|
||||
int _checkXMMreg(int type, int reg, int mode);
|
||||
int _getFreeXMMreg();
|
||||
int _allocTempXMMreg(XMMSSEType type, int xmmreg);
|
||||
int _allocFPtoXMMreg(int xmmreg, int fpreg, int mode);
|
||||
int _allocGPRtoXMMreg(int xmmreg, int gprreg, int mode);
|
||||
int _allocFPACCtoXMMreg(int xmmreg, int mode);
|
||||
int _checkXMMreg(int type, int reg, int mode);
|
||||
void _addNeededFPtoXMMreg(int fpreg);
|
||||
void _addNeededFPACCtoXMMreg();
|
||||
void _addNeededGPRtoXMMreg(int gprreg);
|
||||
|
@ -199,15 +201,15 @@ int _signExtendXMMtoM(uptr to, x86SSERegType from, int candestroy); // returns t
|
|||
// 3/ EEINST_LIVE* is cleared when register is written. And set again when register is read.
|
||||
// My guess: the purpose is to detect the usage hole in the flow
|
||||
|
||||
#define EEINST_LIVE0 1 // if var is ever used (read or write)
|
||||
#define EEINST_LIVE2 4 // if cur var's next 64 bits are needed
|
||||
#define EEINST_LASTUSE 8 // if var isn't written/read anymore
|
||||
//#define EEINST_MMX 0x10 // removed
|
||||
#define EEINST_XMM 0x20 // var will be used in xmm ops
|
||||
#define EEINST_USED 0x40
|
||||
#define EEINST_LIVE0 1 // if var is ever used (read or write)
|
||||
#define EEINST_LIVE2 4 // if cur var's next 64 bits are needed
|
||||
#define EEINST_LASTUSE 8 // if var isn't written/read anymore
|
||||
//#define EEINST_MMX 0x10 // removed
|
||||
#define EEINST_XMM 0x20 // var will be used in xmm ops
|
||||
#define EEINST_USED 0x40
|
||||
|
||||
#define EEINSTINFO_COP1 1
|
||||
#define EEINSTINFO_COP2 2
|
||||
#define EEINSTINFO_COP1 1
|
||||
#define EEINSTINFO_COP2 2
|
||||
|
||||
struct EEINST
|
||||
{
|
||||
|
@ -233,19 +235,19 @@ extern u32 _recIsRegWritten(EEINST* pinst, int size, u8 xmmtype, u8 reg);
|
|||
//extern u32 _recIsRegUsed(EEINST* pinst, int size, u8 xmmtype, u8 reg);
|
||||
extern void _recFillRegister(EEINST& pinst, int type, int reg, int write);
|
||||
|
||||
static __fi bool EEINST_ISLIVE64(u32 reg) { return !!(g_pCurInstInfo->regs[reg] & (EEINST_LIVE0)); }
|
||||
static __fi bool EEINST_ISLIVEXMM(u32 reg) { return !!(g_pCurInstInfo->regs[reg] & (EEINST_LIVE0|EEINST_LIVE2)); }
|
||||
static __fi bool EEINST_ISLIVE2(u32 reg) { return !!(g_pCurInstInfo->regs[reg] & EEINST_LIVE2); }
|
||||
static __fi bool EEINST_ISLIVE64(u32 reg) { return !!(g_pCurInstInfo->regs[reg] & (EEINST_LIVE0)); }
|
||||
static __fi bool EEINST_ISLIVEXMM(u32 reg) { return !!(g_pCurInstInfo->regs[reg] & (EEINST_LIVE0 | EEINST_LIVE2)); }
|
||||
static __fi bool EEINST_ISLIVE2(u32 reg) { return !!(g_pCurInstInfo->regs[reg] & EEINST_LIVE2); }
|
||||
|
||||
static __fi bool FPUINST_ISLIVE(u32 reg) { return !!(g_pCurInstInfo->fpuregs[reg] & EEINST_LIVE0); }
|
||||
static __fi bool FPUINST_LASTUSE(u32 reg) { return !!(g_pCurInstInfo->fpuregs[reg] & EEINST_LASTUSE); }
|
||||
static __fi bool FPUINST_ISLIVE(u32 reg) { return !!(g_pCurInstInfo->fpuregs[reg] & EEINST_LIVE0); }
|
||||
static __fi bool FPUINST_LASTUSE(u32 reg) { return !!(g_pCurInstInfo->fpuregs[reg] & EEINST_LASTUSE); }
|
||||
|
||||
extern u32 g_recWriteback; // used for jumps (VUrec mess!)
|
||||
|
||||
extern _xmmregs xmmregs[iREGCNT_XMM], s_saveXMMregs[iREGCNT_XMM];
|
||||
|
||||
extern __tls_emit u8 *j8Ptr[32]; // depreciated item. use local u8* vars instead.
|
||||
extern __tls_emit u32 *j32Ptr[32]; // depreciated item. use local u32* vars instead.
|
||||
extern __tls_emit u8* j8Ptr[32]; // depreciated item. use local u8* vars instead.
|
||||
extern __tls_emit u32* j32Ptr[32]; // depreciated item. use local u32* vars instead.
|
||||
|
||||
extern u16 g_x86AllocCounter;
|
||||
extern u16 g_xmmAllocCounter;
|
||||
|
@ -272,25 +274,25 @@ int _allocCheckGPRtoX86(EEINST* pinst, int gprreg, int mode);
|
|||
// the code being called is going to modify register allocations -- ie, be doing
|
||||
// some kind of recompiling of its own.
|
||||
|
||||
#define FLUSH_CACHED_REGS 0x001
|
||||
#define FLUSH_FLUSH_XMM 0x002
|
||||
#define FLUSH_FREE_XMM 0x004 // both flushes and frees
|
||||
#define FLUSH_FLUSH_ALLX86 0x020 // flush x86
|
||||
#define FLUSH_FREE_TEMPX86 0x040 // flush and free temporary x86 regs
|
||||
#define FLUSH_FREE_ALLX86 0x080 // free all x86 regs
|
||||
#define FLUSH_FREE_VU0 0x100 // free all vu0 related regs
|
||||
#define FLUSH_PC 0x200 // program counter
|
||||
#define FLUSH_CAUSE 0x000 // disabled for now: cause register, only the branch delay bit
|
||||
#define FLUSH_CODE 0x800 // opcode for interpreter
|
||||
#define FLUSH_CACHED_REGS 0x001
|
||||
#define FLUSH_FLUSH_XMM 0x002
|
||||
#define FLUSH_FREE_XMM 0x004 // both flushes and frees
|
||||
#define FLUSH_FLUSH_ALLX86 0x020 // flush x86
|
||||
#define FLUSH_FREE_TEMPX86 0x040 // flush and free temporary x86 regs
|
||||
#define FLUSH_FREE_ALLX86 0x080 // free all x86 regs
|
||||
#define FLUSH_FREE_VU0 0x100 // free all vu0 related regs
|
||||
#define FLUSH_PC 0x200 // program counter
|
||||
#define FLUSH_CAUSE 0x000 // disabled for now: cause register, only the branch delay bit
|
||||
#define FLUSH_CODE 0x800 // opcode for interpreter
|
||||
|
||||
#define FLUSH_EVERYTHING 0x1ff
|
||||
#define FLUSH_EVERYTHING 0x1ff
|
||||
//#define FLUSH_EXCEPTION 0x1ff // will probably do this totally differently actually
|
||||
#define FLUSH_INTERPRETER 0xfff
|
||||
#define FLUSH_INTERPRETER 0xfff
|
||||
#define FLUSH_FULLVTLB FLUSH_NOCONST
|
||||
|
||||
// no freeing, used when callee won't destroy xmm regs
|
||||
#define FLUSH_NODESTROY (FLUSH_CACHED_REGS|FLUSH_FLUSH_XMM|FLUSH_FLUSH_ALLX86)
|
||||
#define FLUSH_NODESTROY (FLUSH_CACHED_REGS | FLUSH_FLUSH_XMM | FLUSH_FLUSH_ALLX86)
|
||||
// used when regs aren't going to be changed be callee
|
||||
#define FLUSH_NOCONST (FLUSH_FREE_XMM|FLUSH_FREE_TEMPX86)
|
||||
#define FLUSH_NOCONST (FLUSH_FREE_XMM | FLUSH_FREE_TEMPX86)
|
||||
|
||||
#endif
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -21,48 +21,48 @@ extern const __aligned16 u32 g_maxvals[4];
|
|||
|
||||
namespace R5900 {
|
||||
namespace Dynarec {
|
||||
namespace OpcodeImpl {
|
||||
namespace COP1 {
|
||||
|
||||
namespace OpcodeImpl {
|
||||
namespace COP1
|
||||
{
|
||||
void recMFC1();
|
||||
void recCFC1();
|
||||
void recMTC1();
|
||||
void recCTC1();
|
||||
void recCOP1_BC1();
|
||||
void recCOP1_S();
|
||||
void recCOP1_W();
|
||||
void recC_EQ();
|
||||
void recC_F();
|
||||
void recC_LT();
|
||||
void recC_LE();
|
||||
void recADD_S();
|
||||
void recSUB_S();
|
||||
void recMUL_S();
|
||||
void recDIV_S();
|
||||
void recSQRT_S();
|
||||
void recABS_S();
|
||||
void recMOV_S();
|
||||
void recNEG_S();
|
||||
void recRSQRT_S();
|
||||
void recADDA_S();
|
||||
void recSUBA_S();
|
||||
void recMULA_S();
|
||||
void recMADD_S();
|
||||
void recMSUB_S();
|
||||
void recMADDA_S();
|
||||
void recMSUBA_S();
|
||||
void recCVT_S();
|
||||
void recCVT_W();
|
||||
void recMAX_S();
|
||||
void recMIN_S();
|
||||
void recBC1F();
|
||||
void recBC1T();
|
||||
void recBC1FL();
|
||||
void recBC1TL();
|
||||
} }
|
||||
} }
|
||||
void recMFC1();
|
||||
void recCFC1();
|
||||
void recMTC1();
|
||||
void recCTC1();
|
||||
void recCOP1_BC1();
|
||||
void recCOP1_S();
|
||||
void recCOP1_W();
|
||||
void recC_EQ();
|
||||
void recC_F();
|
||||
void recC_LT();
|
||||
void recC_LE();
|
||||
void recADD_S();
|
||||
void recSUB_S();
|
||||
void recMUL_S();
|
||||
void recDIV_S();
|
||||
void recSQRT_S();
|
||||
void recABS_S();
|
||||
void recMOV_S();
|
||||
void recNEG_S();
|
||||
void recRSQRT_S();
|
||||
void recADDA_S();
|
||||
void recSUBA_S();
|
||||
void recMULA_S();
|
||||
void recMADD_S();
|
||||
void recMSUB_S();
|
||||
void recMADDA_S();
|
||||
void recMSUBA_S();
|
||||
void recCVT_S();
|
||||
void recCVT_W();
|
||||
void recMAX_S();
|
||||
void recMIN_S();
|
||||
void recBC1F();
|
||||
void recBC1T();
|
||||
void recBC1FL();
|
||||
void recBC1TL();
|
||||
|
||||
} // namespace COP1
|
||||
} // namespace OpcodeImpl
|
||||
} // namespace Dynarec
|
||||
} // namespace R5900
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
|
|
@ -75,15 +75,15 @@ namespace DOUBLE {
|
|||
#define _Fd_ _Sa_
|
||||
|
||||
// FCR31 Flags
|
||||
#define FPUflagC 0X00800000
|
||||
#define FPUflagI 0X00020000
|
||||
#define FPUflagD 0X00010000
|
||||
#define FPUflagO 0X00008000
|
||||
#define FPUflagU 0X00004000
|
||||
#define FPUflagSI 0X00000040
|
||||
#define FPUflagSD 0X00000020
|
||||
#define FPUflagSO 0X00000010
|
||||
#define FPUflagSU 0X00000008
|
||||
#define FPUflagC 0x00800000
|
||||
#define FPUflagI 0x00020000
|
||||
#define FPUflagD 0x00010000
|
||||
#define FPUflagO 0x00008000
|
||||
#define FPUflagU 0x00004000
|
||||
#define FPUflagSI 0x00000040
|
||||
#define FPUflagSD 0x00000020
|
||||
#define FPUflagSO 0x00000010
|
||||
#define FPUflagSU 0x00000008
|
||||
|
||||
//------------------------------------------------------------------
|
||||
|
||||
|
@ -95,44 +95,44 @@ namespace DOUBLE {
|
|||
// PS2 -> DOUBLE
|
||||
//------------------------------------------------------------------
|
||||
|
||||
#define SINGLE(sign, exp, mant) (((u32)(sign)<<31) | ((u32)(exp)<<23) | (u32)(mant))
|
||||
#define DOUBLE(sign, exp, mant) (((sign ## ULL)<<63) | ((exp ## ULL)<<52) | (mant ## ULL))
|
||||
#define SINGLE(sign, exp, mant) (((u32)(sign) << 31) | ((u32)(exp) << 23) | (u32)(mant))
|
||||
#define DOUBLE(sign, exp, mant) (((sign##ULL) << 63) | ((exp##ULL) << 52) | (mant##ULL))
|
||||
|
||||
struct FPUd_Globals
|
||||
{
|
||||
u32 neg[4], pos[4];
|
||||
u32 neg[4], pos[4];
|
||||
|
||||
u32 pos_inf[4], neg_inf[4],
|
||||
one_exp[4];
|
||||
u32 pos_inf[4], neg_inf[4],
|
||||
one_exp[4];
|
||||
|
||||
u64 dbl_one_exp[2];
|
||||
u64 dbl_one_exp[2];
|
||||
|
||||
u64 dbl_cvt_overflow, // needs special code if above or equal
|
||||
dbl_ps2_overflow, // overflow & clamp if above or equal
|
||||
dbl_underflow; // underflow if below
|
||||
u64 dbl_cvt_overflow, // needs special code if above or equal
|
||||
dbl_ps2_overflow, // overflow & clamp if above or equal
|
||||
dbl_underflow; // underflow if below
|
||||
|
||||
u64 padding;
|
||||
u64 padding;
|
||||
|
||||
u64 dbl_s_pos[2];
|
||||
u64 dbl_s_pos[2];
|
||||
//u64 dlb_s_neg[2];
|
||||
};
|
||||
|
||||
static const __aligned(32) FPUd_Globals s_const =
|
||||
{
|
||||
{ 0x80000000, 0xffffffff, 0xffffffff, 0xffffffff },
|
||||
{ 0x7fffffff, 0xffffffff, 0xffffffff, 0xffffffff },
|
||||
{0x80000000, 0xffffffff, 0xffffffff, 0xffffffff},
|
||||
{0x7fffffff, 0xffffffff, 0xffffffff, 0xffffffff},
|
||||
|
||||
{SINGLE(0,0xff,0), 0, 0, 0},
|
||||
{SINGLE(1,0xff,0), 0, 0, 0},
|
||||
{SINGLE(0,1,0), 0, 0, 0},
|
||||
{SINGLE(0, 0xff, 0), 0, 0, 0},
|
||||
{SINGLE(1, 0xff, 0), 0, 0, 0},
|
||||
{SINGLE(0, 1, 0), 0, 0, 0},
|
||||
|
||||
{DOUBLE(0,1,0), 0},
|
||||
{DOUBLE(0, 1, 0), 0},
|
||||
|
||||
DOUBLE(0,1151,0), // cvt_overflow
|
||||
DOUBLE(0,1152,0), // ps2_overflow
|
||||
DOUBLE(0,897,0), // underflow
|
||||
DOUBLE(0, 1151, 0), // cvt_overflow
|
||||
DOUBLE(0, 1152, 0), // ps2_overflow
|
||||
DOUBLE(0, 897, 0), // underflow
|
||||
|
||||
0, // Padding!!
|
||||
0, // Padding!!
|
||||
|
||||
{0x7fffffffffffffffULL, 0},
|
||||
//{0x8000000000000000ULL, 0},
|
||||
|
@ -144,12 +144,12 @@ static const __aligned(32) FPUd_Globals s_const =
|
|||
void ToDouble(int reg)
|
||||
{
|
||||
xUCOMI.SS(xRegisterSSE(reg), ptr[s_const.pos_inf]); // Sets ZF if reg is equal or incomparable to pos_inf
|
||||
u8 *to_complex = JE8(0); // Complex conversion if positive infinity or NaN
|
||||
u8* to_complex = JE8(0); // Complex conversion if positive infinity or NaN
|
||||
xUCOMI.SS(xRegisterSSE(reg), ptr[s_const.neg_inf]);
|
||||
u8 *to_complex2 = JE8(0); // Complex conversion if negative infinity
|
||||
u8* to_complex2 = JE8(0); // Complex conversion if negative infinity
|
||||
|
||||
xCVTSS2SD(xRegisterSSE(reg), xRegisterSSE(reg)); // Simply convert
|
||||
u8 *end = JMP8(0);
|
||||
u8* end = JMP8(0);
|
||||
|
||||
x86SetJ8(to_complex);
|
||||
x86SetJ8(to_complex2);
|
||||
|
@ -166,12 +166,10 @@ void ToDouble(int reg)
|
|||
// DOUBLE -> PS2
|
||||
//------------------------------------------------------------------
|
||||
|
||||
/*
|
||||
if FPU_RESULT is defined, results are more like the real PS2's FPU. But new issues may happen if
|
||||
the VU isn't clamping all operands since games may transfer FPU results into the VU.
|
||||
Ar tonelico 1 does this with the result from DIV/RSQRT (when a division by zero occurs)
|
||||
otherwise, results are still usually better than iFPU.cpp.
|
||||
*/
|
||||
// If FPU_RESULT is defined, results are more like the real PS2's FPU.
|
||||
// But new issues may happen if the VU isn't clamping all operands since games may transfer FPU results into the VU.
|
||||
// Ar tonelico 1 does this with the result from DIV/RSQRT (when a division by zero occurs).
|
||||
// Otherwise, results are still usually better than iFPU.cpp.
|
||||
|
||||
// ToPS2FPU_Full - converts double-precision IEEE float to single-precision PS2 float
|
||||
|
||||
|
@ -192,27 +190,27 @@ void ToPS2FPU_Full(int reg, bool flags, int absreg, bool acc, bool addsub)
|
|||
xAND.PD(xRegisterSSE(absreg), ptr[&s_const.dbl_s_pos]);
|
||||
|
||||
xUCOMI.SD(xRegisterSSE(absreg), ptr[&s_const.dbl_cvt_overflow]);
|
||||
u8 *to_complex = JAE8(0);
|
||||
u8* to_complex = JAE8(0);
|
||||
|
||||
xUCOMI.SD(xRegisterSSE(absreg), ptr[&s_const.dbl_underflow]);
|
||||
u8 *to_underflow = JB8(0);
|
||||
u8* to_underflow = JB8(0);
|
||||
|
||||
xCVTSD2SS(xRegisterSSE(reg), xRegisterSSE(reg)); //simply convert
|
||||
#ifdef __M_X86_64
|
||||
u32* end = JMP32(0);
|
||||
#else
|
||||
u8 *end = JMP8(0);
|
||||
u8* end = JMP8(0);
|
||||
#endif
|
||||
|
||||
x86SetJ8(to_complex);
|
||||
xUCOMI.SD(xRegisterSSE(absreg), ptr[&s_const.dbl_ps2_overflow]);
|
||||
u8 *to_overflow = JAE8(0);
|
||||
u8* to_overflow = JAE8(0);
|
||||
|
||||
xPSUB.Q(xRegisterSSE(reg), ptr[&s_const.dbl_one_exp]); //lower exponent
|
||||
xCVTSD2SS(xRegisterSSE(reg), xRegisterSSE(reg)); //convert
|
||||
xPADD.D(xRegisterSSE(reg), ptr[s_const.one_exp]); //raise exponent
|
||||
#ifdef __M_X86_64
|
||||
u32 *end2 = JMP32(0);
|
||||
u32* end2 = JMP32(0);
|
||||
#else
|
||||
u8* end2 = JMP8(0);
|
||||
#endif
|
||||
|
@ -224,15 +222,15 @@ void ToPS2FPU_Full(int reg, bool flags, int absreg, bool acc, bool addsub)
|
|||
xOR(ptr32[&fpuRegs.fprc[31]], (FPUflagO | FPUflagSO));
|
||||
if (flags && FPU_FLAGS_OVERFLOW && acc)
|
||||
xOR(ptr32[&fpuRegs.ACCflag], 1);
|
||||
u8 *end3 = JMP8(0);
|
||||
u8* end3 = JMP8(0);
|
||||
|
||||
x86SetJ8(to_underflow);
|
||||
u8 *end4 = nullptr;
|
||||
u8* end4 = nullptr;
|
||||
if (flags && FPU_FLAGS_UNDERFLOW) //set underflow flags if not zero
|
||||
{
|
||||
xXOR.PD(xRegisterSSE(absreg), xRegisterSSE(absreg));
|
||||
xUCOMI.SD(xRegisterSSE(reg), xRegisterSSE(absreg));
|
||||
u8 *is_zero = JE8(0);
|
||||
u8* is_zero = JE8(0);
|
||||
|
||||
xOR(ptr32[&fpuRegs.fprc[31]], (FPUflagU | FPUflagSU));
|
||||
if (addsub)
|
||||
|
@ -290,25 +288,52 @@ void SetMaxValue(int regd)
|
|||
}
|
||||
}
|
||||
|
||||
#define GET_S(sreg) { \
|
||||
if( info & PROCESS_EE_S ) xMOVSS(xRegisterSSE(sreg), xRegisterSSE(EEREC_S)); \
|
||||
else xMOVSSZX(xRegisterSSE(sreg), ptr[&fpuRegs.fpr[_Fs_]]); }
|
||||
#define GET_S(sreg) \
|
||||
do { \
|
||||
if (info & PROCESS_EE_S) \
|
||||
xMOVSS(xRegisterSSE(sreg), xRegisterSSE(EEREC_S)); \
|
||||
else \
|
||||
xMOVSSZX(xRegisterSSE(sreg), ptr[&fpuRegs.fpr[_Fs_]]); \
|
||||
} while (0)
|
||||
|
||||
#define ALLOC_S(sreg) { (sreg) = _allocTempXMMreg(XMMT_FPS, -1); GET_S(sreg); }
|
||||
#define ALLOC_S(sreg) \
|
||||
do { \
|
||||
(sreg) = _allocTempXMMreg(XMMT_FPS, -1); \
|
||||
GET_S(sreg); \
|
||||
} while (0)
|
||||
|
||||
#define GET_T(treg) { \
|
||||
if( info & PROCESS_EE_T ) xMOVSS(xRegisterSSE(treg), xRegisterSSE(EEREC_T)); \
|
||||
else xMOVSSZX(xRegisterSSE(treg), ptr[&fpuRegs.fpr[_Ft_]]); }
|
||||
#define GET_T(treg) \
|
||||
do { \
|
||||
if (info & PROCESS_EE_T) \
|
||||
xMOVSS(xRegisterSSE(treg), xRegisterSSE(EEREC_T)); \
|
||||
else \
|
||||
xMOVSSZX(xRegisterSSE(treg), ptr[&fpuRegs.fpr[_Ft_]]); \
|
||||
} while (0)
|
||||
|
||||
#define ALLOC_T(treg) { (treg) = _allocTempXMMreg(XMMT_FPS, -1); GET_T(treg); }
|
||||
#define ALLOC_T(treg) \
|
||||
do { \
|
||||
(treg) = _allocTempXMMreg(XMMT_FPS, -1); \
|
||||
GET_T(treg); \
|
||||
} while (0)
|
||||
|
||||
#define GET_ACC(areg) { \
|
||||
if( info & PROCESS_EE_ACC ) xMOVSS(xRegisterSSE(areg), xRegisterSSE(EEREC_ACC)); \
|
||||
else xMOVSSZX(xRegisterSSE(areg), ptr[&fpuRegs.ACC]); }
|
||||
#define GET_ACC(areg) \
|
||||
do { \
|
||||
if (info & PROCESS_EE_ACC) \
|
||||
xMOVSS(xRegisterSSE(areg), xRegisterSSE(EEREC_ACC)); \
|
||||
else \
|
||||
xMOVSSZX(xRegisterSSE(areg), ptr[&fpuRegs.ACC]); \
|
||||
} while (0)
|
||||
|
||||
#define ALLOC_ACC(areg) { (areg) = _allocTempXMMreg(XMMT_FPS, -1); GET_ACC(areg); }
|
||||
#define ALLOC_ACC(areg) \
|
||||
do { \
|
||||
(areg) = _allocTempXMMreg(XMMT_FPS, -1); \
|
||||
GET_ACC(areg); \
|
||||
} while (0)
|
||||
|
||||
#define CLEAR_OU_FLAGS { xAND(ptr32[&fpuRegs.fprc[31]], ~(FPUflagO | FPUflagU)); }
|
||||
#define CLEAR_OU_FLAGS \
|
||||
do { \
|
||||
xAND(ptr32[&fpuRegs.fprc[31]], ~(FPUflagO | FPUflagU)); \
|
||||
} while (0)
|
||||
|
||||
|
||||
//------------------------------------------------------------------
|
||||
|
@ -324,7 +349,7 @@ void recABS_S_xmm(int info)
|
|||
xAND.PS(xRegisterSSE(EEREC_D), ptr[s_const.pos]);
|
||||
}
|
||||
|
||||
FPURECOMPILE_CONSTCODE(ABS_S, XMMINFO_WRITED|XMMINFO_READS);
|
||||
FPURECOMPILE_CONSTCODE(ABS_S, XMMINFO_WRITED | XMMINFO_READS);
|
||||
//------------------------------------------------------------------
|
||||
|
||||
|
||||
|
@ -405,8 +430,8 @@ void FPU_ADD_SUB(int tempd, int tempt) //tempd and tempt are overwritten, they a
|
|||
|
||||
void FPU_MUL(int info, int regd, int sreg, int treg, bool acc)
|
||||
{
|
||||
u8 *noHack;
|
||||
u32 *endMul = nullptr;
|
||||
u8* noHack;
|
||||
u32* endMul = nullptr;
|
||||
|
||||
if (CHECK_FPUMULHACK)
|
||||
{
|
||||
|
@ -432,8 +457,8 @@ void FPU_MUL(int info, int regd, int sreg, int treg, bool acc)
|
|||
//------------------------------------------------------------------
|
||||
// CommutativeOp XMM (used for ADD and SUB opcodes. that's it.)
|
||||
//------------------------------------------------------------------
|
||||
static void (*recFPUOpXMM_to_XMM[] )(x86SSERegType, x86SSERegType) = {
|
||||
SSE2_ADDSD_XMM_to_XMM, SSE2_SUBSD_XMM_to_XMM };
|
||||
static void (*recFPUOpXMM_to_XMM[])(x86SSERegType, x86SSERegType) = {
|
||||
SSE2_ADDSD_XMM_to_XMM, SSE2_SUBSD_XMM_to_XMM};
|
||||
|
||||
void recFPUOp(int info, int regd, int op, bool acc)
|
||||
{
|
||||
|
@ -460,19 +485,19 @@ void recFPUOp(int info, int regd, int op, bool acc)
|
|||
//------------------------------------------------------------------
|
||||
void recADD_S_xmm(int info)
|
||||
{
|
||||
EE::Profiler.EmitOp(eeOpcode::ADD_F);
|
||||
recFPUOp(info, EEREC_D, 0, false);
|
||||
EE::Profiler.EmitOp(eeOpcode::ADD_F);
|
||||
recFPUOp(info, EEREC_D, 0, false);
|
||||
}
|
||||
|
||||
FPURECOMPILE_CONSTCODE(ADD_S, XMMINFO_WRITED|XMMINFO_READS|XMMINFO_READT);
|
||||
FPURECOMPILE_CONSTCODE(ADD_S, XMMINFO_WRITED | XMMINFO_READS | XMMINFO_READT);
|
||||
|
||||
void recADDA_S_xmm(int info)
|
||||
{
|
||||
EE::Profiler.EmitOp(eeOpcode::ADDA_F);
|
||||
recFPUOp(info, EEREC_ACC, 0, true);
|
||||
EE::Profiler.EmitOp(eeOpcode::ADDA_F);
|
||||
recFPUOp(info, EEREC_ACC, 0, true);
|
||||
}
|
||||
|
||||
FPURECOMPILE_CONSTCODE(ADDA_S, XMMINFO_WRITEACC|XMMINFO_READS|XMMINFO_READT);
|
||||
FPURECOMPILE_CONSTCODE(ADDA_S, XMMINFO_WRITEACC | XMMINFO_READS | XMMINFO_READT);
|
||||
//------------------------------------------------------------------
|
||||
|
||||
void recCMP(int info)
|
||||
|
@ -495,29 +520,29 @@ void recC_EQ_xmm(int info)
|
|||
recCMP(info);
|
||||
|
||||
j8Ptr[0] = JZ8(0);
|
||||
xAND(ptr32[&fpuRegs.fprc[31]], ~FPUflagC );
|
||||
xAND(ptr32[&fpuRegs.fprc[31]], ~FPUflagC);
|
||||
j8Ptr[1] = JMP8(0);
|
||||
x86SetJ8(j8Ptr[0]);
|
||||
xOR(ptr32[&fpuRegs.fprc[31]], FPUflagC);
|
||||
x86SetJ8(j8Ptr[1]);
|
||||
}
|
||||
|
||||
FPURECOMPILE_CONSTCODE(C_EQ, XMMINFO_READS|XMMINFO_READT);
|
||||
FPURECOMPILE_CONSTCODE(C_EQ, XMMINFO_READS | XMMINFO_READT);
|
||||
|
||||
void recC_LE_xmm(int info )
|
||||
void recC_LE_xmm(int info)
|
||||
{
|
||||
EE::Profiler.EmitOp(eeOpcode::CLE_F);
|
||||
recCMP(info);
|
||||
|
||||
j8Ptr[0] = JBE8(0);
|
||||
xAND(ptr32[&fpuRegs.fprc[31]], ~FPUflagC );
|
||||
xAND(ptr32[&fpuRegs.fprc[31]], ~FPUflagC);
|
||||
j8Ptr[1] = JMP8(0);
|
||||
x86SetJ8(j8Ptr[0]);
|
||||
xOR(ptr32[&fpuRegs.fprc[31]], FPUflagC);
|
||||
x86SetJ8(j8Ptr[1]);
|
||||
}
|
||||
|
||||
FPURECOMPILE_CONSTCODE(C_LE, XMMINFO_READS|XMMINFO_READT);
|
||||
FPURECOMPILE_CONSTCODE(C_LE, XMMINFO_READS | XMMINFO_READT);
|
||||
|
||||
void recC_LT_xmm(int info)
|
||||
{
|
||||
|
@ -525,14 +550,14 @@ void recC_LT_xmm(int info)
|
|||
recCMP(info);
|
||||
|
||||
j8Ptr[0] = JB8(0);
|
||||
xAND(ptr32[&fpuRegs.fprc[31]], ~FPUflagC );
|
||||
xAND(ptr32[&fpuRegs.fprc[31]], ~FPUflagC);
|
||||
j8Ptr[1] = JMP8(0);
|
||||
x86SetJ8(j8Ptr[0]);
|
||||
xOR(ptr32[&fpuRegs.fprc[31]], FPUflagC);
|
||||
x86SetJ8(j8Ptr[1]);
|
||||
}
|
||||
|
||||
FPURECOMPILE_CONSTCODE(C_LT, XMMINFO_READS|XMMINFO_READT);
|
||||
FPURECOMPILE_CONSTCODE(C_LT, XMMINFO_READS | XMMINFO_READT);
|
||||
//------------------------------------------------------------------
|
||||
|
||||
|
||||
|
@ -542,41 +567,39 @@ FPURECOMPILE_CONSTCODE(C_LT, XMMINFO_READS|XMMINFO_READT);
|
|||
void recCVT_S_xmm(int info)
|
||||
{
|
||||
EE::Profiler.EmitOp(eeOpcode::CVTS_F);
|
||||
if( !(info&PROCESS_EE_S) || (EEREC_D != EEREC_S && !(info&PROCESS_EE_MODEWRITES)) ) {
|
||||
if (!(info & PROCESS_EE_S) || (EEREC_D != EEREC_S && !(info & PROCESS_EE_MODEWRITES)))
|
||||
xCVTSI2SS(xRegisterSSE(EEREC_D), ptr32[&fpuRegs.fpr[_Fs_]]);
|
||||
}
|
||||
else {
|
||||
else
|
||||
xCVTDQ2PS(xRegisterSSE(EEREC_D), xRegisterSSE(EEREC_S));
|
||||
}
|
||||
}
|
||||
|
||||
FPURECOMPILE_CONSTCODE(CVT_S, XMMINFO_WRITED|XMMINFO_READS);
|
||||
FPURECOMPILE_CONSTCODE(CVT_S, XMMINFO_WRITED | XMMINFO_READS);
|
||||
|
||||
void recCVT_W() //called from iFPU.cpp's recCVT_W
|
||||
{
|
||||
EE::Profiler.EmitOp(eeOpcode::CVTW);
|
||||
int regs = _checkXMMreg(XMMTYPE_FPREG, _Fs_, MODE_READ);
|
||||
|
||||
if( regs >= 0 )
|
||||
if (regs >= 0)
|
||||
{
|
||||
xCVTTSS2SI(eax, xRegisterSSE(regs));
|
||||
xMOVMSKPS(edx, xRegisterSSE(regs)); //extract the signs
|
||||
xAND(edx, 1); //keep only LSB
|
||||
xMOVMSKPS(edx, xRegisterSSE(regs)); // extract the signs
|
||||
xAND(edx, 1); // keep only LSB
|
||||
}
|
||||
else
|
||||
{
|
||||
xCVTTSS2SI(eax, ptr32[&fpuRegs.fpr[ _Fs_ ]]);
|
||||
xMOV(edx, ptr[&fpuRegs.fpr[ _Fs_ ]]);
|
||||
xSHR(edx, 31); //mov sign to lsb
|
||||
xCVTTSS2SI(eax, ptr32[&fpuRegs.fpr[_Fs_]]);
|
||||
xMOV(edx, ptr[&fpuRegs.fpr[_Fs_]]);
|
||||
xSHR(edx, 31); //mov sign to lsb
|
||||
}
|
||||
|
||||
//kill register allocation for dst because we write directly to fpuRegs.fpr[_Fd_]
|
||||
_deleteFPtoXMMreg(_Fd_, 2);
|
||||
|
||||
xADD(edx, 0x7FFFFFFF); //0x7FFFFFFF if positive, 0x8000 0000 if negative
|
||||
xADD(edx, 0x7FFFFFFF); // 0x7FFFFFFF if positive, 0x8000 0000 if negative
|
||||
|
||||
xCMP(eax, 0x80000000); //If the result is indefinitive
|
||||
xCMOVE(eax, edx); //Saturate it
|
||||
xCMP(eax, 0x80000000); // If the result is indefinitive
|
||||
xCMOVE(eax, edx); // Saturate it
|
||||
|
||||
//Write the result
|
||||
xMOV(ptr[&fpuRegs.fpr[_Fd_]], eax);
|
||||
|
@ -594,25 +617,25 @@ void recDIVhelper1(int regd, int regt) // Sets flags
|
|||
int t1reg = _allocTempXMMreg(XMMT_FPS, -1);
|
||||
int tempReg = _allocX86reg(xEmptyReg, X86TYPE_TEMP, 0, 0);
|
||||
|
||||
xAND(ptr32[&fpuRegs.fprc[31]], ~(FPUflagI|FPUflagD)); // Clear I and D flags
|
||||
xAND(ptr32[&fpuRegs.fprc[31]], ~(FPUflagI | FPUflagD)); // Clear I and D flags
|
||||
|
||||
//--- Check for divide by zero ---
|
||||
xXOR.PS(xRegisterSSE(t1reg), xRegisterSSE(t1reg));
|
||||
xCMPEQ.SS(xRegisterSSE(t1reg), xRegisterSSE(regt));
|
||||
xMOVMSKPS(xRegister32(tempReg), xRegisterSSE(t1reg));
|
||||
xAND(xRegister32(tempReg), 1); //Check sign (if regt == zero, sign will be set)
|
||||
xAND(xRegister32(tempReg), 1); //Check sign (if regt == zero, sign will be set)
|
||||
ajmp32 = JZ32(0); //Skip if not set
|
||||
|
||||
//--- Check for 0/0 ---
|
||||
xXOR.PS(xRegisterSSE(t1reg), xRegisterSSE(t1reg));
|
||||
xCMPEQ.SS(xRegisterSSE(t1reg), xRegisterSSE(regd));
|
||||
xMOVMSKPS(xRegister32(tempReg), xRegisterSSE(t1reg));
|
||||
xAND(xRegister32(tempReg), 1); //Check sign (if regd == zero, sign will be set)
|
||||
xAND(xRegister32(tempReg), 1); //Check sign (if regd == zero, sign will be set)
|
||||
pjmp1 = JZ8(0); //Skip if not set
|
||||
xOR(ptr32[&fpuRegs.fprc[31]], FPUflagI|FPUflagSI); // Set I and SI flags ( 0/0 )
|
||||
xOR(ptr32[&fpuRegs.fprc[31]], FPUflagI | FPUflagSI); // Set I and SI flags ( 0/0 )
|
||||
pjmp2 = JMP8(0);
|
||||
x86SetJ8(pjmp1); //x/0 but not 0/0
|
||||
xOR(ptr32[&fpuRegs.fprc[31]], FPUflagD|FPUflagSD); // Set D and SD flags ( x/0 )
|
||||
xOR(ptr32[&fpuRegs.fprc[31]], FPUflagD | FPUflagSD); // Set D and SD flags ( x/0 )
|
||||
x86SetJ8(pjmp2);
|
||||
|
||||
//--- Make regd +/- Maximum ---
|
||||
|
@ -650,9 +673,9 @@ void recDIV_S_xmm(int info)
|
|||
{
|
||||
EE::Profiler.EmitOp(eeOpcode::DIV_F);
|
||||
bool roundmodeFlag = false;
|
||||
//Console.WriteLn("DIV");
|
||||
//Console.WriteLn("DIV");
|
||||
|
||||
if( CHECK_FPUNEGDIVHACK )
|
||||
if (CHECK_FPUNEGDIVHACK)
|
||||
{
|
||||
if (g_sseMXCSR.GetRoundMode() != SSEround_NegInf)
|
||||
{
|
||||
|
@ -660,8 +683,8 @@ void recDIV_S_xmm(int info)
|
|||
//Console.WriteLn("div to negative inf");
|
||||
|
||||
roundmode_neg = g_sseMXCSR;
|
||||
roundmode_neg.SetRoundMode( SSEround_NegInf );
|
||||
xLDMXCSR( roundmode_neg );
|
||||
roundmode_neg.SetRoundMode(SSEround_NegInf);
|
||||
xLDMXCSR(roundmode_neg);
|
||||
roundmodeFlag = true;
|
||||
}
|
||||
}
|
||||
|
@ -673,8 +696,8 @@ void recDIV_S_xmm(int info)
|
|||
//Console.WriteLn("div to nearest");
|
||||
|
||||
roundmode_nearest = g_sseMXCSR;
|
||||
roundmode_nearest.SetRoundMode( SSEround_Nearest );
|
||||
xLDMXCSR( roundmode_nearest );
|
||||
roundmode_nearest.SetRoundMode(SSEround_Nearest);
|
||||
xLDMXCSR(roundmode_nearest);
|
||||
roundmodeFlag = true;
|
||||
}
|
||||
}
|
||||
|
@ -690,11 +713,12 @@ void recDIV_S_xmm(int info)
|
|||
|
||||
xMOVSS(xRegisterSSE(EEREC_D), xRegisterSSE(sreg));
|
||||
|
||||
if (roundmodeFlag) xLDMXCSR (g_sseMXCSR);
|
||||
if (roundmodeFlag)
|
||||
xLDMXCSR(g_sseMXCSR);
|
||||
_freeXMMreg(sreg); _freeXMMreg(treg);
|
||||
}
|
||||
|
||||
FPURECOMPILE_CONSTCODE(DIV_S, XMMINFO_WRITED|XMMINFO_READS|XMMINFO_READT);
|
||||
FPURECOMPILE_CONSTCODE(DIV_S, XMMINFO_WRITED | XMMINFO_READS | XMMINFO_READT);
|
||||
//------------------------------------------------------------------
|
||||
|
||||
|
||||
|
@ -723,18 +747,18 @@ void recMaddsub(int info, int regd, int op, bool acc)
|
|||
// TEST FOR ACC/MUL OVERFLOWS, PROPOGATE THEM IF THEY OCCUR
|
||||
|
||||
xTEST(ptr32[&fpuRegs.fprc[31]], FPUflagO);
|
||||
u8 *mulovf = JNZ8(0);
|
||||
u8* mulovf = JNZ8(0);
|
||||
ToDouble(sreg); //else, convert
|
||||
|
||||
xTEST(ptr32[&fpuRegs.ACCflag], 1);
|
||||
u8 *accovf = JNZ8(0);
|
||||
u8* accovf = JNZ8(0);
|
||||
ToDouble(treg); //else, convert
|
||||
u8 *operation = JMP8(0);
|
||||
u8* operation = JMP8(0);
|
||||
|
||||
x86SetJ8(mulovf);
|
||||
if (op == 1) //sub
|
||||
xXOR.PS(xRegisterSSE(sreg), ptr[s_const.neg]);
|
||||
xMOVAPS(xRegisterSSE(treg), xRegisterSSE(sreg)); //fall through below
|
||||
xMOVAPS(xRegisterSSE(treg), xRegisterSSE(sreg)); //fall through below
|
||||
|
||||
x86SetJ8(accovf);
|
||||
SetMaxValue(treg); //just in case... I think it has to be a MaxValue already here
|
||||
|
@ -743,7 +767,7 @@ void recMaddsub(int info, int regd, int op, bool acc)
|
|||
xOR(ptr32[&fpuRegs.fprc[31]], FPUflagO | FPUflagSO);
|
||||
if (FPU_FLAGS_OVERFLOW && acc)
|
||||
xOR(ptr32[&fpuRegs.ACCflag], 1);
|
||||
u32 *skipall = JMP32(0);
|
||||
u32* skipall = JMP32(0);
|
||||
|
||||
// PERFORM THE ACCUMULATION AND TEST RESULT. CONVERT TO SINGLE
|
||||
|
||||
|
@ -767,7 +791,7 @@ void recMADD_S_xmm(int info)
|
|||
recMaddsub(info, EEREC_D, 0, false);
|
||||
}
|
||||
|
||||
FPURECOMPILE_CONSTCODE(MADD_S, XMMINFO_WRITED|XMMINFO_READACC|XMMINFO_READS|XMMINFO_READT);
|
||||
FPURECOMPILE_CONSTCODE(MADD_S, XMMINFO_WRITED | XMMINFO_READACC | XMMINFO_READS | XMMINFO_READT);
|
||||
|
||||
void recMADDA_S_xmm(int info)
|
||||
{
|
||||
|
@ -775,7 +799,7 @@ void recMADDA_S_xmm(int info)
|
|||
recMaddsub(info, EEREC_ACC, 0, true);
|
||||
}
|
||||
|
||||
FPURECOMPILE_CONSTCODE(MADDA_S, XMMINFO_WRITEACC|XMMINFO_READACC|XMMINFO_READS|XMMINFO_READT);
|
||||
FPURECOMPILE_CONSTCODE(MADDA_S, XMMINFO_WRITEACC | XMMINFO_READACC | XMMINFO_READS | XMMINFO_READT);
|
||||
//------------------------------------------------------------------
|
||||
|
||||
|
||||
|
@ -785,8 +809,8 @@ FPURECOMPILE_CONSTCODE(MADDA_S, XMMINFO_WRITEACC|XMMINFO_READACC|XMMINFO_READS|X
|
|||
|
||||
static const __aligned16 u32 minmax_mask[8] =
|
||||
{
|
||||
0xffffffff, 0x80000000, 0, 0,
|
||||
0, 0x40000000, 0, 0
|
||||
0xffffffff, 0x80000000, 0, 0,
|
||||
0, 0x40000000, 0, 0,
|
||||
};
|
||||
// FPU's MAX/MIN work with all numbers (including "denormals"). Check VU's logical min max for more info.
|
||||
void recMINMAX(int info, bool ismin)
|
||||
|
@ -818,7 +842,7 @@ void recMAX_S_xmm(int info)
|
|||
recMINMAX(info, false);
|
||||
}
|
||||
|
||||
FPURECOMPILE_CONSTCODE(MAX_S, XMMINFO_WRITED|XMMINFO_READS|XMMINFO_READT);
|
||||
FPURECOMPILE_CONSTCODE(MAX_S, XMMINFO_WRITED | XMMINFO_READS | XMMINFO_READT);
|
||||
|
||||
void recMIN_S_xmm(int info)
|
||||
{
|
||||
|
@ -826,7 +850,7 @@ void recMIN_S_xmm(int info)
|
|||
recMINMAX(info, true);
|
||||
}
|
||||
|
||||
FPURECOMPILE_CONSTCODE(MIN_S, XMMINFO_WRITED|XMMINFO_READS|XMMINFO_READT);
|
||||
FPURECOMPILE_CONSTCODE(MIN_S, XMMINFO_WRITED | XMMINFO_READS | XMMINFO_READT);
|
||||
//------------------------------------------------------------------
|
||||
|
||||
|
||||
|
@ -839,7 +863,7 @@ void recMOV_S_xmm(int info)
|
|||
GET_S(EEREC_D);
|
||||
}
|
||||
|
||||
FPURECOMPILE_CONSTCODE(MOV_S, XMMINFO_WRITED|XMMINFO_READS);
|
||||
FPURECOMPILE_CONSTCODE(MOV_S, XMMINFO_WRITED | XMMINFO_READS);
|
||||
//------------------------------------------------------------------
|
||||
|
||||
|
||||
|
@ -853,7 +877,7 @@ void recMSUB_S_xmm(int info)
|
|||
recMaddsub(info, EEREC_D, 1, false);
|
||||
}
|
||||
|
||||
FPURECOMPILE_CONSTCODE(MSUB_S, XMMINFO_WRITED|XMMINFO_READACC|XMMINFO_READS|XMMINFO_READT);
|
||||
FPURECOMPILE_CONSTCODE(MSUB_S, XMMINFO_WRITED | XMMINFO_READACC | XMMINFO_READS | XMMINFO_READT);
|
||||
|
||||
void recMSUBA_S_xmm(int info)
|
||||
{
|
||||
|
@ -861,7 +885,7 @@ void recMSUBA_S_xmm(int info)
|
|||
recMaddsub(info, EEREC_ACC, 1, true);
|
||||
}
|
||||
|
||||
FPURECOMPILE_CONSTCODE(MSUBA_S, XMMINFO_WRITEACC|XMMINFO_READACC|XMMINFO_READS|XMMINFO_READT);
|
||||
FPURECOMPILE_CONSTCODE(MSUBA_S, XMMINFO_WRITEACC | XMMINFO_READACC | XMMINFO_READS | XMMINFO_READT);
|
||||
//------------------------------------------------------------------
|
||||
|
||||
//------------------------------------------------------------------
|
||||
|
@ -877,7 +901,7 @@ void recMUL_S_xmm(int info)
|
|||
_freeXMMreg(sreg); _freeXMMreg(treg);
|
||||
}
|
||||
|
||||
FPURECOMPILE_CONSTCODE(MUL_S, XMMINFO_WRITED|XMMINFO_READS|XMMINFO_READT);
|
||||
FPURECOMPILE_CONSTCODE(MUL_S, XMMINFO_WRITED | XMMINFO_READS | XMMINFO_READT);
|
||||
|
||||
void recMULA_S_xmm(int info)
|
||||
{
|
||||
|
@ -889,7 +913,7 @@ void recMULA_S_xmm(int info)
|
|||
_freeXMMreg(sreg); _freeXMMreg(treg);
|
||||
}
|
||||
|
||||
FPURECOMPILE_CONSTCODE(MULA_S, XMMINFO_WRITEACC|XMMINFO_READS|XMMINFO_READT);
|
||||
FPURECOMPILE_CONSTCODE(MULA_S, XMMINFO_WRITEACC | XMMINFO_READS | XMMINFO_READT);
|
||||
//------------------------------------------------------------------
|
||||
|
||||
|
||||
|
@ -906,7 +930,7 @@ void recNEG_S_xmm(int info)
|
|||
xXOR.PS(xRegisterSSE(EEREC_D), ptr[&s_const.neg[0]]);
|
||||
}
|
||||
|
||||
FPURECOMPILE_CONSTCODE(NEG_S, XMMINFO_WRITED|XMMINFO_READS);
|
||||
FPURECOMPILE_CONSTCODE(NEG_S, XMMINFO_WRITED | XMMINFO_READS);
|
||||
//------------------------------------------------------------------
|
||||
|
||||
|
||||
|
@ -920,7 +944,7 @@ void recSUB_S_xmm(int info)
|
|||
recFPUOp(info, EEREC_D, 1, false);
|
||||
}
|
||||
|
||||
FPURECOMPILE_CONSTCODE(SUB_S, XMMINFO_WRITED|XMMINFO_READS|XMMINFO_READT);
|
||||
FPURECOMPILE_CONSTCODE(SUB_S, XMMINFO_WRITED | XMMINFO_READS | XMMINFO_READT);
|
||||
|
||||
|
||||
void recSUBA_S_xmm(int info)
|
||||
|
@ -929,7 +953,7 @@ void recSUBA_S_xmm(int info)
|
|||
recFPUOp(info, EEREC_ACC, 1, true);
|
||||
}
|
||||
|
||||
FPURECOMPILE_CONSTCODE(SUBA_S, XMMINFO_WRITEACC|XMMINFO_READS|XMMINFO_READT);
|
||||
FPURECOMPILE_CONSTCODE(SUBA_S, XMMINFO_WRITEACC | XMMINFO_READS | XMMINFO_READT);
|
||||
//------------------------------------------------------------------
|
||||
|
||||
|
||||
|
@ -939,7 +963,7 @@ FPURECOMPILE_CONSTCODE(SUBA_S, XMMINFO_WRITEACC|XMMINFO_READS|XMMINFO_READT);
|
|||
void recSQRT_S_xmm(int info)
|
||||
{
|
||||
EE::Profiler.EmitOp(eeOpcode::SQRT_F);
|
||||
u8 *pjmp;
|
||||
u8* pjmp;
|
||||
int roundmodeFlag = 0;
|
||||
int tempReg = _allocX86reg(xEmptyReg, X86TYPE_TEMP, 0, 0);
|
||||
int t1reg = _allocTempXMMreg(XMMT_FPS, -1);
|
||||
|
@ -950,21 +974,22 @@ void recSQRT_S_xmm(int info)
|
|||
// Set roundmode to nearest if it isn't already
|
||||
//Console.WriteLn("sqrt to nearest");
|
||||
roundmode_nearest = g_sseMXCSR;
|
||||
roundmode_nearest.SetRoundMode( SSEround_Nearest );
|
||||
xLDMXCSR (roundmode_nearest);
|
||||
roundmode_nearest.SetRoundMode(SSEround_Nearest);
|
||||
xLDMXCSR(roundmode_nearest);
|
||||
roundmodeFlag = 1;
|
||||
}
|
||||
|
||||
GET_T(EEREC_D);
|
||||
|
||||
if (FPU_FLAGS_ID) {
|
||||
xAND(ptr32[&fpuRegs.fprc[31]], ~(FPUflagI|FPUflagD)); // Clear I and D flags
|
||||
if (FPU_FLAGS_ID)
|
||||
{
|
||||
xAND(ptr32[&fpuRegs.fprc[31]], ~(FPUflagI | FPUflagD)); // Clear I and D flags
|
||||
|
||||
//--- Check for negative SQRT --- (sqrt(-0) = 0, unlike what the docs say)
|
||||
xMOVMSKPS(xRegister32(tempReg), xRegisterSSE(EEREC_D));
|
||||
xAND(xRegister32(tempReg), 1); //Check sign
|
||||
xAND(xRegister32(tempReg), 1); //Check sign
|
||||
pjmp = JZ8(0); //Skip if none are
|
||||
xOR(ptr32[&fpuRegs.fprc[31]], FPUflagI|FPUflagSI); // Set I and SI flags
|
||||
xOR(ptr32[&fpuRegs.fprc[31]], FPUflagI | FPUflagSI); // Set I and SI flags
|
||||
xAND.PS(xRegisterSSE(EEREC_D), ptr[&s_const.pos[0]]); // Make EEREC_D Positive
|
||||
x86SetJ8(pjmp);
|
||||
}
|
||||
|
@ -980,15 +1005,14 @@ void recSQRT_S_xmm(int info)
|
|||
|
||||
ToPS2FPU(EEREC_D, false, t1reg, false);
|
||||
|
||||
if (roundmodeFlag == 1) {
|
||||
xLDMXCSR (g_sseMXCSR);
|
||||
}
|
||||
if (roundmodeFlag == 1)
|
||||
xLDMXCSR(g_sseMXCSR);
|
||||
|
||||
_freeX86reg(tempReg);
|
||||
_freeXMMreg(t1reg);
|
||||
}
|
||||
|
||||
FPURECOMPILE_CONSTCODE(SQRT_S, XMMINFO_WRITED|XMMINFO_READT);
|
||||
FPURECOMPILE_CONSTCODE(SQRT_S, XMMINFO_WRITED | XMMINFO_READT);
|
||||
//------------------------------------------------------------------
|
||||
|
||||
|
||||
|
@ -999,17 +1023,17 @@ void recRSQRThelper1(int regd, int regt) // Preforms the RSQRT function when reg
|
|||
{
|
||||
u8 *pjmp1, *pjmp2;
|
||||
u8 *qjmp1, *qjmp2;
|
||||
u32 *pjmp32;
|
||||
u32* pjmp32;
|
||||
int t1reg = _allocTempXMMreg(XMMT_FPS, -1);
|
||||
int tempReg = _allocX86reg(xEmptyReg, X86TYPE_TEMP, 0, 0);
|
||||
|
||||
xAND(ptr32[&fpuRegs.fprc[31]], ~(FPUflagI|FPUflagD)); // Clear I and D flags
|
||||
xAND(ptr32[&fpuRegs.fprc[31]], ~(FPUflagI | FPUflagD)); // Clear I and D flags
|
||||
|
||||
//--- (first) Check for negative SQRT ---
|
||||
xMOVMSKPS(xRegister32(tempReg), xRegisterSSE(regt));
|
||||
xAND(xRegister32(tempReg), 1); //Check sign
|
||||
xAND(xRegister32(tempReg), 1); //Check sign
|
||||
pjmp2 = JZ8(0); //Skip if not set
|
||||
xOR(ptr32[&fpuRegs.fprc[31]], FPUflagI|FPUflagSI); // Set I and SI flags
|
||||
xOR(ptr32[&fpuRegs.fprc[31]], FPUflagI | FPUflagSI); // Set I and SI flags
|
||||
xAND.PS(xRegisterSSE(regt), ptr[&s_const.pos[0]]); // Make regt Positive
|
||||
x86SetJ8(pjmp2);
|
||||
|
||||
|
@ -1017,19 +1041,19 @@ void recRSQRThelper1(int regd, int regt) // Preforms the RSQRT function when reg
|
|||
xXOR.PS(xRegisterSSE(t1reg), xRegisterSSE(t1reg));
|
||||
xCMPEQ.SS(xRegisterSSE(t1reg), xRegisterSSE(regt));
|
||||
xMOVMSKPS(xRegister32(tempReg), xRegisterSSE(t1reg));
|
||||
xAND(xRegister32(tempReg), 1); //Check sign (if regt == zero, sign will be set)
|
||||
xAND(xRegister32(tempReg), 1); //Check sign (if regt == zero, sign will be set)
|
||||
pjmp1 = JZ8(0); //Skip if not set
|
||||
|
||||
//--- Check for 0/0 ---
|
||||
xXOR.PS(xRegisterSSE(t1reg), xRegisterSSE(t1reg));
|
||||
xCMPEQ.SS(xRegisterSSE(t1reg), xRegisterSSE(regd));
|
||||
xMOVMSKPS(xRegister32(tempReg), xRegisterSSE(t1reg));
|
||||
xAND(xRegister32(tempReg), 1); //Check sign (if regd == zero, sign will be set)
|
||||
xAND(xRegister32(tempReg), 1); //Check sign (if regd == zero, sign will be set)
|
||||
qjmp1 = JZ8(0); //Skip if not set
|
||||
xOR(ptr32[&fpuRegs.fprc[31]], FPUflagI|FPUflagSI); // Set I and SI flags ( 0/0 )
|
||||
xOR(ptr32[&fpuRegs.fprc[31]], FPUflagI | FPUflagSI); // Set I and SI flags ( 0/0 )
|
||||
qjmp2 = JMP8(0);
|
||||
x86SetJ8(qjmp1); //x/0 but not 0/0
|
||||
xOR(ptr32[&fpuRegs.fprc[31]], FPUflagD|FPUflagSD); // Set D and SD flags ( x/0 )
|
||||
xOR(ptr32[&fpuRegs.fprc[31]], FPUflagD | FPUflagSD); // Set D and SD flags ( x/0 )
|
||||
x86SetJ8(qjmp2);
|
||||
|
||||
SetMaxValue(regd); //clamp to max
|
||||
|
@ -1075,8 +1099,8 @@ void recRSQRT_S_xmm(int info)
|
|||
// Set roundmode to nearest if it isn't already
|
||||
//Console.WriteLn("sqrt to nearest");
|
||||
roundmode_nearest = g_sseMXCSR;
|
||||
roundmode_nearest.SetRoundMode( SSEround_Nearest );
|
||||
xLDMXCSR (roundmode_nearest);
|
||||
roundmode_nearest.SetRoundMode(SSEround_Nearest);
|
||||
xLDMXCSR(roundmode_nearest);
|
||||
roundmodeFlag = true;
|
||||
}
|
||||
|
||||
|
@ -1091,11 +1115,16 @@ void recRSQRT_S_xmm(int info)
|
|||
|
||||
_freeXMMreg(treg); _freeXMMreg(sreg);
|
||||
|
||||
if (roundmodeFlag) xLDMXCSR (g_sseMXCSR);
|
||||
if (roundmodeFlag)
|
||||
xLDMXCSR(g_sseMXCSR);
|
||||
}
|
||||
|
||||
FPURECOMPILE_CONSTCODE(RSQRT_S, XMMINFO_WRITED|XMMINFO_READS|XMMINFO_READT);
|
||||
FPURECOMPILE_CONSTCODE(RSQRT_S, XMMINFO_WRITED | XMMINFO_READS | XMMINFO_READT);
|
||||
|
||||
|
||||
} } } } }
|
||||
} // namespace DOUBLE
|
||||
} // namespace COP1
|
||||
} // namespace OpcodeImpl
|
||||
} // namespace Dynarec
|
||||
} // namespace R5900
|
||||
#endif
|
||||
|
|
1560
pcsx2/x86/iMMI.cpp
1560
pcsx2/x86/iMMI.cpp
File diff suppressed because it is too large
Load Diff
|
@ -43,8 +43,8 @@ namespace OpcodeImpl {
|
|||
void recDIV1();
|
||||
void recDIVU1();
|
||||
|
||||
namespace MMI
|
||||
{
|
||||
namespace MMI {
|
||||
|
||||
void recPLZCW();
|
||||
void recMMI0();
|
||||
void recMMI1();
|
||||
|
@ -138,7 +138,9 @@ namespace MMI
|
|||
void recPOR();
|
||||
void recPCPYH();
|
||||
|
||||
} } } }
|
||||
} // namespace MMI
|
||||
} // namespace OpcodeImpl
|
||||
} // namespace Dynarec
|
||||
} // namespace R5900
|
||||
|
||||
#endif
|
||||
|
||||
|
|
|
@ -17,8 +17,8 @@
|
|||
#include "PrecompiledHeader.h"
|
||||
#include "common/emitter/x86_intrin.h"
|
||||
|
||||
SSE_MXCSR g_sseMXCSR = { DEFAULT_sseMXCSR };
|
||||
SSE_MXCSR g_sseVUMXCSR = { DEFAULT_sseVUMXCSR };
|
||||
SSE_MXCSR g_sseMXCSR = {DEFAULT_sseMXCSR};
|
||||
SSE_MXCSR g_sseVUMXCSR = {DEFAULT_sseVUMXCSR};
|
||||
|
||||
// SetCPUState -- for assignment of SSE roundmodes and clampmodes.
|
||||
//
|
||||
|
@ -26,9 +26,8 @@ void SetCPUState(SSE_MXCSR sseMXCSR, SSE_MXCSR sseVUMXCSR)
|
|||
{
|
||||
//Msgbox::Alert("SetCPUState: Config.sseMXCSR = %x; Config.sseVUMXCSR = %x \n", Config.sseMXCSR, Config.sseVUMXCSR);
|
||||
|
||||
g_sseMXCSR = sseMXCSR.ApplyReserveMask();
|
||||
g_sseVUMXCSR = sseVUMXCSR.ApplyReserveMask();
|
||||
g_sseMXCSR = sseMXCSR.ApplyReserveMask();
|
||||
g_sseVUMXCSR = sseVUMXCSR.ApplyReserveMask();
|
||||
|
||||
_mm_setcsr( g_sseMXCSR.bitmask );
|
||||
_mm_setcsr(g_sseMXCSR.bitmask);
|
||||
}
|
||||
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -54,32 +54,36 @@ void _psxMoveGPRtoM(uptr to, int fromgpr);
|
|||
void _psxMoveGPRtoRm(x86IntRegType to, int fromgpr);
|
||||
#endif
|
||||
|
||||
extern u32 psxpc; // recompiler pc
|
||||
extern int psxbranch; // set for branch
|
||||
extern u32 psxpc; // recompiler pc
|
||||
extern int psxbranch; // set for branch
|
||||
extern u32 g_iopCyclePenalty;
|
||||
|
||||
void psxSaveBranchState();
|
||||
void psxLoadBranchState();
|
||||
|
||||
extern void psxSetBranchReg(u32 reg);
|
||||
extern void psxSetBranchImm( u32 imm );
|
||||
extern void psxSetBranchImm(u32 imm);
|
||||
extern void psxRecompileNextInstruction(int delayslot);
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// IOP Constant Propagation Defines, Vars, and API - From here down!
|
||||
|
||||
#define PSX_IS_CONST1(reg) ((reg)<32 && (g_psxHasConstReg&(1<<(reg))))
|
||||
#define PSX_IS_CONST2(reg1, reg2) ((g_psxHasConstReg&(1<<(reg1)))&&(g_psxHasConstReg&(1<<(reg2))))
|
||||
#define PSX_SET_CONST(reg) { \
|
||||
if( (reg) < 32 ) { \
|
||||
g_psxHasConstReg |= (1<<(reg)); \
|
||||
g_psxFlushedConstReg &= ~(1<<(reg)); \
|
||||
} \
|
||||
}
|
||||
#define PSX_IS_CONST1(reg) ((reg) < 32 && (g_psxHasConstReg & (1 << (reg))))
|
||||
#define PSX_IS_CONST2(reg1, reg2) ((g_psxHasConstReg & (1 << (reg1))) && (g_psxHasConstReg & (1 << (reg2))))
|
||||
#define PSX_SET_CONST(reg) \
|
||||
{ \
|
||||
if ((reg) < 32) \
|
||||
{ \
|
||||
g_psxHasConstReg |= (1 << (reg)); \
|
||||
g_psxFlushedConstReg &= ~(1 << (reg)); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define PSX_DEL_CONST(reg) { \
|
||||
if( (reg) < 32 ) g_psxHasConstReg &= ~(1<<(reg)); \
|
||||
}
|
||||
#define PSX_DEL_CONST(reg) \
|
||||
{ \
|
||||
if ((reg) < 32) \
|
||||
g_psxHasConstReg &= ~(1 << (reg)); \
|
||||
}
|
||||
|
||||
extern u32 g_psxConstRegs[32];
|
||||
extern u32 g_psxHasConstReg, g_psxFlushedConstReg;
|
||||
|
@ -92,38 +96,38 @@ typedef void (*R3000AFNPTR_INFO)(int info);
|
|||
//
|
||||
// rd = rs op rt
|
||||
#define PSXRECOMPILE_CONSTCODE0(fn) \
|
||||
void rpsx##fn(void) \
|
||||
{ \
|
||||
psxRecompileCodeConst0(rpsx##fn##_const, rpsx##fn##_consts, rpsx##fn##_constt, rpsx##fn##_); \
|
||||
}
|
||||
void rpsx##fn(void) \
|
||||
{ \
|
||||
psxRecompileCodeConst0(rpsx##fn##_const, rpsx##fn##_consts, rpsx##fn##_constt, rpsx##fn##_); \
|
||||
}
|
||||
|
||||
// rt = rs op imm16
|
||||
#define PSXRECOMPILE_CONSTCODE1(fn) \
|
||||
void rpsx##fn(void) \
|
||||
{ \
|
||||
psxRecompileCodeConst1(rpsx##fn##_const, rpsx##fn##_); \
|
||||
}
|
||||
void rpsx##fn(void) \
|
||||
{ \
|
||||
psxRecompileCodeConst1(rpsx##fn##_const, rpsx##fn##_); \
|
||||
}
|
||||
|
||||
// rd = rt op sa
|
||||
#define PSXRECOMPILE_CONSTCODE2(fn) \
|
||||
void rpsx##fn(void) \
|
||||
{ \
|
||||
psxRecompileCodeConst2(rpsx##fn##_const, rpsx##fn##_); \
|
||||
}
|
||||
void rpsx##fn(void) \
|
||||
{ \
|
||||
psxRecompileCodeConst2(rpsx##fn##_const, rpsx##fn##_); \
|
||||
}
|
||||
|
||||
// [lo,hi] = rt op rs
|
||||
#define PSXRECOMPILE_CONSTCODE3(fn, LOHI) \
|
||||
void rpsx##fn(void) \
|
||||
{ \
|
||||
psxRecompileCodeConst3(rpsx##fn##_const, rpsx##fn##_consts, rpsx##fn##_constt, rpsx##fn##_, LOHI); \
|
||||
}
|
||||
void rpsx##fn(void) \
|
||||
{ \
|
||||
psxRecompileCodeConst3(rpsx##fn##_const, rpsx##fn##_consts, rpsx##fn##_constt, rpsx##fn##_, LOHI); \
|
||||
}
|
||||
|
||||
#define PSXRECOMPILE_CONSTCODE3_PENALTY(fn, LOHI, cycles) \
|
||||
void rpsx##fn(void) \
|
||||
{ \
|
||||
psxRecompileCodeConst3(rpsx##fn##_const, rpsx##fn##_consts, rpsx##fn##_constt, rpsx##fn##_, LOHI); \
|
||||
g_iopCyclePenalty = cycles; \
|
||||
}
|
||||
void rpsx##fn(void) \
|
||||
{ \
|
||||
psxRecompileCodeConst3(rpsx##fn##_const, rpsx##fn##_consts, rpsx##fn##_constt, rpsx##fn##_, LOHI); \
|
||||
g_iopCyclePenalty = cycles; \
|
||||
}
|
||||
|
||||
// rd = rs op rt
|
||||
void psxRecompileCodeConst0(R3000AFNPTR constcode, R3000AFNPTR_INFO constscode, R3000AFNPTR_INFO consttcode, R3000AFNPTR_INFO noconstcode);
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -23,44 +23,46 @@
|
|||
#include "R5900_Profiler.h"
|
||||
|
||||
extern u32 maxrecmem;
|
||||
extern u32 pc; // recompiler pc
|
||||
extern int g_branch; // set for branch
|
||||
extern u32 target; // branch target
|
||||
extern u32 s_nBlockCycles; // cycles of current block recompiling
|
||||
extern u32 pc; // recompiler pc
|
||||
extern int g_branch; // set for branch
|
||||
extern u32 target; // branch target
|
||||
extern u32 s_nBlockCycles; // cycles of current block recompiling
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
|
||||
#define REC_FUNC( f ) \
|
||||
void rec##f() \
|
||||
{ \
|
||||
recCall(Interp::f); \
|
||||
}
|
||||
|
||||
#define REC_FUNC_DEL( f, delreg ) \
|
||||
#define REC_FUNC(f) \
|
||||
void rec##f() \
|
||||
{ \
|
||||
if( (delreg) > 0 ) _deleteEEreg(delreg, 1); \
|
||||
recCall(Interp::f); \
|
||||
}
|
||||
{ \
|
||||
recCall(Interp::f); \
|
||||
}
|
||||
|
||||
#define REC_SYS( f ) \
|
||||
void rec##f() \
|
||||
{ \
|
||||
recBranchCall(Interp::f); \
|
||||
}
|
||||
#define REC_FUNC_DEL(f, delreg) \
|
||||
void rec##f() \
|
||||
{ \
|
||||
if ((delreg) > 0) \
|
||||
_deleteEEreg(delreg, 1); \
|
||||
recCall(Interp::f); \
|
||||
}
|
||||
|
||||
#define REC_SYS_DEL( f, delreg ) \
|
||||
void rec##f() \
|
||||
{ \
|
||||
if( (delreg) > 0 ) _deleteEEreg(delreg, 1); \
|
||||
recBranchCall(Interp::f); \
|
||||
}
|
||||
#define REC_SYS(f) \
|
||||
void rec##f() \
|
||||
{ \
|
||||
recBranchCall(Interp::f); \
|
||||
}
|
||||
|
||||
#define REC_SYS_DEL(f, delreg) \
|
||||
void rec##f() \
|
||||
{ \
|
||||
if ((delreg) > 0) \
|
||||
_deleteEEreg(delreg, 1); \
|
||||
recBranchCall(Interp::f); \
|
||||
}
|
||||
|
||||
|
||||
// Used to clear recompiled code blocks during memory/dma write operations.
|
||||
u32 recClearMem(u32 pc);
|
||||
u32 REC_CLEARM( u32 mem );
|
||||
u32 REC_CLEARM(u32 mem);
|
||||
extern bool g_recompilingDelaySlot;
|
||||
|
||||
// used when processing branches
|
||||
|
@ -68,35 +70,42 @@ void SaveBranchState();
|
|||
void LoadBranchState();
|
||||
|
||||
void recompileNextInstruction(int delayslot);
|
||||
void SetBranchReg( u32 reg );
|
||||
void SetBranchImm( u32 imm );
|
||||
void SetBranchReg(u32 reg);
|
||||
void SetBranchImm(u32 imm);
|
||||
|
||||
void iFlushCall(int flushtype);
|
||||
void recBranchCall( void (*func)() );
|
||||
void recCall( void (*func)() );
|
||||
void recBranchCall(void (*func)());
|
||||
void recCall(void (*func)());
|
||||
u32 scaleblockcycles_clear();
|
||||
|
||||
namespace R5900{
|
||||
namespace Dynarec {
|
||||
extern void recDoBranchImm( u32* jmpSkip, bool isLikely = false );
|
||||
extern void recDoBranchImm_Likely( u32* jmpSkip );
|
||||
} }
|
||||
namespace R5900
|
||||
{
|
||||
namespace Dynarec
|
||||
{
|
||||
extern void recDoBranchImm(u32* jmpSkip, bool isLikely = false);
|
||||
extern void recDoBranchImm_Likely(u32* jmpSkip);
|
||||
} // namespace Dynarec
|
||||
} // namespace R5900
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// Constant Propagation - From here to the end of the header!
|
||||
|
||||
#define GPR_IS_CONST1(reg) (EE_CONST_PROP && (reg)<32 && (g_cpuHasConstReg&(1<<(reg))))
|
||||
#define GPR_IS_CONST2(reg1, reg2) (EE_CONST_PROP && (g_cpuHasConstReg&(1<<(reg1)))&&(g_cpuHasConstReg&(1<<(reg2))))
|
||||
#define GPR_SET_CONST(reg) { \
|
||||
if( (reg) < 32 ) { \
|
||||
g_cpuHasConstReg |= (1<<(reg)); \
|
||||
g_cpuFlushedConstReg &= ~(1<<(reg)); \
|
||||
} \
|
||||
}
|
||||
#define GPR_IS_CONST1(reg) (EE_CONST_PROP && (reg) < 32 && (g_cpuHasConstReg & (1 << (reg))))
|
||||
#define GPR_IS_CONST2(reg1, reg2) (EE_CONST_PROP && (g_cpuHasConstReg & (1 << (reg1))) && (g_cpuHasConstReg & (1 << (reg2))))
|
||||
#define GPR_SET_CONST(reg) \
|
||||
{ \
|
||||
if ((reg) < 32) \
|
||||
{ \
|
||||
g_cpuHasConstReg |= (1 << (reg)); \
|
||||
g_cpuFlushedConstReg &= ~(1 << (reg)); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define GPR_DEL_CONST(reg) { \
|
||||
if( (reg) < 32 ) g_cpuHasConstReg &= ~(1<<(reg)); \
|
||||
}
|
||||
#define GPR_DEL_CONST(reg) \
|
||||
{ \
|
||||
if ((reg) < 32) \
|
||||
g_cpuHasConstReg &= ~(1 << (reg)); \
|
||||
}
|
||||
|
||||
extern __aligned16 GPR_reg64 g_cpuConstRegs[32];
|
||||
extern u32 g_cpuHasConstReg, g_cpuFlushedConstReg;
|
||||
|
@ -108,7 +117,7 @@ u32* _eeGetConstReg(int reg);
|
|||
void _eeMoveGPRtoR(const x86Emitter::xRegister32& to, int fromgpr);
|
||||
void _eeMoveGPRtoM(uptr to, int fromgpr);
|
||||
void _eeMoveGPRtoRm(x86IntRegType to, int fromgpr);
|
||||
void eeSignExtendTo(int gpr, bool onlyupper=false);
|
||||
void eeSignExtendTo(int gpr, bool onlyupper = false);
|
||||
|
||||
void _eeFlushAllUnused();
|
||||
void _eeOnWriteReg(int reg, int signext);
|
||||
|
@ -123,7 +132,7 @@ void _flushEEreg(int reg);
|
|||
// allocates memory on the instruction size and returns the pointer
|
||||
u32* recGetImm64(u32 hi, u32 lo);
|
||||
|
||||
void _vuRegsCOP22(VURegs * VU, _VURegsNum *VUregsn);
|
||||
void _vuRegsCOP22(VURegs* VU, _VURegsNum* VUregsn);
|
||||
|
||||
//////////////////////////////////////
|
||||
// Templates for code recompilation //
|
||||
|
@ -133,18 +142,18 @@ typedef void (*R5900FNPTR)();
|
|||
typedef void (*R5900FNPTR_INFO)(int info);
|
||||
|
||||
#define EERECOMPILE_CODE0(fn, xmminfo) \
|
||||
void rec##fn(void) \
|
||||
{ \
|
||||
EE::Profiler.EmitOp(eeOpcode::fn); \
|
||||
eeRecompileCode0(rec##fn##_const, rec##fn##_consts, rec##fn##_constt, rec##fn##_, xmminfo); \
|
||||
}
|
||||
void rec##fn(void) \
|
||||
{ \
|
||||
EE::Profiler.EmitOp(eeOpcode::fn); \
|
||||
eeRecompileCode0(rec##fn##_const, rec##fn##_consts, rec##fn##_constt, rec##fn##_, xmminfo); \
|
||||
}
|
||||
|
||||
#define EERECOMPILE_CODEX(codename, fn) \
|
||||
void rec##fn(void) \
|
||||
{ \
|
||||
EE::Profiler.EmitOp(eeOpcode::fn); \
|
||||
codename(rec##fn##_const, rec##fn##_); \
|
||||
}
|
||||
void rec##fn(void) \
|
||||
{ \
|
||||
EE::Profiler.EmitOp(eeOpcode::fn); \
|
||||
codename(rec##fn##_const, rec##fn##_); \
|
||||
}
|
||||
|
||||
//
|
||||
// MMX/XMM caching helpers
|
||||
|
@ -164,31 +173,31 @@ void eeRecompileCode3(R5900FNPTR constcode, R5900FNPTR_INFO multicode);
|
|||
//
|
||||
// rd = rs op rt
|
||||
#define EERECOMPILE_CONSTCODE0(fn) \
|
||||
void rec##fn(void) \
|
||||
{ \
|
||||
eeRecompileCodeConst0(rec##fn##_const, rec##fn##_consts, rec##fn##_constt, rec##fn##_); \
|
||||
} \
|
||||
void rec##fn(void) \
|
||||
{ \
|
||||
eeRecompileCodeConst0(rec##fn##_const, rec##fn##_consts, rec##fn##_constt, rec##fn##_); \
|
||||
}
|
||||
|
||||
// rt = rs op imm16
|
||||
#define EERECOMPILE_CONSTCODE1(fn) \
|
||||
void rec##fn(void) \
|
||||
{ \
|
||||
eeRecompileCodeConst1(rec##fn##_const, rec##fn##_); \
|
||||
} \
|
||||
void rec##fn(void) \
|
||||
{ \
|
||||
eeRecompileCodeConst1(rec##fn##_const, rec##fn##_); \
|
||||
}
|
||||
|
||||
// rd = rt op sa
|
||||
#define EERECOMPILE_CONSTCODE2(fn) \
|
||||
void rec##fn(void) \
|
||||
{ \
|
||||
eeRecompileCodeConst2(rec##fn##_const, rec##fn##_); \
|
||||
} \
|
||||
void rec##fn(void) \
|
||||
{ \
|
||||
eeRecompileCodeConst2(rec##fn##_const, rec##fn##_); \
|
||||
}
|
||||
|
||||
// rd = rt op rs
|
||||
#define EERECOMPILE_CONSTCODESPECIAL(fn, mult) \
|
||||
void rec##fn(void) \
|
||||
{ \
|
||||
eeRecompileCodeConstSPECIAL(rec##fn##_const, rec##fn##_, mult); \
|
||||
} \
|
||||
void rec##fn(void) \
|
||||
{ \
|
||||
eeRecompileCodeConstSPECIAL(rec##fn##_const, rec##fn##_, mult); \
|
||||
}
|
||||
|
||||
// rd = rs op rt
|
||||
void eeRecompileCodeConst0(R5900FNPTR constcode, R5900FNPTR_INFO constscode, R5900FNPTR_INFO consttcode, R5900FNPTR_INFO noconstcode);
|
||||
|
@ -200,26 +209,26 @@ void eeRecompileCodeConst2(R5900FNPTR constcode, R5900FNPTR_INFO noconstcode);
|
|||
void eeRecompileCodeConstSPECIAL(R5900FNPTR constcode, R5900FNPTR_INFO multicode, int MULT);
|
||||
|
||||
// XMM caching helpers
|
||||
#define XMMINFO_READLO 0x01
|
||||
#define XMMINFO_READHI 0x02
|
||||
#define XMMINFO_WRITELO 0x04
|
||||
#define XMMINFO_WRITEHI 0x08
|
||||
#define XMMINFO_WRITED 0x10
|
||||
#define XMMINFO_READD 0x20
|
||||
#define XMMINFO_READS 0x40
|
||||
#define XMMINFO_READT 0x80
|
||||
#define XMMINFO_READD_LO 0x100 // if set and XMMINFO_READD is set, reads only low 64 bits of D
|
||||
#define XMMINFO_READACC 0x200
|
||||
#define XMMINFO_WRITEACC 0x400
|
||||
#define XMMINFO_READLO 0x001
|
||||
#define XMMINFO_READHI 0x002
|
||||
#define XMMINFO_WRITELO 0x004
|
||||
#define XMMINFO_WRITEHI 0x008
|
||||
#define XMMINFO_WRITED 0x010
|
||||
#define XMMINFO_READD 0x020
|
||||
#define XMMINFO_READS 0x040
|
||||
#define XMMINFO_READT 0x080
|
||||
#define XMMINFO_READD_LO 0x100 // if set and XMMINFO_READD is set, reads only low 64 bits of D
|
||||
#define XMMINFO_READACC 0x200
|
||||
#define XMMINFO_WRITEACC 0x400
|
||||
|
||||
#define FPURECOMPILE_CONSTCODE(fn, xmminfo) \
|
||||
void rec##fn(void) \
|
||||
{ \
|
||||
if (CHECK_FPU_FULL) \
|
||||
eeFPURecompileCode(DOUBLE::rec##fn##_xmm, R5900::Interpreter::OpcodeImpl::COP1::fn, xmminfo); \
|
||||
else \
|
||||
eeFPURecompileCode(rec##fn##_xmm, R5900::Interpreter::OpcodeImpl::COP1::fn, xmminfo); \
|
||||
}
|
||||
void rec##fn(void) \
|
||||
{ \
|
||||
if (CHECK_FPU_FULL) \
|
||||
eeFPURecompileCode(DOUBLE::rec##fn##_xmm, R5900::Interpreter::OpcodeImpl::COP1::fn, xmminfo); \
|
||||
else \
|
||||
eeFPURecompileCode(rec##fn##_xmm, R5900::Interpreter::OpcodeImpl::COP1::fn, xmminfo); \
|
||||
}
|
||||
|
||||
// rd = rs op rt (all regs need to be in xmm)
|
||||
int eeRecompileCodeXMM(int xmminfo);
|
||||
|
|
|
@ -23,8 +23,8 @@
|
|||
|
||||
namespace R5900 {
|
||||
namespace Dynarec {
|
||||
namespace OpcodeImpl
|
||||
{
|
||||
namespace OpcodeImpl {
|
||||
|
||||
void recADD();
|
||||
void recADDU();
|
||||
void recDADD();
|
||||
|
@ -39,5 +39,8 @@ namespace OpcodeImpl
|
|||
void recNOR();
|
||||
void recSLT();
|
||||
void recSLTU();
|
||||
} } }
|
||||
|
||||
} // namespace OpcodeImpl
|
||||
} // namespace Dynarec
|
||||
} // namespace R5900
|
||||
#endif
|
||||
|
|
|
@ -34,6 +34,9 @@ namespace OpcodeImpl {
|
|||
|
||||
void recSLTI();
|
||||
void recSLTIU();
|
||||
} } }
|
||||
|
||||
} // namespace OpcodeImpl
|
||||
} // namespace Dynarec
|
||||
} // namespace R5900
|
||||
|
||||
#endif
|
||||
|
|
|
@ -41,6 +41,9 @@ namespace OpcodeImpl {
|
|||
void recBGEZL();
|
||||
void recBGEZAL();
|
||||
void recBGEZALL();
|
||||
} } }
|
||||
|
||||
} // namespace OpcodeImpl
|
||||
} // namespace Dynarec
|
||||
} // namespace R5900
|
||||
|
||||
#endif
|
||||
|
|
|
@ -29,6 +29,9 @@ namespace OpcodeImpl {
|
|||
void recJAL();
|
||||
void recJR();
|
||||
void recJALR();
|
||||
} } }
|
||||
|
||||
} // namespace OpcodeImpl
|
||||
} // namespace Dynarec
|
||||
} // namespace R5900
|
||||
|
||||
#endif
|
||||
|
|
|
@ -50,6 +50,8 @@ namespace OpcodeImpl {
|
|||
void recLQC2();
|
||||
void recSQC2();
|
||||
|
||||
} } }
|
||||
} // namespace OpcodeImpl
|
||||
} // namespace Dynarec
|
||||
} // namespace R5900
|
||||
|
||||
#endif
|
||||
|
|
|
@ -31,7 +31,7 @@ namespace Dynarec {
|
|||
// Parameters:
|
||||
// jmpSkip - This parameter is the result of the appropriate J32 instruction
|
||||
// (usually JZ32 or JNZ32).
|
||||
void recDoBranchImm( u32* jmpSkip, bool isLikely )
|
||||
void recDoBranchImm(u32* jmpSkip, bool isLikely)
|
||||
{
|
||||
// All R5900 branches use this format:
|
||||
const u32 branchTo = ((s32)_Imm_ * 4) + pc;
|
||||
|
@ -51,17 +51,17 @@ void recDoBranchImm( u32* jmpSkip, bool isLikely )
|
|||
// if it's a likely branch then we'll need to skip the delay slot here, since
|
||||
// MIPS cancels the delay slot instruction when branches aren't taken.
|
||||
LoadBranchState();
|
||||
if( !isLikely )
|
||||
if (!isLikely)
|
||||
{
|
||||
pc -= 4; // instruction rewinder for delay slot, if non-likely.
|
||||
pc -= 4; // instruction rewinder for delay slot, if non-likely.
|
||||
recompileNextInstruction(1);
|
||||
}
|
||||
SetBranchImm(pc); // start a new recompiled block.
|
||||
SetBranchImm(pc); // start a new recompiled block.
|
||||
}
|
||||
|
||||
void recDoBranchImm_Likely( u32* jmpSkip )
|
||||
void recDoBranchImm_Likely(u32* jmpSkip)
|
||||
{
|
||||
recDoBranchImm( jmpSkip, true );
|
||||
recDoBranchImm(jmpSkip, true);
|
||||
}
|
||||
|
||||
namespace OpcodeImpl {
|
||||
|
@ -92,13 +92,16 @@ void recSYNC()
|
|||
void recMFSA()
|
||||
{
|
||||
int mmreg;
|
||||
if (!_Rd_) return;
|
||||
if (!_Rd_)
|
||||
return;
|
||||
|
||||
mmreg = _checkXMMreg(XMMTYPE_GPRREG, _Rd_, MODE_WRITE);
|
||||
if( mmreg >= 0 ) {
|
||||
if (mmreg >= 0)
|
||||
{
|
||||
xMOVL.PS(xRegisterSSE(mmreg), ptr[&cpuRegs.sa]);
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
xMOV(eax, ptr[&cpuRegs.sa]);
|
||||
_deleteEEreg(_Rd_, 0);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[0]], eax);
|
||||
|
@ -109,16 +112,20 @@ void recMFSA()
|
|||
// SA is 4-bit and contains the amount of bytes to shift
|
||||
void recMTSA()
|
||||
{
|
||||
if( GPR_IS_CONST1(_Rs_) ) {
|
||||
xMOV(ptr32[&cpuRegs.sa], g_cpuConstRegs[_Rs_].UL[0] & 0xf );
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
xMOV(ptr32[&cpuRegs.sa], g_cpuConstRegs[_Rs_].UL[0] & 0xf);
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
int mmreg;
|
||||
|
||||
if( (mmreg = _checkXMMreg(XMMTYPE_GPRREG, _Rs_, MODE_READ)) >= 0 ) {
|
||||
if ((mmreg = _checkXMMreg(XMMTYPE_GPRREG, _Rs_, MODE_READ)) >= 0)
|
||||
{
|
||||
xMOVSS(ptr[&cpuRegs.sa], xRegisterSSE(mmreg));
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
xMOV(ptr[&cpuRegs.sa], eax);
|
||||
}
|
||||
|
@ -128,135 +135,141 @@ void recMTSA()
|
|||
|
||||
void recMTSAB()
|
||||
{
|
||||
if( GPR_IS_CONST1(_Rs_) ) {
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
xMOV(ptr32[&cpuRegs.sa], ((g_cpuConstRegs[_Rs_].UL[0] & 0xF) ^ (_Imm_ & 0xF)));
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
_eeMoveGPRtoR(eax, _Rs_);
|
||||
xAND(eax, 0xF);
|
||||
xXOR(eax, _Imm_&0xf);
|
||||
xXOR(eax, _Imm_ & 0xf);
|
||||
xMOV(ptr[&cpuRegs.sa], eax);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void recMTSAH()
|
||||
{
|
||||
if( GPR_IS_CONST1(_Rs_) ) {
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
xMOV(ptr32[&cpuRegs.sa], ((g_cpuConstRegs[_Rs_].UL[0] & 0x7) ^ (_Imm_ & 0x7)) << 1);
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
_eeMoveGPRtoR(eax, _Rs_);
|
||||
xAND(eax, 0x7);
|
||||
xXOR(eax, _Imm_&0x7);
|
||||
xXOR(eax, _Imm_ & 0x7);
|
||||
xSHL(eax, 1);
|
||||
xMOV(ptr[&cpuRegs.sa], eax);
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////
|
||||
void recNULL()
|
||||
{
|
||||
Console.Error("EE: Unimplemented op %x", cpuRegs.code);
|
||||
}
|
||||
////////////////////////////////////////////////////
|
||||
void recNULL()
|
||||
{
|
||||
Console.Error("EE: Unimplemented op %x", cpuRegs.code);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////
|
||||
void recUnknown()
|
||||
{
|
||||
// TODO : Unknown ops should throw an exception.
|
||||
Console.Error("EE: Unrecognized op %x", cpuRegs.code);
|
||||
}
|
||||
////////////////////////////////////////////////////
|
||||
void recUnknown()
|
||||
{
|
||||
// TODO : Unknown ops should throw an exception.
|
||||
Console.Error("EE: Unrecognized op %x", cpuRegs.code);
|
||||
}
|
||||
|
||||
void recMMI_Unknown()
|
||||
{
|
||||
// TODO : Unknown ops should throw an exception.
|
||||
Console.Error("EE: Unrecognized MMI op %x", cpuRegs.code);
|
||||
}
|
||||
void recMMI_Unknown()
|
||||
{
|
||||
// TODO : Unknown ops should throw an exception.
|
||||
Console.Error("EE: Unrecognized MMI op %x", cpuRegs.code);
|
||||
}
|
||||
|
||||
void recCOP0_Unknown()
|
||||
{
|
||||
// TODO : Unknown ops should throw an exception.
|
||||
Console.Error("EE: Unrecognized COP0 op %x", cpuRegs.code);
|
||||
}
|
||||
void recCOP0_Unknown()
|
||||
{
|
||||
// TODO : Unknown ops should throw an exception.
|
||||
Console.Error("EE: Unrecognized COP0 op %x", cpuRegs.code);
|
||||
}
|
||||
|
||||
void recCOP1_Unknown()
|
||||
{
|
||||
// TODO : Unknown ops should throw an exception.
|
||||
Console.Error("EE: Unrecognized FPU/COP1 op %x", cpuRegs.code);
|
||||
}
|
||||
void recCOP1_Unknown()
|
||||
{
|
||||
// TODO : Unknown ops should throw an exception.
|
||||
Console.Error("EE: Unrecognized FPU/COP1 op %x", cpuRegs.code);
|
||||
}
|
||||
|
||||
/**********************************************************
|
||||
* UNHANDLED YET OPCODES
|
||||
*
|
||||
**********************************************************/
|
||||
/**********************************************************
|
||||
* UNHANDLED YET OPCODES
|
||||
*
|
||||
**********************************************************/
|
||||
|
||||
// Suikoden 3 uses it a lot
|
||||
void recCACHE() //Interpreter only!
|
||||
{
|
||||
//xMOV(ptr32[&cpuRegs.code], (u32)cpuRegs.code );
|
||||
//xMOV(ptr32[&cpuRegs.pc], (u32)pc );
|
||||
//iFlushCall(FLUSH_EVERYTHING);
|
||||
//xFastCall((void*)(uptr)R5900::Interpreter::OpcodeImpl::CACHE );
|
||||
//branch = 2;
|
||||
}
|
||||
// Suikoden 3 uses it a lot
|
||||
void recCACHE() //Interpreter only!
|
||||
{
|
||||
//xMOV(ptr32[&cpuRegs.code], (u32)cpuRegs.code );
|
||||
//xMOV(ptr32[&cpuRegs.pc], (u32)pc );
|
||||
//iFlushCall(FLUSH_EVERYTHING);
|
||||
//xFastCall((void*)(uptr)R5900::Interpreter::OpcodeImpl::CACHE );
|
||||
//branch = 2;
|
||||
}
|
||||
|
||||
void recTGE()
|
||||
{
|
||||
recBranchCall( R5900::Interpreter::OpcodeImpl::TGE );
|
||||
}
|
||||
void recTGE()
|
||||
{
|
||||
recBranchCall(R5900::Interpreter::OpcodeImpl::TGE);
|
||||
}
|
||||
|
||||
void recTGEU()
|
||||
{
|
||||
recBranchCall( R5900::Interpreter::OpcodeImpl::TGEU );
|
||||
}
|
||||
void recTGEU()
|
||||
{
|
||||
recBranchCall(R5900::Interpreter::OpcodeImpl::TGEU);
|
||||
}
|
||||
|
||||
void recTLT()
|
||||
{
|
||||
recBranchCall( R5900::Interpreter::OpcodeImpl::TLT );
|
||||
}
|
||||
void recTLT()
|
||||
{
|
||||
recBranchCall(R5900::Interpreter::OpcodeImpl::TLT);
|
||||
}
|
||||
|
||||
void recTLTU()
|
||||
{
|
||||
recBranchCall( R5900::Interpreter::OpcodeImpl::TLTU );
|
||||
}
|
||||
void recTLTU()
|
||||
{
|
||||
recBranchCall(R5900::Interpreter::OpcodeImpl::TLTU);
|
||||
}
|
||||
|
||||
void recTEQ()
|
||||
{
|
||||
recBranchCall( R5900::Interpreter::OpcodeImpl::TEQ );
|
||||
}
|
||||
void recTEQ()
|
||||
{
|
||||
recBranchCall(R5900::Interpreter::OpcodeImpl::TEQ);
|
||||
}
|
||||
|
||||
void recTNE()
|
||||
{
|
||||
recBranchCall( R5900::Interpreter::OpcodeImpl::TNE );
|
||||
}
|
||||
void recTNE()
|
||||
{
|
||||
recBranchCall(R5900::Interpreter::OpcodeImpl::TNE);
|
||||
}
|
||||
|
||||
void recTGEI()
|
||||
{
|
||||
recBranchCall( R5900::Interpreter::OpcodeImpl::TGEI );
|
||||
}
|
||||
void recTGEI()
|
||||
{
|
||||
recBranchCall(R5900::Interpreter::OpcodeImpl::TGEI);
|
||||
}
|
||||
|
||||
void recTGEIU()
|
||||
{
|
||||
recBranchCall( R5900::Interpreter::OpcodeImpl::TGEIU );
|
||||
}
|
||||
void recTGEIU()
|
||||
{
|
||||
recBranchCall(R5900::Interpreter::OpcodeImpl::TGEIU);
|
||||
}
|
||||
|
||||
void recTLTI()
|
||||
{
|
||||
recBranchCall( R5900::Interpreter::OpcodeImpl::TLTI );
|
||||
}
|
||||
void recTLTI()
|
||||
{
|
||||
recBranchCall(R5900::Interpreter::OpcodeImpl::TLTI);
|
||||
}
|
||||
|
||||
void recTLTIU()
|
||||
{
|
||||
recBranchCall( R5900::Interpreter::OpcodeImpl::TLTIU );
|
||||
}
|
||||
void recTLTIU()
|
||||
{
|
||||
recBranchCall(R5900::Interpreter::OpcodeImpl::TLTIU);
|
||||
}
|
||||
|
||||
void recTEQI()
|
||||
{
|
||||
recBranchCall( R5900::Interpreter::OpcodeImpl::TEQI );
|
||||
}
|
||||
void recTEQI()
|
||||
{
|
||||
recBranchCall(R5900::Interpreter::OpcodeImpl::TEQI);
|
||||
}
|
||||
|
||||
void recTNEI()
|
||||
{
|
||||
recBranchCall( R5900::Interpreter::OpcodeImpl::TNEI );
|
||||
}
|
||||
void recTNEI()
|
||||
{
|
||||
recBranchCall(R5900::Interpreter::OpcodeImpl::TNEI);
|
||||
}
|
||||
|
||||
} }} // end Namespace R5900::Dynarec::OpcodeImpl
|
||||
} // namespace OpcodeImpl
|
||||
} // namespace Dynarec
|
||||
} // namespace R5900
|
||||
|
|
|
@ -27,6 +27,9 @@ namespace OpcodeImpl {
|
|||
void recMTHI();
|
||||
void recMOVN();
|
||||
void recMOVZ();
|
||||
} } }
|
||||
|
||||
} // namespace OpcodeImpl
|
||||
} // namespace Dynarec
|
||||
} // namespace R5900
|
||||
|
||||
#endif
|
||||
|
|
|
@ -29,6 +29,9 @@ namespace OpcodeImpl {
|
|||
void recMULTU();
|
||||
void recDIV();
|
||||
void recDIVU();
|
||||
} } }
|
||||
|
||||
} // namespace OpcodeImpl
|
||||
} // namespace Dynarec
|
||||
} // namespace R5900
|
||||
|
||||
#endif
|
||||
|
|
|
@ -41,6 +41,9 @@ namespace OpcodeImpl {
|
|||
void recDSLLV();
|
||||
void recDSRLV();
|
||||
void recDSRAV();
|
||||
} } }
|
||||
|
||||
} // namespace OpcodeImpl
|
||||
} // namespace Dynarec
|
||||
} // namespace R5900
|
||||
|
||||
#endif
|
||||
|
|
|
@ -33,4 +33,3 @@
|
|||
#include "iMMI.h"
|
||||
#include "iFPU.h"
|
||||
#include "iCOP0.h"
|
||||
|
||||
|
|
|
@ -33,7 +33,8 @@ static int g_x86checknext;
|
|||
|
||||
// use special x86 register allocation for ia32
|
||||
|
||||
void _initX86regs() {
|
||||
void _initX86regs()
|
||||
{
|
||||
memzero(x86regs);
|
||||
g_x86AllocCounter = 0;
|
||||
g_x86checknext = 0;
|
||||
|
@ -43,7 +44,7 @@ uptr _x86GetAddr(int type, int reg)
|
|||
{
|
||||
uptr ret = 0;
|
||||
|
||||
switch(type&~X86TYPE_VU1)
|
||||
switch (type & ~X86TYPE_VU1)
|
||||
{
|
||||
case X86TYPE_GPR:
|
||||
ret = (uptr)&cpuRegs.GPR.r[reg];
|
||||
|
@ -65,28 +66,28 @@ uptr _x86GetAddr(int type, int reg)
|
|||
break;
|
||||
|
||||
case X86TYPE_VUQREAD:
|
||||
if (type & X86TYPE_VU1)
|
||||
if (type & X86TYPE_VU1)
|
||||
ret = (uptr)&VU1.VI[REG_Q];
|
||||
else
|
||||
ret = (uptr)&VU0.VI[REG_Q];
|
||||
break;
|
||||
|
||||
case X86TYPE_VUPREAD:
|
||||
if (type & X86TYPE_VU1)
|
||||
if (type & X86TYPE_VU1)
|
||||
ret = (uptr)&VU1.VI[REG_P];
|
||||
else
|
||||
ret = (uptr)&VU0.VI[REG_P];
|
||||
break;
|
||||
|
||||
case X86TYPE_VUQWRITE:
|
||||
if (type & X86TYPE_VU1)
|
||||
if (type & X86TYPE_VU1)
|
||||
ret = (uptr)&VU1.q;
|
||||
else
|
||||
ret = (uptr)&VU0.q;
|
||||
break;
|
||||
|
||||
case X86TYPE_VUPWRITE:
|
||||
if (type & X86TYPE_VU1)
|
||||
if (type & X86TYPE_VU1)
|
||||
ret = (uptr)&VU1.p;
|
||||
else
|
||||
ret = (uptr)&VU0.p;
|
||||
|
@ -115,28 +116,37 @@ int _getFreeX86reg(int mode)
|
|||
int tempi = -1;
|
||||
u32 bestcount = 0x10000;
|
||||
|
||||
int maxreg = (mode&MODE_8BITREG)?4:iREGCNT_GPR;
|
||||
int maxreg = (mode & MODE_8BITREG) ? 4 : iREGCNT_GPR;
|
||||
|
||||
for (uint i=0; i<iREGCNT_GPR; i++) {
|
||||
int reg = (g_x86checknext+i)%iREGCNT_GPR;
|
||||
if( reg == 0 || reg == esp.GetId() || reg == ebp.GetId() ) continue;
|
||||
if( reg >= maxreg ) continue;
|
||||
for (uint i = 0; i < iREGCNT_GPR; i++)
|
||||
{
|
||||
int reg = (g_x86checknext + i) % iREGCNT_GPR;
|
||||
if (reg == 0 || reg == esp.GetId() || reg == ebp.GetId())
|
||||
continue;
|
||||
if (reg >= maxreg)
|
||||
continue;
|
||||
//if( (mode&MODE_NOFRAME) && reg==EBP ) continue;
|
||||
|
||||
if (x86regs[reg].inuse == 0) {
|
||||
g_x86checknext = (reg+1)%iREGCNT_GPR;
|
||||
if (x86regs[reg].inuse == 0)
|
||||
{
|
||||
g_x86checknext = (reg + 1) % iREGCNT_GPR;
|
||||
return reg;
|
||||
}
|
||||
}
|
||||
|
||||
for (int i=1; i<maxreg; i++) {
|
||||
if( i == esp.GetId() || i==ebp.GetId()) continue;
|
||||
for (int i = 1; i < maxreg; i++)
|
||||
{
|
||||
if (i == esp.GetId() || i == ebp.GetId())
|
||||
continue;
|
||||
//if( (mode&MODE_NOFRAME) && i==EBP ) continue;
|
||||
|
||||
if (x86regs[i].needed) continue;
|
||||
if (x86regs[i].type != X86TYPE_TEMP) {
|
||||
if (x86regs[i].needed)
|
||||
continue;
|
||||
if (x86regs[i].type != X86TYPE_TEMP)
|
||||
{
|
||||
|
||||
if( x86regs[i].counter < bestcount ) {
|
||||
if (x86regs[i].counter < bestcount)
|
||||
{
|
||||
tempi = i;
|
||||
bestcount = x86regs[i].counter;
|
||||
}
|
||||
|
@ -147,12 +157,13 @@ int _getFreeX86reg(int mode)
|
|||
return i;
|
||||
}
|
||||
|
||||
if( tempi != -1 ) {
|
||||
if (tempi != -1)
|
||||
{
|
||||
_freeX86reg(tempi);
|
||||
return tempi;
|
||||
}
|
||||
|
||||
pxFailDev( "x86 register allocation error" );
|
||||
pxFailDev("x86 register allocation error");
|
||||
throw Exception::FailedToAllocateRegister();
|
||||
}
|
||||
|
||||
|
@ -164,11 +175,13 @@ void _flushCachedRegs()
|
|||
|
||||
void _flushConstReg(int reg)
|
||||
{
|
||||
if( GPR_IS_CONST1( reg ) && !(g_cpuFlushedConstReg&(1<<reg)) ) {
|
||||
if (GPR_IS_CONST1(reg) && !(g_cpuFlushedConstReg & (1 << reg)))
|
||||
{
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[reg].UL[0]], g_cpuConstRegs[reg].UL[0]);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[reg].UL[1]], g_cpuConstRegs[reg].UL[1]);
|
||||
g_cpuFlushedConstReg |= (1<<reg);
|
||||
if (reg == 0) DevCon.Warning("Flushing r0!");
|
||||
g_cpuFlushedConstReg |= (1 << reg);
|
||||
if (reg == 0)
|
||||
DevCon.Warning("Flushing r0!");
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -183,58 +196,74 @@ void _flushConstRegs()
|
|||
|
||||
// flush 0 and -1 first
|
||||
// ignore r0
|
||||
for (int i = 1, j = 0; i < 32; j++ && ++i, j %= 2) {
|
||||
if (!GPR_IS_CONST1(i) || g_cpuFlushedConstReg & (1<<i)) continue;
|
||||
if (g_cpuConstRegs[i].SL[j] != 0) continue;
|
||||
for (int i = 1, j = 0; i < 32; j++ && ++i, j %= 2)
|
||||
{
|
||||
if (!GPR_IS_CONST1(i) || g_cpuFlushedConstReg & (1 << i))
|
||||
continue;
|
||||
if (g_cpuConstRegs[i].SL[j] != 0)
|
||||
continue;
|
||||
|
||||
if (eaxval != 0) {
|
||||
if (eaxval != 0)
|
||||
{
|
||||
xXOR(eax, eax);
|
||||
eaxval = 0;
|
||||
}
|
||||
|
||||
xMOV(ptr[&cpuRegs.GPR.r[i].SL[j]], eax);
|
||||
done[j] |= 1<<i;
|
||||
done[j] |= 1 << i;
|
||||
zero_cnt++;
|
||||
}
|
||||
|
||||
rewindPtr = x86Ptr;
|
||||
|
||||
for (int i = 1, j = 0; i < 32; j++ && ++i, j %= 2) {
|
||||
if (!GPR_IS_CONST1(i) || g_cpuFlushedConstReg & (1<<i)) continue;
|
||||
if (g_cpuConstRegs[i].SL[j] != -1) continue;
|
||||
for (int i = 1, j = 0; i < 32; j++ && ++i, j %= 2)
|
||||
{
|
||||
if (!GPR_IS_CONST1(i) || g_cpuFlushedConstReg & (1 << i))
|
||||
continue;
|
||||
if (g_cpuConstRegs[i].SL[j] != -1)
|
||||
continue;
|
||||
|
||||
if (eaxval > 0) {
|
||||
if (eaxval > 0)
|
||||
{
|
||||
xXOR(eax, eax);
|
||||
eaxval = 0;
|
||||
}
|
||||
if (eaxval == 0) {
|
||||
if (eaxval == 0)
|
||||
{
|
||||
xNOT(eax);
|
||||
eaxval = -1;
|
||||
}
|
||||
|
||||
xMOV(ptr[&cpuRegs.GPR.r[i].SL[j]], eax);
|
||||
done[j + 2] |= 1<<i;
|
||||
done[j + 2] |= 1 << i;
|
||||
minusone_cnt++;
|
||||
}
|
||||
|
||||
if (minusone_cnt == 1 && !zero_cnt) { // not worth it for one byte
|
||||
x86SetPtr( rewindPtr );
|
||||
} else {
|
||||
if (minusone_cnt == 1 && !zero_cnt) // not worth it for one byte
|
||||
{
|
||||
x86SetPtr(rewindPtr);
|
||||
}
|
||||
else
|
||||
{
|
||||
done[0] |= done[2];
|
||||
done[1] |= done[3];
|
||||
}
|
||||
|
||||
for (int i = 1; i < 32; ++i) {
|
||||
if (GPR_IS_CONST1(i)) {
|
||||
if (!(g_cpuFlushedConstReg&(1<<i))) {
|
||||
if (!(done[0] & (1<<i)))
|
||||
for (int i = 1; i < 32; ++i)
|
||||
{
|
||||
if (GPR_IS_CONST1(i))
|
||||
{
|
||||
if (!(g_cpuFlushedConstReg & (1 << i)))
|
||||
{
|
||||
if (!(done[0] & (1 << i)))
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[i].UL[0]], g_cpuConstRegs[i].UL[0]);
|
||||
if (!(done[1] & (1<<i)))
|
||||
if (!(done[1] & (1 << i)))
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[i].UL[1]], g_cpuConstRegs[i].UL[1]);
|
||||
|
||||
g_cpuFlushedConstReg |= 1<<i;
|
||||
g_cpuFlushedConstReg |= 1 << i;
|
||||
}
|
||||
if (g_cpuHasConstReg == g_cpuFlushedConstReg) break;
|
||||
if (g_cpuHasConstReg == g_cpuFlushedConstReg)
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -242,38 +271,47 @@ void _flushConstRegs()
|
|||
int _allocX86reg(xRegister32 x86reg, int type, int reg, int mode)
|
||||
{
|
||||
uint i;
|
||||
pxAssertDev( reg >= 0 && reg < 32, "Register index out of bounds." );
|
||||
pxAssertDev( x86reg != esp && x86reg != ebp, "Allocation of ESP/EBP is not allowed!" );
|
||||
pxAssertDev(reg >= 0 && reg < 32, "Register index out of bounds.");
|
||||
pxAssertDev(x86reg != esp && x86reg != ebp, "Allocation of ESP/EBP is not allowed!");
|
||||
|
||||
// don't alloc EAX and ESP,EBP if MODE_NOFRAME
|
||||
int oldmode = mode;
|
||||
//int noframe = mode & MODE_NOFRAME;
|
||||
uint maxreg = (mode & MODE_8BITREG) ? 4 : iREGCNT_GPR;
|
||||
mode &= ~(MODE_NOFRAME|MODE_8BITREG);
|
||||
mode &= ~(MODE_NOFRAME | MODE_8BITREG);
|
||||
int readfromreg = -1;
|
||||
|
||||
if ( type != X86TYPE_TEMP ) {
|
||||
if ( maxreg < iREGCNT_GPR ) {
|
||||
if (type != X86TYPE_TEMP)
|
||||
{
|
||||
if (maxreg < iREGCNT_GPR)
|
||||
{
|
||||
// make sure reg isn't in the higher regs
|
||||
|
||||
for(i = maxreg; i < iREGCNT_GPR; ++i) {
|
||||
if (!x86regs[i].inuse || x86regs[i].type != type || x86regs[i].reg != reg) continue;
|
||||
for (i = maxreg; i < iREGCNT_GPR; ++i)
|
||||
{
|
||||
if (!x86regs[i].inuse || x86regs[i].type != type || x86regs[i].reg != reg)
|
||||
continue;
|
||||
|
||||
if( mode & MODE_READ ) {
|
||||
if (mode & MODE_READ)
|
||||
{
|
||||
readfromreg = i;
|
||||
x86regs[i].inuse = 0;
|
||||
break;
|
||||
}
|
||||
else if( mode & MODE_WRITE ) {
|
||||
else if (mode & MODE_WRITE)
|
||||
{
|
||||
x86regs[i].inuse = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (i=1; i<maxreg; i++) {
|
||||
if ( (int)i == esp.GetId() || (int)i == ebp.GetId() ) continue;
|
||||
if (!x86regs[i].inuse || x86regs[i].type != type || x86regs[i].reg != reg) continue;
|
||||
for (i = 1; i < maxreg; i++)
|
||||
{
|
||||
if ((int)i == esp.GetId() || (int)i == ebp.GetId())
|
||||
continue;
|
||||
if (!x86regs[i].inuse || x86regs[i].type != type || x86regs[i].reg != reg)
|
||||
continue;
|
||||
|
||||
// We're in a for loop until i<maxreg. This will never happen.
|
||||
/*if( i >= maxreg ) {
|
||||
|
@ -284,21 +322,26 @@ int _allocX86reg(xRegister32 x86reg, int type, int reg, int mode)
|
|||
break;
|
||||
}*/
|
||||
|
||||
if( !x86reg.IsEmpty() ) {
|
||||
if (!x86reg.IsEmpty())
|
||||
{
|
||||
// requested specific reg, so return that instead
|
||||
if( i != (uint)x86reg.GetId() ) {
|
||||
if( x86regs[i].mode & MODE_READ ) readfromreg = i;
|
||||
mode |= x86regs[i].mode&MODE_WRITE;
|
||||
if (i != (uint)x86reg.GetId())
|
||||
{
|
||||
if (x86regs[i].mode & MODE_READ)
|
||||
readfromreg = i;
|
||||
mode |= x86regs[i].mode & MODE_WRITE;
|
||||
x86regs[i].inuse = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if( type != X86TYPE_TEMP && !(x86regs[i].mode & MODE_READ) && (mode&MODE_READ)) {
|
||||
if (type != X86TYPE_TEMP && !(x86regs[i].mode & MODE_READ) && (mode & MODE_READ))
|
||||
{
|
||||
|
||||
if( type == X86TYPE_GPR ) _flushConstReg(reg);
|
||||
if (type == X86TYPE_GPR)
|
||||
_flushConstReg(reg);
|
||||
|
||||
if( X86_ISVI(type) && reg < 16 )
|
||||
if (X86_ISVI(type) && reg < 16)
|
||||
xMOVZX(xRegister32(i), ptr16[(u16*)(_x86GetAddr(type, reg))]);
|
||||
else
|
||||
xMOV(xRegister32(i), ptr[(void*)(_x86GetAddr(type, reg))]);
|
||||
|
@ -307,7 +350,7 @@ int _allocX86reg(xRegister32 x86reg, int type, int reg, int mode)
|
|||
}
|
||||
|
||||
x86regs[i].needed = 1;
|
||||
x86regs[i].mode|= mode;
|
||||
x86regs[i].mode |= mode;
|
||||
return i;
|
||||
}
|
||||
}
|
||||
|
@ -323,16 +366,21 @@ int _allocX86reg(xRegister32 x86reg, int type, int reg, int mode)
|
|||
x86regs[x86reg.GetId()].needed = 1;
|
||||
x86regs[x86reg.GetId()].inuse = 1;
|
||||
|
||||
if( mode & MODE_READ ) {
|
||||
if( readfromreg >= 0 )
|
||||
if (mode & MODE_READ)
|
||||
{
|
||||
if (readfromreg >= 0)
|
||||
xMOV(x86reg, xRegister32(readfromreg));
|
||||
else {
|
||||
if( type == X86TYPE_GPR ) {
|
||||
else
|
||||
{
|
||||
if (type == X86TYPE_GPR)
|
||||
{
|
||||
|
||||
if( reg == 0 ) {
|
||||
if (reg == 0)
|
||||
{
|
||||
xXOR(x86reg, x86reg);
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
_flushConstReg(reg);
|
||||
_deleteGPRtoXMMreg(reg, 1);
|
||||
|
||||
|
@ -341,14 +389,17 @@ int _allocX86reg(xRegister32 x86reg, int type, int reg, int mode)
|
|||
_deleteGPRtoXMMreg(reg, 0);
|
||||
}
|
||||
}
|
||||
else {
|
||||
if( X86_ISVI(type) && reg < 16 ) {
|
||||
if( reg == 0 )
|
||||
else
|
||||
{
|
||||
if (X86_ISVI(type) && reg < 16)
|
||||
{
|
||||
if (reg == 0)
|
||||
xXOR(x86reg, x86reg);
|
||||
else
|
||||
xMOVZX(x86reg, ptr16[(u16*)(_x86GetAddr(type, reg))]);
|
||||
}
|
||||
else xMOV(x86reg, ptr[(void*)(_x86GetAddr(type, reg))]);
|
||||
else
|
||||
xMOV(x86reg, ptr[(void*)(_x86GetAddr(type, reg))]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -362,11 +413,14 @@ int _checkX86reg(int type, int reg, int mode)
|
|||
{
|
||||
uint i;
|
||||
|
||||
for (i=0; i<iREGCNT_GPR; i++) {
|
||||
if (x86regs[i].inuse && x86regs[i].reg == reg && x86regs[i].type == type) {
|
||||
for (i = 0; i < iREGCNT_GPR; i++)
|
||||
{
|
||||
if (x86regs[i].inuse && x86regs[i].reg == reg && x86regs[i].type == type)
|
||||
{
|
||||
|
||||
if( !(x86regs[i].mode & MODE_READ) && (mode&MODE_READ) ) {
|
||||
if( X86_ISVI(type) )
|
||||
if (!(x86regs[i].mode & MODE_READ) && (mode & MODE_READ))
|
||||
{
|
||||
if (X86_ISVI(type))
|
||||
xMOVZX(xRegister32(i), ptr16[(u16*)(_x86GetAddr(type, reg))]);
|
||||
else
|
||||
xMOV(xRegister32(i), ptr[(void*)(_x86GetAddr(type, reg))]);
|
||||
|
@ -386,20 +440,25 @@ void _addNeededX86reg(int type, int reg)
|
|||
{
|
||||
uint i;
|
||||
|
||||
for (i=0; i<iREGCNT_GPR; i++) {
|
||||
if (!x86regs[i].inuse || x86regs[i].reg != reg || x86regs[i].type != type ) continue;
|
||||
for (i = 0; i < iREGCNT_GPR; i++)
|
||||
{
|
||||
if (!x86regs[i].inuse || x86regs[i].reg != reg || x86regs[i].type != type)
|
||||
continue;
|
||||
|
||||
x86regs[i].counter = g_x86AllocCounter++;
|
||||
x86regs[i].needed = 1;
|
||||
}
|
||||
}
|
||||
|
||||
void _clearNeededX86regs() {
|
||||
void _clearNeededX86regs()
|
||||
{
|
||||
uint i;
|
||||
|
||||
for (i=0; i<iREGCNT_GPR; i++) {
|
||||
if (x86regs[i].needed ) {
|
||||
if( x86regs[i].inuse && (x86regs[i].mode&MODE_WRITE) )
|
||||
for (i = 0; i < iREGCNT_GPR; i++)
|
||||
{
|
||||
if (x86regs[i].needed)
|
||||
{
|
||||
if (x86regs[i].inuse && (x86regs[i].mode & MODE_WRITE))
|
||||
x86regs[i].mode |= MODE_READ;
|
||||
}
|
||||
x86regs[i].needed = 0;
|
||||
|
@ -410,17 +469,21 @@ void _deleteX86reg(int type, int reg, int flush)
|
|||
{
|
||||
uint i;
|
||||
|
||||
for (i=0; i<iREGCNT_GPR; i++) {
|
||||
if (x86regs[i].inuse && x86regs[i].reg == reg && x86regs[i].type == type) {
|
||||
switch(flush) {
|
||||
for (i = 0; i < iREGCNT_GPR; i++)
|
||||
{
|
||||
if (x86regs[i].inuse && x86regs[i].reg == reg && x86regs[i].type == type)
|
||||
{
|
||||
switch (flush)
|
||||
{
|
||||
case 0:
|
||||
_freeX86reg(i);
|
||||
break;
|
||||
|
||||
case 1:
|
||||
if( x86regs[i].mode & MODE_WRITE) {
|
||||
if (x86regs[i].mode & MODE_WRITE)
|
||||
{
|
||||
|
||||
if( X86_ISVI(type) && x86regs[i].reg < 16 )
|
||||
if (X86_ISVI(type) && x86regs[i].reg < 16)
|
||||
xMOV(ptr[(void*)(_x86GetAddr(type, x86regs[i].reg))], xRegister16(i));
|
||||
else
|
||||
xMOV(ptr[(void*)(_x86GetAddr(type, x86regs[i].reg))], xRegister32(i));
|
||||
|
@ -447,12 +510,14 @@ void _freeX86reg(const x86Emitter::xRegister32& x86reg)
|
|||
|
||||
void _freeX86reg(int x86reg)
|
||||
{
|
||||
pxAssert( x86reg >= 0 && x86reg < (int)iREGCNT_GPR );
|
||||
pxAssert(x86reg >= 0 && x86reg < (int)iREGCNT_GPR);
|
||||
|
||||
if( x86regs[x86reg].inuse && (x86regs[x86reg].mode&MODE_WRITE) ) {
|
||||
if (x86regs[x86reg].inuse && (x86regs[x86reg].mode & MODE_WRITE))
|
||||
{
|
||||
x86regs[x86reg].mode &= ~MODE_WRITE;
|
||||
|
||||
if( X86_ISVI(x86regs[x86reg].type) && x86regs[x86reg].reg < 16 ) {
|
||||
if (X86_ISVI(x86regs[x86reg].type) && x86regs[x86reg].reg < 16)
|
||||
{
|
||||
xMOV(ptr[(void*)(_x86GetAddr(x86regs[x86reg].type, x86regs[x86reg].reg))], xRegister16(x86reg));
|
||||
}
|
||||
else
|
||||
|
@ -464,7 +529,7 @@ void _freeX86reg(int x86reg)
|
|||
|
||||
void _freeX86regs()
|
||||
{
|
||||
for (uint i=0; i<iREGCNT_GPR; i++)
|
||||
for (uint i = 0; i < iREGCNT_GPR; i++)
|
||||
_freeX86reg(i);
|
||||
}
|
||||
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -24,8 +24,7 @@ using namespace x86Emitter;
|
|||
|
||||
namespace R5900 {
|
||||
namespace Dynarec {
|
||||
namespace OpcodeImpl
|
||||
{
|
||||
namespace OpcodeImpl {
|
||||
|
||||
/*********************************************************
|
||||
* Register arithmetic *
|
||||
|
@ -38,20 +37,20 @@ namespace OpcodeImpl
|
|||
|
||||
namespace Interp = R5900::Interpreter::OpcodeImpl;
|
||||
|
||||
REC_FUNC_DEL(ADD, _Rd_);
|
||||
REC_FUNC_DEL(ADDU, _Rd_);
|
||||
REC_FUNC_DEL(DADD, _Rd_);
|
||||
REC_FUNC_DEL(ADD, _Rd_);
|
||||
REC_FUNC_DEL(ADDU, _Rd_);
|
||||
REC_FUNC_DEL(DADD, _Rd_);
|
||||
REC_FUNC_DEL(DADDU, _Rd_);
|
||||
REC_FUNC_DEL(SUB, _Rd_);
|
||||
REC_FUNC_DEL(SUBU, _Rd_);
|
||||
REC_FUNC_DEL(DSUB, _Rd_);
|
||||
REC_FUNC_DEL(SUB, _Rd_);
|
||||
REC_FUNC_DEL(SUBU, _Rd_);
|
||||
REC_FUNC_DEL(DSUB, _Rd_);
|
||||
REC_FUNC_DEL(DSUBU, _Rd_);
|
||||
REC_FUNC_DEL(AND, _Rd_);
|
||||
REC_FUNC_DEL(OR, _Rd_);
|
||||
REC_FUNC_DEL(XOR, _Rd_);
|
||||
REC_FUNC_DEL(NOR, _Rd_);
|
||||
REC_FUNC_DEL(SLT, _Rd_);
|
||||
REC_FUNC_DEL(SLTU, _Rd_);
|
||||
REC_FUNC_DEL(AND, _Rd_);
|
||||
REC_FUNC_DEL(OR, _Rd_);
|
||||
REC_FUNC_DEL(XOR, _Rd_);
|
||||
REC_FUNC_DEL(NOR, _Rd_);
|
||||
REC_FUNC_DEL(SLT, _Rd_);
|
||||
REC_FUNC_DEL(SLTU, _Rd_);
|
||||
|
||||
#else
|
||||
|
||||
|
@ -63,7 +62,7 @@ void recADD_const()
|
|||
|
||||
void recADD_constv(int info, int creg, u32 vreg)
|
||||
{
|
||||
pxAssert( !(info&PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
s32 cval = g_cpuConstRegs[creg].SL[0];
|
||||
|
||||
|
@ -88,7 +87,7 @@ void recADD_constt(int info)
|
|||
// nothing is constant
|
||||
void recADD_(int info)
|
||||
{
|
||||
pxAssert( !(info&PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
xMOV(eax, ptr32[&cpuRegs.GPR.r[_Rs_].SL[0]]);
|
||||
if (_Rs_ == _Rt_)
|
||||
|
@ -98,7 +97,7 @@ void recADD_(int info)
|
|||
eeSignExtendTo(_Rd_);
|
||||
}
|
||||
|
||||
EERECOMPILE_CODE0(ADD, XMMINFO_WRITED|XMMINFO_READS|XMMINFO_READT);
|
||||
EERECOMPILE_CODE0(ADD, XMMINFO_WRITED | XMMINFO_READS | XMMINFO_READT);
|
||||
|
||||
//// ADDU
|
||||
void recADDU(void)
|
||||
|
@ -114,19 +113,23 @@ void recDADD_const(void)
|
|||
|
||||
void recDADD_constv(int info, int creg, u32 vreg)
|
||||
{
|
||||
pxAssert( !(info&PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
GPR_reg64 cval = g_cpuConstRegs[creg];
|
||||
|
||||
if (_Rd_ == vreg) {
|
||||
if (!cval.SD[0])
|
||||
return; // no-op
|
||||
if (_Rd_ == vreg)
|
||||
{
|
||||
if (!cval.SD[0]) // no-op
|
||||
return;
|
||||
xADD(ptr32[&cpuRegs.GPR.r[_Rd_].SL[0]], cval.SL[0]);
|
||||
xADC(ptr32[&cpuRegs.GPR.r[_Rd_].SL[1]], cval.SL[1]);
|
||||
} else {
|
||||
}
|
||||
else
|
||||
{
|
||||
xMOV(eax, ptr32[&cpuRegs.GPR.r[vreg].SL[0]]);
|
||||
xMOV(edx, ptr32[&cpuRegs.GPR.r[vreg].SL[1]]);
|
||||
if (cval.SD[0]) {
|
||||
if (cval.SD[0])
|
||||
{
|
||||
xADD(eax, cval.SL[0]);
|
||||
xADC(edx, cval.SL[1]);
|
||||
}
|
||||
|
@ -147,7 +150,7 @@ void recDADD_constt(int info)
|
|||
|
||||
void recDADD_(int info)
|
||||
{
|
||||
pxAssert( !(info&PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
u32 rs = _Rs_, rt = _Rt_;
|
||||
if (_Rd_ == _Rt_)
|
||||
|
@ -155,7 +158,8 @@ void recDADD_(int info)
|
|||
|
||||
xMOV(eax, ptr32[&cpuRegs.GPR.r[rt].SL[0]]);
|
||||
|
||||
if (_Rd_ == _Rs_ && _Rs_ == _Rt_) {
|
||||
if (_Rd_ == _Rs_ && _Rs_ == _Rt_)
|
||||
{
|
||||
xSHLD(ptr32[&cpuRegs.GPR.r[_Rd_].SL[1]], eax, 1);
|
||||
xSHL(ptr32[&cpuRegs.GPR.r[_Rd_].SL[0]], 1);
|
||||
return;
|
||||
|
@ -163,14 +167,19 @@ void recDADD_(int info)
|
|||
|
||||
xMOV(edx, ptr32[&cpuRegs.GPR.r[rt].SL[1]]);
|
||||
|
||||
if (_Rd_ == rs) {
|
||||
if (_Rd_ == rs)
|
||||
{
|
||||
xADD(ptr32[&cpuRegs.GPR.r[_Rd_].SL[0]], eax);
|
||||
xADC(ptr32[&cpuRegs.GPR.r[_Rd_].SL[1]], edx);
|
||||
return;
|
||||
} else if (rs == rt) {
|
||||
}
|
||||
else if (rs == rt)
|
||||
{
|
||||
xADD(eax, eax);
|
||||
xADC(edx, edx);
|
||||
} else {
|
||||
}
|
||||
else
|
||||
{
|
||||
xADD(eax, ptr32[&cpuRegs.GPR.r[rs].SL[0]]);
|
||||
xADC(edx, ptr32[&cpuRegs.GPR.r[rs].SL[1]]);
|
||||
}
|
||||
|
@ -179,7 +188,7 @@ void recDADD_(int info)
|
|||
xMOV(ptr32[&cpuRegs.GPR.r[_Rd_].SL[1]], edx);
|
||||
}
|
||||
|
||||
EERECOMPILE_CODE0(DADD, XMMINFO_WRITED|XMMINFO_READS|XMMINFO_READT);
|
||||
EERECOMPILE_CODE0(DADD, XMMINFO_WRITED | XMMINFO_READS | XMMINFO_READT);
|
||||
|
||||
//// DADDU
|
||||
void recDADDU(void)
|
||||
|
@ -196,7 +205,7 @@ void recSUB_const()
|
|||
|
||||
void recSUB_consts(int info)
|
||||
{
|
||||
pxAssert( !(info&PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
s32 sval = g_cpuConstRegs[_Rs_].SL[0];
|
||||
|
||||
|
@ -207,7 +216,7 @@ void recSUB_consts(int info)
|
|||
|
||||
void recSUB_constt(int info)
|
||||
{
|
||||
pxAssert( !(info&PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
s32 tval = g_cpuConstRegs[_Rt_].SL[0];
|
||||
|
||||
|
@ -219,9 +228,10 @@ void recSUB_constt(int info)
|
|||
|
||||
void recSUB_(int info)
|
||||
{
|
||||
pxAssert( !(info&PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
if (_Rs_ == _Rt_) {
|
||||
if (_Rs_ == _Rt_)
|
||||
{
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[_Rd_].SL[0]], 0);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[_Rd_].SL[1]], 0);
|
||||
return;
|
||||
|
@ -232,7 +242,7 @@ void recSUB_(int info)
|
|||
eeSignExtendTo(_Rd_);
|
||||
}
|
||||
|
||||
EERECOMPILE_CODE0(SUB, XMMINFO_READS|XMMINFO_READT|XMMINFO_WRITED);
|
||||
EERECOMPILE_CODE0(SUB, XMMINFO_READS | XMMINFO_READT | XMMINFO_WRITED);
|
||||
|
||||
//// SUBU
|
||||
void recSUBU(void)
|
||||
|
@ -248,11 +258,12 @@ void recDSUB_const()
|
|||
|
||||
void recDSUB_consts(int info)
|
||||
{
|
||||
pxAssert( !(info&PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
GPR_reg64 sval = g_cpuConstRegs[_Rs_];
|
||||
|
||||
if (!sval.SD[0] && _Rd_ == _Rt_) {
|
||||
if (!sval.SD[0] && _Rd_ == _Rt_)
|
||||
{
|
||||
/* To understand this 64-bit negate, consider that a negate in 2's complement
|
||||
* is a NOT then an ADD 1. The upper word should only have the NOT stage unless
|
||||
* the ADD overflows. The ADD only overflows if the lower word is 0.
|
||||
|
@ -263,7 +274,9 @@ void recDSUB_consts(int info)
|
|||
xADC(ptr32[&cpuRegs.GPR.r[_Rd_].SL[1]], 0);
|
||||
xNEG(ptr32[&cpuRegs.GPR.r[_Rd_].SL[1]]);
|
||||
return;
|
||||
} else {
|
||||
}
|
||||
else
|
||||
{
|
||||
xMOV(eax, sval.SL[0]);
|
||||
xMOV(edx, sval.SL[1]);
|
||||
}
|
||||
|
@ -276,17 +289,21 @@ void recDSUB_consts(int info)
|
|||
|
||||
void recDSUB_constt(int info)
|
||||
{
|
||||
pxAssert( !(info&PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
GPR_reg64 tval = g_cpuConstRegs[_Rt_];
|
||||
|
||||
if (_Rd_ == _Rs_) {
|
||||
if (_Rd_ == _Rs_)
|
||||
{
|
||||
xSUB(ptr32[&cpuRegs.GPR.r[_Rd_].SL[0]], tval.SL[0]);
|
||||
xSBB(ptr32[&cpuRegs.GPR.r[_Rd_].SL[1]], tval.SL[1]);
|
||||
} else {
|
||||
}
|
||||
else
|
||||
{
|
||||
xMOV(eax, ptr32[&cpuRegs.GPR.r[_Rs_].SL[0]]);
|
||||
xMOV(edx, ptr32[&cpuRegs.GPR.r[_Rs_].SL[1]]);
|
||||
if (tval.SD[0]) {
|
||||
if (tval.SD[0])
|
||||
{
|
||||
xSUB(eax, tval.SL[0]);
|
||||
xSBB(edx, tval.SL[1]);
|
||||
}
|
||||
|
@ -297,17 +314,22 @@ void recDSUB_constt(int info)
|
|||
|
||||
void recDSUB_(int info)
|
||||
{
|
||||
pxAssert( !(info&PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
if (_Rs_ == _Rt_) {
|
||||
if (_Rs_ == _Rt_)
|
||||
{
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[_Rd_].SL[0]], 0);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[_Rd_].SL[1]], 0);
|
||||
} else if (_Rd_ == _Rs_) {
|
||||
}
|
||||
else if (_Rd_ == _Rs_)
|
||||
{
|
||||
xMOV(eax, ptr32[&cpuRegs.GPR.r[_Rt_].SL[0]]);
|
||||
xMOV(edx, ptr32[&cpuRegs.GPR.r[_Rt_].SL[1]]);
|
||||
xSUB(ptr32[&cpuRegs.GPR.r[_Rd_].SL[0]], eax);
|
||||
xSBB(ptr32[&cpuRegs.GPR.r[_Rd_].SL[1]], edx);
|
||||
} else {
|
||||
}
|
||||
else
|
||||
{
|
||||
xMOV(eax, ptr32[&cpuRegs.GPR.r[_Rs_].SL[0]]);
|
||||
xMOV(edx, ptr32[&cpuRegs.GPR.r[_Rs_].SL[1]]);
|
||||
xSUB(eax, ptr32[&cpuRegs.GPR.r[_Rt_].SL[0]]);
|
||||
|
@ -317,7 +339,7 @@ void recDSUB_(int info)
|
|||
}
|
||||
}
|
||||
|
||||
EERECOMPILE_CODE0(DSUB, XMMINFO_READS|XMMINFO_READT|XMMINFO_WRITED);
|
||||
EERECOMPILE_CODE0(DSUB, XMMINFO_READS | XMMINFO_READT | XMMINFO_WRITED);
|
||||
|
||||
//// DSUBU
|
||||
void recDSUBU(void)
|
||||
|
@ -333,17 +355,23 @@ void recAND_const()
|
|||
|
||||
void recAND_constv(int info, int creg, u32 vreg)
|
||||
{
|
||||
pxAssert( !(info & PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
GPR_reg64 cval = g_cpuConstRegs[creg];
|
||||
|
||||
for (int i = 0; i < 2; i++) {
|
||||
if (!cval.UL[i]) {
|
||||
for (int i = 0; i < 2; i++)
|
||||
{
|
||||
if (!cval.UL[i])
|
||||
{
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[_Rd_].UL[i]], 0);
|
||||
} else if (_Rd_ == vreg) {
|
||||
}
|
||||
else if (_Rd_ == vreg)
|
||||
{
|
||||
if (cval.SL[i] != -1)
|
||||
xAND(ptr32[&cpuRegs.GPR.r[_Rd_].UL[i]], cval.UL[i]);
|
||||
} else {
|
||||
}
|
||||
else
|
||||
{
|
||||
xMOV(eax, ptr32[&cpuRegs.GPR.r[vreg].UL[i]]);
|
||||
if (cval.SL[i] != -1)
|
||||
xAND(eax, cval.UL[i]);
|
||||
|
@ -364,19 +392,23 @@ void recAND_constt(int info)
|
|||
|
||||
void recAND_(int info)
|
||||
{
|
||||
pxAssert( !(info & PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
u32 rs = _Rs_, rt = _Rt_;
|
||||
if (_Rd_ == _Rt_)
|
||||
rs = _Rt_, rt = _Rs_;
|
||||
|
||||
for (int i = 0; i < 2; i++) {
|
||||
if (_Rd_ == rs) {
|
||||
for (int i = 0; i < 2; i++)
|
||||
{
|
||||
if (_Rd_ == rs)
|
||||
{
|
||||
if (rs == rt)
|
||||
continue;
|
||||
xMOV(eax, ptr32[&cpuRegs.GPR.r[rt].UL[i]]);
|
||||
xAND(ptr32[&cpuRegs.GPR.r[_Rd_].UL[i]], eax);
|
||||
} else {
|
||||
}
|
||||
else
|
||||
{
|
||||
xMOV(eax, ptr32[&cpuRegs.GPR.r[rs].UL[i]]);
|
||||
if (rs != rt)
|
||||
xAND(eax, ptr32[&cpuRegs.GPR.r[rt].UL[i]]);
|
||||
|
@ -385,7 +417,7 @@ void recAND_(int info)
|
|||
}
|
||||
}
|
||||
|
||||
EERECOMPILE_CODE0(AND, XMMINFO_READS|XMMINFO_READT|XMMINFO_WRITED);
|
||||
EERECOMPILE_CODE0(AND, XMMINFO_READS | XMMINFO_READT | XMMINFO_WRITED);
|
||||
|
||||
//// OR
|
||||
void recOR_const()
|
||||
|
@ -395,17 +427,23 @@ void recOR_const()
|
|||
|
||||
void recOR_constv(int info, int creg, u32 vreg)
|
||||
{
|
||||
pxAssert( !(info & PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
GPR_reg64 cval = g_cpuConstRegs[creg];
|
||||
|
||||
for (int i = 0; i < 2; i++) {
|
||||
if (cval.SL[i] == -1) {
|
||||
for (int i = 0; i < 2; i++)
|
||||
{
|
||||
if (cval.SL[i] == -1)
|
||||
{
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[_Rd_].UL[i]], -1);
|
||||
} else if (_Rd_ == vreg) {
|
||||
}
|
||||
else if (_Rd_ == vreg)
|
||||
{
|
||||
if (cval.UL[i])
|
||||
xOR(ptr32[&cpuRegs.GPR.r[_Rd_].UL[i]], cval.UL[i]);
|
||||
} else {
|
||||
}
|
||||
else
|
||||
{
|
||||
xMOV(eax, ptr32[&cpuRegs.GPR.r[vreg].UL[i]]);
|
||||
if (cval.UL[i])
|
||||
xOR(eax, cval.UL[i]);
|
||||
|
@ -426,19 +464,23 @@ void recOR_constt(int info)
|
|||
|
||||
void recOR_(int info)
|
||||
{
|
||||
pxAssert( !(info & PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
u32 rs = _Rs_, rt = _Rt_;
|
||||
if (_Rd_ == _Rt_)
|
||||
rs = _Rt_, rt = _Rs_;
|
||||
|
||||
for (int i = 0; i < 2; i++) {
|
||||
if (_Rd_ == rs) {
|
||||
for (int i = 0; i < 2; i++)
|
||||
{
|
||||
if (_Rd_ == rs)
|
||||
{
|
||||
if (rs == rt)
|
||||
continue;
|
||||
xMOV(eax, ptr32[&cpuRegs.GPR.r[rt].UL[i]]);
|
||||
xOR(ptr32[&cpuRegs.GPR.r[_Rd_].UL[i]], eax);
|
||||
} else {
|
||||
}
|
||||
else
|
||||
{
|
||||
xMOV(eax, ptr32[&cpuRegs.GPR.r[rs].UL[i]]);
|
||||
if (rs != rt)
|
||||
xOR(eax, ptr32[&cpuRegs.GPR.r[rt].UL[i]]);
|
||||
|
@ -447,7 +489,7 @@ void recOR_(int info)
|
|||
}
|
||||
}
|
||||
|
||||
EERECOMPILE_CODE0(OR, XMMINFO_READS|XMMINFO_READT|XMMINFO_WRITED);
|
||||
EERECOMPILE_CODE0(OR, XMMINFO_READS | XMMINFO_READT | XMMINFO_WRITED);
|
||||
|
||||
//// XOR
|
||||
void recXOR_const()
|
||||
|
@ -457,15 +499,19 @@ void recXOR_const()
|
|||
|
||||
void recXOR_constv(int info, int creg, u32 vreg)
|
||||
{
|
||||
pxAssert( !(info & PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
GPR_reg64 cval = g_cpuConstRegs[creg];
|
||||
|
||||
for (int i = 0; i < 2; i++) {
|
||||
if (_Rd_ == vreg) {
|
||||
for (int i = 0; i < 2; i++)
|
||||
{
|
||||
if (_Rd_ == vreg)
|
||||
{
|
||||
if (cval.UL[i])
|
||||
xXOR(ptr32[&cpuRegs.GPR.r[_Rd_].UL[i]], cval.UL[i]);
|
||||
} else {
|
||||
}
|
||||
else
|
||||
{
|
||||
xMOV(eax, ptr32[&cpuRegs.GPR.r[vreg].UL[i]]);
|
||||
if (cval.UL[i])
|
||||
xXOR(eax, cval.UL[i]);
|
||||
|
@ -486,19 +532,25 @@ void recXOR_constt(int info)
|
|||
|
||||
void recXOR_(int info)
|
||||
{
|
||||
pxAssert( !(info & PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
u32 rs = _Rs_, rt = _Rt_;
|
||||
if (_Rd_ == _Rt_)
|
||||
rs = _Rt_, rt = _Rs_;
|
||||
|
||||
for (int i = 0; i < 2; i++) {
|
||||
if (rs == rt) {
|
||||
for (int i = 0; i < 2; i++)
|
||||
{
|
||||
if (rs == rt)
|
||||
{
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[_Rd_].UL[i]], 0);
|
||||
} else if (_Rd_ == rs) {
|
||||
}
|
||||
else if (_Rd_ == rs)
|
||||
{
|
||||
xMOV(eax, ptr32[&cpuRegs.GPR.r[rt].UL[i]]);
|
||||
xXOR(ptr32[&cpuRegs.GPR.r[_Rd_].UL[i]], eax);
|
||||
} else {
|
||||
}
|
||||
else
|
||||
{
|
||||
xMOV(eax, ptr32[&cpuRegs.GPR.r[rs].UL[i]]);
|
||||
xXOR(eax, ptr32[&cpuRegs.GPR.r[rt].UL[i]]);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[_Rd_].UL[i]], eax);
|
||||
|
@ -506,26 +558,30 @@ void recXOR_(int info)
|
|||
}
|
||||
}
|
||||
|
||||
EERECOMPILE_CODE0(XOR, XMMINFO_READS|XMMINFO_READT|XMMINFO_WRITED);
|
||||
EERECOMPILE_CODE0(XOR, XMMINFO_READS | XMMINFO_READT | XMMINFO_WRITED);
|
||||
|
||||
//// NOR
|
||||
void recNOR_const()
|
||||
{
|
||||
g_cpuConstRegs[_Rd_].UD[0] =~(g_cpuConstRegs[_Rs_].UD[0] | g_cpuConstRegs[_Rt_].UD[0]);
|
||||
g_cpuConstRegs[_Rd_].UD[0] = ~(g_cpuConstRegs[_Rs_].UD[0] | g_cpuConstRegs[_Rt_].UD[0]);
|
||||
}
|
||||
|
||||
void recNOR_constv(int info, int creg, u32 vreg)
|
||||
{
|
||||
pxAssert( !(info & PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
GPR_reg64 cval = g_cpuConstRegs[creg];
|
||||
|
||||
for (int i = 0; i < 2; i++) {
|
||||
if (_Rd_ == vreg) {
|
||||
for (int i = 0; i < 2; i++)
|
||||
{
|
||||
if (_Rd_ == vreg)
|
||||
{
|
||||
if (cval.UL[i])
|
||||
xOR(ptr32[&cpuRegs.GPR.r[_Rd_].UL[i]], cval.UL[i]);
|
||||
xNOT(ptr32[&cpuRegs.GPR.r[_Rd_].UL[i]]);
|
||||
} else {
|
||||
}
|
||||
else
|
||||
{
|
||||
xMOV(eax, ptr32[&cpuRegs.GPR.r[vreg].UL[i]]);
|
||||
if (cval.UL[i])
|
||||
xOR(eax, cval.UL[i]);
|
||||
|
@ -547,22 +603,27 @@ void recNOR_constt(int info)
|
|||
|
||||
void recNOR_(int info)
|
||||
{
|
||||
pxAssert( !(info & PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
u32 rs = _Rs_, rt = _Rt_;
|
||||
if (_Rd_ == _Rt_)
|
||||
rs = _Rt_, rt = _Rs_;
|
||||
|
||||
for (int i = 0; i < 2; i++) {
|
||||
if (_Rd_ == rs) {
|
||||
if (rs == rt) {
|
||||
for (int i = 0; i < 2; i++)
|
||||
{
|
||||
if (_Rd_ == rs)
|
||||
{
|
||||
if (rs == rt)
|
||||
{
|
||||
xNOT(ptr32[&cpuRegs.GPR.r[_Rd_].UL[i]]);
|
||||
continue;
|
||||
}
|
||||
xMOV(eax, ptr32[&cpuRegs.GPR.r[rt].UL[i]]);
|
||||
xOR(ptr32[&cpuRegs.GPR.r[_Rd_].UL[i]], eax);
|
||||
xNOT(ptr32[&cpuRegs.GPR.r[_Rd_].UL[i]]);
|
||||
} else {
|
||||
}
|
||||
else
|
||||
{
|
||||
xMOV(eax, ptr32[&cpuRegs.GPR.r[rs].UL[i]]);
|
||||
if (rs != rt)
|
||||
xOR(eax, ptr32[&cpuRegs.GPR.r[rt].UL[i]]);
|
||||
|
@ -572,7 +633,7 @@ void recNOR_(int info)
|
|||
}
|
||||
}
|
||||
|
||||
EERECOMPILE_CODE0(NOR, XMMINFO_READS|XMMINFO_READT|XMMINFO_WRITED);
|
||||
EERECOMPILE_CODE0(NOR, XMMINFO_READS | XMMINFO_READT | XMMINFO_WRITED);
|
||||
|
||||
//// SLT - test with silent hill, lemans
|
||||
void recSLT_const()
|
||||
|
@ -582,7 +643,7 @@ void recSLT_const()
|
|||
|
||||
void recSLTs_const(int info, int sign, int st)
|
||||
{
|
||||
pxAssert( !(info & PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
GPR_reg64 cval = g_cpuConstRegs[st ? _Rt_ : _Rs_];
|
||||
|
||||
|
@ -607,7 +668,7 @@ void recSLTs_const(int info, int sign, int st)
|
|||
|
||||
void recSLTs_(int info, int sign)
|
||||
{
|
||||
pxAssert( !(info & PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
xMOV(eax, 1);
|
||||
|
||||
|
@ -645,7 +706,7 @@ void recSLT_(int info)
|
|||
recSLTs_(info, 1);
|
||||
}
|
||||
|
||||
EERECOMPILE_CODE0(SLT, XMMINFO_READS|XMMINFO_READT|XMMINFO_WRITED);
|
||||
EERECOMPILE_CODE0(SLT, XMMINFO_READS | XMMINFO_READT | XMMINFO_WRITED);
|
||||
|
||||
// SLTU - test with silent hill, lemans
|
||||
void recSLTU_const()
|
||||
|
@ -668,8 +729,10 @@ void recSLTU_(int info)
|
|||
recSLTs_(info, 0);
|
||||
}
|
||||
|
||||
EERECOMPILE_CODE0(SLTU, XMMINFO_READS|XMMINFO_READT|XMMINFO_WRITED);
|
||||
EERECOMPILE_CODE0(SLTU, XMMINFO_READS | XMMINFO_READT | XMMINFO_WRITED);
|
||||
|
||||
#endif
|
||||
|
||||
} } }
|
||||
} // namespace OpcodeImpl
|
||||
} // namespace Dynarec
|
||||
} // namespace R5900
|
||||
|
|
|
@ -24,8 +24,7 @@ using namespace x86Emitter;
|
|||
|
||||
namespace R5900 {
|
||||
namespace Dynarec {
|
||||
namespace OpcodeImpl
|
||||
{
|
||||
namespace OpcodeImpl {
|
||||
|
||||
/*********************************************************
|
||||
* Arithmetic with immediate operand *
|
||||
|
@ -36,42 +35,45 @@ namespace OpcodeImpl
|
|||
|
||||
namespace Interp = R5900::Interpreter::OpcodeImpl;
|
||||
|
||||
REC_FUNC_DEL(ADDI, _Rt_);
|
||||
REC_FUNC_DEL(ADDIU, _Rt_);
|
||||
REC_FUNC_DEL(DADDI, _Rt_);
|
||||
REC_FUNC_DEL(ADDI, _Rt_);
|
||||
REC_FUNC_DEL(ADDIU, _Rt_);
|
||||
REC_FUNC_DEL(DADDI, _Rt_);
|
||||
REC_FUNC_DEL(DADDIU, _Rt_);
|
||||
REC_FUNC_DEL(ANDI, _Rt_);
|
||||
REC_FUNC_DEL(ORI, _Rt_);
|
||||
REC_FUNC_DEL(XORI, _Rt_);
|
||||
REC_FUNC_DEL(ANDI, _Rt_);
|
||||
REC_FUNC_DEL(ORI, _Rt_);
|
||||
REC_FUNC_DEL(XORI, _Rt_);
|
||||
|
||||
REC_FUNC_DEL(SLTI, _Rt_);
|
||||
REC_FUNC_DEL(SLTIU, _Rt_);
|
||||
REC_FUNC_DEL(SLTI, _Rt_);
|
||||
REC_FUNC_DEL(SLTIU, _Rt_);
|
||||
|
||||
#else
|
||||
|
||||
//// ADDI
|
||||
void recADDI_const( void )
|
||||
void recADDI_const(void)
|
||||
{
|
||||
g_cpuConstRegs[_Rt_].SD[0] = (s64)(g_cpuConstRegs[_Rs_].SL[0] + (s32)_Imm_);
|
||||
}
|
||||
|
||||
void recADDI_(int info)
|
||||
{
|
||||
pxAssert( !(info&PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
if ( _Rt_ == _Rs_ ) {
|
||||
if (_Rt_ == _Rs_)
|
||||
{
|
||||
// must perform the ADD unconditionally, to maintain flags status:
|
||||
xADD(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ]], _Imm_);
|
||||
_signExtendSFtoM( (uptr)&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ]);
|
||||
xADD(ptr32[&cpuRegs.GPR.r[_Rt_].UL[0]], _Imm_);
|
||||
_signExtendSFtoM((uptr)&cpuRegs.GPR.r[_Rt_].UL[1]);
|
||||
}
|
||||
else {
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ]);
|
||||
else
|
||||
{
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
|
||||
if ( _Imm_ != 0 ) xADD(eax, _Imm_ );
|
||||
if (_Imm_ != 0)
|
||||
xADD(eax, _Imm_);
|
||||
|
||||
xCDQ( );
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ]], edx);
|
||||
xCDQ();
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rt_].UL[0]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rt_].UL[1]], edx);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -91,26 +93,28 @@ void recDADDI_const()
|
|||
|
||||
void recDADDI_(int info)
|
||||
{
|
||||
pxAssert( !(info&PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
if( _Rt_ == _Rs_ ) {
|
||||
xADD(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ]], _Imm_);
|
||||
xADC(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ]], _Imm_<0?0xffffffff:0);
|
||||
if (_Rt_ == _Rs_)
|
||||
{
|
||||
xADD(ptr32[&cpuRegs.GPR.r[_Rt_].UL[0]], _Imm_);
|
||||
xADC(ptr32[&cpuRegs.GPR.r[_Rt_].UL[1]], _Imm_ < 0 ? 0xffffffff : 0);
|
||||
}
|
||||
else {
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ]);
|
||||
else
|
||||
{
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
|
||||
xMOV(edx, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ] ]);
|
||||
xMOV(edx, ptr[&cpuRegs.GPR.r[_Rs_].UL[1]]);
|
||||
|
||||
if ( _Imm_ != 0 )
|
||||
if (_Imm_ != 0)
|
||||
{
|
||||
xADD(eax, _Imm_ );
|
||||
xADC(edx, _Imm_ < 0?0xffffffff:0);
|
||||
xADD(eax, _Imm_);
|
||||
xADC(edx, _Imm_ < 0 ? 0xffffffff : 0);
|
||||
}
|
||||
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rt_].UL[0]], eax);
|
||||
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ]], edx);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rt_].UL[1]], edx);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -135,11 +139,11 @@ void recSLTIU_(int info)
|
|||
{
|
||||
xMOV(eax, 1);
|
||||
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ]], _Imm_ >= 0 ? 0 : 0xffffffff);
|
||||
j8Ptr[0] = JB8( 0 );
|
||||
j8Ptr[2] = JA8( 0 );
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[_Rs_].UL[1]], _Imm_ >= 0 ? 0 : 0xffffffff);
|
||||
j8Ptr[0] = JB8(0);
|
||||
j8Ptr[2] = JA8(0);
|
||||
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ]], (s32)_Imm_ );
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[_Rs_].UL[0]], (s32)_Imm_);
|
||||
j8Ptr[1] = JB8(0);
|
||||
|
||||
x86SetJ8(j8Ptr[2]);
|
||||
|
@ -148,8 +152,8 @@ void recSLTIU_(int info)
|
|||
x86SetJ8(j8Ptr[0]);
|
||||
x86SetJ8(j8Ptr[1]);
|
||||
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ]], 0 );
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[_Rt_].UL[0]], eax);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[_Rt_].UL[1]], 0);
|
||||
}
|
||||
|
||||
EERECOMPILE_CODEX(eeRecompileCode1, SLTIU);
|
||||
|
@ -165,11 +169,11 @@ void recSLTI_(int info)
|
|||
// test silent hill if modding
|
||||
xMOV(eax, 1);
|
||||
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ]], _Imm_ >= 0 ? 0 : 0xffffffff);
|
||||
j8Ptr[0] = JL8( 0 );
|
||||
j8Ptr[2] = JG8( 0 );
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[_Rs_].UL[1]], _Imm_ >= 0 ? 0 : 0xffffffff);
|
||||
j8Ptr[0] = JL8(0);
|
||||
j8Ptr[2] = JG8(0);
|
||||
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ]], (s32)_Imm_ );
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[_Rs_].UL[0]], (s32)_Imm_);
|
||||
j8Ptr[1] = JB8(0);
|
||||
|
||||
x86SetJ8(j8Ptr[2]);
|
||||
|
@ -178,8 +182,8 @@ void recSLTI_(int info)
|
|||
x86SetJ8(j8Ptr[0]);
|
||||
x86SetJ8(j8Ptr[1]);
|
||||
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ]], 0 );
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[_Rt_].UL[0]], eax);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[_Rt_].UL[1]], 0);
|
||||
}
|
||||
|
||||
EERECOMPILE_CODEX(eeRecompileCode1, SLTI);
|
||||
|
@ -192,49 +196,57 @@ void recANDI_const()
|
|||
|
||||
void recLogicalOpI(int info, int op)
|
||||
{
|
||||
if ( _ImmU_ != 0 )
|
||||
if (_ImmU_ != 0)
|
||||
{
|
||||
if( _Rt_ == _Rs_ ) {
|
||||
switch(op) {
|
||||
if (_Rt_ == _Rs_)
|
||||
{
|
||||
switch (op)
|
||||
{
|
||||
case 0: xAND(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ]], _ImmU_); break;
|
||||
case 1: xOR(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ]], _ImmU_); break;
|
||||
case 2: xXOR(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ]], _ImmU_); break;
|
||||
default: pxAssert(0);
|
||||
}
|
||||
}
|
||||
else {
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ]);
|
||||
if( op != 0 )
|
||||
xMOV(edx, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ] ]);
|
||||
else
|
||||
{
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
if (op != 0)
|
||||
xMOV(edx, ptr[&cpuRegs.GPR.r[_Rs_].UL[1]]);
|
||||
|
||||
switch(op) {
|
||||
switch (op)
|
||||
{
|
||||
case 0: xAND(eax, _ImmU_); break;
|
||||
case 1: xOR(eax, _ImmU_); break;
|
||||
case 2: xXOR(eax, _ImmU_); break;
|
||||
default: pxAssert(0);
|
||||
}
|
||||
|
||||
if( op != 0 )
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ]], edx);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ]], eax);
|
||||
if (op != 0)
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rt_].UL[1]], edx);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rt_].UL[0]], eax);
|
||||
}
|
||||
|
||||
if( op == 0 ) {
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ]], 0 );
|
||||
if (op == 0)
|
||||
{
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[_Rt_].UL[1]], 0);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if( op == 0 ) {
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ]], 0 );
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ]], 0 );
|
||||
if (op == 0)
|
||||
{
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[_Rt_].UL[0]], 0);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[_Rt_].UL[1]], 0);
|
||||
}
|
||||
else {
|
||||
if( _Rt_ != _Rs_ ) {
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ]);
|
||||
xMOV(edx, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ] ]);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ]], edx);
|
||||
else
|
||||
{
|
||||
if (_Rt_ != _Rs_)
|
||||
{
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
xMOV(edx, ptr[&cpuRegs.GPR.r[_Rs_].UL[1]]);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rt_].UL[0]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rt_].UL[1]], edx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -275,4 +287,6 @@ EERECOMPILE_CODEX(eeRecompileCode1, XORI);
|
|||
|
||||
#endif
|
||||
|
||||
} } }
|
||||
} // namespace OpcodeImpl
|
||||
} // namespace Dynarec
|
||||
} // namespace R5900
|
||||
|
|
|
@ -26,8 +26,7 @@ using namespace x86Emitter;
|
|||
|
||||
namespace R5900 {
|
||||
namespace Dynarec {
|
||||
namespace OpcodeImpl
|
||||
{
|
||||
namespace OpcodeImpl {
|
||||
|
||||
/*********************************************************
|
||||
* Register branch logic *
|
||||
|
@ -47,27 +46,31 @@ REC_SYS(BLEZ);
|
|||
REC_SYS(BGEZ);
|
||||
REC_SYS(BGTZL);
|
||||
REC_SYS(BLTZL);
|
||||
REC_SYS_DEL(BLTZAL, 31);
|
||||
REC_SYS_DEL(BLTZAL, 31);
|
||||
REC_SYS_DEL(BLTZALL, 31);
|
||||
REC_SYS(BLEZL);
|
||||
REC_SYS(BGEZL);
|
||||
REC_SYS_DEL(BGEZAL, 31);
|
||||
REC_SYS_DEL(BGEZAL, 31);
|
||||
REC_SYS_DEL(BGEZALL, 31);
|
||||
|
||||
#else
|
||||
|
||||
void recSetBranchEQ(int info, int bne, int process)
|
||||
{
|
||||
if( info & PROCESS_EE_XMM ) {
|
||||
if (info & PROCESS_EE_XMM)
|
||||
{
|
||||
int t0reg;
|
||||
|
||||
if( process & PROCESS_CONSTS ) {
|
||||
if( (g_pCurInstInfo->regs[_Rt_] & EEINST_LASTUSE) || !EEINST_ISLIVEXMM(_Rt_) ) {
|
||||
if (process & PROCESS_CONSTS)
|
||||
{
|
||||
if ((g_pCurInstInfo->regs[_Rt_] & EEINST_LASTUSE) || !EEINST_ISLIVEXMM(_Rt_))
|
||||
{
|
||||
_deleteGPRtoXMMreg(_Rt_, 1);
|
||||
xmmregs[EEREC_T].inuse = 0;
|
||||
t0reg = EEREC_T;
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
t0reg = _allocTempXMMreg(XMMT_INT, -1);
|
||||
xMOVQZX(xRegisterSSE(t0reg), xRegisterSSE(EEREC_T));
|
||||
}
|
||||
|
@ -76,15 +79,19 @@ void recSetBranchEQ(int info, int bne, int process)
|
|||
xPCMP.EQD(xRegisterSSE(t0reg), ptr[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
|
||||
|
||||
if( t0reg != EEREC_T ) _freeXMMreg(t0reg);
|
||||
if (t0reg != EEREC_T)
|
||||
_freeXMMreg(t0reg);
|
||||
}
|
||||
else if( process & PROCESS_CONSTT ) {
|
||||
if( (g_pCurInstInfo->regs[_Rs_] & EEINST_LASTUSE) || !EEINST_ISLIVEXMM(_Rs_) ) {
|
||||
else if (process & PROCESS_CONSTT)
|
||||
{
|
||||
if ((g_pCurInstInfo->regs[_Rs_] & EEINST_LASTUSE) || !EEINST_ISLIVEXMM(_Rs_))
|
||||
{
|
||||
_deleteGPRtoXMMreg(_Rs_, 1);
|
||||
xmmregs[EEREC_S].inuse = 0;
|
||||
t0reg = EEREC_S;
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
t0reg = _allocTempXMMreg(XMMT_INT, -1);
|
||||
xMOVQZX(xRegisterSSE(t0reg), xRegisterSSE(EEREC_S));
|
||||
}
|
||||
|
@ -92,29 +99,35 @@ void recSetBranchEQ(int info, int bne, int process)
|
|||
_flushConstReg(_Rt_);
|
||||
xPCMP.EQD(xRegisterSSE(t0reg), ptr[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
|
||||
if( t0reg != EEREC_S ) _freeXMMreg(t0reg);
|
||||
if (t0reg != EEREC_S)
|
||||
_freeXMMreg(t0reg);
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
|
||||
if( (g_pCurInstInfo->regs[_Rs_] & EEINST_LASTUSE) || !EEINST_ISLIVEXMM(_Rs_) ) {
|
||||
if ((g_pCurInstInfo->regs[_Rs_] & EEINST_LASTUSE) || !EEINST_ISLIVEXMM(_Rs_))
|
||||
{
|
||||
_deleteGPRtoXMMreg(_Rs_, 1);
|
||||
xmmregs[EEREC_S].inuse = 0;
|
||||
t0reg = EEREC_S;
|
||||
xPCMP.EQD(xRegisterSSE(t0reg), xRegisterSSE(EEREC_T));
|
||||
}
|
||||
else if( (g_pCurInstInfo->regs[_Rt_] & EEINST_LASTUSE) || !EEINST_ISLIVEXMM(_Rt_) ) {
|
||||
else if ((g_pCurInstInfo->regs[_Rt_] & EEINST_LASTUSE) || !EEINST_ISLIVEXMM(_Rt_))
|
||||
{
|
||||
_deleteGPRtoXMMreg(_Rt_, 1);
|
||||
xmmregs[EEREC_T].inuse = 0;
|
||||
t0reg = EEREC_T;
|
||||
xPCMP.EQD(xRegisterSSE(t0reg), xRegisterSSE(EEREC_S));
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
t0reg = _allocTempXMMreg(XMMT_INT, -1);
|
||||
xMOVQZX(xRegisterSSE(t0reg), xRegisterSSE(EEREC_S));
|
||||
xPCMP.EQD(xRegisterSSE(t0reg), xRegisterSSE(EEREC_T));
|
||||
}
|
||||
|
||||
if( t0reg != EEREC_S && t0reg != EEREC_T ) _freeXMMreg(t0reg);
|
||||
if (t0reg != EEREC_S && t0reg != EEREC_T)
|
||||
_freeXMMreg(t0reg);
|
||||
}
|
||||
|
||||
xMOVMSKPS(eax, xRegisterSSE(t0reg));
|
||||
|
@ -122,66 +135,77 @@ void recSetBranchEQ(int info, int bne, int process)
|
|||
_eeFlushAllUnused();
|
||||
|
||||
xAND(al, 3);
|
||||
xCMP(al, 0x3 );
|
||||
xCMP(al, 0x3);
|
||||
|
||||
if( bne ) j32Ptr[ 1 ] = JE32( 0 );
|
||||
else j32Ptr[ 0 ] = j32Ptr[ 1 ] = JNE32( 0 );
|
||||
if (bne)
|
||||
j32Ptr[1] = JE32(0);
|
||||
else
|
||||
j32Ptr[0] = j32Ptr[1] = JNE32(0);
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
|
||||
_eeFlushAllUnused();
|
||||
|
||||
if( bne ) {
|
||||
if( process & PROCESS_CONSTS ) {
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ]], g_cpuConstRegs[_Rs_].UL[0] );
|
||||
j8Ptr[ 0 ] = JNE8( 0 );
|
||||
if (bne)
|
||||
{
|
||||
if (process & PROCESS_CONSTS)
|
||||
{
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[_Rt_].UL[0]], g_cpuConstRegs[_Rs_].UL[0]);
|
||||
j8Ptr[0] = JNE8(0);
|
||||
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ]], g_cpuConstRegs[_Rs_].UL[1] );
|
||||
j32Ptr[ 1 ] = JE32( 0 );
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[_Rt_].UL[1]], g_cpuConstRegs[_Rs_].UL[1]);
|
||||
j32Ptr[1] = JE32(0);
|
||||
}
|
||||
else if( process & PROCESS_CONSTT ) {
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ]], g_cpuConstRegs[_Rt_].UL[0] );
|
||||
j8Ptr[ 0 ] = JNE8( 0 );
|
||||
else if (process & PROCESS_CONSTT)
|
||||
{
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[_Rs_].UL[0]], g_cpuConstRegs[_Rt_].UL[0]);
|
||||
j8Ptr[0] = JNE8(0);
|
||||
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ]], g_cpuConstRegs[_Rt_].UL[1] );
|
||||
j32Ptr[ 1 ] = JE32( 0 );
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[_Rs_].UL[1]], g_cpuConstRegs[_Rt_].UL[1]);
|
||||
j32Ptr[1] = JE32(0);
|
||||
}
|
||||
else {
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ]);
|
||||
xCMP(eax, ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] ]);
|
||||
j8Ptr[ 0 ] = JNE8( 0 );
|
||||
else
|
||||
{
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
xCMP(eax, ptr[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
j8Ptr[0] = JNE8(0);
|
||||
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ] ]);
|
||||
xCMP(eax, ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ] ]);
|
||||
j32Ptr[ 1 ] = JE32( 0 );
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rs_].UL[1]]);
|
||||
xCMP(eax, ptr[&cpuRegs.GPR.r[_Rt_].UL[1]]);
|
||||
j32Ptr[1] = JE32(0);
|
||||
}
|
||||
|
||||
x86SetJ8( j8Ptr[0] );
|
||||
x86SetJ8(j8Ptr[0]);
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
// beq
|
||||
if( process & PROCESS_CONSTS ) {
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ]], g_cpuConstRegs[_Rs_].UL[0] );
|
||||
j32Ptr[ 0 ] = JNE32( 0 );
|
||||
if (process & PROCESS_CONSTS)
|
||||
{
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[_Rt_].UL[0]], g_cpuConstRegs[_Rs_].UL[0]);
|
||||
j32Ptr[0] = JNE32(0);
|
||||
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ]], g_cpuConstRegs[_Rs_].UL[1] );
|
||||
j32Ptr[ 1 ] = JNE32( 0 );
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[_Rt_].UL[1]], g_cpuConstRegs[_Rs_].UL[1]);
|
||||
j32Ptr[1] = JNE32(0);
|
||||
}
|
||||
else if( process & PROCESS_CONSTT ) {
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ]], g_cpuConstRegs[_Rt_].UL[0] );
|
||||
j32Ptr[ 0 ] = JNE32( 0 );
|
||||
else if (process & PROCESS_CONSTT)
|
||||
{
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[_Rs_].UL[0]], g_cpuConstRegs[_Rt_].UL[0]);
|
||||
j32Ptr[0] = JNE32(0);
|
||||
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ]], g_cpuConstRegs[_Rt_].UL[1] );
|
||||
j32Ptr[ 1 ] = JNE32( 0 );
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[_Rs_].UL[1]], g_cpuConstRegs[_Rt_].UL[1]);
|
||||
j32Ptr[1] = JNE32(0);
|
||||
}
|
||||
else {
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ]);
|
||||
xCMP(eax, ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] ]);
|
||||
j32Ptr[ 0 ] = JNE32( 0 );
|
||||
else
|
||||
{
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
xCMP(eax, ptr[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
j32Ptr[0] = JNE32(0);
|
||||
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ] ]);
|
||||
xCMP(eax, ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ] ]);
|
||||
j32Ptr[ 1 ] = JNE32( 0 );
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rs_].UL[1]]);
|
||||
xCMP(eax, ptr[&cpuRegs.GPR.r[_Rt_].UL[1]]);
|
||||
j32Ptr[1] = JNE32(0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -193,22 +217,27 @@ void recSetBranchL(int ltz)
|
|||
{
|
||||
int regs = _checkXMMreg(XMMTYPE_GPRREG, _Rs_, MODE_READ);
|
||||
|
||||
if( regs >= 0 ) {
|
||||
if (regs >= 0)
|
||||
{
|
||||
xMOVMSKPS(eax, xRegisterSSE(regs));
|
||||
|
||||
_eeFlushAllUnused();
|
||||
|
||||
xTEST(al, 2 );
|
||||
xTEST(al, 2);
|
||||
|
||||
if( ltz ) j32Ptr[ 0 ] = JZ32( 0 );
|
||||
else j32Ptr[ 0 ] = JNZ32( 0 );
|
||||
if (ltz)
|
||||
j32Ptr[0] = JZ32(0);
|
||||
else
|
||||
j32Ptr[0] = JNZ32(0);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ]], 0 );
|
||||
if( ltz ) j32Ptr[ 0 ] = JGE32( 0 );
|
||||
else j32Ptr[ 0 ] = JL32( 0 );
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[_Rs_].UL[1]], 0);
|
||||
if (ltz)
|
||||
j32Ptr[0] = JGE32(0);
|
||||
else
|
||||
j32Ptr[0] = JL32(0);
|
||||
|
||||
_clearNeededXMMregs();
|
||||
}
|
||||
|
@ -218,23 +247,23 @@ void recBEQ_const()
|
|||
{
|
||||
u32 branchTo;
|
||||
|
||||
if( g_cpuConstRegs[_Rs_].SD[0] == g_cpuConstRegs[_Rt_].SD[0] )
|
||||
if (g_cpuConstRegs[_Rs_].SD[0] == g_cpuConstRegs[_Rt_].SD[0])
|
||||
branchTo = ((s32)_Imm_ * 4) + pc;
|
||||
else
|
||||
branchTo = pc+4;
|
||||
branchTo = pc + 4;
|
||||
|
||||
recompileNextInstruction(1);
|
||||
SetBranchImm( branchTo );
|
||||
SetBranchImm(branchTo);
|
||||
}
|
||||
|
||||
void recBEQ_process(int info, int process)
|
||||
{
|
||||
u32 branchTo = ((s32)_Imm_ * 4) + pc;
|
||||
|
||||
if ( _Rs_ == _Rt_ )
|
||||
if (_Rs_ == _Rt_)
|
||||
{
|
||||
recompileNextInstruction(1);
|
||||
SetBranchImm( branchTo );
|
||||
SetBranchImm(branchTo);
|
||||
}
|
||||
else
|
||||
{
|
||||
|
@ -245,8 +274,8 @@ void recBEQ_process(int info, int process)
|
|||
|
||||
SetBranchImm(branchTo);
|
||||
|
||||
x86SetJ32( j32Ptr[ 0 ] );
|
||||
x86SetJ32( j32Ptr[ 1 ] );
|
||||
x86SetJ32(j32Ptr[0]);
|
||||
x86SetJ32(j32Ptr[1]);
|
||||
|
||||
// recopy the next inst
|
||||
pc -= 4;
|
||||
|
@ -261,27 +290,27 @@ void recBEQ_(int info) { recBEQ_process(info, 0); }
|
|||
void recBEQ_consts(int info) { recBEQ_process(info, PROCESS_CONSTS); }
|
||||
void recBEQ_constt(int info) { recBEQ_process(info, PROCESS_CONSTT); }
|
||||
|
||||
EERECOMPILE_CODE0(BEQ, XMMINFO_READS|XMMINFO_READT);
|
||||
EERECOMPILE_CODE0(BEQ, XMMINFO_READS | XMMINFO_READT);
|
||||
|
||||
//// BNE
|
||||
void recBNE_const()
|
||||
{
|
||||
u32 branchTo;
|
||||
|
||||
if( g_cpuConstRegs[_Rs_].SD[0] != g_cpuConstRegs[_Rt_].SD[0] )
|
||||
if (g_cpuConstRegs[_Rs_].SD[0] != g_cpuConstRegs[_Rt_].SD[0])
|
||||
branchTo = ((s32)_Imm_ * 4) + pc;
|
||||
else
|
||||
branchTo = pc+4;
|
||||
branchTo = pc + 4;
|
||||
|
||||
recompileNextInstruction(1);
|
||||
SetBranchImm( branchTo );
|
||||
SetBranchImm(branchTo);
|
||||
}
|
||||
|
||||
void recBNE_process(int info, int process)
|
||||
{
|
||||
u32 branchTo = ((s32)_Imm_ * 4) + pc;
|
||||
|
||||
if ( _Rs_ == _Rt_ )
|
||||
if (_Rs_ == _Rt_)
|
||||
{
|
||||
recompileNextInstruction(1);
|
||||
SetBranchImm(pc);
|
||||
|
@ -295,7 +324,7 @@ void recBNE_process(int info, int process)
|
|||
|
||||
SetBranchImm(branchTo);
|
||||
|
||||
x86SetJ32( j32Ptr[ 1 ] );
|
||||
x86SetJ32(j32Ptr[1]);
|
||||
|
||||
// recopy the next inst
|
||||
pc -= 4;
|
||||
|
@ -309,18 +338,20 @@ void recBNE_(int info) { recBNE_process(info, 0); }
|
|||
void recBNE_consts(int info) { recBNE_process(info, PROCESS_CONSTS); }
|
||||
void recBNE_constt(int info) { recBNE_process(info, PROCESS_CONSTT); }
|
||||
|
||||
EERECOMPILE_CODE0(BNE, XMMINFO_READS|XMMINFO_READT);
|
||||
EERECOMPILE_CODE0(BNE, XMMINFO_READS | XMMINFO_READT);
|
||||
|
||||
//// BEQL
|
||||
void recBEQL_const()
|
||||
{
|
||||
if( g_cpuConstRegs[_Rs_].SD[0] == g_cpuConstRegs[_Rt_].SD[0] ) {
|
||||
if (g_cpuConstRegs[_Rs_].SD[0] == g_cpuConstRegs[_Rt_].SD[0])
|
||||
{
|
||||
u32 branchTo = ((s32)_Imm_ * 4) + pc;
|
||||
recompileNextInstruction(1);
|
||||
SetBranchImm( branchTo );
|
||||
SetBranchImm(branchTo);
|
||||
}
|
||||
else {
|
||||
SetBranchImm( pc+4 );
|
||||
else
|
||||
{
|
||||
SetBranchImm(pc + 4);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -333,8 +364,8 @@ void recBEQL_process(int info, int process)
|
|||
recompileNextInstruction(1);
|
||||
SetBranchImm(branchTo);
|
||||
|
||||
x86SetJ32( j32Ptr[ 0 ] );
|
||||
x86SetJ32( j32Ptr[ 1 ] );
|
||||
x86SetJ32(j32Ptr[0]);
|
||||
x86SetJ32(j32Ptr[1]);
|
||||
|
||||
LoadBranchState();
|
||||
SetBranchImm(pc);
|
||||
|
@ -344,18 +375,20 @@ void recBEQL_(int info) { recBEQL_process(info, 0); }
|
|||
void recBEQL_consts(int info) { recBEQL_process(info, PROCESS_CONSTS); }
|
||||
void recBEQL_constt(int info) { recBEQL_process(info, PROCESS_CONSTT); }
|
||||
|
||||
EERECOMPILE_CODE0(BEQL, XMMINFO_READS|XMMINFO_READT);
|
||||
EERECOMPILE_CODE0(BEQL, XMMINFO_READS | XMMINFO_READT);
|
||||
|
||||
//// BNEL
|
||||
void recBNEL_const()
|
||||
{
|
||||
if( g_cpuConstRegs[_Rs_].SD[0] != g_cpuConstRegs[_Rt_].SD[0] ) {
|
||||
if (g_cpuConstRegs[_Rs_].SD[0] != g_cpuConstRegs[_Rt_].SD[0])
|
||||
{
|
||||
u32 branchTo = ((s32)_Imm_ * 4) + pc;
|
||||
recompileNextInstruction(1);
|
||||
SetBranchImm(branchTo);
|
||||
}
|
||||
else {
|
||||
SetBranchImm( pc+4 );
|
||||
else
|
||||
{
|
||||
SetBranchImm(pc + 4);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -366,10 +399,10 @@ void recBNEL_process(int info, int process)
|
|||
recSetBranchEQ(info, 0, process);
|
||||
|
||||
SaveBranchState();
|
||||
SetBranchImm(pc+4);
|
||||
SetBranchImm(pc + 4);
|
||||
|
||||
x86SetJ32( j32Ptr[ 0 ] );
|
||||
x86SetJ32( j32Ptr[ 1 ] );
|
||||
x86SetJ32(j32Ptr[0]);
|
||||
x86SetJ32(j32Ptr[1]);
|
||||
|
||||
// recopy the next inst
|
||||
LoadBranchState();
|
||||
|
@ -381,7 +414,7 @@ void recBNEL_(int info) { recBNEL_process(info, 0); }
|
|||
void recBNEL_consts(int info) { recBNEL_process(info, PROCESS_CONSTS); }
|
||||
void recBNEL_constt(int info) { recBNEL_process(info, PROCESS_CONSTT); }
|
||||
|
||||
EERECOMPILE_CODE0(BNEL, XMMINFO_READS|XMMINFO_READT);
|
||||
EERECOMPILE_CODE0(BNEL, XMMINFO_READS | XMMINFO_READT);
|
||||
|
||||
/*********************************************************
|
||||
* Register branch logic *
|
||||
|
@ -411,15 +444,16 @@ void recBLTZAL()
|
|||
_eeFlushAllUnused();
|
||||
|
||||
_deleteEEreg(31, 0);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[31].UL[0]], pc+4);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[31].UL[0]], pc + 4);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[31].UL[1]], 0);
|
||||
|
||||
if( GPR_IS_CONST1(_Rs_) ) {
|
||||
if( !(g_cpuConstRegs[_Rs_].SD[0] < 0) )
|
||||
branchTo = pc+4;
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
if (!(g_cpuConstRegs[_Rs_].SD[0] < 0))
|
||||
branchTo = pc + 4;
|
||||
|
||||
recompileNextInstruction(1);
|
||||
SetBranchImm( branchTo );
|
||||
SetBranchImm(branchTo);
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -431,7 +465,7 @@ void recBLTZAL()
|
|||
|
||||
SetBranchImm(branchTo);
|
||||
|
||||
x86SetJ32( j32Ptr[ 0 ] );
|
||||
x86SetJ32(j32Ptr[0]);
|
||||
|
||||
// recopy the next inst
|
||||
pc -= 4;
|
||||
|
@ -452,15 +486,16 @@ void recBGEZAL()
|
|||
_eeFlushAllUnused();
|
||||
|
||||
_deleteEEreg(31, 0);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[31].UL[0]], pc+4);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[31].UL[0]], pc + 4);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[31].UL[1]], 0);
|
||||
|
||||
if( GPR_IS_CONST1(_Rs_) ) {
|
||||
if( !(g_cpuConstRegs[_Rs_].SD[0] >= 0) )
|
||||
branchTo = pc+4;
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
if (!(g_cpuConstRegs[_Rs_].SD[0] >= 0))
|
||||
branchTo = pc + 4;
|
||||
|
||||
recompileNextInstruction(1);
|
||||
SetBranchImm( branchTo );
|
||||
SetBranchImm(branchTo);
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -472,7 +507,7 @@ void recBGEZAL()
|
|||
|
||||
SetBranchImm(branchTo);
|
||||
|
||||
x86SetJ32( j32Ptr[ 0 ] );
|
||||
x86SetJ32(j32Ptr[0]);
|
||||
|
||||
// recopy the next inst
|
||||
pc -= 4;
|
||||
|
@ -493,15 +528,17 @@ void recBLTZALL()
|
|||
_eeFlushAllUnused();
|
||||
|
||||
_deleteEEreg(31, 0);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[31].UL[0]], pc+4);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[31].UL[0]], pc + 4);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[31].UL[1]], 0);
|
||||
|
||||
if( GPR_IS_CONST1(_Rs_) ) {
|
||||
if( !(g_cpuConstRegs[_Rs_].SD[0] < 0) )
|
||||
SetBranchImm( pc + 4);
|
||||
else {
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
if (!(g_cpuConstRegs[_Rs_].SD[0] < 0))
|
||||
SetBranchImm(pc + 4);
|
||||
else
|
||||
{
|
||||
recompileNextInstruction(1);
|
||||
SetBranchImm( branchTo );
|
||||
SetBranchImm(branchTo);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
@ -512,7 +549,7 @@ void recBLTZALL()
|
|||
recompileNextInstruction(1);
|
||||
SetBranchImm(branchTo);
|
||||
|
||||
x86SetJ32( j32Ptr[ 0 ] );
|
||||
x86SetJ32(j32Ptr[0]);
|
||||
|
||||
LoadBranchState();
|
||||
SetBranchImm(pc);
|
||||
|
@ -529,15 +566,17 @@ void recBGEZALL()
|
|||
_eeFlushAllUnused();
|
||||
|
||||
_deleteEEreg(31, 0);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[31].UL[0]], pc+4);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[31].UL[0]], pc + 4);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[31].UL[1]], 0);
|
||||
|
||||
if( GPR_IS_CONST1(_Rs_) ) {
|
||||
if( !(g_cpuConstRegs[_Rs_].SD[0] >= 0) )
|
||||
SetBranchImm( pc + 4);
|
||||
else {
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
if (!(g_cpuConstRegs[_Rs_].SD[0] >= 0))
|
||||
SetBranchImm(pc + 4);
|
||||
else
|
||||
{
|
||||
recompileNextInstruction(1);
|
||||
SetBranchImm( branchTo );
|
||||
SetBranchImm(branchTo);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
@ -548,7 +587,7 @@ void recBGEZALL()
|
|||
recompileNextInstruction(1);
|
||||
SetBranchImm(branchTo);
|
||||
|
||||
x86SetJ32( j32Ptr[ 0 ] );
|
||||
x86SetJ32(j32Ptr[0]);
|
||||
|
||||
LoadBranchState();
|
||||
SetBranchImm(pc);
|
||||
|
@ -564,25 +603,26 @@ void recBLEZ()
|
|||
|
||||
_eeFlushAllUnused();
|
||||
|
||||
if( GPR_IS_CONST1(_Rs_) ) {
|
||||
if( !(g_cpuConstRegs[_Rs_].SD[0] <= 0) )
|
||||
branchTo = pc+4;
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
if (!(g_cpuConstRegs[_Rs_].SD[0] <= 0))
|
||||
branchTo = pc + 4;
|
||||
|
||||
recompileNextInstruction(1);
|
||||
SetBranchImm( branchTo );
|
||||
SetBranchImm(branchTo);
|
||||
return;
|
||||
}
|
||||
|
||||
_flushEEreg(_Rs_);
|
||||
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ]], 0 );
|
||||
j8Ptr[ 0 ] = JL8( 0 );
|
||||
j32Ptr[ 1 ] = JG32( 0 );
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[_Rs_].UL[1]], 0);
|
||||
j8Ptr[0] = JL8(0);
|
||||
j32Ptr[1] = JG32(0);
|
||||
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ]], 0 );
|
||||
j32Ptr[ 2 ] = JNZ32( 0 );
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[_Rs_].UL[0]], 0);
|
||||
j32Ptr[2] = JNZ32(0);
|
||||
|
||||
x86SetJ8( j8Ptr[ 0 ] );
|
||||
x86SetJ8(j8Ptr[0]);
|
||||
|
||||
_clearNeededXMMregs();
|
||||
|
||||
|
@ -591,8 +631,8 @@ void recBLEZ()
|
|||
|
||||
SetBranchImm(branchTo);
|
||||
|
||||
x86SetJ32( j32Ptr[ 1 ] );
|
||||
x86SetJ32( j32Ptr[ 2 ] );
|
||||
x86SetJ32(j32Ptr[1]);
|
||||
x86SetJ32(j32Ptr[2]);
|
||||
|
||||
// recopy the next inst
|
||||
pc -= 4;
|
||||
|
@ -611,25 +651,26 @@ void recBGTZ()
|
|||
|
||||
_eeFlushAllUnused();
|
||||
|
||||
if( GPR_IS_CONST1(_Rs_) ) {
|
||||
if( !(g_cpuConstRegs[_Rs_].SD[0] > 0) )
|
||||
branchTo = pc+4;
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
if (!(g_cpuConstRegs[_Rs_].SD[0] > 0))
|
||||
branchTo = pc + 4;
|
||||
|
||||
recompileNextInstruction(1);
|
||||
SetBranchImm( branchTo );
|
||||
SetBranchImm(branchTo);
|
||||
return;
|
||||
}
|
||||
|
||||
_flushEEreg(_Rs_);
|
||||
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ]], 0 );
|
||||
j8Ptr[ 0 ] = JG8( 0 );
|
||||
j32Ptr[ 1 ] = JL32( 0 );
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[_Rs_].UL[1]], 0);
|
||||
j8Ptr[0] = JG8(0);
|
||||
j32Ptr[1] = JL32(0);
|
||||
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ]], 0 );
|
||||
j32Ptr[ 2 ] = JZ32( 0 );
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[_Rs_].UL[0]], 0);
|
||||
j32Ptr[2] = JZ32(0);
|
||||
|
||||
x86SetJ8( j8Ptr[ 0 ] );
|
||||
x86SetJ8(j8Ptr[0]);
|
||||
|
||||
_clearNeededXMMregs();
|
||||
|
||||
|
@ -638,8 +679,8 @@ void recBGTZ()
|
|||
|
||||
SetBranchImm(branchTo);
|
||||
|
||||
x86SetJ32( j32Ptr[ 1 ] );
|
||||
x86SetJ32( j32Ptr[ 2 ] );
|
||||
x86SetJ32(j32Ptr[1]);
|
||||
x86SetJ32(j32Ptr[2]);
|
||||
|
||||
// recopy the next inst
|
||||
pc -= 4;
|
||||
|
@ -658,12 +699,13 @@ void recBLTZ()
|
|||
|
||||
_eeFlushAllUnused();
|
||||
|
||||
if( GPR_IS_CONST1(_Rs_) ) {
|
||||
if( !(g_cpuConstRegs[_Rs_].SD[0] < 0) )
|
||||
branchTo = pc+4;
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
if (!(g_cpuConstRegs[_Rs_].SD[0] < 0))
|
||||
branchTo = pc + 4;
|
||||
|
||||
recompileNextInstruction(1);
|
||||
SetBranchImm( branchTo );
|
||||
SetBranchImm(branchTo);
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -674,7 +716,7 @@ void recBLTZ()
|
|||
|
||||
SetBranchImm(branchTo);
|
||||
|
||||
x86SetJ32( j32Ptr[ 0 ] );
|
||||
x86SetJ32(j32Ptr[0]);
|
||||
|
||||
// recopy the next inst
|
||||
pc -= 4;
|
||||
|
@ -693,12 +735,13 @@ void recBGEZ()
|
|||
|
||||
_eeFlushAllUnused();
|
||||
|
||||
if( GPR_IS_CONST1(_Rs_) ) {
|
||||
if( !(g_cpuConstRegs[_Rs_].SD[0] >= 0) )
|
||||
branchTo = pc+4;
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
if (!(g_cpuConstRegs[_Rs_].SD[0] >= 0))
|
||||
branchTo = pc + 4;
|
||||
|
||||
recompileNextInstruction(1);
|
||||
SetBranchImm( branchTo );
|
||||
SetBranchImm(branchTo);
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -709,7 +752,7 @@ void recBGEZ()
|
|||
|
||||
SetBranchImm(branchTo);
|
||||
|
||||
x86SetJ32( j32Ptr[ 0 ] );
|
||||
x86SetJ32(j32Ptr[0]);
|
||||
|
||||
// recopy the next inst
|
||||
pc -= 4;
|
||||
|
@ -728,12 +771,14 @@ void recBLTZL()
|
|||
|
||||
_eeFlushAllUnused();
|
||||
|
||||
if( GPR_IS_CONST1(_Rs_) ) {
|
||||
if( !(g_cpuConstRegs[_Rs_].SD[0] < 0) )
|
||||
SetBranchImm( pc + 4);
|
||||
else {
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
if (!(g_cpuConstRegs[_Rs_].SD[0] < 0))
|
||||
SetBranchImm(pc + 4);
|
||||
else
|
||||
{
|
||||
recompileNextInstruction(1);
|
||||
SetBranchImm( branchTo );
|
||||
SetBranchImm(branchTo);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
@ -744,7 +789,7 @@ void recBLTZL()
|
|||
recompileNextInstruction(1);
|
||||
SetBranchImm(branchTo);
|
||||
|
||||
x86SetJ32( j32Ptr[ 0 ] );
|
||||
x86SetJ32(j32Ptr[0]);
|
||||
|
||||
LoadBranchState();
|
||||
SetBranchImm(pc);
|
||||
|
@ -760,12 +805,14 @@ void recBGEZL()
|
|||
|
||||
_eeFlushAllUnused();
|
||||
|
||||
if( GPR_IS_CONST1(_Rs_) ) {
|
||||
if( !(g_cpuConstRegs[_Rs_].SD[0] >= 0) )
|
||||
SetBranchImm( pc + 4);
|
||||
else {
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
if (!(g_cpuConstRegs[_Rs_].SD[0] >= 0))
|
||||
SetBranchImm(pc + 4);
|
||||
else
|
||||
{
|
||||
recompileNextInstruction(1);
|
||||
SetBranchImm( branchTo );
|
||||
SetBranchImm(branchTo);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
@ -776,7 +823,7 @@ void recBGEZL()
|
|||
recompileNextInstruction(1);
|
||||
SetBranchImm(branchTo);
|
||||
|
||||
x86SetJ32( j32Ptr[ 0 ] );
|
||||
x86SetJ32(j32Ptr[0]);
|
||||
|
||||
LoadBranchState();
|
||||
SetBranchImm(pc);
|
||||
|
@ -784,7 +831,6 @@ void recBGEZL()
|
|||
|
||||
|
||||
|
||||
|
||||
/*********************************************************
|
||||
* Register branch logic Likely *
|
||||
* Format: OP rs, offset *
|
||||
|
@ -799,27 +845,29 @@ void recBLEZL()
|
|||
|
||||
_eeFlushAllUnused();
|
||||
|
||||
if( GPR_IS_CONST1(_Rs_) ) {
|
||||
if( !(g_cpuConstRegs[_Rs_].SD[0] <= 0) )
|
||||
SetBranchImm( pc + 4);
|
||||
else {
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
if (!(g_cpuConstRegs[_Rs_].SD[0] <= 0))
|
||||
SetBranchImm(pc + 4);
|
||||
else
|
||||
{
|
||||
_clearNeededXMMregs();
|
||||
recompileNextInstruction(1);
|
||||
SetBranchImm( branchTo );
|
||||
SetBranchImm(branchTo);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
_flushEEreg(_Rs_);
|
||||
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ]], 0 );
|
||||
j32Ptr[ 0 ] = JL32( 0 );
|
||||
j32Ptr[ 1 ] = JG32( 0 );
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[_Rs_].UL[1]], 0);
|
||||
j32Ptr[0] = JL32(0);
|
||||
j32Ptr[1] = JG32(0);
|
||||
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ]], 0 );
|
||||
j32Ptr[ 2 ] = JNZ32( 0 );
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[_Rs_].UL[0]], 0);
|
||||
j32Ptr[2] = JNZ32(0);
|
||||
|
||||
x86SetJ32( j32Ptr[ 0 ] );
|
||||
x86SetJ32(j32Ptr[0]);
|
||||
|
||||
_clearNeededXMMregs();
|
||||
|
||||
|
@ -827,8 +875,8 @@ void recBLEZL()
|
|||
recompileNextInstruction(1);
|
||||
SetBranchImm(branchTo);
|
||||
|
||||
x86SetJ32( j32Ptr[ 1 ] );
|
||||
x86SetJ32( j32Ptr[ 2 ] );
|
||||
x86SetJ32(j32Ptr[1]);
|
||||
x86SetJ32(j32Ptr[2]);
|
||||
|
||||
LoadBranchState();
|
||||
SetBranchImm(pc);
|
||||
|
@ -843,27 +891,29 @@ void recBGTZL()
|
|||
|
||||
_eeFlushAllUnused();
|
||||
|
||||
if( GPR_IS_CONST1(_Rs_) ) {
|
||||
if( !(g_cpuConstRegs[_Rs_].SD[0] > 0) )
|
||||
SetBranchImm( pc + 4);
|
||||
else {
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
if (!(g_cpuConstRegs[_Rs_].SD[0] > 0))
|
||||
SetBranchImm(pc + 4);
|
||||
else
|
||||
{
|
||||
_clearNeededXMMregs();
|
||||
recompileNextInstruction(1);
|
||||
SetBranchImm( branchTo );
|
||||
SetBranchImm(branchTo);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
_flushEEreg(_Rs_);
|
||||
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ]], 0 );
|
||||
j32Ptr[ 0 ] = JG32( 0 );
|
||||
j32Ptr[ 1 ] = JL32( 0 );
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[_Rs_].UL[1]], 0);
|
||||
j32Ptr[0] = JG32(0);
|
||||
j32Ptr[1] = JL32(0);
|
||||
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ]], 0 );
|
||||
j32Ptr[ 2 ] = JZ32( 0 );
|
||||
xCMP(ptr32[&cpuRegs.GPR.r[_Rs_].UL[0]], 0);
|
||||
j32Ptr[2] = JZ32(0);
|
||||
|
||||
x86SetJ32( j32Ptr[ 0 ] );
|
||||
x86SetJ32(j32Ptr[0]);
|
||||
|
||||
_clearNeededXMMregs();
|
||||
|
||||
|
@ -871,8 +921,8 @@ void recBGTZL()
|
|||
recompileNextInstruction(1);
|
||||
SetBranchImm(branchTo);
|
||||
|
||||
x86SetJ32( j32Ptr[ 1 ] );
|
||||
x86SetJ32( j32Ptr[ 2 ] );
|
||||
x86SetJ32(j32Ptr[1]);
|
||||
x86SetJ32(j32Ptr[2]);
|
||||
|
||||
LoadBranchState();
|
||||
SetBranchImm(pc);
|
||||
|
@ -880,4 +930,6 @@ void recBGTZL()
|
|||
|
||||
#endif
|
||||
|
||||
} } }
|
||||
} // namespace OpcodeImpl
|
||||
} // namespace Dynarec
|
||||
} // namespace R5900
|
||||
|
|
|
@ -26,8 +26,7 @@ using namespace x86Emitter;
|
|||
|
||||
namespace R5900 {
|
||||
namespace Dynarec {
|
||||
namespace OpcodeImpl
|
||||
{
|
||||
namespace OpcodeImpl {
|
||||
|
||||
/*********************************************************
|
||||
* Jump to target *
|
||||
|
@ -50,7 +49,7 @@ void recJ()
|
|||
EE::Profiler.EmitOp(eeOpcode::J);
|
||||
|
||||
// SET_FPUSTATE;
|
||||
u32 newpc = (_InstrucTarget_ << 2) + ( pc & 0xf0000000 );
|
||||
u32 newpc = (_InstrucTarget_ << 2) + (pc & 0xf0000000);
|
||||
recompileNextInstruction(1);
|
||||
if (EmuConfig.Gamefixes.GoemonTlbHack)
|
||||
SetBranchImm(vtlb_V2P(newpc));
|
||||
|
@ -63,9 +62,9 @@ void recJAL()
|
|||
{
|
||||
EE::Profiler.EmitOp(eeOpcode::JAL);
|
||||
|
||||
u32 newpc = (_InstrucTarget_ << 2) + ( pc & 0xf0000000 );
|
||||
u32 newpc = (_InstrucTarget_ << 2) + (pc & 0xf0000000);
|
||||
_deleteEEreg(31, 0);
|
||||
if(EE_CONST_PROP)
|
||||
if (EE_CONST_PROP)
|
||||
{
|
||||
GPR_SET_CONST(31);
|
||||
g_cpuConstRegs[31].UL[0] = pc + 4;
|
||||
|
@ -94,7 +93,7 @@ void recJR()
|
|||
{
|
||||
EE::Profiler.EmitOp(eeOpcode::JR);
|
||||
|
||||
SetBranchReg( _Rs_);
|
||||
SetBranchReg(_Rs_);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////
|
||||
|
@ -106,32 +105,35 @@ void recJALR()
|
|||
_allocX86reg(calleeSavedReg2d, X86TYPE_PCWRITEBACK, 0, MODE_WRITE);
|
||||
_eeMoveGPRtoR(calleeSavedReg2d, _Rs_);
|
||||
|
||||
if (EmuConfig.Gamefixes.GoemonTlbHack) {
|
||||
if (EmuConfig.Gamefixes.GoemonTlbHack)
|
||||
{
|
||||
xMOV(ecx, calleeSavedReg2d);
|
||||
vtlb_DynV2P();
|
||||
xMOV(calleeSavedReg2d, eax);
|
||||
}
|
||||
// uncomment when there are NO instructions that need to call interpreter
|
||||
// int mmreg;
|
||||
// if( GPR_IS_CONST1(_Rs_) )
|
||||
// xMOV(ptr32[&cpuRegs.pc], g_cpuConstRegs[_Rs_].UL[0] );
|
||||
// else {
|
||||
// if (GPR_IS_CONST1(_Rs_))
|
||||
// xMOV(ptr32[&cpuRegs.pc], g_cpuConstRegs[_Rs_].UL[0]);
|
||||
// else
|
||||
// {
|
||||
// int mmreg;
|
||||
//
|
||||
// if( (mmreg = _checkXMMreg(XMMTYPE_GPRREG, _Rs_, MODE_READ)) >= 0 ) {
|
||||
// if ((mmreg = _checkXMMreg(XMMTYPE_GPRREG, _Rs_, MODE_READ)) >= 0)
|
||||
// {
|
||||
// xMOVSS(ptr[&cpuRegs.pc], xRegisterSSE(mmreg));
|
||||
// }
|
||||
// else {
|
||||
// xMOV(eax, ptr[(void*)((int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] )]);
|
||||
// xMOV(eax, ptr[(void*)((int)&cpuRegs.GPR.r[_Rs_].UL[0])]);
|
||||
// xMOV(ptr[&cpuRegs.pc], eax);
|
||||
// }
|
||||
// }
|
||||
|
||||
|
||||
if ( _Rd_ )
|
||||
|
||||
if (_Rd_)
|
||||
{
|
||||
_deleteEEreg(_Rd_, 0);
|
||||
if(EE_CONST_PROP)
|
||||
if (EE_CONST_PROP)
|
||||
{
|
||||
GPR_SET_CONST(_Rd_);
|
||||
g_cpuConstRegs[_Rd_].UL[0] = newpc;
|
||||
|
@ -147,12 +149,14 @@ void recJALR()
|
|||
_clearNeededXMMregs();
|
||||
recompileNextInstruction(1);
|
||||
|
||||
if( x86regs[calleeSavedReg2d.GetId()].inuse ) {
|
||||
pxAssert( x86regs[calleeSavedReg2d.GetId()].type == X86TYPE_PCWRITEBACK );
|
||||
if (x86regs[calleeSavedReg2d.GetId()].inuse)
|
||||
{
|
||||
pxAssert(x86regs[calleeSavedReg2d.GetId()].type == X86TYPE_PCWRITEBACK);
|
||||
xMOV(ptr[&cpuRegs.pc], calleeSavedReg2d);
|
||||
x86regs[calleeSavedReg2d.GetId()].inuse = 0;
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
xMOV(eax, ptr[&g_recWriteback]);
|
||||
xMOV(ptr[&cpuRegs.pc], eax);
|
||||
}
|
||||
|
@ -162,4 +166,6 @@ void recJALR()
|
|||
|
||||
#endif
|
||||
|
||||
} } }
|
||||
} // namespace OpcodeImpl
|
||||
} // namespace Dynarec
|
||||
} // namespace R5900
|
||||
|
|
|
@ -38,18 +38,18 @@ namespace OpcodeImpl {
|
|||
|
||||
namespace Interp = R5900::Interpreter::OpcodeImpl;
|
||||
|
||||
REC_FUNC_DEL(LB, _Rt_);
|
||||
REC_FUNC_DEL(LB, _Rt_);
|
||||
REC_FUNC_DEL(LBU, _Rt_);
|
||||
REC_FUNC_DEL(LH, _Rt_);
|
||||
REC_FUNC_DEL(LH, _Rt_);
|
||||
REC_FUNC_DEL(LHU, _Rt_);
|
||||
REC_FUNC_DEL(LW, _Rt_);
|
||||
REC_FUNC_DEL(LW, _Rt_);
|
||||
REC_FUNC_DEL(LWU, _Rt_);
|
||||
REC_FUNC_DEL(LWL, _Rt_);
|
||||
REC_FUNC_DEL(LWR, _Rt_);
|
||||
REC_FUNC_DEL(LD, _Rt_);
|
||||
REC_FUNC_DEL(LD, _Rt_);
|
||||
REC_FUNC_DEL(LDR, _Rt_);
|
||||
REC_FUNC_DEL(LDL, _Rt_);
|
||||
REC_FUNC_DEL(LQ, _Rt_);
|
||||
REC_FUNC_DEL(LQ, _Rt_);
|
||||
REC_FUNC(SB);
|
||||
REC_FUNC(SH);
|
||||
REC_FUNC(SW);
|
||||
|
@ -72,18 +72,23 @@ void _eeOnLoadWrite(u32 reg)
|
|||
{
|
||||
int regt;
|
||||
|
||||
if( !reg ) return;
|
||||
if (!reg)
|
||||
return;
|
||||
|
||||
_eeOnWriteReg(reg, 1);
|
||||
regt = _checkXMMreg(XMMTYPE_GPRREG, reg, MODE_READ);
|
||||
|
||||
if( regt >= 0 ) {
|
||||
if( xmmregs[regt].mode & MODE_WRITE ) {
|
||||
if( reg != _Rs_ ) {
|
||||
if (regt >= 0)
|
||||
{
|
||||
if (xmmregs[regt].mode & MODE_WRITE)
|
||||
{
|
||||
if (reg != _Rs_)
|
||||
{
|
||||
xPUNPCK.HQDQ(xRegisterSSE(regt), xRegisterSSE(regt));
|
||||
xMOVQ(ptr[&cpuRegs.GPR.r[reg].UL[2]], xRegisterSSE(regt));
|
||||
}
|
||||
else xMOVH.PS(ptr[&cpuRegs.GPR.r[reg].UL[2]], xRegisterSSE(regt));
|
||||
else
|
||||
xMOVH.PS(ptr[&cpuRegs.GPR.r[reg].UL[2]], xRegisterSSE(regt));
|
||||
}
|
||||
xmmregs[regt].inuse = 0;
|
||||
}
|
||||
|
@ -95,9 +100,9 @@ __aligned16 u32 dummyValue[4];
|
|||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
void recLoad64( u32 bits, bool sign )
|
||||
void recLoad64(u32 bits, bool sign)
|
||||
{
|
||||
pxAssume( bits == 64 || bits == 128 );
|
||||
pxAssume(bits == 64 || bits == 128);
|
||||
|
||||
// Load arg2 with the destination.
|
||||
// 64/128 bit modes load the result directly into the cpuRegs.GPR struct.
|
||||
|
@ -124,7 +129,7 @@ void recLoad64( u32 bits, bool sign )
|
|||
_eeMoveGPRtoR(arg1regd, _Rs_);
|
||||
if (_Imm_ != 0)
|
||||
xADD(arg1regd, _Imm_);
|
||||
if (bits == 128) // force 16 byte alignment on 128 bit reads
|
||||
if (bits == 128) // force 16 byte alignment on 128 bit reads
|
||||
xAND(arg1regd, ~0x0F);
|
||||
|
||||
_eeOnLoadWrite(_Rt_);
|
||||
|
@ -137,9 +142,9 @@ void recLoad64( u32 bits, bool sign )
|
|||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
void recLoad32( u32 bits, bool sign )
|
||||
void recLoad32(u32 bits, bool sign)
|
||||
{
|
||||
pxAssume( bits <= 32 );
|
||||
pxAssume(bits <= 32);
|
||||
|
||||
// 8/16/32 bit modes return the loaded value in EAX.
|
||||
|
||||
|
@ -157,7 +162,7 @@ void recLoad32( u32 bits, bool sign )
|
|||
// Load arg1 with the source memory address that we're reading from.
|
||||
_eeMoveGPRtoR(arg1regd, _Rs_);
|
||||
if (_Imm_ != 0)
|
||||
xADD(arg1regd, _Imm_ );
|
||||
xADD(arg1regd, _Imm_);
|
||||
|
||||
_eeOnLoadWrite(_Rt_);
|
||||
_deleteEEreg(_Rt_, 0);
|
||||
|
@ -185,65 +190,65 @@ void recLoad32( u32 bits, bool sign )
|
|||
|
||||
void recStore(u32 bits)
|
||||
{
|
||||
// Performance note: Const prop for the store address is good, always.
|
||||
// Constprop for the value being stored is not really worthwhile (better to use register
|
||||
// allocation -- simpler code and just as fast)
|
||||
// Performance note: Const prop for the store address is good, always.
|
||||
// Constprop for the value being stored is not really worthwhile (better to use register
|
||||
// allocation -- simpler code and just as fast)
|
||||
|
||||
// Load EDX first with the value being written, or the address of the value
|
||||
// being written (64/128 bit modes).
|
||||
// Load EDX first with the value being written, or the address of the value
|
||||
// being written (64/128 bit modes).
|
||||
|
||||
if (bits < 64)
|
||||
{
|
||||
_eeMoveGPRtoR(arg2regd, _Rt_);
|
||||
}
|
||||
else if (bits == 128 || bits == 64)
|
||||
{
|
||||
_flushEEreg(_Rt_); // flush register to mem
|
||||
xLEA(arg2reg, ptr[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
}
|
||||
if (bits < 64)
|
||||
{
|
||||
_eeMoveGPRtoR(arg2regd, _Rt_);
|
||||
}
|
||||
else if (bits == 128 || bits == 64)
|
||||
{
|
||||
_flushEEreg(_Rt_); // flush register to mem
|
||||
xLEA(arg2reg, ptr[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
}
|
||||
|
||||
// Load ECX with the destination address, or issue a direct optimized write
|
||||
// if the address is a constant propagation.
|
||||
// Load ECX with the destination address, or issue a direct optimized write
|
||||
// if the address is a constant propagation.
|
||||
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
u32 dstadr = g_cpuConstRegs[_Rs_].UL[0] + _Imm_;
|
||||
if (bits == 128)
|
||||
dstadr &= ~0x0f;
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
u32 dstadr = g_cpuConstRegs[_Rs_].UL[0] + _Imm_;
|
||||
if (bits == 128)
|
||||
dstadr &= ~0x0f;
|
||||
|
||||
vtlb_DynGenWrite_Const( bits, dstadr );
|
||||
}
|
||||
else
|
||||
{
|
||||
_eeMoveGPRtoR(arg1regd, _Rs_);
|
||||
if (_Imm_ != 0)
|
||||
xADD(arg1regd, _Imm_);
|
||||
if (bits == 128)
|
||||
xAND(arg1regd, ~0x0F);
|
||||
vtlb_DynGenWrite_Const(bits, dstadr);
|
||||
}
|
||||
else
|
||||
{
|
||||
_eeMoveGPRtoR(arg1regd, _Rs_);
|
||||
if (_Imm_ != 0)
|
||||
xADD(arg1regd, _Imm_);
|
||||
if (bits == 128)
|
||||
xAND(arg1regd, ~0x0F);
|
||||
|
||||
iFlushCall(FLUSH_FULLVTLB);
|
||||
iFlushCall(FLUSH_FULLVTLB);
|
||||
|
||||
vtlb_DynGenWrite(bits);
|
||||
}
|
||||
vtlb_DynGenWrite(bits);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
void recLB() { recLoad32(8,true); EE::Profiler.EmitOp(eeOpcode::LB);}
|
||||
void recLBU() { recLoad32(8,false); EE::Profiler.EmitOp(eeOpcode::LBU);}
|
||||
void recLH() { recLoad32(16,true); EE::Profiler.EmitOp(eeOpcode::LH);}
|
||||
void recLHU() { recLoad32(16,false); EE::Profiler.EmitOp(eeOpcode::LHU);}
|
||||
void recLW() { recLoad32(32,true); EE::Profiler.EmitOp(eeOpcode::LW);}
|
||||
void recLWU() { recLoad32(32,false); EE::Profiler.EmitOp(eeOpcode::LWU);}
|
||||
void recLD() { recLoad64(64,false); EE::Profiler.EmitOp(eeOpcode::LD);}
|
||||
void recLQ() { recLoad64(128,false); EE::Profiler.EmitOp(eeOpcode::LQ);}
|
||||
void recLB() { recLoad32( 8, true); EE::Profiler.EmitOp(eeOpcode::LB); }
|
||||
void recLBU() { recLoad32( 8, false); EE::Profiler.EmitOp(eeOpcode::LBU); }
|
||||
void recLH() { recLoad32( 16, true); EE::Profiler.EmitOp(eeOpcode::LH); }
|
||||
void recLHU() { recLoad32( 16, false); EE::Profiler.EmitOp(eeOpcode::LHU); }
|
||||
void recLW() { recLoad32( 32, true); EE::Profiler.EmitOp(eeOpcode::LW); }
|
||||
void recLWU() { recLoad32( 32, false); EE::Profiler.EmitOp(eeOpcode::LWU); }
|
||||
void recLD() { recLoad64( 64, false); EE::Profiler.EmitOp(eeOpcode::LD); }
|
||||
void recLQ() { recLoad64(128, false); EE::Profiler.EmitOp(eeOpcode::LQ); }
|
||||
|
||||
void recSB() { recStore(8); EE::Profiler.EmitOp(eeOpcode::SB);}
|
||||
void recSH() { recStore(16); EE::Profiler.EmitOp(eeOpcode::SH);}
|
||||
void recSW() { recStore(32); EE::Profiler.EmitOp(eeOpcode::SW);}
|
||||
void recSQ() { recStore(128); EE::Profiler.EmitOp(eeOpcode::SQ);}
|
||||
void recSD() { recStore(64); EE::Profiler.EmitOp(eeOpcode::SD);}
|
||||
void recSB() { recStore( 8); EE::Profiler.EmitOp(eeOpcode::SB); }
|
||||
void recSH() { recStore( 16); EE::Profiler.EmitOp(eeOpcode::SH); }
|
||||
void recSW() { recStore( 32); EE::Profiler.EmitOp(eeOpcode::SW); }
|
||||
void recSD() { recStore( 64); EE::Profiler.EmitOp(eeOpcode::SD); }
|
||||
void recSQ() { recStore(128); EE::Profiler.EmitOp(eeOpcode::SQ); }
|
||||
|
||||
////////////////////////////////////////////////////
|
||||
|
||||
|
@ -536,9 +541,9 @@ void recSWC1()
|
|||
#else
|
||||
_deleteFPtoXMMreg(_Rt_, 1);
|
||||
|
||||
xMOV(arg2regd, ptr32[&fpuRegs.fpr[_Rt_].UL] );
|
||||
xMOV(arg2regd, ptr32[&fpuRegs.fpr[_Rt_].UL]);
|
||||
|
||||
if( GPR_IS_CONST1( _Rs_ ) )
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
int addr = g_cpuConstRegs[_Rs_].UL[0] + _Imm_;
|
||||
vtlb_DynGenWrite_Const(32, addr);
|
||||
|
@ -657,7 +662,6 @@ void recSQC2()
|
|||
|
||||
#endif
|
||||
|
||||
} } } // end namespace R5900::Dynarec::OpcodeImpl
|
||||
|
||||
using namespace R5900::Dynarec;
|
||||
using namespace R5900::Dynarec::OpcodeImpl;
|
||||
} // namespace OpcodeImpl
|
||||
} // namespace Dynarec
|
||||
} // namespace R5900
|
||||
|
|
|
@ -24,8 +24,7 @@ using namespace x86Emitter;
|
|||
|
||||
namespace R5900 {
|
||||
namespace Dynarec {
|
||||
namespace OpcodeImpl
|
||||
{
|
||||
namespace OpcodeImpl {
|
||||
|
||||
/*********************************************************
|
||||
* Shift arithmetic with constant shift *
|
||||
|
@ -35,7 +34,7 @@ namespace OpcodeImpl
|
|||
|
||||
namespace Interp = R5900::Interpreter::OpcodeImpl;
|
||||
|
||||
REC_FUNC_DEL(LUI,_Rt_);
|
||||
REC_FUNC_DEL(LUI, _Rt_);
|
||||
REC_FUNC_DEL(MFLO, _Rd_);
|
||||
REC_FUNC_DEL(MFHI, _Rd_);
|
||||
REC_FUNC(MTLO);
|
||||
|
@ -43,8 +42,8 @@ REC_FUNC(MTHI);
|
|||
|
||||
REC_FUNC_DEL(MFLO1, _Rd_);
|
||||
REC_FUNC_DEL(MFHI1, _Rd_);
|
||||
REC_FUNC( MTHI1 );
|
||||
REC_FUNC( MTLO1 );
|
||||
REC_FUNC(MTHI1);
|
||||
REC_FUNC(MTLO1);
|
||||
|
||||
REC_FUNC_DEL(MOVZ, _Rd_);
|
||||
REC_FUNC_DEL(MOVN, _Rd_);
|
||||
|
@ -60,12 +59,15 @@ REC_FUNC_DEL(MOVN, _Rd_);
|
|||
void recLUI()
|
||||
{
|
||||
int mmreg;
|
||||
if(!_Rt_) return;
|
||||
if (!_Rt_)
|
||||
return;
|
||||
|
||||
_eeOnWriteReg(_Rt_, 1);
|
||||
|
||||
if( (mmreg = _checkXMMreg(XMMTYPE_GPRREG, _Rt_, MODE_WRITE)) >= 0 ) {
|
||||
if( xmmregs[mmreg].mode & MODE_WRITE ) {
|
||||
if ((mmreg = _checkXMMreg(XMMTYPE_GPRREG, _Rt_, MODE_WRITE)) >= 0)
|
||||
{
|
||||
if (xmmregs[mmreg].mode & MODE_WRITE)
|
||||
{
|
||||
xMOVH.PS(ptr[&cpuRegs.GPR.r[_Rt_].UL[2]], xRegisterSSE(mmreg));
|
||||
}
|
||||
xmmregs[mmreg].inuse = 0;
|
||||
|
@ -73,7 +75,7 @@ void recLUI()
|
|||
|
||||
_deleteEEreg(_Rt_, 0);
|
||||
|
||||
if(EE_CONST_PROP)
|
||||
if (EE_CONST_PROP)
|
||||
{
|
||||
GPR_SET_CONST(_Rt_);
|
||||
g_cpuConstRegs[_Rt_].UD[0] = (s32)(cpuRegs.code << 16);
|
||||
|
@ -93,7 +95,7 @@ void recLUI()
|
|||
void recMFHILO(int hi)
|
||||
{
|
||||
int reghi, regd, xmmhilo;
|
||||
if ( ! _Rd_ )
|
||||
if (!_Rd_)
|
||||
return;
|
||||
|
||||
xmmhilo = hi ? XMMGPR_HI : XMMGPR_LO;
|
||||
|
@ -101,36 +103,45 @@ void recMFHILO(int hi)
|
|||
|
||||
_eeOnWriteReg(_Rd_, 0);
|
||||
|
||||
regd = _checkXMMreg(XMMTYPE_GPRREG, _Rd_, MODE_READ|MODE_WRITE);
|
||||
regd = _checkXMMreg(XMMTYPE_GPRREG, _Rd_, MODE_READ | MODE_WRITE);
|
||||
|
||||
if( reghi >= 0 ) {
|
||||
if( regd >= 0 ) {
|
||||
pxAssert( regd != reghi );
|
||||
if (reghi >= 0)
|
||||
{
|
||||
if (regd >= 0)
|
||||
{
|
||||
pxAssert(regd != reghi);
|
||||
|
||||
xmmregs[regd].inuse = 0;
|
||||
|
||||
xMOVQ(ptr[&cpuRegs.GPR.r[_Rd_].UL[0]], xRegisterSSE(reghi));
|
||||
|
||||
if( xmmregs[regd].mode & MODE_WRITE ) {
|
||||
if (xmmregs[regd].mode & MODE_WRITE)
|
||||
{
|
||||
xMOVH.PS(ptr[&cpuRegs.GPR.r[_Rd_].UL[2]], xRegisterSSE(regd));
|
||||
}
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
_deleteEEreg(_Rd_, 0);
|
||||
xMOVQ(ptr[&cpuRegs.GPR.r[ _Rd_ ].UD[ 0 ]], xRegisterSSE(reghi));
|
||||
xMOVQ(ptr[&cpuRegs.GPR.r[_Rd_].UD[0]], xRegisterSSE(reghi));
|
||||
}
|
||||
}
|
||||
else {
|
||||
if( regd >= 0 ) {
|
||||
if( EEINST_ISLIVE2(_Rd_) ) xMOVL.PS(xRegisterSSE(regd), ptr[(void*)(hi ? (uptr)&cpuRegs.HI.UD[ 0 ] : (uptr)&cpuRegs.LO.UD[ 0 ])]);
|
||||
else xMOVQZX(xRegisterSSE(regd), ptr[(void*)(hi ? (uptr)&cpuRegs.HI.UD[ 0 ] : (uptr)&cpuRegs.LO.UD[ 0 ])]);
|
||||
else
|
||||
{
|
||||
if (regd >= 0)
|
||||
{
|
||||
if (EEINST_ISLIVE2(_Rd_))
|
||||
xMOVL.PS(xRegisterSSE(regd), ptr[(void*)(hi ? (uptr)&cpuRegs.HI.UD[0] : (uptr)&cpuRegs.LO.UD[0])]);
|
||||
else
|
||||
xMOVQZX(xRegisterSSE(regd), ptr[(void*)(hi ? (uptr)&cpuRegs.HI.UD[0] : (uptr)&cpuRegs.LO.UD[0])]);
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
_deleteEEreg(_Rd_, 0);
|
||||
xMOV(eax, ptr[(void*)(hi ? (uptr)&cpuRegs.HI.UL[ 0 ] : (uptr)&cpuRegs.LO.UL[ 0 ])]);
|
||||
xMOV(edx, ptr[(void*)(hi ? (uptr)&cpuRegs.HI.UL[ 1 ] : (uptr)&cpuRegs.LO.UL[ 1 ])]);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 1 ]], edx);
|
||||
xMOV(eax, ptr[(void*)(hi ? (uptr)&cpuRegs.HI.UL[0] : (uptr)&cpuRegs.LO.UL[0])]);
|
||||
xMOV(edx, ptr[(void*)(hi ? (uptr)&cpuRegs.HI.UL[1] : (uptr)&cpuRegs.LO.UL[1])]);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[0]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[1]], edx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -144,11 +155,13 @@ void recMTHILO(int hi)
|
|||
addrhilo = hi ? (uptr)&cpuRegs.HI.UD[0] : (uptr)&cpuRegs.LO.UD[0];
|
||||
|
||||
regs = _checkXMMreg(XMMTYPE_GPRREG, _Rs_, MODE_READ);
|
||||
reghi = _checkXMMreg(XMMTYPE_GPRREG, xmmhilo, MODE_READ|MODE_WRITE);
|
||||
reghi = _checkXMMreg(XMMTYPE_GPRREG, xmmhilo, MODE_READ | MODE_WRITE);
|
||||
|
||||
if( reghi >= 0 ) {
|
||||
if( regs >= 0 ) {
|
||||
pxAssert( reghi != regs );
|
||||
if (reghi >= 0)
|
||||
{
|
||||
if (regs >= 0)
|
||||
{
|
||||
pxAssert(reghi != regs);
|
||||
|
||||
_deleteGPRtoXMMreg(_Rs_, 0);
|
||||
xPUNPCK.HQDQ(xRegisterSSE(reghi), xRegisterSSE(reghi));
|
||||
|
@ -158,30 +171,35 @@ void recMTHILO(int hi)
|
|||
xmmregs[regs] = xmmregs[reghi];
|
||||
xmmregs[reghi].inuse = 0;
|
||||
xmmregs[regs].mode |= MODE_WRITE;
|
||||
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
_flushConstReg(_Rs_);
|
||||
xMOVL.PS(xRegisterSSE(reghi), ptr[&cpuRegs.GPR.r[ _Rs_ ].UD[ 0 ]]);
|
||||
xMOVL.PS(xRegisterSSE(reghi), ptr[&cpuRegs.GPR.r[_Rs_].UD[0]]);
|
||||
xmmregs[reghi].mode |= MODE_WRITE;
|
||||
}
|
||||
}
|
||||
else {
|
||||
if( regs >= 0 ) {
|
||||
else
|
||||
{
|
||||
if (regs >= 0)
|
||||
{
|
||||
xMOVQ(ptr[(void*)(addrhilo)], xRegisterSSE(regs));
|
||||
}
|
||||
else {
|
||||
if( GPR_IS_CONST1(_Rs_) ) {
|
||||
xMOV(ptr32[(u32*)(addrhilo)], g_cpuConstRegs[_Rs_].UL[0] );
|
||||
xMOV(ptr32[(u32*)(addrhilo+4)], g_cpuConstRegs[_Rs_].UL[1] );
|
||||
else
|
||||
{
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
xMOV(ptr32[(u32*)(addrhilo)], g_cpuConstRegs[_Rs_].UL[0]);
|
||||
xMOV(ptr32[(u32*)(addrhilo + 4)], g_cpuConstRegs[_Rs_].UL[1]);
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
_eeMoveGPRtoR(ecx, _Rs_);
|
||||
_flushEEreg(_Rs_);
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ]]);
|
||||
xMOV(edx, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ]]);
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
xMOV(edx, ptr[&cpuRegs.GPR.r[_Rs_].UL[1]]);
|
||||
xMOV(ptr[(void*)(addrhilo)], eax);
|
||||
xMOV(ptr[(void*)(addrhilo+4)], edx);
|
||||
xMOV(ptr[(void*)(addrhilo + 4)], edx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -215,7 +233,7 @@ void recMTLO()
|
|||
void recMFHILO1(int hi)
|
||||
{
|
||||
int reghi, regd, xmmhilo;
|
||||
if ( ! _Rd_ )
|
||||
if (!_Rd_)
|
||||
return;
|
||||
|
||||
xmmhilo = hi ? XMMGPR_HI : XMMGPR_LO;
|
||||
|
@ -223,36 +241,44 @@ void recMFHILO1(int hi)
|
|||
|
||||
_eeOnWriteReg(_Rd_, 0);
|
||||
|
||||
regd = _checkXMMreg(XMMTYPE_GPRREG, _Rd_, MODE_READ|MODE_WRITE);
|
||||
regd = _checkXMMreg(XMMTYPE_GPRREG, _Rd_, MODE_READ | MODE_WRITE);
|
||||
|
||||
if( reghi >= 0 ) {
|
||||
if( regd >= 0 ) {
|
||||
if (reghi >= 0)
|
||||
{
|
||||
if (regd >= 0)
|
||||
{
|
||||
xMOVHL.PS(xRegisterSSE(regd), xRegisterSSE(reghi));
|
||||
xmmregs[regd].mode |= MODE_WRITE;
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
_deleteEEreg(_Rd_, 0);
|
||||
xMOVH.PS(ptr[&cpuRegs.GPR.r[ _Rd_ ].UD[ 0 ]], xRegisterSSE(reghi));
|
||||
xMOVH.PS(ptr[&cpuRegs.GPR.r[_Rd_].UD[0]], xRegisterSSE(reghi));
|
||||
}
|
||||
}
|
||||
else {
|
||||
if( regd >= 0 ) {
|
||||
if( EEINST_ISLIVE2(_Rd_) ) {
|
||||
xPUNPCK.HQDQ(xRegisterSSE(regd), ptr[(void*)(hi ? (uptr)&cpuRegs.HI.UD[ 0 ] : (uptr)&cpuRegs.LO.UD[ 0 ])]);
|
||||
else
|
||||
{
|
||||
if (regd >= 0)
|
||||
{
|
||||
if (EEINST_ISLIVE2(_Rd_))
|
||||
{
|
||||
xPUNPCK.HQDQ(xRegisterSSE(regd), ptr[(void*)(hi ? (uptr)&cpuRegs.HI.UD[0] : (uptr)&cpuRegs.LO.UD[0])]);
|
||||
xPSHUF.D(xRegisterSSE(regd), xRegisterSSE(regd), 0x4e);
|
||||
}
|
||||
else {
|
||||
xMOVQZX(xRegisterSSE(regd), ptr[(void*)(hi ? (uptr)&cpuRegs.HI.UD[ 1 ] : (uptr)&cpuRegs.LO.UD[ 1 ])]);
|
||||
else
|
||||
{
|
||||
xMOVQZX(xRegisterSSE(regd), ptr[(void*)(hi ? (uptr)&cpuRegs.HI.UD[1] : (uptr)&cpuRegs.LO.UD[1])]);
|
||||
}
|
||||
|
||||
xmmregs[regd].mode |= MODE_WRITE;
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
_deleteEEreg(_Rd_, 0);
|
||||
xMOV(eax, ptr[(void*)(hi ? (uptr)&cpuRegs.HI.UL[ 2 ] : (uptr)&cpuRegs.LO.UL[ 2 ])]);
|
||||
xMOV(edx, ptr[(void*)(hi ? (uptr)&cpuRegs.HI.UL[ 3 ] : (uptr)&cpuRegs.LO.UL[ 3 ])]);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 1 ]], edx);
|
||||
xMOV(eax, ptr[(void*)(hi ? (uptr)&cpuRegs.HI.UL[2] : (uptr)&cpuRegs.LO.UL[2])]);
|
||||
xMOV(edx, ptr[(void*)(hi ? (uptr)&cpuRegs.HI.UL[3] : (uptr)&cpuRegs.LO.UL[3])]);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[0]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[1]], edx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -266,32 +292,40 @@ void recMTHILO1(int hi)
|
|||
addrhilo = hi ? (uptr)&cpuRegs.HI.UD[0] : (uptr)&cpuRegs.LO.UD[0];
|
||||
|
||||
regs = _checkXMMreg(XMMTYPE_GPRREG, _Rs_, MODE_READ);
|
||||
reghi = _allocCheckGPRtoXMM(g_pCurInstInfo, xmmhilo, MODE_WRITE|MODE_READ);
|
||||
reghi = _allocCheckGPRtoXMM(g_pCurInstInfo, xmmhilo, MODE_WRITE | MODE_READ);
|
||||
|
||||
if( reghi >= 0 ) {
|
||||
if( regs >= 0 ) {
|
||||
if (reghi >= 0)
|
||||
{
|
||||
if (regs >= 0)
|
||||
{
|
||||
xPUNPCK.LQDQ(xRegisterSSE(reghi), xRegisterSSE(regs));
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
_flushEEreg(_Rs_);
|
||||
xPUNPCK.LQDQ(xRegisterSSE(reghi), ptr[&cpuRegs.GPR.r[ _Rs_ ].UD[ 0 ]]);
|
||||
xPUNPCK.LQDQ(xRegisterSSE(reghi), ptr[&cpuRegs.GPR.r[_Rs_].UD[0]]);
|
||||
}
|
||||
}
|
||||
else {
|
||||
if( regs >= 0 ) {
|
||||
xMOVQ(ptr[(void*)(addrhilo+8)], xRegisterSSE(regs));
|
||||
else
|
||||
{
|
||||
if (regs >= 0)
|
||||
{
|
||||
xMOVQ(ptr[(void*)(addrhilo + 8)], xRegisterSSE(regs));
|
||||
}
|
||||
else {
|
||||
if( GPR_IS_CONST1(_Rs_) ) {
|
||||
xMOV(ptr32[(u32*)(addrhilo+8)], g_cpuConstRegs[_Rs_].UL[0] );
|
||||
xMOV(ptr32[(u32*)(addrhilo+12)], g_cpuConstRegs[_Rs_].UL[1] );
|
||||
else
|
||||
{
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
xMOV(ptr32[(u32*)(addrhilo + 8)], g_cpuConstRegs[_Rs_].UL[0]);
|
||||
xMOV(ptr32[(u32*)(addrhilo + 12)], g_cpuConstRegs[_Rs_].UL[1]);
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
_flushEEreg(_Rs_);
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ]]);
|
||||
xMOV(edx, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ]]);
|
||||
xMOV(ptr[(void*)(addrhilo+8)], eax);
|
||||
xMOV(ptr[(void*)(addrhilo+12)], edx);
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
xMOV(edx, ptr[&cpuRegs.GPR.r[_Rs_].UL[1]]);
|
||||
xMOV(ptr[(void*)(addrhilo + 8)], eax);
|
||||
xMOV(ptr[(void*)(addrhilo + 12)], edx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -329,49 +363,51 @@ void recMOVZtemp_const()
|
|||
|
||||
void recMOVZtemp_consts(int info)
|
||||
{
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] ]);
|
||||
xOR(eax, ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ] ]);
|
||||
j8Ptr[ 0 ] = JNZ8( 0 );
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
xOR(eax, ptr[&cpuRegs.GPR.r[_Rt_].UL[1]]);
|
||||
j8Ptr[0] = JNZ8(0);
|
||||
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[ _Rd_ ].UL[ 0 ]], g_cpuConstRegs[_Rs_].UL[0] );
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[ _Rd_ ].UL[ 1 ]], g_cpuConstRegs[_Rs_].UL[1] );
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[_Rd_].UL[0]], g_cpuConstRegs[_Rs_].UL[0]);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[_Rd_].UL[1]], g_cpuConstRegs[_Rs_].UL[1]);
|
||||
|
||||
x86SetJ8( j8Ptr[ 0 ] );
|
||||
x86SetJ8(j8Ptr[0]);
|
||||
}
|
||||
|
||||
void recMOVZtemp_constt(int info)
|
||||
{
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ]]);
|
||||
xMOV(edx, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ]]);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 1 ]], edx);
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
xMOV(edx, ptr[&cpuRegs.GPR.r[_Rs_].UL[1]]);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[0]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[1]], edx);
|
||||
}
|
||||
|
||||
void recMOVZtemp_(int info)
|
||||
{
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] ]);
|
||||
xOR(eax, ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ] ]);
|
||||
j8Ptr[ 0 ] = JNZ8( 0 );
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
xOR(eax, ptr[&cpuRegs.GPR.r[_Rt_].UL[1]]);
|
||||
j8Ptr[0] = JNZ8(0);
|
||||
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ]]);
|
||||
xMOV(edx, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ]]);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 1 ]], edx);
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
xMOV(edx, ptr[&cpuRegs.GPR.r[_Rs_].UL[1]]);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[0]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[1]], edx);
|
||||
|
||||
x86SetJ8( j8Ptr[ 0 ] );
|
||||
x86SetJ8(j8Ptr[0]);
|
||||
}
|
||||
|
||||
EERECOMPILE_CODE0(MOVZtemp, XMMINFO_READS|XMMINFO_READD|XMMINFO_READD|XMMINFO_WRITED);
|
||||
EERECOMPILE_CODE0(MOVZtemp, XMMINFO_READS | XMMINFO_READD | XMMINFO_READD | XMMINFO_WRITED);
|
||||
|
||||
void recMOVZ()
|
||||
{
|
||||
if( _Rs_ == _Rd_ )
|
||||
if (_Rs_ == _Rd_)
|
||||
return;
|
||||
|
||||
if(GPR_IS_CONST1(_Rt_)) {
|
||||
if (GPR_IS_CONST1(_Rt_))
|
||||
{
|
||||
if (g_cpuConstRegs[_Rt_].UD[0] != 0)
|
||||
return;
|
||||
} else
|
||||
}
|
||||
else
|
||||
_deleteEEreg(_Rd_, 1);
|
||||
|
||||
recMOVZtemp();
|
||||
|
@ -385,49 +421,51 @@ void recMOVNtemp_const()
|
|||
|
||||
void recMOVNtemp_consts(int info)
|
||||
{
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] ]);
|
||||
xOR(eax, ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ] ]);
|
||||
j8Ptr[ 0 ] = JZ8( 0 );
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
xOR(eax, ptr[&cpuRegs.GPR.r[_Rt_].UL[1]]);
|
||||
j8Ptr[0] = JZ8(0);
|
||||
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[ _Rd_ ].UL[ 0 ]], g_cpuConstRegs[_Rs_].UL[0] );
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[ _Rd_ ].UL[ 1 ]], g_cpuConstRegs[_Rs_].UL[1] );
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[_Rd_].UL[0]], g_cpuConstRegs[_Rs_].UL[0]);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[_Rd_].UL[1]], g_cpuConstRegs[_Rs_].UL[1]);
|
||||
|
||||
x86SetJ8( j8Ptr[ 0 ] );
|
||||
x86SetJ8(j8Ptr[0]);
|
||||
}
|
||||
|
||||
void recMOVNtemp_constt(int info)
|
||||
{
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ]]);
|
||||
xMOV(edx, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ]]);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 1 ]], edx);
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
xMOV(edx, ptr[&cpuRegs.GPR.r[_Rs_].UL[1]]);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[0]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[1]], edx);
|
||||
}
|
||||
|
||||
void recMOVNtemp_(int info)
|
||||
{
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] ]);
|
||||
xOR(eax, ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ] ]);
|
||||
j8Ptr[ 0 ] = JZ8( 0 );
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
xOR(eax, ptr[&cpuRegs.GPR.r[_Rt_].UL[1]]);
|
||||
j8Ptr[0] = JZ8(0);
|
||||
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ]]);
|
||||
xMOV(edx, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ]]);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 1 ]], edx);
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
xMOV(edx, ptr[&cpuRegs.GPR.r[_Rs_].UL[1]]);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[0]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[1]], edx);
|
||||
|
||||
x86SetJ8( j8Ptr[ 0 ] );
|
||||
x86SetJ8(j8Ptr[0]);
|
||||
}
|
||||
|
||||
EERECOMPILE_CODE0(MOVNtemp, XMMINFO_READS|XMMINFO_READD|XMMINFO_READD|XMMINFO_WRITED);
|
||||
EERECOMPILE_CODE0(MOVNtemp, XMMINFO_READS | XMMINFO_READD | XMMINFO_READD | XMMINFO_WRITED);
|
||||
|
||||
void recMOVN()
|
||||
{
|
||||
if( _Rs_ == _Rd_ )
|
||||
if (_Rs_ == _Rd_)
|
||||
return;
|
||||
|
||||
if (GPR_IS_CONST1(_Rt_)) {
|
||||
if (GPR_IS_CONST1(_Rt_))
|
||||
{
|
||||
if (g_cpuConstRegs[_Rt_].UD[0] == 0)
|
||||
return;
|
||||
} else
|
||||
}
|
||||
else
|
||||
_deleteEEreg(_Rd_, 1);
|
||||
|
||||
recMOVNtemp();
|
||||
|
@ -435,4 +473,6 @@ void recMOVN()
|
|||
|
||||
#endif
|
||||
|
||||
} } }
|
||||
} // namespace OpcodeImpl
|
||||
} // namespace Dynarec
|
||||
} // namespace R5900
|
||||
|
|
|
@ -26,8 +26,7 @@ namespace Interp = R5900::Interpreter::OpcodeImpl;
|
|||
|
||||
namespace R5900 {
|
||||
namespace Dynarec {
|
||||
namespace OpcodeImpl
|
||||
{
|
||||
namespace OpcodeImpl {
|
||||
|
||||
/*********************************************************
|
||||
* Register mult/div & Register trap logic *
|
||||
|
@ -35,20 +34,20 @@ namespace OpcodeImpl
|
|||
*********************************************************/
|
||||
#ifndef MULTDIV_RECOMPILE
|
||||
|
||||
REC_FUNC_DEL(MULT , _Rd_);
|
||||
REC_FUNC_DEL(MULTU , _Rd_);
|
||||
REC_FUNC_DEL( MULT1 , _Rd_);
|
||||
REC_FUNC_DEL( MULTU1 , _Rd_);
|
||||
REC_FUNC_DEL(MULT, _Rd_);
|
||||
REC_FUNC_DEL(MULTU, _Rd_);
|
||||
REC_FUNC_DEL(MULT1, _Rd_);
|
||||
REC_FUNC_DEL(MULTU1, _Rd_);
|
||||
|
||||
REC_FUNC(DIV);
|
||||
REC_FUNC(DIVU);
|
||||
REC_FUNC( DIV1 );
|
||||
REC_FUNC( DIVU1 );
|
||||
REC_FUNC(DIV1);
|
||||
REC_FUNC(DIVU1);
|
||||
|
||||
REC_FUNC_DEL( MADD , _Rd_ );
|
||||
REC_FUNC_DEL( MADDU , _Rd_);
|
||||
REC_FUNC_DEL( MADD1 , _Rd_);
|
||||
REC_FUNC_DEL( MADDU1 , _Rd_ );
|
||||
REC_FUNC_DEL(MADD, _Rd_);
|
||||
REC_FUNC_DEL(MADDU, _Rd_);
|
||||
REC_FUNC_DEL(MADD1, _Rd_);
|
||||
REC_FUNC_DEL(MADDU1, _Rd_);
|
||||
|
||||
#else
|
||||
|
||||
|
@ -56,19 +55,24 @@ REC_FUNC_DEL( MADDU1 , _Rd_ );
|
|||
void recWritebackHILO(int info, int writed, int upper)
|
||||
{
|
||||
int regd, reglo = -1, reghi, savedlo = 0;
|
||||
uptr loaddr = (uptr)&cpuRegs.LO.UL[ upper ? 2 : 0 ];
|
||||
uptr hiaddr = (uptr)&cpuRegs.HI.UL[ upper ? 2 : 0 ];
|
||||
u8 testlive = upper?EEINST_LIVE2:EEINST_LIVE0;
|
||||
uptr loaddr = (uptr)&cpuRegs.LO.UL[upper ? 2 : 0];
|
||||
uptr hiaddr = (uptr)&cpuRegs.HI.UL[upper ? 2 : 0];
|
||||
u8 testlive = upper ? EEINST_LIVE2 : EEINST_LIVE0;
|
||||
|
||||
if( g_pCurInstInfo->regs[XMMGPR_HI] & testlive )
|
||||
if (g_pCurInstInfo->regs[XMMGPR_HI] & testlive)
|
||||
xMOV(ecx, edx);
|
||||
|
||||
if( g_pCurInstInfo->regs[XMMGPR_LO] & testlive ) {
|
||||
if (g_pCurInstInfo->regs[XMMGPR_LO] & testlive)
|
||||
{
|
||||
|
||||
if( (reglo = _checkXMMreg(XMMTYPE_GPRREG, XMMGPR_LO, MODE_READ)) >= 0 ) {
|
||||
if( xmmregs[reglo].mode & MODE_WRITE ) {
|
||||
if( upper ) xMOVQ(ptr[(void*)(loaddr-8)], xRegisterSSE(reglo));
|
||||
else xMOVH.PS(ptr[(void*)(loaddr+8)], xRegisterSSE(reglo));
|
||||
if ((reglo = _checkXMMreg(XMMTYPE_GPRREG, XMMGPR_LO, MODE_READ)) >= 0)
|
||||
{
|
||||
if (xmmregs[reglo].mode & MODE_WRITE)
|
||||
{
|
||||
if (upper)
|
||||
xMOVQ(ptr[(void*)(loaddr - 8)], xRegisterSSE(reglo));
|
||||
else
|
||||
xMOVH.PS(ptr[(void*)(loaddr + 8)], xRegisterSSE(reglo));
|
||||
}
|
||||
|
||||
xmmregs[reglo].inuse = 0;
|
||||
|
@ -77,38 +81,48 @@ void recWritebackHILO(int info, int writed, int upper)
|
|||
|
||||
xCDQ();
|
||||
xMOV(ptr[(void*)(loaddr)], eax);
|
||||
xMOV(ptr[(void*)(loaddr+4)], edx);
|
||||
xMOV(ptr[(void*)(loaddr + 4)], edx);
|
||||
savedlo = 1;
|
||||
}
|
||||
|
||||
if ( writed && _Rd_ )
|
||||
if (writed && _Rd_)
|
||||
{
|
||||
_eeOnWriteReg(_Rd_, 1);
|
||||
|
||||
regd = -1;
|
||||
if( g_pCurInstInfo->regs[_Rd_] & EEINST_XMM ) {
|
||||
if( savedlo ) {
|
||||
regd = _checkXMMreg(XMMTYPE_GPRREG, _Rd_, MODE_WRITE|MODE_READ);
|
||||
if( regd >= 0 ) {
|
||||
if (g_pCurInstInfo->regs[_Rd_] & EEINST_XMM)
|
||||
{
|
||||
if (savedlo)
|
||||
{
|
||||
regd = _checkXMMreg(XMMTYPE_GPRREG, _Rd_, MODE_WRITE | MODE_READ);
|
||||
if (regd >= 0)
|
||||
{
|
||||
xMOVL.PS(xRegisterSSE(regd), ptr[(void*)(loaddr)]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if( regd < 0 ) {
|
||||
if (regd < 0)
|
||||
{
|
||||
_deleteEEreg(_Rd_, 0);
|
||||
|
||||
if( !savedlo ) xCDQ();
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 1 ]], edx);
|
||||
if (!savedlo)
|
||||
xCDQ();
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[0]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[1]], edx);
|
||||
}
|
||||
}
|
||||
|
||||
if( g_pCurInstInfo->regs[XMMGPR_HI] & testlive ) {
|
||||
if( (reghi = _checkXMMreg(XMMTYPE_GPRREG, XMMGPR_HI, MODE_READ)) >= 0 ) {
|
||||
if( xmmregs[reghi].mode & MODE_WRITE ) {
|
||||
if( upper ) xMOVQ(ptr[(void*)(hiaddr-8)], xRegisterSSE(reghi));
|
||||
else xMOVH.PS(ptr[(void*)(hiaddr+8)], xRegisterSSE(reghi));
|
||||
if (g_pCurInstInfo->regs[XMMGPR_HI] & testlive)
|
||||
{
|
||||
if ((reghi = _checkXMMreg(XMMTYPE_GPRREG, XMMGPR_HI, MODE_READ)) >= 0)
|
||||
{
|
||||
if (xmmregs[reghi].mode & MODE_WRITE)
|
||||
{
|
||||
if (upper)
|
||||
xMOVQ(ptr[(void*)(hiaddr - 8)], xRegisterSSE(reghi));
|
||||
else
|
||||
xMOVH.PS(ptr[(void*)(hiaddr + 8)], xRegisterSSE(reghi));
|
||||
}
|
||||
|
||||
xmmregs[reghi].inuse = 0;
|
||||
|
@ -117,48 +131,59 @@ void recWritebackHILO(int info, int writed, int upper)
|
|||
|
||||
xMOV(ptr[(void*)(hiaddr)], ecx);
|
||||
xSAR(ecx, 31);
|
||||
xMOV(ptr[(void*)(hiaddr+4)], ecx);
|
||||
xMOV(ptr[(void*)(hiaddr + 4)], ecx);
|
||||
}
|
||||
}
|
||||
|
||||
void recWritebackConstHILO(u64 res, int writed, int upper)
|
||||
{
|
||||
int reglo, reghi;
|
||||
uptr loaddr = (uptr)&cpuRegs.LO.UL[ upper ? 2 : 0 ];
|
||||
uptr hiaddr = (uptr)&cpuRegs.HI.UL[ upper ? 2 : 0 ];
|
||||
u8 testlive = upper?EEINST_LIVE2:EEINST_LIVE0;
|
||||
uptr loaddr = (uptr)&cpuRegs.LO.UL[upper ? 2 : 0];
|
||||
uptr hiaddr = (uptr)&cpuRegs.HI.UL[upper ? 2 : 0];
|
||||
u8 testlive = upper ? EEINST_LIVE2 : EEINST_LIVE0;
|
||||
|
||||
if( g_pCurInstInfo->regs[XMMGPR_LO] & testlive ) {
|
||||
reglo = _allocCheckGPRtoXMM(g_pCurInstInfo, XMMGPR_LO, MODE_WRITE|MODE_READ);
|
||||
if (g_pCurInstInfo->regs[XMMGPR_LO] & testlive)
|
||||
{
|
||||
reglo = _allocCheckGPRtoXMM(g_pCurInstInfo, XMMGPR_LO, MODE_WRITE | MODE_READ);
|
||||
|
||||
if( reglo >= 0 ) {
|
||||
if (reglo >= 0)
|
||||
{
|
||||
u32* mem_ptr = recGetImm64(res & 0x80000000 ? -1 : 0, (u32)res);
|
||||
if( upper ) xMOVH.PS(xRegisterSSE(reglo), ptr[mem_ptr]);
|
||||
else xMOVL.PS(xRegisterSSE(reglo), ptr[mem_ptr]);
|
||||
if (upper)
|
||||
xMOVH.PS(xRegisterSSE(reglo), ptr[mem_ptr]);
|
||||
else
|
||||
xMOVL.PS(xRegisterSSE(reglo), ptr[mem_ptr]);
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
xMOV(ptr32[(u32*)(loaddr)], res & 0xffffffff);
|
||||
xMOV(ptr32[(u32*)(loaddr+4)], (res&0x80000000)?0xffffffff:0);
|
||||
xMOV(ptr32[(u32*)(loaddr + 4)], (res & 0x80000000) ? 0xffffffff : 0);
|
||||
}
|
||||
}
|
||||
|
||||
if( g_pCurInstInfo->regs[XMMGPR_HI] & testlive ) {
|
||||
if (g_pCurInstInfo->regs[XMMGPR_HI] & testlive)
|
||||
{
|
||||
|
||||
reghi = _allocCheckGPRtoXMM(g_pCurInstInfo, XMMGPR_HI, MODE_WRITE|MODE_READ);
|
||||
reghi = _allocCheckGPRtoXMM(g_pCurInstInfo, XMMGPR_HI, MODE_WRITE | MODE_READ);
|
||||
|
||||
if( reghi >= 0 ) {
|
||||
if (reghi >= 0)
|
||||
{
|
||||
u32* mem_ptr = recGetImm64((res >> 63) ? -1 : 0, res >> 32);
|
||||
if( upper ) xMOVH.PS(xRegisterSSE(reghi), ptr[mem_ptr]);
|
||||
else xMOVL.PS(xRegisterSSE(reghi), ptr[mem_ptr]);
|
||||
if (upper)
|
||||
xMOVH.PS(xRegisterSSE(reghi), ptr[mem_ptr]);
|
||||
else
|
||||
xMOVL.PS(xRegisterSSE(reghi), ptr[mem_ptr]);
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
_deleteEEreg(XMMGPR_HI, 0);
|
||||
xMOV(ptr32[(u32*)(hiaddr)], res >> 32);
|
||||
xMOV(ptr32[(u32*)(hiaddr+4)], (res>>63)?0xffffffff:0);
|
||||
xMOV(ptr32[(u32*)(hiaddr + 4)], (res >> 63) ? 0xffffffff : 0);
|
||||
}
|
||||
}
|
||||
|
||||
if (!writed || !_Rd_) return;
|
||||
if (!writed || !_Rd_)
|
||||
return;
|
||||
g_cpuConstRegs[_Rd_].SD[0] = (s32)(res & 0xffffffffULL); //that is the difference
|
||||
}
|
||||
|
||||
|
@ -173,17 +198,20 @@ void recMULT_const()
|
|||
void recMULTUsuper(int info, int upper, int process);
|
||||
void recMULTsuper(int info, int upper, int process)
|
||||
{
|
||||
if( process & PROCESS_CONSTS ) {
|
||||
xMOV(eax, g_cpuConstRegs[_Rs_].UL[0] );
|
||||
xMUL(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] ]);
|
||||
if (process & PROCESS_CONSTS)
|
||||
{
|
||||
xMOV(eax, g_cpuConstRegs[_Rs_].UL[0]);
|
||||
xMUL(ptr32[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
}
|
||||
else if( process & PROCESS_CONSTT) {
|
||||
xMOV(eax, g_cpuConstRegs[_Rt_].UL[0] );
|
||||
xMUL(ptr32[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ]);
|
||||
else if (process & PROCESS_CONSTT)
|
||||
{
|
||||
xMOV(eax, g_cpuConstRegs[_Rt_].UL[0]);
|
||||
xMUL(ptr32[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
}
|
||||
else {
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ]);
|
||||
xMUL(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] ]);
|
||||
else
|
||||
{
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
xMUL(ptr32[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
}
|
||||
|
||||
recWritebackHILO(info, 1, upper);
|
||||
|
@ -205,7 +233,7 @@ void recMULT_constt(int info)
|
|||
}
|
||||
|
||||
// don't set XMMINFO_WRITED|XMMINFO_WRITELO|XMMINFO_WRITEHI
|
||||
EERECOMPILE_CODE0(MULT, XMMINFO_READS|XMMINFO_READT|(_Rd_?XMMINFO_WRITED:0) );
|
||||
EERECOMPILE_CODE0(MULT, XMMINFO_READS | XMMINFO_READT | (_Rd_ ? XMMINFO_WRITED : 0));
|
||||
|
||||
//// MULTU
|
||||
void recMULTU_const()
|
||||
|
@ -217,17 +245,20 @@ void recMULTU_const()
|
|||
|
||||
void recMULTUsuper(int info, int upper, int process)
|
||||
{
|
||||
if( process & PROCESS_CONSTS ) {
|
||||
xMOV(eax, g_cpuConstRegs[_Rs_].UL[0] );
|
||||
xUMUL(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] ]);
|
||||
if (process & PROCESS_CONSTS)
|
||||
{
|
||||
xMOV(eax, g_cpuConstRegs[_Rs_].UL[0]);
|
||||
xUMUL(ptr32[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
}
|
||||
else if( process & PROCESS_CONSTT) {
|
||||
xMOV(eax, g_cpuConstRegs[_Rt_].UL[0] );
|
||||
xUMUL(ptr32[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ]);
|
||||
else if (process & PROCESS_CONSTT)
|
||||
{
|
||||
xMOV(eax, g_cpuConstRegs[_Rt_].UL[0]);
|
||||
xUMUL(ptr32[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
}
|
||||
else {
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ]);
|
||||
xUMUL(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] ]);
|
||||
else
|
||||
{
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
xUMUL(ptr32[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
}
|
||||
|
||||
recWritebackHILO(info, 1, upper);
|
||||
|
@ -249,7 +280,7 @@ void recMULTU_constt(int info)
|
|||
}
|
||||
|
||||
// don't specify XMMINFO_WRITELO or XMMINFO_WRITEHI, that is taken care of
|
||||
EERECOMPILE_CODE0(MULTU, XMMINFO_READS|XMMINFO_READT|(_Rd_?XMMINFO_WRITED:0));
|
||||
EERECOMPILE_CODE0(MULTU, XMMINFO_READS | XMMINFO_READT | (_Rd_ ? XMMINFO_WRITED : 0));
|
||||
|
||||
////////////////////////////////////////////////////
|
||||
void recMULT1_const()
|
||||
|
@ -274,7 +305,7 @@ void recMULT1_constt(int info)
|
|||
recMULTsuper(info, 1, PROCESS_CONSTT);
|
||||
}
|
||||
|
||||
EERECOMPILE_CODE0(MULT1, XMMINFO_READS|XMMINFO_READT|(_Rd_?XMMINFO_WRITED:0) );
|
||||
EERECOMPILE_CODE0(MULT1, XMMINFO_READS | XMMINFO_READT | (_Rd_ ? XMMINFO_WRITED : 0));
|
||||
|
||||
////////////////////////////////////////////////////
|
||||
void recMULTU1_const()
|
||||
|
@ -299,7 +330,7 @@ void recMULTU1_constt(int info)
|
|||
recMULTUsuper(info, 1, PROCESS_CONSTT);
|
||||
}
|
||||
|
||||
EERECOMPILE_CODE0(MULTU1, XMMINFO_READS|XMMINFO_READT|(_Rd_?XMMINFO_WRITED:0));
|
||||
EERECOMPILE_CODE0(MULTU1, XMMINFO_READS | XMMINFO_READT | (_Rd_ ? XMMINFO_WRITED : 0));
|
||||
|
||||
//// DIV
|
||||
|
||||
|
@ -313,15 +344,15 @@ void recDIVconst(int upper)
|
|||
}
|
||||
else if (g_cpuConstRegs[_Rt_].SL[0] != 0)
|
||||
{
|
||||
quot = g_cpuConstRegs[_Rs_].SL[0] / g_cpuConstRegs[_Rt_].SL[0];
|
||||
rem = g_cpuConstRegs[_Rs_].SL[0] % g_cpuConstRegs[_Rt_].SL[0];
|
||||
}
|
||||
quot = g_cpuConstRegs[_Rs_].SL[0] / g_cpuConstRegs[_Rt_].SL[0];
|
||||
rem = g_cpuConstRegs[_Rs_].SL[0] % g_cpuConstRegs[_Rt_].SL[0];
|
||||
}
|
||||
else
|
||||
{
|
||||
quot = (g_cpuConstRegs[_Rs_].SL[0] < 0) ? 1 : -1;
|
||||
rem = g_cpuConstRegs[_Rs_].SL[0];
|
||||
}
|
||||
recWritebackConstHILO((u64)quot|((u64)rem<<32), 0, upper);
|
||||
recWritebackConstHILO((u64)quot | ((u64)rem << 32), 0, upper);
|
||||
}
|
||||
|
||||
void recDIV_const()
|
||||
|
@ -331,23 +362,23 @@ void recDIV_const()
|
|||
|
||||
void recDIVsuper(int info, int sign, int upper, int process)
|
||||
{
|
||||
if( process & PROCESS_CONSTT )
|
||||
xMOV(ecx, g_cpuConstRegs[_Rt_].UL[0] );
|
||||
if (process & PROCESS_CONSTT)
|
||||
xMOV(ecx, g_cpuConstRegs[_Rt_].UL[0]);
|
||||
else
|
||||
xMOV(ecx, ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] ]);
|
||||
xMOV(ecx, ptr[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
|
||||
if( process & PROCESS_CONSTS )
|
||||
xMOV(eax, g_cpuConstRegs[_Rs_].UL[0] );
|
||||
if (process & PROCESS_CONSTS)
|
||||
xMOV(eax, g_cpuConstRegs[_Rs_].UL[0]);
|
||||
else
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ]);
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
|
||||
u8 *end1;
|
||||
if (sign) //test for overflow (x86 will just throw an exception)
|
||||
u8* end1;
|
||||
if (sign) //test for overflow (x86 will just throw an exception)
|
||||
{
|
||||
xCMP(eax, 0x80000000 );
|
||||
u8 *cont1 = JNE8(0);
|
||||
xCMP(ecx, 0xffffffff );
|
||||
u8 *cont2 = JNE8(0);
|
||||
xCMP(eax, 0x80000000);
|
||||
u8* cont1 = JNE8(0);
|
||||
xCMP(ecx, 0xffffffff);
|
||||
u8* cont2 = JNE8(0);
|
||||
//overflow case:
|
||||
xXOR(edx, edx); //EAX remains 0x80000000
|
||||
end1 = JMP8(0);
|
||||
|
@ -356,32 +387,35 @@ void recDIVsuper(int info, int sign, int upper, int process)
|
|||
x86SetJ8(cont2);
|
||||
}
|
||||
|
||||
xCMP(ecx, 0 );
|
||||
u8 *cont3 = JNE8(0);
|
||||
xCMP(ecx, 0);
|
||||
u8* cont3 = JNE8(0);
|
||||
//divide by zero
|
||||
xMOV(edx, eax);
|
||||
if (sign) //set EAX to (EAX < 0)?1:-1
|
||||
{
|
||||
xSAR(eax, 31 ); //(EAX < 0)?-1:0
|
||||
xSHL(eax, 1 ); //(EAX < 0)?-2:0
|
||||
xSAR(eax, 31); //(EAX < 0)?-1:0
|
||||
xSHL(eax, 1); //(EAX < 0)?-2:0
|
||||
xNOT(eax); //(EAX < 0)?1:-1
|
||||
}
|
||||
else
|
||||
xMOV(eax, 0xffffffff );
|
||||
u8 *end2 = JMP8(0);
|
||||
xMOV(eax, 0xffffffff);
|
||||
u8* end2 = JMP8(0);
|
||||
|
||||
x86SetJ8(cont3);
|
||||
if( sign ) {
|
||||
if (sign)
|
||||
{
|
||||
xCDQ();
|
||||
xDIV(ecx);
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
xXOR(edx, edx);
|
||||
xUDIV(ecx);
|
||||
}
|
||||
|
||||
if (sign) x86SetJ8( end1 );
|
||||
x86SetJ8( end2 );
|
||||
if (sign)
|
||||
x86SetJ8(end1);
|
||||
x86SetJ8(end2);
|
||||
|
||||
// need to execute regardless of bad divide
|
||||
recWritebackHILO(info, 0, upper);
|
||||
|
@ -402,13 +436,14 @@ void recDIV_constt(int info)
|
|||
recDIVsuper(info, 1, 0, PROCESS_CONSTT);
|
||||
}
|
||||
|
||||
EERECOMPILE_CODE0(DIV, XMMINFO_READS|XMMINFO_READT|XMMINFO_WRITELO|XMMINFO_WRITEHI);
|
||||
EERECOMPILE_CODE0(DIV, XMMINFO_READS | XMMINFO_READT | XMMINFO_WRITELO | XMMINFO_WRITEHI);
|
||||
|
||||
//// DIVU
|
||||
void recDIVUconst(int upper)
|
||||
{
|
||||
u32 quot, rem;
|
||||
if (g_cpuConstRegs[_Rt_].UL[0] != 0) {
|
||||
if (g_cpuConstRegs[_Rt_].UL[0] != 0)
|
||||
{
|
||||
quot = g_cpuConstRegs[_Rs_].UL[0] / g_cpuConstRegs[_Rt_].UL[0];
|
||||
rem = g_cpuConstRegs[_Rs_].UL[0] % g_cpuConstRegs[_Rt_].UL[0];
|
||||
}
|
||||
|
@ -418,7 +453,7 @@ void recDIVUconst(int upper)
|
|||
rem = g_cpuConstRegs[_Rs_].UL[0];
|
||||
}
|
||||
|
||||
recWritebackConstHILO((u64)quot|((u64)rem<<32), 0, upper);
|
||||
recWritebackConstHILO((u64)quot | ((u64)rem << 32), 0, upper);
|
||||
}
|
||||
|
||||
void recDIVU_const()
|
||||
|
@ -441,7 +476,7 @@ void recDIVU_constt(int info)
|
|||
recDIVsuper(info, 0, 0, PROCESS_CONSTT);
|
||||
}
|
||||
|
||||
EERECOMPILE_CODE0(DIVU, XMMINFO_READS|XMMINFO_READT|XMMINFO_WRITELO|XMMINFO_WRITEHI);
|
||||
EERECOMPILE_CODE0(DIVU, XMMINFO_READS | XMMINFO_READT | XMMINFO_WRITELO | XMMINFO_WRITEHI);
|
||||
|
||||
void recDIV1_const()
|
||||
{
|
||||
|
@ -463,7 +498,7 @@ void recDIV1_constt(int info)
|
|||
recDIVsuper(info, 1, 1, PROCESS_CONSTT);
|
||||
}
|
||||
|
||||
EERECOMPILE_CODE0(DIV1, XMMINFO_READS|XMMINFO_READT);
|
||||
EERECOMPILE_CODE0(DIV1, XMMINFO_READS | XMMINFO_READT);
|
||||
|
||||
void recDIVU1_const()
|
||||
{
|
||||
|
@ -485,26 +520,28 @@ void recDIVU1_constt(int info)
|
|||
recDIVsuper(info, 0, 1, PROCESS_CONSTT);
|
||||
}
|
||||
|
||||
EERECOMPILE_CODE0(DIVU1, XMMINFO_READS|XMMINFO_READT);
|
||||
EERECOMPILE_CODE0(DIVU1, XMMINFO_READS | XMMINFO_READT);
|
||||
|
||||
void recMADD()
|
||||
{
|
||||
if( GPR_IS_CONST2(_Rs_, _Rt_) ) {
|
||||
if (GPR_IS_CONST2(_Rs_, _Rt_))
|
||||
{
|
||||
u64 result = ((s64)g_cpuConstRegs[_Rs_].SL[0] * (s64)g_cpuConstRegs[_Rt_].SL[0]);
|
||||
_deleteEEreg(XMMGPR_LO, 1);
|
||||
_deleteEEreg(XMMGPR_HI, 1);
|
||||
|
||||
// dadd
|
||||
xMOV(eax, ptr[&cpuRegs.LO.UL[ 0 ] ]);
|
||||
xMOV(ecx, ptr[&cpuRegs.HI.UL[ 0 ] ]);
|
||||
xADD(eax, (u32)result&0xffffffff );
|
||||
xADC(ecx, (u32)(result>>32) );
|
||||
xMOV(eax, ptr[&cpuRegs.LO.UL[0]]);
|
||||
xMOV(ecx, ptr[&cpuRegs.HI.UL[0]]);
|
||||
xADD(eax, (u32)result & 0xffffffff);
|
||||
xADC(ecx, (u32)(result >> 32));
|
||||
xCDQ();
|
||||
if( _Rd_) {
|
||||
if (_Rd_)
|
||||
{
|
||||
_eeOnWriteReg(_Rd_, 1);
|
||||
_deleteEEreg(_Rd_, 0);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 1 ]], edx);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[0]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[1]], edx);
|
||||
}
|
||||
|
||||
xMOV(ptr[&cpuRegs.LO.UL[0]], eax);
|
||||
|
@ -522,28 +559,32 @@ void recMADD()
|
|||
_deleteGPRtoXMMreg(_Rs_, 1);
|
||||
_deleteGPRtoXMMreg(_Rt_, 1);
|
||||
|
||||
if( GPR_IS_CONST1(_Rs_) ) {
|
||||
xMOV(eax, g_cpuConstRegs[_Rs_].UL[0] );
|
||||
xMUL(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] ]);
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
xMOV(eax, g_cpuConstRegs[_Rs_].UL[0]);
|
||||
xMUL(ptr32[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
}
|
||||
else if ( GPR_IS_CONST1(_Rt_) ) {
|
||||
xMOV(eax, g_cpuConstRegs[_Rt_].UL[0] );
|
||||
xMUL(ptr32[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ]);
|
||||
else if (GPR_IS_CONST1(_Rt_))
|
||||
{
|
||||
xMOV(eax, g_cpuConstRegs[_Rt_].UL[0]);
|
||||
xMUL(ptr32[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
}
|
||||
else {
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ]);
|
||||
xMUL(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] ]);
|
||||
else
|
||||
{
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
xMUL(ptr32[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
}
|
||||
|
||||
xMOV(ecx, edx);
|
||||
xADD(eax, ptr[&cpuRegs.LO.UL[0] ]);
|
||||
xADC(ecx, ptr[&cpuRegs.HI.UL[0] ]);
|
||||
xADD(eax, ptr[&cpuRegs.LO.UL[0]]);
|
||||
xADC(ecx, ptr[&cpuRegs.HI.UL[0]]);
|
||||
xCDQ();
|
||||
if( _Rd_ ) {
|
||||
if (_Rd_)
|
||||
{
|
||||
_eeOnWriteReg(_Rd_, 1);
|
||||
_deleteEEreg(_Rd_, 0);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 1 ]], edx);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[0]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[1]], edx);
|
||||
}
|
||||
|
||||
xMOV(ptr[&cpuRegs.LO.UL[0]], eax);
|
||||
|
@ -557,22 +598,24 @@ void recMADD()
|
|||
|
||||
void recMADDU()
|
||||
{
|
||||
if( GPR_IS_CONST2(_Rs_, _Rt_) ) {
|
||||
if (GPR_IS_CONST2(_Rs_, _Rt_))
|
||||
{
|
||||
u64 result = ((u64)g_cpuConstRegs[_Rs_].UL[0] * (u64)g_cpuConstRegs[_Rt_].UL[0]);
|
||||
_deleteEEreg(XMMGPR_LO, 1);
|
||||
_deleteEEreg(XMMGPR_HI, 1);
|
||||
|
||||
// dadd
|
||||
xMOV(eax, ptr[&cpuRegs.LO.UL[ 0 ] ]);
|
||||
xMOV(ecx, ptr[&cpuRegs.HI.UL[ 0 ] ]);
|
||||
xADD(eax, (u32)result&0xffffffff );
|
||||
xADC(ecx, (u32)(result>>32) );
|
||||
xMOV(eax, ptr[&cpuRegs.LO.UL[0]]);
|
||||
xMOV(ecx, ptr[&cpuRegs.HI.UL[0]]);
|
||||
xADD(eax, (u32)result & 0xffffffff);
|
||||
xADC(ecx, (u32)(result >> 32));
|
||||
xCDQ();
|
||||
if( _Rd_) {
|
||||
if (_Rd_)
|
||||
{
|
||||
_eeOnWriteReg(_Rd_, 1);
|
||||
_deleteEEreg(_Rd_, 0);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 1 ]], edx);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[0]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[1]], edx);
|
||||
}
|
||||
|
||||
xMOV(ptr[&cpuRegs.LO.UL[0]], eax);
|
||||
|
@ -590,28 +633,32 @@ void recMADDU()
|
|||
_deleteGPRtoXMMreg(_Rs_, 1);
|
||||
_deleteGPRtoXMMreg(_Rt_, 1);
|
||||
|
||||
if( GPR_IS_CONST1(_Rs_) ) {
|
||||
xMOV(eax, g_cpuConstRegs[_Rs_].UL[0] );
|
||||
xUMUL(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] ]);
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
xMOV(eax, g_cpuConstRegs[_Rs_].UL[0]);
|
||||
xUMUL(ptr32[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
}
|
||||
else if ( GPR_IS_CONST1(_Rt_) ) {
|
||||
xMOV(eax, g_cpuConstRegs[_Rt_].UL[0] );
|
||||
xUMUL(ptr32[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ]);
|
||||
else if (GPR_IS_CONST1(_Rt_))
|
||||
{
|
||||
xMOV(eax, g_cpuConstRegs[_Rt_].UL[0]);
|
||||
xUMUL(ptr32[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
}
|
||||
else {
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ]);
|
||||
xUMUL(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] ]);
|
||||
else
|
||||
{
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
xUMUL(ptr32[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
}
|
||||
|
||||
xMOV(ecx, edx);
|
||||
xADD(eax, ptr[&cpuRegs.LO.UL[0] ]);
|
||||
xADC(ecx, ptr[&cpuRegs.HI.UL[0] ]);
|
||||
xADD(eax, ptr[&cpuRegs.LO.UL[0]]);
|
||||
xADC(ecx, ptr[&cpuRegs.HI.UL[0]]);
|
||||
xCDQ();
|
||||
if( _Rd_ ) {
|
||||
if (_Rd_)
|
||||
{
|
||||
_eeOnWriteReg(_Rd_, 1);
|
||||
_deleteEEreg(_Rd_, 0);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 1 ]], edx);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[0]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[1]], edx);
|
||||
}
|
||||
|
||||
xMOV(ptr[&cpuRegs.LO.UL[0]], eax);
|
||||
|
@ -625,22 +672,24 @@ void recMADDU()
|
|||
|
||||
void recMADD1()
|
||||
{
|
||||
if( GPR_IS_CONST2(_Rs_, _Rt_) ) {
|
||||
if (GPR_IS_CONST2(_Rs_, _Rt_))
|
||||
{
|
||||
u64 result = ((s64)g_cpuConstRegs[_Rs_].SL[0] * (s64)g_cpuConstRegs[_Rt_].SL[0]);
|
||||
_deleteEEreg(XMMGPR_LO, 1);
|
||||
_deleteEEreg(XMMGPR_HI, 1);
|
||||
|
||||
// dadd
|
||||
xMOV(eax, ptr[&cpuRegs.LO.UL[ 2 ] ]);
|
||||
xMOV(ecx, ptr[&cpuRegs.HI.UL[ 2 ] ]);
|
||||
xADD(eax, (u32)result&0xffffffff );
|
||||
xADC(ecx, (u32)(result>>32) );
|
||||
xMOV(eax, ptr[&cpuRegs.LO.UL[2]]);
|
||||
xMOV(ecx, ptr[&cpuRegs.HI.UL[2]]);
|
||||
xADD(eax, (u32)result & 0xffffffff);
|
||||
xADC(ecx, (u32)(result >> 32));
|
||||
xCDQ();
|
||||
if( _Rd_) {
|
||||
if (_Rd_)
|
||||
{
|
||||
_eeOnWriteReg(_Rd_, 1);
|
||||
_deleteEEreg(_Rd_, 0);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 1 ]], edx);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[0]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[1]], edx);
|
||||
}
|
||||
|
||||
xMOV(ptr[&cpuRegs.LO.UL[2]], eax);
|
||||
|
@ -658,28 +707,32 @@ void recMADD1()
|
|||
_deleteGPRtoXMMreg(_Rs_, 1);
|
||||
_deleteGPRtoXMMreg(_Rt_, 1);
|
||||
|
||||
if( GPR_IS_CONST1(_Rs_) ) {
|
||||
xMOV(eax, g_cpuConstRegs[_Rs_].UL[0] );
|
||||
xMUL(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] ]);
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
xMOV(eax, g_cpuConstRegs[_Rs_].UL[0]);
|
||||
xMUL(ptr32[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
}
|
||||
else if ( GPR_IS_CONST1(_Rt_) ) {
|
||||
xMOV(eax, g_cpuConstRegs[_Rt_].UL[0] );
|
||||
xMUL(ptr32[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ]);
|
||||
else if (GPR_IS_CONST1(_Rt_))
|
||||
{
|
||||
xMOV(eax, g_cpuConstRegs[_Rt_].UL[0]);
|
||||
xMUL(ptr32[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
}
|
||||
else {
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ]);
|
||||
xMUL(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] ]);
|
||||
else
|
||||
{
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
xMUL(ptr32[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
}
|
||||
|
||||
xMOV(ecx, edx);
|
||||
xADD(eax, ptr[&cpuRegs.LO.UL[2] ]);
|
||||
xADC(ecx, ptr[&cpuRegs.HI.UL[2] ]);
|
||||
xADD(eax, ptr[&cpuRegs.LO.UL[2]]);
|
||||
xADC(ecx, ptr[&cpuRegs.HI.UL[2]]);
|
||||
xCDQ();
|
||||
if( _Rd_ ) {
|
||||
if (_Rd_)
|
||||
{
|
||||
_eeOnWriteReg(_Rd_, 1);
|
||||
_deleteEEreg(_Rd_, 0);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 1 ]], edx);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[0]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[1]], edx);
|
||||
}
|
||||
|
||||
xMOV(ptr[&cpuRegs.LO.UL[2]], eax);
|
||||
|
@ -693,22 +746,24 @@ void recMADD1()
|
|||
|
||||
void recMADDU1()
|
||||
{
|
||||
if( GPR_IS_CONST2(_Rs_, _Rt_) ) {
|
||||
if (GPR_IS_CONST2(_Rs_, _Rt_))
|
||||
{
|
||||
u64 result = ((u64)g_cpuConstRegs[_Rs_].UL[0] * (u64)g_cpuConstRegs[_Rt_].UL[0]);
|
||||
_deleteEEreg(XMMGPR_LO, 1);
|
||||
_deleteEEreg(XMMGPR_HI, 1);
|
||||
|
||||
// dadd
|
||||
xMOV(eax, ptr[&cpuRegs.LO.UL[ 2 ] ]);
|
||||
xMOV(ecx, ptr[&cpuRegs.HI.UL[ 2 ] ]);
|
||||
xADD(eax, (u32)result&0xffffffff );
|
||||
xADC(ecx, (u32)(result>>32) );
|
||||
xMOV(eax, ptr[&cpuRegs.LO.UL[2]]);
|
||||
xMOV(ecx, ptr[&cpuRegs.HI.UL[2]]);
|
||||
xADD(eax, (u32)result & 0xffffffff);
|
||||
xADC(ecx, (u32)(result >> 32));
|
||||
xCDQ();
|
||||
if( _Rd_) {
|
||||
if (_Rd_)
|
||||
{
|
||||
_eeOnWriteReg(_Rd_, 1);
|
||||
_deleteEEreg(_Rd_, 0);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 1 ]], edx);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[0]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[1]], edx);
|
||||
}
|
||||
|
||||
xMOV(ptr[&cpuRegs.LO.UL[2]], eax);
|
||||
|
@ -726,28 +781,32 @@ void recMADDU1()
|
|||
_deleteGPRtoXMMreg(_Rs_, 1);
|
||||
_deleteGPRtoXMMreg(_Rt_, 1);
|
||||
|
||||
if( GPR_IS_CONST1(_Rs_) ) {
|
||||
xMOV(eax, g_cpuConstRegs[_Rs_].UL[0] );
|
||||
xUMUL(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] ]);
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
xMOV(eax, g_cpuConstRegs[_Rs_].UL[0]);
|
||||
xUMUL(ptr32[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
}
|
||||
else if ( GPR_IS_CONST1(_Rt_) ) {
|
||||
xMOV(eax, g_cpuConstRegs[_Rt_].UL[0] );
|
||||
xUMUL(ptr32[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ]);
|
||||
else if (GPR_IS_CONST1(_Rt_))
|
||||
{
|
||||
xMOV(eax, g_cpuConstRegs[_Rt_].UL[0]);
|
||||
xUMUL(ptr32[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
}
|
||||
else {
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ]);
|
||||
xUMUL(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] ]);
|
||||
else
|
||||
{
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
xUMUL(ptr32[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
}
|
||||
|
||||
xMOV(ecx, edx);
|
||||
xADD(eax, ptr[&cpuRegs.LO.UL[2] ]);
|
||||
xADC(ecx, ptr[&cpuRegs.HI.UL[2] ]);
|
||||
xADD(eax, ptr[&cpuRegs.LO.UL[2]]);
|
||||
xADC(ecx, ptr[&cpuRegs.HI.UL[2]]);
|
||||
xCDQ();
|
||||
if( _Rd_ ) {
|
||||
if (_Rd_)
|
||||
{
|
||||
_eeOnWriteReg(_Rd_, 1);
|
||||
_deleteEEreg(_Rd_, 0);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 1 ]], edx);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[0]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[1]], edx);
|
||||
}
|
||||
|
||||
xMOV(ptr[&cpuRegs.LO.UL[2]], eax);
|
||||
|
@ -762,4 +821,6 @@ void recMADDU1()
|
|||
|
||||
#endif
|
||||
|
||||
} } }
|
||||
} // namespace OpcodeImpl
|
||||
} // namespace Dynarec
|
||||
} // namespace R5900
|
||||
|
|
|
@ -24,8 +24,7 @@ using namespace x86Emitter;
|
|||
|
||||
namespace R5900 {
|
||||
namespace Dynarec {
|
||||
namespace OpcodeImpl
|
||||
{
|
||||
namespace OpcodeImpl {
|
||||
|
||||
/*********************************************************
|
||||
* Shift arithmetic with constant shift *
|
||||
|
@ -35,22 +34,22 @@ namespace OpcodeImpl
|
|||
|
||||
namespace Interp = R5900::Interpreter::OpcodeImpl;
|
||||
|
||||
REC_FUNC_DEL(SLL, _Rd_);
|
||||
REC_FUNC_DEL(SRL, _Rd_);
|
||||
REC_FUNC_DEL(SRA, _Rd_);
|
||||
REC_FUNC_DEL(DSLL, _Rd_);
|
||||
REC_FUNC_DEL(DSRL, _Rd_);
|
||||
REC_FUNC_DEL(DSRA, _Rd_);
|
||||
REC_FUNC_DEL(SLL, _Rd_);
|
||||
REC_FUNC_DEL(SRL, _Rd_);
|
||||
REC_FUNC_DEL(SRA, _Rd_);
|
||||
REC_FUNC_DEL(DSLL, _Rd_);
|
||||
REC_FUNC_DEL(DSRL, _Rd_);
|
||||
REC_FUNC_DEL(DSRA, _Rd_);
|
||||
REC_FUNC_DEL(DSLL32, _Rd_);
|
||||
REC_FUNC_DEL(DSRL32, _Rd_);
|
||||
REC_FUNC_DEL(DSRA32, _Rd_);
|
||||
|
||||
REC_FUNC_DEL(SLLV, _Rd_);
|
||||
REC_FUNC_DEL(SRLV, _Rd_);
|
||||
REC_FUNC_DEL(SRAV, _Rd_);
|
||||
REC_FUNC_DEL(DSLLV, _Rd_);
|
||||
REC_FUNC_DEL(DSRLV, _Rd_);
|
||||
REC_FUNC_DEL(DSRAV, _Rd_);
|
||||
REC_FUNC_DEL(SLLV, _Rd_);
|
||||
REC_FUNC_DEL(SRLV, _Rd_);
|
||||
REC_FUNC_DEL(SRAV, _Rd_);
|
||||
REC_FUNC_DEL(DSLLV, _Rd_);
|
||||
REC_FUNC_DEL(DSRLV, _Rd_);
|
||||
REC_FUNC_DEL(DSRAV, _Rd_);
|
||||
|
||||
#else
|
||||
|
||||
|
@ -62,17 +61,17 @@ void recSLL_const()
|
|||
|
||||
void recSLLs_(int info, int sa)
|
||||
{
|
||||
pxAssert( !(info & PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] ]);
|
||||
if ( sa != 0 )
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
if (sa != 0)
|
||||
{
|
||||
xSHL(eax, sa );
|
||||
xSHL(eax, sa);
|
||||
}
|
||||
|
||||
xCDQ( );
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 1 ]], edx);
|
||||
xCDQ();
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[0]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[1]], edx);
|
||||
}
|
||||
|
||||
void recSLL_(int info)
|
||||
|
@ -90,14 +89,15 @@ void recSRL_const()
|
|||
|
||||
void recSRLs_(int info, int sa)
|
||||
{
|
||||
pxAssert( !(info & PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] ]);
|
||||
if ( sa != 0 ) xSHR(eax, sa);
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
if (sa != 0)
|
||||
xSHR(eax, sa);
|
||||
|
||||
xCDQ( );
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 1 ]], edx);
|
||||
xCDQ();
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[0]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[1]], edx);
|
||||
}
|
||||
|
||||
void recSRL_(int info)
|
||||
|
@ -115,14 +115,15 @@ void recSRA_const()
|
|||
|
||||
void recSRAs_(int info, int sa)
|
||||
{
|
||||
pxAssert( !(info & PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] ]);
|
||||
if ( sa != 0 ) xSAR(eax, sa);
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
if (sa != 0)
|
||||
xSAR(eax, sa);
|
||||
|
||||
xCDQ();
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 1 ]], edx);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[0]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[1]], edx);
|
||||
}
|
||||
|
||||
void recSRA_(int info)
|
||||
|
@ -141,20 +142,21 @@ void recDSLL_const()
|
|||
void recDSLLs_(int info, int sa)
|
||||
{
|
||||
int rtreg, rdreg;
|
||||
pxAssert( !(info & PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
_addNeededGPRtoXMMreg(_Rt_);
|
||||
_addNeededGPRtoXMMreg(_Rd_);
|
||||
rtreg = _allocGPRtoXMMreg(-1, _Rt_, MODE_READ);
|
||||
rdreg = _allocGPRtoXMMreg(-1, _Rd_, MODE_WRITE);
|
||||
|
||||
if( rtreg != rdreg ) xMOVDQA(xRegisterSSE(rdreg), xRegisterSSE(rtreg));
|
||||
if (rtreg != rdreg)
|
||||
xMOVDQA(xRegisterSSE(rdreg), xRegisterSSE(rtreg));
|
||||
xPSLL.Q(xRegisterSSE(rdreg), sa);
|
||||
|
||||
// flush lower 64 bits (as upper is wrong)
|
||||
// The others possibility could be a read back of the upper 64 bits
|
||||
// (better use of register but code will likely be flushed after anyway)
|
||||
xMOVL.PD(ptr64[&cpuRegs.GPR.r[ _Rd_ ].UD[ 0 ]] , xRegisterSSE(rdreg));
|
||||
xMOVL.PD(ptr64[&cpuRegs.GPR.r[_Rd_].UD[0]], xRegisterSSE(rdreg));
|
||||
_deleteGPRtoXMMreg(_Rt_, 3);
|
||||
_deleteGPRtoXMMreg(_Rd_, 3);
|
||||
}
|
||||
|
@ -175,20 +177,21 @@ void recDSRL_const()
|
|||
void recDSRLs_(int info, int sa)
|
||||
{
|
||||
int rtreg, rdreg;
|
||||
pxAssert( !(info & PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
_addNeededGPRtoXMMreg(_Rt_);
|
||||
_addNeededGPRtoXMMreg(_Rd_);
|
||||
rtreg = _allocGPRtoXMMreg(-1, _Rt_, MODE_READ);
|
||||
rdreg = _allocGPRtoXMMreg(-1, _Rd_, MODE_WRITE);
|
||||
|
||||
if( rtreg != rdreg ) xMOVDQA(xRegisterSSE(rdreg), xRegisterSSE(rtreg));
|
||||
if (rtreg != rdreg)
|
||||
xMOVDQA(xRegisterSSE(rdreg), xRegisterSSE(rtreg));
|
||||
xPSRL.Q(xRegisterSSE(rdreg), sa);
|
||||
|
||||
// flush lower 64 bits (as upper is wrong)
|
||||
// The others possibility could be a read back of the upper 64 bits
|
||||
// (better use of register but code will likely be flushed after anyway)
|
||||
xMOVL.PD(ptr64[&cpuRegs.GPR.r[ _Rd_ ].UD[ 0 ]] , xRegisterSSE(rdreg));
|
||||
xMOVL.PD(ptr64[&cpuRegs.GPR.r[_Rd_].UD[0]], xRegisterSSE(rdreg));
|
||||
_deleteGPRtoXMMreg(_Rt_, 3);
|
||||
_deleteGPRtoXMMreg(_Rd_, 3);
|
||||
}
|
||||
|
@ -209,16 +212,18 @@ void recDSRA_const()
|
|||
void recDSRAs_(int info, int sa)
|
||||
{
|
||||
int rtreg, rdreg, t0reg;
|
||||
pxAssert( !(info & PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
_addNeededGPRtoXMMreg(_Rt_);
|
||||
_addNeededGPRtoXMMreg(_Rd_);
|
||||
rtreg = _allocGPRtoXMMreg(-1, _Rt_, MODE_READ);
|
||||
rdreg = _allocGPRtoXMMreg(-1, _Rd_, MODE_WRITE);
|
||||
|
||||
if( rtreg != rdreg ) xMOVDQA(xRegisterSSE(rdreg), xRegisterSSE(rtreg));
|
||||
if (rtreg != rdreg)
|
||||
xMOVDQA(xRegisterSSE(rdreg), xRegisterSSE(rtreg));
|
||||
|
||||
if ( sa ) {
|
||||
if (sa)
|
||||
{
|
||||
|
||||
t0reg = _allocTempXMMreg(XMMT_INT, -1);
|
||||
|
||||
|
@ -242,7 +247,7 @@ void recDSRAs_(int info, int sa)
|
|||
// flush lower 64 bits (as upper is wrong)
|
||||
// The others possibility could be a read back of the upper 64 bits
|
||||
// (better use of register but code will likely be flushed after anyway)
|
||||
xMOVL.PD(ptr64[&cpuRegs.GPR.r[ _Rd_ ].UD[ 0 ]] , xRegisterSSE(rdreg));
|
||||
xMOVL.PD(ptr64[&cpuRegs.GPR.r[_Rd_].UD[0]], xRegisterSSE(rdreg));
|
||||
_deleteGPRtoXMMreg(_Rt_, 3);
|
||||
_deleteGPRtoXMMreg(_Rd_, 3);
|
||||
}
|
||||
|
@ -257,21 +262,20 @@ EERECOMPILE_CODEX(eeRecompileCode2, DSRA);
|
|||
///// DSLL32
|
||||
void recDSLL32_const()
|
||||
{
|
||||
g_cpuConstRegs[_Rd_].UD[0] = (u64)(g_cpuConstRegs[_Rt_].UD[0] << (_Sa_+32));
|
||||
g_cpuConstRegs[_Rd_].UD[0] = (u64)(g_cpuConstRegs[_Rt_].UD[0] << (_Sa_ + 32));
|
||||
}
|
||||
|
||||
void recDSLL32s_(int info, int sa)
|
||||
{
|
||||
pxAssert( !(info & PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] ]);
|
||||
if ( sa != 0 )
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
if (sa != 0)
|
||||
{
|
||||
xSHL(eax, sa );
|
||||
xSHL(eax, sa);
|
||||
}
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[ _Rd_ ].UL[ 0 ]], 0 );
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 1 ]], eax);
|
||||
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[_Rd_].UL[0]], 0);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[1]], eax);
|
||||
}
|
||||
|
||||
void recDSLL32_(int info)
|
||||
|
@ -284,18 +288,19 @@ EERECOMPILE_CODEX(eeRecompileCode2, DSLL32);
|
|||
//// DSRL32
|
||||
void recDSRL32_const()
|
||||
{
|
||||
g_cpuConstRegs[_Rd_].UD[0] = (u64)(g_cpuConstRegs[_Rt_].UD[0] >> (_Sa_+32));
|
||||
g_cpuConstRegs[_Rd_].UD[0] = (u64)(g_cpuConstRegs[_Rt_].UD[0] >> (_Sa_ + 32));
|
||||
}
|
||||
|
||||
void recDSRL32s_(int info, int sa)
|
||||
{
|
||||
pxAssert( !(info & PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ] ]);
|
||||
if ( sa != 0 ) xSHR(eax, sa );
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rt_].UL[1]]);
|
||||
if (sa != 0)
|
||||
xSHR(eax, sa);
|
||||
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[ _Rd_ ].UL[ 1 ]], 0 );
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[0]], eax);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[_Rd_].UL[1]], 0);
|
||||
}
|
||||
|
||||
void recDSRL32_(int info)
|
||||
|
@ -308,20 +313,20 @@ EERECOMPILE_CODEX(eeRecompileCode2, DSRL32);
|
|||
//// DSRA32
|
||||
void recDSRA32_const()
|
||||
{
|
||||
g_cpuConstRegs[_Rd_].SD[0] = (u64)(g_cpuConstRegs[_Rt_].SD[0] >> (_Sa_+32));
|
||||
g_cpuConstRegs[_Rd_].SD[0] = (u64)(g_cpuConstRegs[_Rt_].SD[0] >> (_Sa_ + 32));
|
||||
}
|
||||
|
||||
void recDSRA32s_(int info, int sa)
|
||||
{
|
||||
pxAssert( !(info & PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ] ]);
|
||||
xCDQ( );
|
||||
if ( sa != 0 ) xSAR(eax, sa );
|
||||
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 1 ]], edx);
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rt_].UL[1]]);
|
||||
xCDQ();
|
||||
if (sa != 0)
|
||||
xSAR(eax, sa);
|
||||
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[0]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[1]], edx);
|
||||
}
|
||||
|
||||
void recDSRA32_(int info)
|
||||
|
@ -340,7 +345,7 @@ __aligned16 u32 s_sa[4] = {0x1f, 0, 0x3f, 0};
|
|||
|
||||
void recSetShiftV(int info, int* rsreg, int* rtreg, int* rdreg, int* rstemp)
|
||||
{
|
||||
pxAssert( !(info & PROCESS_EE_XMM) );
|
||||
pxAssert(!(info & PROCESS_EE_XMM));
|
||||
|
||||
_addNeededGPRtoXMMreg(_Rt_);
|
||||
_addNeededGPRtoXMMreg(_Rd_);
|
||||
|
@ -354,7 +359,8 @@ void recSetShiftV(int info, int* rsreg, int* rtreg, int* rdreg, int* rstemp)
|
|||
xMOVDZX(xRegisterSSE(*rstemp), eax);
|
||||
*rsreg = *rstemp;
|
||||
|
||||
if( *rtreg != *rdreg ) xMOVDQA(xRegisterSSE(*rdreg), xRegisterSSE(*rtreg));
|
||||
if (*rtreg != *rdreg)
|
||||
xMOVDQA(xRegisterSSE(*rdreg), xRegisterSSE(*rtreg));
|
||||
}
|
||||
|
||||
void recSetConstShiftV(int info, int* rsreg, int* rdreg, int* rstemp)
|
||||
|
@ -379,20 +385,20 @@ void recSetConstShiftV(int info, int* rsreg, int* rdreg, int* rstemp)
|
|||
//// SLLV
|
||||
void recSLLV_const()
|
||||
{
|
||||
g_cpuConstRegs[_Rd_].SD[0] = (s32)(g_cpuConstRegs[_Rt_].UL[0] << (g_cpuConstRegs[_Rs_].UL[0] &0x1f));
|
||||
g_cpuConstRegs[_Rd_].SD[0] = (s32)(g_cpuConstRegs[_Rt_].UL[0] << (g_cpuConstRegs[_Rs_].UL[0] & 0x1f));
|
||||
}
|
||||
|
||||
void recSLLV_consts(int info)
|
||||
{
|
||||
recSLLs_(info, g_cpuConstRegs[_Rs_].UL[0]&0x1f);
|
||||
recSLLs_(info, g_cpuConstRegs[_Rs_].UL[0] & 0x1f);
|
||||
}
|
||||
|
||||
void recSLLV_constt(int info)
|
||||
{
|
||||
xMOV(ecx, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ]);
|
||||
xMOV(ecx, ptr[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
|
||||
xMOV(eax, g_cpuConstRegs[_Rt_].UL[0] );
|
||||
xAND(ecx, 0x1f );
|
||||
xMOV(eax, g_cpuConstRegs[_Rt_].UL[0]);
|
||||
xAND(ecx, 0x1f);
|
||||
xSHL(eax, cl);
|
||||
|
||||
eeSignExtendTo(_Rd_);
|
||||
|
@ -400,37 +406,37 @@ void recSLLV_constt(int info)
|
|||
|
||||
void recSLLV_(int info)
|
||||
{
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] ]);
|
||||
if ( _Rs_ != 0 )
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
if (_Rs_ != 0)
|
||||
{
|
||||
xMOV(ecx, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ]);
|
||||
xAND(ecx, 0x1f );
|
||||
xMOV(ecx, ptr[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
xAND(ecx, 0x1f);
|
||||
xSHL(eax, cl);
|
||||
}
|
||||
xCDQ();
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 1 ]], edx);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[0]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[1]], edx);
|
||||
}
|
||||
|
||||
EERECOMPILE_CODE0(SLLV, XMMINFO_READS|XMMINFO_READT|XMMINFO_WRITED);
|
||||
EERECOMPILE_CODE0(SLLV, XMMINFO_READS | XMMINFO_READT | XMMINFO_WRITED);
|
||||
|
||||
//// SRLV
|
||||
void recSRLV_const()
|
||||
{
|
||||
g_cpuConstRegs[_Rd_].SD[0] = (s32)(g_cpuConstRegs[_Rt_].UL[0] >> (g_cpuConstRegs[_Rs_].UL[0] &0x1f));
|
||||
g_cpuConstRegs[_Rd_].SD[0] = (s32)(g_cpuConstRegs[_Rt_].UL[0] >> (g_cpuConstRegs[_Rs_].UL[0] & 0x1f));
|
||||
}
|
||||
|
||||
void recSRLV_consts(int info)
|
||||
{
|
||||
recSRLs_(info, g_cpuConstRegs[_Rs_].UL[0]&0x1f);
|
||||
recSRLs_(info, g_cpuConstRegs[_Rs_].UL[0] & 0x1f);
|
||||
}
|
||||
|
||||
void recSRLV_constt(int info)
|
||||
{
|
||||
xMOV(ecx, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ]);
|
||||
xMOV(ecx, ptr[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
|
||||
xMOV(eax, g_cpuConstRegs[_Rt_].UL[0] );
|
||||
xAND(ecx, 0x1f );
|
||||
xMOV(eax, g_cpuConstRegs[_Rt_].UL[0]);
|
||||
xAND(ecx, 0x1f);
|
||||
xSHR(eax, cl);
|
||||
|
||||
eeSignExtendTo(_Rd_);
|
||||
|
@ -438,37 +444,37 @@ void recSRLV_constt(int info)
|
|||
|
||||
void recSRLV_(int info)
|
||||
{
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] ]);
|
||||
if ( _Rs_ != 0 )
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
if (_Rs_ != 0)
|
||||
{
|
||||
xMOV(ecx, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ]);
|
||||
xAND(ecx, 0x1f );
|
||||
xMOV(ecx, ptr[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
xAND(ecx, 0x1f);
|
||||
xSHR(eax, cl);
|
||||
}
|
||||
xCDQ( );
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 1 ]], edx);
|
||||
xCDQ();
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[0]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[1]], edx);
|
||||
}
|
||||
|
||||
EERECOMPILE_CODE0(SRLV, XMMINFO_READS|XMMINFO_READT|XMMINFO_WRITED);
|
||||
EERECOMPILE_CODE0(SRLV, XMMINFO_READS | XMMINFO_READT | XMMINFO_WRITED);
|
||||
|
||||
//// SRAV
|
||||
void recSRAV_const()
|
||||
{
|
||||
g_cpuConstRegs[_Rd_].SD[0] = (s32)(g_cpuConstRegs[_Rt_].SL[0] >> (g_cpuConstRegs[_Rs_].UL[0] &0x1f));
|
||||
g_cpuConstRegs[_Rd_].SD[0] = (s32)(g_cpuConstRegs[_Rt_].SL[0] >> (g_cpuConstRegs[_Rs_].UL[0] & 0x1f));
|
||||
}
|
||||
|
||||
void recSRAV_consts(int info)
|
||||
{
|
||||
recSRAs_(info, g_cpuConstRegs[_Rs_].UL[0]&0x1f);
|
||||
recSRAs_(info, g_cpuConstRegs[_Rs_].UL[0] & 0x1f);
|
||||
}
|
||||
|
||||
void recSRAV_constt(int info)
|
||||
{
|
||||
xMOV(ecx, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ]);
|
||||
xMOV(ecx, ptr[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
|
||||
xMOV(eax, g_cpuConstRegs[_Rt_].UL[0] );
|
||||
xAND(ecx, 0x1f );
|
||||
xMOV(eax, g_cpuConstRegs[_Rt_].UL[0]);
|
||||
xAND(ecx, 0x1f);
|
||||
xSAR(eax, cl);
|
||||
|
||||
eeSignExtendTo(_Rd_);
|
||||
|
@ -476,31 +482,33 @@ void recSRAV_constt(int info)
|
|||
|
||||
void recSRAV_(int info)
|
||||
{
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] ]);
|
||||
if ( _Rs_ != 0 )
|
||||
xMOV(eax, ptr[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
if (_Rs_ != 0)
|
||||
{
|
||||
xMOV(ecx, ptr[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ]);
|
||||
xAND(ecx, 0x1f );
|
||||
xMOV(ecx, ptr[&cpuRegs.GPR.r[_Rs_].UL[0]]);
|
||||
xAND(ecx, 0x1f);
|
||||
xSAR(eax, cl);
|
||||
}
|
||||
xCDQ( );
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 0 ]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[ _Rd_ ].UL[ 1 ]], edx);
|
||||
xCDQ();
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[0]], eax);
|
||||
xMOV(ptr[&cpuRegs.GPR.r[_Rd_].UL[1]], edx);
|
||||
}
|
||||
|
||||
EERECOMPILE_CODE0(SRAV, XMMINFO_READS|XMMINFO_READT|XMMINFO_WRITED);
|
||||
EERECOMPILE_CODE0(SRAV, XMMINFO_READS | XMMINFO_READT | XMMINFO_WRITED);
|
||||
|
||||
//// DSLLV
|
||||
void recDSLLV_const()
|
||||
{
|
||||
g_cpuConstRegs[_Rd_].UD[0] = (u64)(g_cpuConstRegs[_Rt_].UD[0] << (g_cpuConstRegs[_Rs_].UL[0] &0x3f));
|
||||
g_cpuConstRegs[_Rd_].UD[0] = (u64)(g_cpuConstRegs[_Rt_].UD[0] << (g_cpuConstRegs[_Rs_].UL[0] & 0x3f));
|
||||
}
|
||||
|
||||
void recDSLLV_consts(int info)
|
||||
{
|
||||
int sa = g_cpuConstRegs[_Rs_].UL[0]&0x3f;
|
||||
if( sa < 32 ) recDSLLs_(info, sa);
|
||||
else recDSLL32s_(info, sa-32);
|
||||
int sa = g_cpuConstRegs[_Rs_].UL[0] & 0x3f;
|
||||
if (sa < 32)
|
||||
recDSLLs_(info, sa);
|
||||
else
|
||||
recDSLL32s_(info, sa - 32);
|
||||
}
|
||||
|
||||
void recDSLLV_constt(int info)
|
||||
|
@ -509,12 +517,13 @@ void recDSLLV_constt(int info)
|
|||
recSetConstShiftV(info, &rsreg, &rdreg, &rstemp);
|
||||
xMOVDQA(xRegisterSSE(rdreg), ptr[&cpuRegs.GPR.r[_Rt_]]);
|
||||
xPSLL.Q(xRegisterSSE(rdreg), xRegisterSSE(rsreg));
|
||||
if( rstemp != -1 ) _freeXMMreg(rstemp);
|
||||
if (rstemp != -1)
|
||||
_freeXMMreg(rstemp);
|
||||
|
||||
// flush lower 64 bits (as upper is wrong)
|
||||
// The others possibility could be a read back of the upper 64 bits
|
||||
// (better use of register but code will likely be flushed after anyway)
|
||||
xMOVL.PD(ptr64[&cpuRegs.GPR.r[ _Rd_ ].UD[ 0 ]] , xRegisterSSE(rdreg));
|
||||
xMOVL.PD(ptr64[&cpuRegs.GPR.r[_Rd_].UD[0]], xRegisterSSE(rdreg));
|
||||
//_deleteGPRtoXMMreg(_Rt_, 3);
|
||||
_deleteGPRtoXMMreg(_Rd_, 3);
|
||||
}
|
||||
|
@ -525,29 +534,32 @@ void recDSLLV_(int info)
|
|||
recSetShiftV(info, &rsreg, &rtreg, &rdreg, &rstemp);
|
||||
|
||||
xPSLL.Q(xRegisterSSE(rdreg), xRegisterSSE(rsreg));
|
||||
if( rstemp != -1 ) _freeXMMreg(rstemp);
|
||||
if (rstemp != -1)
|
||||
_freeXMMreg(rstemp);
|
||||
|
||||
// flush lower 64 bits (as upper is wrong)
|
||||
// The others possibility could be a read back of the upper 64 bits
|
||||
// (better use of register but code will likely be flushed after anyway)
|
||||
xMOVL.PD(ptr64[&cpuRegs.GPR.r[ _Rd_ ].UD[ 0 ]] , xRegisterSSE(rdreg));
|
||||
xMOVL.PD(ptr64[&cpuRegs.GPR.r[_Rd_].UD[0]], xRegisterSSE(rdreg));
|
||||
_deleteGPRtoXMMreg(_Rt_, 3);
|
||||
_deleteGPRtoXMMreg(_Rd_, 3);
|
||||
}
|
||||
|
||||
EERECOMPILE_CODE0(DSLLV, XMMINFO_READS|XMMINFO_READT|XMMINFO_WRITED);
|
||||
EERECOMPILE_CODE0(DSLLV, XMMINFO_READS | XMMINFO_READT | XMMINFO_WRITED);
|
||||
|
||||
//// DSRLV
|
||||
void recDSRLV_const()
|
||||
{
|
||||
g_cpuConstRegs[_Rd_].UD[0] = (u64)(g_cpuConstRegs[_Rt_].UD[0] >> (g_cpuConstRegs[_Rs_].UL[0] &0x3f));
|
||||
g_cpuConstRegs[_Rd_].UD[0] = (u64)(g_cpuConstRegs[_Rt_].UD[0] >> (g_cpuConstRegs[_Rs_].UL[0] & 0x3f));
|
||||
}
|
||||
|
||||
void recDSRLV_consts(int info)
|
||||
{
|
||||
int sa = g_cpuConstRegs[_Rs_].UL[0]&0x3f;
|
||||
if( sa < 32 ) recDSRLs_(info, sa);
|
||||
else recDSRL32s_(info, sa-32);
|
||||
int sa = g_cpuConstRegs[_Rs_].UL[0] & 0x3f;
|
||||
if (sa < 32)
|
||||
recDSRLs_(info, sa);
|
||||
else
|
||||
recDSRL32s_(info, sa - 32);
|
||||
}
|
||||
|
||||
void recDSRLV_constt(int info)
|
||||
|
@ -557,12 +569,13 @@ void recDSRLV_constt(int info)
|
|||
|
||||
xMOVDQA(xRegisterSSE(rdreg), ptr[&cpuRegs.GPR.r[_Rt_]]);
|
||||
xPSRL.Q(xRegisterSSE(rdreg), xRegisterSSE(rsreg));
|
||||
if( rstemp != -1 ) _freeXMMreg(rstemp);
|
||||
if (rstemp != -1)
|
||||
_freeXMMreg(rstemp);
|
||||
|
||||
// flush lower 64 bits (as upper is wrong)
|
||||
// The others possibility could be a read back of the upper 64 bits
|
||||
// (better use of register but code will likely be flushed after anyway)
|
||||
xMOVL.PD(ptr64[&cpuRegs.GPR.r[ _Rd_ ].UD[ 0 ]] , xRegisterSSE(rdreg));
|
||||
xMOVL.PD(ptr64[&cpuRegs.GPR.r[_Rd_].UD[0]], xRegisterSSE(rdreg));
|
||||
//_deleteGPRtoXMMreg(_Rt_, 3);
|
||||
_deleteGPRtoXMMreg(_Rd_, 3);
|
||||
}
|
||||
|
@ -573,29 +586,32 @@ void recDSRLV_(int info)
|
|||
recSetShiftV(info, &rsreg, &rtreg, &rdreg, &rstemp);
|
||||
|
||||
xPSRL.Q(xRegisterSSE(rdreg), xRegisterSSE(rsreg));
|
||||
if( rstemp != -1 ) _freeXMMreg(rstemp);
|
||||
if (rstemp != -1)
|
||||
_freeXMMreg(rstemp);
|
||||
|
||||
// flush lower 64 bits (as upper is wrong)
|
||||
// The others possibility could be a read back of the upper 64 bits
|
||||
// (better use of register but code will likely be flushed after anyway)
|
||||
xMOVL.PD(ptr64[&cpuRegs.GPR.r[ _Rd_ ].UD[ 0 ]] , xRegisterSSE(rdreg));
|
||||
xMOVL.PD(ptr64[&cpuRegs.GPR.r[_Rd_].UD[0]], xRegisterSSE(rdreg));
|
||||
_deleteGPRtoXMMreg(_Rt_, 3);
|
||||
_deleteGPRtoXMMreg(_Rd_, 3);
|
||||
}
|
||||
|
||||
EERECOMPILE_CODE0(DSRLV, XMMINFO_READS|XMMINFO_READT|XMMINFO_WRITED);
|
||||
EERECOMPILE_CODE0(DSRLV, XMMINFO_READS | XMMINFO_READT | XMMINFO_WRITED);
|
||||
|
||||
//// DSRAV
|
||||
void recDSRAV_const()
|
||||
{
|
||||
g_cpuConstRegs[_Rd_].SD[0] = (s64)(g_cpuConstRegs[_Rt_].SD[0] >> (g_cpuConstRegs[_Rs_].UL[0] &0x3f));
|
||||
g_cpuConstRegs[_Rd_].SD[0] = (s64)(g_cpuConstRegs[_Rt_].SD[0] >> (g_cpuConstRegs[_Rs_].UL[0] & 0x3f));
|
||||
}
|
||||
|
||||
void recDSRAV_consts(int info)
|
||||
{
|
||||
int sa = g_cpuConstRegs[_Rs_].UL[0]&0x3f;
|
||||
if( sa < 32 ) recDSRAs_(info, sa);
|
||||
else recDSRA32s_(info, sa-32);
|
||||
int sa = g_cpuConstRegs[_Rs_].UL[0] & 0x3f;
|
||||
if (sa < 32)
|
||||
recDSRAs_(info, sa);
|
||||
else
|
||||
recDSRA32s_(info, sa - 32);
|
||||
}
|
||||
|
||||
void recDSRAV_constt(int info)
|
||||
|
@ -628,12 +644,13 @@ void recDSRAV_constt(int info)
|
|||
// flush lower 64 bits (as upper is wrong)
|
||||
// The others possibility could be a read back of the upper 64 bits
|
||||
// (better use of register but code will likely be flushed after anyway)
|
||||
xMOVL.PD(ptr64[&cpuRegs.GPR.r[ _Rd_ ].UD[ 0 ]] , xRegisterSSE(rdreg));
|
||||
xMOVL.PD(ptr64[&cpuRegs.GPR.r[_Rd_].UD[0]], xRegisterSSE(rdreg));
|
||||
_deleteGPRtoXMMreg(_Rd_, 3);
|
||||
|
||||
_freeXMMreg(t0reg);
|
||||
_freeXMMreg(t1reg);
|
||||
if( rstemp != -1 ) _freeXMMreg(rstemp);
|
||||
if (rstemp != -1)
|
||||
_freeXMMreg(rstemp);
|
||||
}
|
||||
|
||||
void recDSRAV_(int info)
|
||||
|
@ -664,17 +681,20 @@ void recDSRAV_(int info)
|
|||
// flush lower 64 bits (as upper is wrong)
|
||||
// The others possibility could be a read back of the upper 64 bits
|
||||
// (better use of register but code will likely be flushed after anyway)
|
||||
xMOVL.PD(ptr64[&cpuRegs.GPR.r[ _Rd_ ].UD[ 0 ]] , xRegisterSSE(rdreg));
|
||||
xMOVL.PD(ptr64[&cpuRegs.GPR.r[_Rd_].UD[0]], xRegisterSSE(rdreg));
|
||||
_deleteGPRtoXMMreg(_Rt_, 3);
|
||||
_deleteGPRtoXMMreg(_Rd_, 3);
|
||||
|
||||
_freeXMMreg(t0reg);
|
||||
_freeXMMreg(t1reg);
|
||||
if( rstemp != -1 ) _freeXMMreg(rstemp);
|
||||
if (rstemp != -1)
|
||||
_freeXMMreg(rstemp);
|
||||
}
|
||||
|
||||
EERECOMPILE_CODE0(DSRAV, XMMINFO_READS|XMMINFO_READT|XMMINFO_WRITED);
|
||||
EERECOMPILE_CODE0(DSRAV, XMMINFO_READS | XMMINFO_READT | XMMINFO_WRITED);
|
||||
|
||||
#endif
|
||||
|
||||
} } }
|
||||
} // namespace OpcodeImpl
|
||||
} // namespace Dynarec
|
||||
} // namespace R5900
|
||||
|
|
|
@ -40,8 +40,10 @@ void _eeOnWriteReg(int reg, int signext)
|
|||
|
||||
void _deleteEEreg(int reg, int flush)
|
||||
{
|
||||
if( !reg ) return;
|
||||
if( flush && GPR_IS_CONST1(reg) ) {
|
||||
if (!reg)
|
||||
return;
|
||||
if (flush && GPR_IS_CONST1(reg))
|
||||
{
|
||||
_flushConstReg(reg);
|
||||
}
|
||||
GPR_DEL_CONST(reg);
|
||||
|
@ -50,8 +52,10 @@ void _deleteEEreg(int reg, int flush)
|
|||
|
||||
void _flushEEreg(int reg)
|
||||
{
|
||||
if (!reg) return;
|
||||
if (GPR_IS_CONST1(reg)) {
|
||||
if (!reg)
|
||||
return;
|
||||
if (GPR_IS_CONST1(reg))
|
||||
{
|
||||
_flushConstReg(reg);
|
||||
return;
|
||||
}
|
||||
|
@ -62,8 +66,9 @@ void _flushEEreg(int reg)
|
|||
int eeProcessHILO(int reg, int mode, int mmx)
|
||||
{
|
||||
// Fixme: MMX problem
|
||||
int usemmx = 0;
|
||||
if( (usemmx || _hasFreeXMMreg()) || !(g_pCurInstInfo->regs[reg]&EEINST_LASTUSE) ) {
|
||||
int usemmx = 0;
|
||||
if ((usemmx || _hasFreeXMMreg()) || !(g_pCurInstInfo->regs[reg] & EEINST_LASTUSE))
|
||||
{
|
||||
return _allocGPRtoXMMreg(-1, reg, mode);
|
||||
}
|
||||
|
||||
|
@ -71,8 +76,8 @@ int eeProcessHILO(int reg, int mode, int mmx)
|
|||
}
|
||||
|
||||
// Strangely this code is used on NOT-MMX path ...
|
||||
#define PROCESS_EE_SETMODES(mmreg) (/*(mmxregs[mmreg].mode&MODE_WRITE)*/ false ?PROCESS_EE_MODEWRITES:0)
|
||||
#define PROCESS_EE_SETMODET(mmreg) (/*(mmxregs[mmreg].mode&MODE_WRITE)*/ false ?PROCESS_EE_MODEWRITET:0)
|
||||
#define PROCESS_EE_SETMODES(mmreg) (/*(mmxregs[mmreg].mode&MODE_WRITE)*/ false ? PROCESS_EE_MODEWRITES : 0)
|
||||
#define PROCESS_EE_SETMODET(mmreg) (/*(mmxregs[mmreg].mode&MODE_WRITE)*/ false ? PROCESS_EE_MODEWRITET : 0)
|
||||
|
||||
// ignores XMMINFO_READS, XMMINFO_READT, and XMMINFO_READD_LO from xmminfo
|
||||
// core of reg caching
|
||||
|
@ -80,100 +85,131 @@ void eeRecompileCode0(R5900FNPTR constcode, R5900FNPTR_INFO constscode, R5900FNP
|
|||
{
|
||||
int mmreg1, mmreg2, mmreg3, mmtemp, moded;
|
||||
|
||||
if ( ! _Rd_ && (xmminfo&XMMINFO_WRITED) ) return;
|
||||
if (!_Rd_ && (xmminfo & XMMINFO_WRITED))
|
||||
return;
|
||||
|
||||
if( GPR_IS_CONST2(_Rs_, _Rt_) ) {
|
||||
if( xmminfo & XMMINFO_WRITED ) {
|
||||
if (GPR_IS_CONST2(_Rs_, _Rt_))
|
||||
{
|
||||
if (xmminfo & XMMINFO_WRITED)
|
||||
{
|
||||
_deleteGPRtoXMMreg(_Rd_, 2);
|
||||
}
|
||||
if( xmminfo&XMMINFO_WRITED ) GPR_SET_CONST(_Rd_);
|
||||
if (xmminfo & XMMINFO_WRITED)
|
||||
GPR_SET_CONST(_Rd_);
|
||||
constcode();
|
||||
return;
|
||||
}
|
||||
|
||||
moded = MODE_WRITE|((xmminfo&XMMINFO_READD)?MODE_READ:0);
|
||||
moded = MODE_WRITE | ((xmminfo & XMMINFO_READD) ? MODE_READ : 0);
|
||||
|
||||
// test if should write xmm, mirror to mmx code
|
||||
if( g_pCurInstInfo->info & EEINST_XMM ) {
|
||||
if (g_pCurInstInfo->info & EEINST_XMM)
|
||||
{
|
||||
pxAssert(0);
|
||||
|
||||
if( xmminfo & (XMMINFO_READLO|XMMINFO_WRITELO) ) _addNeededGPRtoXMMreg(XMMGPR_LO);
|
||||
if( xmminfo & (XMMINFO_READHI|XMMINFO_WRITEHI) ) _addNeededGPRtoXMMreg(XMMGPR_HI);
|
||||
if (xmminfo & (XMMINFO_READLO | XMMINFO_WRITELO))
|
||||
_addNeededGPRtoXMMreg(XMMGPR_LO);
|
||||
if (xmminfo & (XMMINFO_READHI | XMMINFO_WRITEHI))
|
||||
_addNeededGPRtoXMMreg(XMMGPR_HI);
|
||||
_addNeededGPRtoXMMreg(_Rs_);
|
||||
_addNeededGPRtoXMMreg(_Rt_);
|
||||
|
||||
if( GPR_IS_CONST1(_Rs_) || GPR_IS_CONST1(_Rt_) ) {
|
||||
if (GPR_IS_CONST1(_Rs_) || GPR_IS_CONST1(_Rt_))
|
||||
{
|
||||
u32 creg = GPR_IS_CONST1(_Rs_) ? _Rs_ : _Rt_;
|
||||
int vreg = creg == _Rs_ ? _Rt_ : _Rs_;
|
||||
|
||||
// if(g_pCurInstInfo->regs[vreg]&EEINST_XMM) {
|
||||
// if (g_pCurInstInfo->regs[vreg] & EEINST_XMM)
|
||||
// {
|
||||
// mmreg1 = _allocGPRtoXMMreg(-1, vreg, MODE_READ);
|
||||
// _addNeededGPRtoXMMreg(vreg);
|
||||
// }
|
||||
mmreg1 = _allocCheckGPRtoXMM(g_pCurInstInfo, vreg, MODE_READ);
|
||||
|
||||
if( mmreg1 >= 0 ) {
|
||||
if (mmreg1 >= 0)
|
||||
{
|
||||
int info = PROCESS_EE_XMM;
|
||||
|
||||
if( GPR_IS_CONST1(_Rs_) ) info |= PROCESS_EE_SETMODET(mmreg1);
|
||||
else info |= PROCESS_EE_SETMODES(mmreg1);
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
info |= PROCESS_EE_SETMODET(mmreg1);
|
||||
else
|
||||
info |= PROCESS_EE_SETMODES(mmreg1);
|
||||
|
||||
if( xmminfo & XMMINFO_WRITED ) {
|
||||
if (xmminfo & XMMINFO_WRITED)
|
||||
{
|
||||
|
||||
_addNeededGPRtoXMMreg(_Rd_);
|
||||
mmreg3 = _checkXMMreg(XMMTYPE_GPRREG, _Rd_, MODE_WRITE);
|
||||
|
||||
if( !(xmminfo&XMMINFO_READD) && mmreg3 < 0 && ((g_pCurInstInfo->regs[vreg] & EEINST_LASTUSE) || !EEINST_ISLIVEXMM(vreg)) ) {
|
||||
if (!(xmminfo & XMMINFO_READD) && mmreg3 < 0 && ((g_pCurInstInfo->regs[vreg] & EEINST_LASTUSE) || !EEINST_ISLIVEXMM(vreg)))
|
||||
{
|
||||
_freeXMMreg(mmreg1);
|
||||
if( GPR_IS_CONST1(_Rs_) ) info &= ~PROCESS_EE_MODEWRITET;
|
||||
else info &= ~PROCESS_EE_MODEWRITES;
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
info &= ~PROCESS_EE_MODEWRITET;
|
||||
else
|
||||
info &= ~PROCESS_EE_MODEWRITES;
|
||||
xmmregs[mmreg1].inuse = 1;
|
||||
xmmregs[mmreg1].reg = _Rd_;
|
||||
xmmregs[mmreg1].mode = moded;
|
||||
mmreg3 = mmreg1;
|
||||
}
|
||||
else if( mmreg3 < 0 ) mmreg3 = _allocGPRtoXMMreg(-1, _Rd_, moded);
|
||||
else if (mmreg3 < 0)
|
||||
mmreg3 = _allocGPRtoXMMreg(-1, _Rd_, moded);
|
||||
|
||||
info |= PROCESS_EE_SET_D(mmreg3);
|
||||
}
|
||||
|
||||
if( xmminfo & (XMMINFO_READLO|XMMINFO_WRITELO) ) {
|
||||
mmtemp = eeProcessHILO(XMMGPR_LO, ((xmminfo&XMMINFO_READLO)?MODE_READ:0)|((xmminfo&XMMINFO_WRITELO)?MODE_WRITE:0), 0);
|
||||
if( mmtemp >= 0 ) info |= PROCESS_EE_SET_LO(mmtemp);
|
||||
if (xmminfo & (XMMINFO_READLO | XMMINFO_WRITELO))
|
||||
{
|
||||
mmtemp = eeProcessHILO(XMMGPR_LO, ((xmminfo & XMMINFO_READLO) ? MODE_READ : 0) | ((xmminfo & XMMINFO_WRITELO) ? MODE_WRITE : 0), 0);
|
||||
if (mmtemp >= 0)
|
||||
info |= PROCESS_EE_SET_LO(mmtemp);
|
||||
}
|
||||
if( xmminfo & (XMMINFO_READHI|XMMINFO_WRITEHI) ) {
|
||||
mmtemp = eeProcessHILO(XMMGPR_HI, ((xmminfo&XMMINFO_READLO)?MODE_READ:0)|((xmminfo&XMMINFO_WRITELO)?MODE_WRITE:0), 0);
|
||||
if( mmtemp >= 0 ) info |= PROCESS_EE_SET_HI(mmtemp);
|
||||
if (xmminfo & (XMMINFO_READHI | XMMINFO_WRITEHI))
|
||||
{
|
||||
mmtemp = eeProcessHILO(XMMGPR_HI, ((xmminfo & XMMINFO_READLO) ? MODE_READ : 0) | ((xmminfo & XMMINFO_WRITELO) ? MODE_WRITE : 0), 0);
|
||||
if (mmtemp >= 0)
|
||||
info |= PROCESS_EE_SET_HI(mmtemp);
|
||||
}
|
||||
|
||||
if( creg == _Rs_ ) constscode(info|PROCESS_EE_SET_T(mmreg1));
|
||||
else consttcode(info|PROCESS_EE_SET_S(mmreg1));
|
||||
if (creg == _Rs_)
|
||||
constscode(info | PROCESS_EE_SET_T(mmreg1));
|
||||
else
|
||||
consttcode(info | PROCESS_EE_SET_S(mmreg1));
|
||||
_clearNeededXMMregs();
|
||||
if( xmminfo & XMMINFO_WRITED ) GPR_DEL_CONST(_Rd_);
|
||||
if (xmminfo & XMMINFO_WRITED)
|
||||
GPR_DEL_CONST(_Rd_);
|
||||
return;
|
||||
}
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
// no const regs
|
||||
mmreg1 = _allocCheckGPRtoXMM(g_pCurInstInfo, _Rs_, MODE_READ);
|
||||
mmreg2 = _allocCheckGPRtoXMM(g_pCurInstInfo, _Rt_, MODE_READ);
|
||||
|
||||
if( mmreg1 >= 0 || mmreg2 >= 0 ) {
|
||||
if (mmreg1 >= 0 || mmreg2 >= 0)
|
||||
{
|
||||
int info = PROCESS_EE_XMM;
|
||||
|
||||
// do it all in xmm
|
||||
if( mmreg1 < 0 ) mmreg1 = _allocGPRtoXMMreg(-1, _Rs_, MODE_READ);
|
||||
if( mmreg2 < 0 ) mmreg2 = _allocGPRtoXMMreg(-1, _Rt_, MODE_READ);
|
||||
if (mmreg1 < 0)
|
||||
mmreg1 = _allocGPRtoXMMreg(-1, _Rs_, MODE_READ);
|
||||
if (mmreg2 < 0)
|
||||
mmreg2 = _allocGPRtoXMMreg(-1, _Rt_, MODE_READ);
|
||||
|
||||
info |= PROCESS_EE_SETMODES(mmreg1)|PROCESS_EE_SETMODET(mmreg2);
|
||||
info |= PROCESS_EE_SETMODES(mmreg1) | PROCESS_EE_SETMODET(mmreg2);
|
||||
|
||||
if( xmminfo & XMMINFO_WRITED ) {
|
||||
if (xmminfo & XMMINFO_WRITED)
|
||||
{
|
||||
// check for last used, if so don't alloc a new XMM reg
|
||||
_addNeededGPRtoXMMreg(_Rd_);
|
||||
mmreg3 = _checkXMMreg(XMMTYPE_GPRREG, _Rd_, moded);
|
||||
|
||||
if( mmreg3 < 0 ) {
|
||||
if( !(xmminfo&XMMINFO_READD) && ((g_pCurInstInfo->regs[_Rt_] & EEINST_LASTUSE) || !EEINST_ISLIVEXMM(_Rt_)) ) {
|
||||
if (mmreg3 < 0)
|
||||
{
|
||||
if (!(xmminfo & XMMINFO_READD) && ((g_pCurInstInfo->regs[_Rt_] & EEINST_LASTUSE) || !EEINST_ISLIVEXMM(_Rt_)))
|
||||
{
|
||||
_freeXMMreg(mmreg2);
|
||||
info &= ~PROCESS_EE_MODEWRITET;
|
||||
xmmregs[mmreg2].inuse = 1;
|
||||
|
@ -181,7 +217,8 @@ void eeRecompileCode0(R5900FNPTR constcode, R5900FNPTR_INFO constscode, R5900FNP
|
|||
xmmregs[mmreg2].mode = moded;
|
||||
mmreg3 = mmreg2;
|
||||
}
|
||||
else if( !(xmminfo&XMMINFO_READD) && ((g_pCurInstInfo->regs[_Rs_] & EEINST_LASTUSE) || !EEINST_ISLIVEXMM(_Rs_)) ) {
|
||||
else if (!(xmminfo & XMMINFO_READD) && ((g_pCurInstInfo->regs[_Rs_] & EEINST_LASTUSE) || !EEINST_ISLIVEXMM(_Rs_)))
|
||||
{
|
||||
_freeXMMreg(mmreg1);
|
||||
info &= ~PROCESS_EE_MODEWRITES;
|
||||
xmmregs[mmreg1].inuse = 1;
|
||||
|
@ -189,24 +226,30 @@ void eeRecompileCode0(R5900FNPTR constcode, R5900FNPTR_INFO constscode, R5900FNP
|
|||
xmmregs[mmreg1].mode = moded;
|
||||
mmreg3 = mmreg1;
|
||||
}
|
||||
else mmreg3 = _allocGPRtoXMMreg(-1, _Rd_, moded);
|
||||
else
|
||||
mmreg3 = _allocGPRtoXMMreg(-1, _Rd_, moded);
|
||||
}
|
||||
|
||||
info |= PROCESS_EE_SET_D(mmreg3);
|
||||
}
|
||||
|
||||
if( xmminfo & (XMMINFO_READLO|XMMINFO_WRITELO) ) {
|
||||
mmtemp = eeProcessHILO(XMMGPR_LO, ((xmminfo&XMMINFO_READLO)?MODE_READ:0)|((xmminfo&XMMINFO_WRITELO)?MODE_WRITE:0), 0);
|
||||
if( mmtemp >= 0 ) info |= PROCESS_EE_SET_LO(mmtemp);
|
||||
if (xmminfo & (XMMINFO_READLO | XMMINFO_WRITELO))
|
||||
{
|
||||
mmtemp = eeProcessHILO(XMMGPR_LO, ((xmminfo & XMMINFO_READLO) ? MODE_READ : 0) | ((xmminfo & XMMINFO_WRITELO) ? MODE_WRITE : 0), 0);
|
||||
if (mmtemp >= 0)
|
||||
info |= PROCESS_EE_SET_LO(mmtemp);
|
||||
}
|
||||
if( xmminfo & (XMMINFO_READHI|XMMINFO_WRITEHI) ) {
|
||||
mmtemp = eeProcessHILO(XMMGPR_HI, ((xmminfo&XMMINFO_READLO)?MODE_READ:0)|((xmminfo&XMMINFO_WRITELO)?MODE_WRITE:0), 0);
|
||||
if( mmtemp >= 0 ) info |= PROCESS_EE_SET_HI(mmtemp);
|
||||
if (xmminfo & (XMMINFO_READHI | XMMINFO_WRITEHI))
|
||||
{
|
||||
mmtemp = eeProcessHILO(XMMGPR_HI, ((xmminfo & XMMINFO_READLO) ? MODE_READ : 0) | ((xmminfo & XMMINFO_WRITELO) ? MODE_WRITE : 0), 0);
|
||||
if (mmtemp >= 0)
|
||||
info |= PROCESS_EE_SET_HI(mmtemp);
|
||||
}
|
||||
|
||||
noconstcode(info|PROCESS_EE_SET_S(mmreg1)|PROCESS_EE_SET_T(mmreg2));
|
||||
noconstcode(info | PROCESS_EE_SET_S(mmreg1) | PROCESS_EE_SET_T(mmreg2));
|
||||
_clearNeededXMMregs();
|
||||
if( xmminfo & XMMINFO_WRITED ) GPR_DEL_CONST(_Rd_);
|
||||
if (xmminfo & XMMINFO_WRITED)
|
||||
GPR_DEL_CONST(_Rd_);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
@ -217,40 +260,49 @@ void eeRecompileCode0(R5900FNPTR constcode, R5900FNPTR_INFO constscode, R5900FNP
|
|||
// regular x86
|
||||
_deleteGPRtoXMMreg(_Rs_, 1);
|
||||
_deleteGPRtoXMMreg(_Rt_, 1);
|
||||
if( xmminfo&XMMINFO_WRITED )
|
||||
_deleteGPRtoXMMreg(_Rd_, (xmminfo&XMMINFO_READD)?0:2);
|
||||
if (xmminfo & XMMINFO_WRITED)
|
||||
_deleteGPRtoXMMreg(_Rd_, (xmminfo & XMMINFO_READD) ? 0 : 2);
|
||||
|
||||
// don't delete, fn will take care of them
|
||||
// if( xmminfo & (XMMINFO_READLO|XMMINFO_WRITELO) ) {
|
||||
// _deleteGPRtoXMMreg(XMMGPR_LO, (xmminfo&XMMINFO_READLO)?1:0);
|
||||
// if (xmminfo & (XMMINFO_READLO|XMMINFO_WRITELO))
|
||||
// {
|
||||
// _deleteGPRtoXMMreg(XMMGPR_LO, (xmminfo & XMMINFO_READLO) ? 1 : 0);
|
||||
// }
|
||||
// if( xmminfo & (XMMINFO_READHI|XMMINFO_WRITEHI) ) {
|
||||
// _deleteGPRtoXMMreg(XMMGPR_HI, (xmminfo&XMMINFO_READHI)?1:0);
|
||||
// if (xmminfo & (XMMINFO_READHI|XMMINFO_WRITEHI))
|
||||
// {
|
||||
// _deleteGPRtoXMMreg(XMMGPR_HI, (xmminfo & XMMINFO_READHI) ? 1 : 0);
|
||||
// }
|
||||
|
||||
if( GPR_IS_CONST1(_Rs_) ) {
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
constscode(0);
|
||||
if( xmminfo&XMMINFO_WRITED ) GPR_DEL_CONST(_Rd_);
|
||||
if (xmminfo & XMMINFO_WRITED)
|
||||
GPR_DEL_CONST(_Rd_);
|
||||
return;
|
||||
}
|
||||
|
||||
if( GPR_IS_CONST1(_Rt_) ) {
|
||||
if (GPR_IS_CONST1(_Rt_))
|
||||
{
|
||||
consttcode(0);
|
||||
if( xmminfo&XMMINFO_WRITED ) GPR_DEL_CONST(_Rd_);
|
||||
if (xmminfo & XMMINFO_WRITED)
|
||||
GPR_DEL_CONST(_Rd_);
|
||||
return;
|
||||
}
|
||||
|
||||
noconstcode(0);
|
||||
if( xmminfo&XMMINFO_WRITED ) GPR_DEL_CONST(_Rd_);
|
||||
if (xmminfo & XMMINFO_WRITED)
|
||||
GPR_DEL_CONST(_Rd_);
|
||||
}
|
||||
|
||||
// rt = rs op imm16
|
||||
void eeRecompileCode1(R5900FNPTR constcode, R5900FNPTR_INFO noconstcode)
|
||||
{
|
||||
int mmreg1, mmreg2;
|
||||
if ( ! _Rt_ ) return;
|
||||
if (!_Rt_)
|
||||
return;
|
||||
|
||||
if( GPR_IS_CONST1(_Rs_) ) {
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
_deleteGPRtoXMMreg(_Rt_, 2);
|
||||
GPR_SET_CONST(_Rt_);
|
||||
constcode();
|
||||
|
@ -258,32 +310,37 @@ void eeRecompileCode1(R5900FNPTR constcode, R5900FNPTR_INFO noconstcode)
|
|||
}
|
||||
|
||||
// test if should write xmm, mirror to mmx code
|
||||
if( g_pCurInstInfo->info & EEINST_XMM ) {
|
||||
if (g_pCurInstInfo->info & EEINST_XMM)
|
||||
{
|
||||
pxAssert(0);
|
||||
|
||||
// no const regs
|
||||
mmreg1 = _allocCheckGPRtoXMM(g_pCurInstInfo, _Rs_, MODE_READ);
|
||||
|
||||
if( mmreg1 >= 0 ) {
|
||||
int info = PROCESS_EE_XMM|PROCESS_EE_SETMODES(mmreg1);
|
||||
if (mmreg1 >= 0)
|
||||
{
|
||||
int info = PROCESS_EE_XMM | PROCESS_EE_SETMODES(mmreg1);
|
||||
|
||||
// check for last used, if so don't alloc a new XMM reg
|
||||
_addNeededGPRtoXMMreg(_Rt_);
|
||||
mmreg2 = _checkXMMreg(XMMTYPE_GPRREG, _Rt_, MODE_WRITE);
|
||||
|
||||
if( mmreg2 < 0 ) {
|
||||
if( (g_pCurInstInfo->regs[_Rs_] & EEINST_LASTUSE) || !EEINST_ISLIVEXMM(_Rs_) ) {
|
||||
if (mmreg2 < 0)
|
||||
{
|
||||
if ((g_pCurInstInfo->regs[_Rs_] & EEINST_LASTUSE) || !EEINST_ISLIVEXMM(_Rs_))
|
||||
{
|
||||
_freeXMMreg(mmreg1);
|
||||
info &= ~PROCESS_EE_MODEWRITES;
|
||||
xmmregs[mmreg1].inuse = 1;
|
||||
xmmregs[mmreg1].reg = _Rt_;
|
||||
xmmregs[mmreg1].mode = MODE_WRITE|MODE_READ;
|
||||
xmmregs[mmreg1].mode = MODE_WRITE | MODE_READ;
|
||||
mmreg2 = mmreg1;
|
||||
}
|
||||
else mmreg2 = _allocGPRtoXMMreg(-1, _Rt_, MODE_WRITE);
|
||||
else
|
||||
mmreg2 = _allocGPRtoXMMreg(-1, _Rt_, MODE_WRITE);
|
||||
}
|
||||
|
||||
noconstcode(info|PROCESS_EE_SET_S(mmreg1)|PROCESS_EE_SET_T(mmreg2));
|
||||
noconstcode(info | PROCESS_EE_SET_S(mmreg1) | PROCESS_EE_SET_T(mmreg2));
|
||||
_clearNeededXMMregs();
|
||||
GPR_DEL_CONST(_Rt_);
|
||||
return;
|
||||
|
@ -304,9 +361,11 @@ void eeRecompileCode1(R5900FNPTR constcode, R5900FNPTR_INFO noconstcode)
|
|||
void eeRecompileCode2(R5900FNPTR constcode, R5900FNPTR_INFO noconstcode)
|
||||
{
|
||||
int mmreg1, mmreg2;
|
||||
if ( ! _Rd_ ) return;
|
||||
if (!_Rd_)
|
||||
return;
|
||||
|
||||
if( GPR_IS_CONST1(_Rt_) ) {
|
||||
if (GPR_IS_CONST1(_Rt_))
|
||||
{
|
||||
_deleteGPRtoXMMreg(_Rd_, 2);
|
||||
GPR_SET_CONST(_Rd_);
|
||||
constcode();
|
||||
|
@ -314,32 +373,37 @@ void eeRecompileCode2(R5900FNPTR constcode, R5900FNPTR_INFO noconstcode)
|
|||
}
|
||||
|
||||
// test if should write xmm, mirror to mmx code
|
||||
if( g_pCurInstInfo->info & EEINST_XMM ) {
|
||||
if (g_pCurInstInfo->info & EEINST_XMM)
|
||||
{
|
||||
pxAssert(0);
|
||||
|
||||
// no const regs
|
||||
mmreg1 = _allocCheckGPRtoXMM(g_pCurInstInfo, _Rt_, MODE_READ);
|
||||
|
||||
if( mmreg1 >= 0 ) {
|
||||
int info = PROCESS_EE_XMM|PROCESS_EE_SETMODET(mmreg1);
|
||||
if (mmreg1 >= 0)
|
||||
{
|
||||
int info = PROCESS_EE_XMM | PROCESS_EE_SETMODET(mmreg1);
|
||||
|
||||
// check for last used, if so don't alloc a new XMM reg
|
||||
_addNeededGPRtoXMMreg(_Rd_);
|
||||
mmreg2 = _checkXMMreg(XMMTYPE_GPRREG, _Rd_, MODE_WRITE);
|
||||
|
||||
if( mmreg2 < 0 ) {
|
||||
if( (g_pCurInstInfo->regs[_Rt_] & EEINST_LASTUSE) || !EEINST_ISLIVE64(_Rt_) ) {
|
||||
if (mmreg2 < 0)
|
||||
{
|
||||
if ((g_pCurInstInfo->regs[_Rt_] & EEINST_LASTUSE) || !EEINST_ISLIVE64(_Rt_))
|
||||
{
|
||||
_freeXMMreg(mmreg1);
|
||||
info &= ~PROCESS_EE_MODEWRITET;
|
||||
xmmregs[mmreg1].inuse = 1;
|
||||
xmmregs[mmreg1].reg = _Rd_;
|
||||
xmmregs[mmreg1].mode = MODE_WRITE|MODE_READ;
|
||||
xmmregs[mmreg1].mode = MODE_WRITE | MODE_READ;
|
||||
mmreg2 = mmreg1;
|
||||
}
|
||||
else mmreg2 = _allocGPRtoXMMreg(-1, _Rd_, MODE_WRITE);
|
||||
else
|
||||
mmreg2 = _allocGPRtoXMMreg(-1, _Rd_, MODE_WRITE);
|
||||
}
|
||||
|
||||
noconstcode(info|PROCESS_EE_SET_T(mmreg1)|PROCESS_EE_SET_D(mmreg2));
|
||||
noconstcode(info | PROCESS_EE_SET_T(mmreg1) | PROCESS_EE_SET_D(mmreg2));
|
||||
_clearNeededXMMregs();
|
||||
GPR_DEL_CONST(_Rd_);
|
||||
return;
|
||||
|
@ -359,23 +423,26 @@ void eeRecompileCode2(R5900FNPTR constcode, R5900FNPTR_INFO noconstcode)
|
|||
// rt op rs
|
||||
void eeRecompileCode3(R5900FNPTR constcode, R5900FNPTR_INFO multicode)
|
||||
{
|
||||
pxFail( "Unfinished code reached." );
|
||||
pxFail("Unfinished code reached.");
|
||||
|
||||
// for now, don't support xmm
|
||||
_deleteEEreg(_Rs_, 0);
|
||||
_deleteEEreg(_Rt_, 1);
|
||||
|
||||
if( GPR_IS_CONST2(_Rs_, _Rt_) ) {
|
||||
if (GPR_IS_CONST2(_Rs_, _Rt_))
|
||||
{
|
||||
constcode();
|
||||
return;
|
||||
}
|
||||
|
||||
if( GPR_IS_CONST1(_Rs_) ) {
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
//multicode(PROCESS_EE_CONSTT);
|
||||
return;
|
||||
}
|
||||
|
||||
if( GPR_IS_CONST1(_Rt_) ) {
|
||||
if (GPR_IS_CONST1(_Rt_))
|
||||
{
|
||||
//multicode(PROCESS_EE_CONSTT);
|
||||
return;
|
||||
}
|
||||
|
@ -388,7 +455,8 @@ void eeRecompileCode3(R5900FNPTR constcode, R5900FNPTR_INFO multicode)
|
|||
// rd = rs op rt
|
||||
void eeRecompileCodeConst0(R5900FNPTR constcode, R5900FNPTR_INFO constscode, R5900FNPTR_INFO consttcode, R5900FNPTR_INFO noconstcode)
|
||||
{
|
||||
if ( ! _Rd_ ) return;
|
||||
if (!_Rd_)
|
||||
return;
|
||||
|
||||
// for now, don't support xmm
|
||||
|
||||
|
@ -396,19 +464,22 @@ void eeRecompileCodeConst0(R5900FNPTR constcode, R5900FNPTR_INFO constscode, R59
|
|||
_deleteGPRtoXMMreg(_Rt_, 1);
|
||||
_deleteGPRtoXMMreg(_Rd_, 0);
|
||||
|
||||
if( GPR_IS_CONST2(_Rs_, _Rt_) ) {
|
||||
if (GPR_IS_CONST2(_Rs_, _Rt_))
|
||||
{
|
||||
GPR_SET_CONST(_Rd_);
|
||||
constcode();
|
||||
return;
|
||||
}
|
||||
|
||||
if( GPR_IS_CONST1(_Rs_) ) {
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
constscode(0);
|
||||
GPR_DEL_CONST(_Rd_);
|
||||
return;
|
||||
}
|
||||
|
||||
if( GPR_IS_CONST1(_Rt_) ) {
|
||||
if (GPR_IS_CONST1(_Rt_))
|
||||
{
|
||||
consttcode(0);
|
||||
GPR_DEL_CONST(_Rd_);
|
||||
return;
|
||||
|
@ -421,7 +492,7 @@ void eeRecompileCodeConst0(R5900FNPTR constcode, R5900FNPTR_INFO constscode, R59
|
|||
// rt = rs op imm16
|
||||
void eeRecompileCodeConst1(R5900FNPTR constcode, R5900FNPTR_INFO noconstcode)
|
||||
{
|
||||
if ( ! _Rt_ )
|
||||
if (!_Rt_)
|
||||
return;
|
||||
|
||||
// for now, don't support xmm
|
||||
|
@ -429,7 +500,8 @@ void eeRecompileCodeConst1(R5900FNPTR constcode, R5900FNPTR_INFO noconstcode)
|
|||
_deleteGPRtoXMMreg(_Rs_, 1);
|
||||
_deleteGPRtoXMMreg(_Rt_, 0);
|
||||
|
||||
if( GPR_IS_CONST1(_Rs_) ) {
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
GPR_SET_CONST(_Rt_);
|
||||
constcode();
|
||||
return;
|
||||
|
@ -442,14 +514,16 @@ void eeRecompileCodeConst1(R5900FNPTR constcode, R5900FNPTR_INFO noconstcode)
|
|||
// rd = rt op sa
|
||||
void eeRecompileCodeConst2(R5900FNPTR constcode, R5900FNPTR_INFO noconstcode)
|
||||
{
|
||||
if ( ! _Rd_ ) return;
|
||||
if (!_Rd_)
|
||||
return;
|
||||
|
||||
// for now, don't support xmm
|
||||
|
||||
_deleteGPRtoXMMreg(_Rt_, 1);
|
||||
_deleteGPRtoXMMreg(_Rd_, 0);
|
||||
|
||||
if( GPR_IS_CONST1(_Rt_) ) {
|
||||
if (GPR_IS_CONST1(_Rt_))
|
||||
{
|
||||
GPR_SET_CONST(_Rd_);
|
||||
constcode();
|
||||
return;
|
||||
|
@ -462,36 +536,44 @@ void eeRecompileCodeConst2(R5900FNPTR constcode, R5900FNPTR_INFO noconstcode)
|
|||
// rd = rt MULT rs (SPECIAL)
|
||||
void eeRecompileCodeConstSPECIAL(R5900FNPTR constcode, R5900FNPTR_INFO multicode, int MULT)
|
||||
{
|
||||
pxFail( "Unfinished code reached." );
|
||||
pxFail("Unfinished code reached.");
|
||||
|
||||
// for now, don't support xmm
|
||||
if( MULT ) {
|
||||
if (MULT)
|
||||
{
|
||||
_deleteGPRtoXMMreg(_Rd_, 0);
|
||||
}
|
||||
|
||||
_deleteGPRtoXMMreg(_Rs_, 1);
|
||||
_deleteGPRtoXMMreg(_Rt_, 1);
|
||||
|
||||
if( GPR_IS_CONST2(_Rs_, _Rt_) ) {
|
||||
if( MULT && _Rd_ ) GPR_SET_CONST(_Rd_);
|
||||
if (GPR_IS_CONST2(_Rs_, _Rt_))
|
||||
{
|
||||
if (MULT && _Rd_)
|
||||
GPR_SET_CONST(_Rd_);
|
||||
constcode();
|
||||
return;
|
||||
}
|
||||
|
||||
if( GPR_IS_CONST1(_Rs_) ) {
|
||||
if (GPR_IS_CONST1(_Rs_))
|
||||
{
|
||||
//multicode(PROCESS_EE_CONSTS);
|
||||
if( MULT && _Rd_ ) GPR_DEL_CONST(_Rd_);
|
||||
if (MULT && _Rd_)
|
||||
GPR_DEL_CONST(_Rd_);
|
||||
return;
|
||||
}
|
||||
|
||||
if( GPR_IS_CONST1(_Rt_) ) {
|
||||
if (GPR_IS_CONST1(_Rt_))
|
||||
{
|
||||
//multicode(PROCESS_EE_CONSTT);
|
||||
if( MULT && _Rd_ ) GPR_DEL_CONST(_Rd_);
|
||||
if (MULT && _Rd_)
|
||||
GPR_DEL_CONST(_Rd_);
|
||||
return;
|
||||
}
|
||||
|
||||
multicode(0);
|
||||
if( MULT && _Rd_ ) GPR_DEL_CONST(_Rd_);
|
||||
if (MULT && _Rd_)
|
||||
GPR_DEL_CONST(_Rd_);
|
||||
}
|
||||
|
||||
// EE XMM allocation code
|
||||
|
@ -500,77 +582,96 @@ int eeRecompileCodeXMM(int xmminfo)
|
|||
int info = PROCESS_EE_XMM;
|
||||
|
||||
// flush consts
|
||||
if( xmminfo & XMMINFO_READT ) {
|
||||
if( GPR_IS_CONST1( _Rt_ ) && !(g_cpuFlushedConstReg&(1<<_Rt_)) ) {
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ]], g_cpuConstRegs[_Rt_].UL[0]);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ]], g_cpuConstRegs[_Rt_].UL[1]);
|
||||
g_cpuFlushedConstReg |= (1<<_Rt_);
|
||||
if (xmminfo & XMMINFO_READT)
|
||||
{
|
||||
if (GPR_IS_CONST1(_Rt_) && !(g_cpuFlushedConstReg & (1 << _Rt_)))
|
||||
{
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[_Rt_].UL[0]], g_cpuConstRegs[_Rt_].UL[0]);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[_Rt_].UL[1]], g_cpuConstRegs[_Rt_].UL[1]);
|
||||
g_cpuFlushedConstReg |= (1 << _Rt_);
|
||||
}
|
||||
}
|
||||
if( xmminfo & XMMINFO_READS) {
|
||||
if( GPR_IS_CONST1( _Rs_ ) && !(g_cpuFlushedConstReg&(1<<_Rs_)) ) {
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ]], g_cpuConstRegs[_Rs_].UL[0]);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[ _Rs_ ].UL[ 1 ]], g_cpuConstRegs[_Rs_].UL[1]);
|
||||
g_cpuFlushedConstReg |= (1<<_Rs_);
|
||||
if (xmminfo & XMMINFO_READS)
|
||||
{
|
||||
if (GPR_IS_CONST1(_Rs_) && !(g_cpuFlushedConstReg & (1 << _Rs_)))
|
||||
{
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[_Rs_].UL[0]], g_cpuConstRegs[_Rs_].UL[0]);
|
||||
xMOV(ptr32[&cpuRegs.GPR.r[_Rs_].UL[1]], g_cpuConstRegs[_Rs_].UL[1]);
|
||||
g_cpuFlushedConstReg |= (1 << _Rs_);
|
||||
}
|
||||
}
|
||||
|
||||
if( xmminfo & XMMINFO_WRITED ) {
|
||||
if (xmminfo & XMMINFO_WRITED)
|
||||
{
|
||||
GPR_DEL_CONST(_Rd_);
|
||||
}
|
||||
|
||||
// add needed
|
||||
if( xmminfo & (XMMINFO_READLO|XMMINFO_WRITELO) ) {
|
||||
if (xmminfo & (XMMINFO_READLO | XMMINFO_WRITELO))
|
||||
{
|
||||
_addNeededGPRtoXMMreg(XMMGPR_LO);
|
||||
}
|
||||
if( xmminfo & (XMMINFO_READHI|XMMINFO_WRITEHI) ) {
|
||||
if (xmminfo & (XMMINFO_READHI | XMMINFO_WRITEHI))
|
||||
{
|
||||
_addNeededGPRtoXMMreg(XMMGPR_HI);
|
||||
}
|
||||
if( xmminfo & XMMINFO_READS) _addNeededGPRtoXMMreg(_Rs_);
|
||||
if( xmminfo & XMMINFO_READT) _addNeededGPRtoXMMreg(_Rt_);
|
||||
if( xmminfo & XMMINFO_WRITED ) _addNeededGPRtoXMMreg(_Rd_);
|
||||
if (xmminfo & XMMINFO_READS)
|
||||
_addNeededGPRtoXMMreg(_Rs_);
|
||||
if (xmminfo & XMMINFO_READT)
|
||||
_addNeededGPRtoXMMreg(_Rt_);
|
||||
if (xmminfo & XMMINFO_WRITED)
|
||||
_addNeededGPRtoXMMreg(_Rd_);
|
||||
|
||||
// allocate
|
||||
if( xmminfo & XMMINFO_READS) {
|
||||
if (xmminfo & XMMINFO_READS)
|
||||
{
|
||||
int reg = _allocGPRtoXMMreg(-1, _Rs_, MODE_READ);
|
||||
info |= PROCESS_EE_SET_S(reg)|PROCESS_EE_SETMODES(reg);
|
||||
info |= PROCESS_EE_SET_S(reg) | PROCESS_EE_SETMODES(reg);
|
||||
}
|
||||
if( xmminfo & XMMINFO_READT) {
|
||||
if (xmminfo & XMMINFO_READT)
|
||||
{
|
||||
int reg = _allocGPRtoXMMreg(-1, _Rt_, MODE_READ);
|
||||
info |= PROCESS_EE_SET_T(reg)|PROCESS_EE_SETMODET(reg);
|
||||
info |= PROCESS_EE_SET_T(reg) | PROCESS_EE_SETMODET(reg);
|
||||
}
|
||||
|
||||
if( xmminfo & XMMINFO_WRITED ) {
|
||||
int readd = MODE_WRITE|((xmminfo&XMMINFO_READD)?((xmminfo&XMMINFO_READD_LO)?(MODE_READ|MODE_READHALF):MODE_READ):0);
|
||||
if (xmminfo & XMMINFO_WRITED)
|
||||
{
|
||||
int readd = MODE_WRITE | ((xmminfo & XMMINFO_READD) ? ((xmminfo & XMMINFO_READD_LO) ? (MODE_READ | MODE_READHALF) : MODE_READ) : 0);
|
||||
|
||||
int regd = _checkXMMreg(XMMTYPE_GPRREG, _Rd_, readd);
|
||||
|
||||
if( regd < 0 ) {
|
||||
if( !(xmminfo&XMMINFO_READD) && (xmminfo & XMMINFO_READT) && (_Rt_ == 0 || (g_pCurInstInfo->regs[_Rt_] & EEINST_LASTUSE) || !EEINST_ISLIVEXMM(_Rt_)) ) {
|
||||
if (regd < 0)
|
||||
{
|
||||
if (!(xmminfo & XMMINFO_READD) && (xmminfo & XMMINFO_READT) && (_Rt_ == 0 || (g_pCurInstInfo->regs[_Rt_] & EEINST_LASTUSE) || !EEINST_ISLIVEXMM(_Rt_)))
|
||||
{
|
||||
_freeXMMreg(EEREC_T);
|
||||
xmmregs[EEREC_T].inuse = 1;
|
||||
xmmregs[EEREC_T].reg = _Rd_;
|
||||
xmmregs[EEREC_T].mode = readd;
|
||||
regd = EEREC_T;
|
||||
}
|
||||
else if( !(xmminfo&XMMINFO_READD) && (xmminfo & XMMINFO_READS) && (_Rs_ == 0 || (g_pCurInstInfo->regs[_Rs_] & EEINST_LASTUSE) || !EEINST_ISLIVEXMM(_Rs_)) ) {
|
||||
else if (!(xmminfo & XMMINFO_READD) && (xmminfo & XMMINFO_READS) && (_Rs_ == 0 || (g_pCurInstInfo->regs[_Rs_] & EEINST_LASTUSE) || !EEINST_ISLIVEXMM(_Rs_)))
|
||||
{
|
||||
_freeXMMreg(EEREC_S);
|
||||
xmmregs[EEREC_S].inuse = 1;
|
||||
xmmregs[EEREC_S].reg = _Rd_;
|
||||
xmmregs[EEREC_S].mode = readd;
|
||||
regd = EEREC_S;
|
||||
}
|
||||
else regd = _allocGPRtoXMMreg(-1, _Rd_, readd);
|
||||
else
|
||||
regd = _allocGPRtoXMMreg(-1, _Rd_, readd);
|
||||
}
|
||||
|
||||
info |= PROCESS_EE_SET_D(regd);
|
||||
}
|
||||
if( xmminfo & (XMMINFO_READLO|XMMINFO_WRITELO) ) {
|
||||
info |= PROCESS_EE_SET_LO(_allocGPRtoXMMreg(-1, XMMGPR_LO, ((xmminfo&XMMINFO_READLO)?MODE_READ:0)|((xmminfo&XMMINFO_WRITELO)?MODE_WRITE:0)));
|
||||
if (xmminfo & (XMMINFO_READLO | XMMINFO_WRITELO))
|
||||
{
|
||||
info |= PROCESS_EE_SET_LO(_allocGPRtoXMMreg(-1, XMMGPR_LO, ((xmminfo & XMMINFO_READLO) ? MODE_READ : 0) | ((xmminfo & XMMINFO_WRITELO) ? MODE_WRITE : 0)));
|
||||
info |= PROCESS_EE_LO;
|
||||
}
|
||||
if( xmminfo & (XMMINFO_READHI|XMMINFO_WRITEHI) ) {
|
||||
info |= PROCESS_EE_SET_HI(_allocGPRtoXMMreg(-1, XMMGPR_HI, ((xmminfo&XMMINFO_READHI)?MODE_READ:0)|((xmminfo&XMMINFO_WRITEHI)?MODE_WRITE:0)));
|
||||
if (xmminfo & (XMMINFO_READHI | XMMINFO_WRITEHI))
|
||||
{
|
||||
info |= PROCESS_EE_SET_HI(_allocGPRtoXMMreg(-1, XMMGPR_HI, ((xmminfo & XMMINFO_READHI) ? MODE_READ : 0) | ((xmminfo & XMMINFO_WRITEHI) ? MODE_WRITE : 0)));
|
||||
info |= PROCESS_EE_HI;
|
||||
}
|
||||
return info;
|
||||
|
@ -581,56 +682,75 @@ int eeRecompileCodeXMM(int xmminfo)
|
|||
#define _Fs_ _Rd_
|
||||
#define _Fd_ _Sa_
|
||||
|
||||
#define PROCESS_EE_SETMODES_XMM(mmreg) ((xmmregs[mmreg].mode&MODE_WRITE)?PROCESS_EE_MODEWRITES:0)
|
||||
#define PROCESS_EE_SETMODET_XMM(mmreg) ((xmmregs[mmreg].mode&MODE_WRITE)?PROCESS_EE_MODEWRITET:0)
|
||||
#define PROCESS_EE_SETMODES_XMM(mmreg) ((xmmregs[mmreg].mode & MODE_WRITE) ? PROCESS_EE_MODEWRITES : 0)
|
||||
#define PROCESS_EE_SETMODET_XMM(mmreg) ((xmmregs[mmreg].mode & MODE_WRITE) ? PROCESS_EE_MODEWRITET : 0)
|
||||
|
||||
// rd = rs op rt
|
||||
void eeFPURecompileCode(R5900FNPTR_INFO xmmcode, R5900FNPTR fpucode, int xmminfo)
|
||||
{
|
||||
int mmregs=-1, mmregt=-1, mmregd=-1, mmregacc=-1;
|
||||
int mmregs = -1, mmregt = -1, mmregd = -1, mmregacc = -1;
|
||||
int info = PROCESS_EE_XMM;
|
||||
|
||||
if( xmminfo & XMMINFO_READS ) _addNeededFPtoXMMreg(_Fs_);
|
||||
if( xmminfo & XMMINFO_READT ) _addNeededFPtoXMMreg(_Ft_);
|
||||
if( xmminfo & (XMMINFO_WRITED|XMMINFO_READD) ) _addNeededFPtoXMMreg(_Fd_);
|
||||
if( xmminfo & (XMMINFO_WRITEACC|XMMINFO_READACC) ) _addNeededFPACCtoXMMreg();
|
||||
if (xmminfo & XMMINFO_READS)
|
||||
_addNeededFPtoXMMreg(_Fs_);
|
||||
if (xmminfo & XMMINFO_READT)
|
||||
_addNeededFPtoXMMreg(_Ft_);
|
||||
if (xmminfo & (XMMINFO_WRITED | XMMINFO_READD))
|
||||
_addNeededFPtoXMMreg(_Fd_);
|
||||
if (xmminfo & (XMMINFO_WRITEACC | XMMINFO_READACC))
|
||||
_addNeededFPACCtoXMMreg();
|
||||
|
||||
if( xmminfo & XMMINFO_READT ) {
|
||||
if( g_pCurInstInfo->fpuregs[_Ft_] & EEINST_LASTUSE ) mmregt = _checkXMMreg(XMMTYPE_FPREG, _Ft_, MODE_READ);
|
||||
else mmregt = _allocFPtoXMMreg(-1, _Ft_, MODE_READ);
|
||||
if (xmminfo & XMMINFO_READT)
|
||||
{
|
||||
if (g_pCurInstInfo->fpuregs[_Ft_] & EEINST_LASTUSE)
|
||||
mmregt = _checkXMMreg(XMMTYPE_FPREG, _Ft_, MODE_READ);
|
||||
else
|
||||
mmregt = _allocFPtoXMMreg(-1, _Ft_, MODE_READ);
|
||||
}
|
||||
|
||||
if( xmminfo & XMMINFO_READS ) {
|
||||
if( ( !(xmminfo & XMMINFO_READT) || (mmregt >= 0) ) && (g_pCurInstInfo->fpuregs[_Fs_] & EEINST_LASTUSE) ) {
|
||||
if (xmminfo & XMMINFO_READS)
|
||||
{
|
||||
if ((!(xmminfo & XMMINFO_READT) || (mmregt >= 0)) && (g_pCurInstInfo->fpuregs[_Fs_] & EEINST_LASTUSE))
|
||||
{
|
||||
mmregs = _checkXMMreg(XMMTYPE_FPREG, _Fs_, MODE_READ);
|
||||
}
|
||||
else mmregs = _allocFPtoXMMreg(-1, _Fs_, MODE_READ);
|
||||
else
|
||||
mmregs = _allocFPtoXMMreg(-1, _Fs_, MODE_READ);
|
||||
}
|
||||
|
||||
if( mmregs >= 0 ) info |= PROCESS_EE_SETMODES_XMM(mmregs);
|
||||
if( mmregt >= 0 ) info |= PROCESS_EE_SETMODET_XMM(mmregt);
|
||||
if (mmregs >= 0)
|
||||
info |= PROCESS_EE_SETMODES_XMM(mmregs);
|
||||
if (mmregt >= 0)
|
||||
info |= PROCESS_EE_SETMODET_XMM(mmregt);
|
||||
|
||||
if( xmminfo & XMMINFO_READD ) {
|
||||
pxAssert( xmminfo & XMMINFO_WRITED );
|
||||
if (xmminfo & XMMINFO_READD)
|
||||
{
|
||||
pxAssert(xmminfo & XMMINFO_WRITED);
|
||||
mmregd = _allocFPtoXMMreg(-1, _Fd_, MODE_READ);
|
||||
}
|
||||
|
||||
if( xmminfo & XMMINFO_READACC ) {
|
||||
if( !(xmminfo&XMMINFO_WRITEACC) && (g_pCurInstInfo->fpuregs[_Ft_] & EEINST_LASTUSE) )
|
||||
if (xmminfo & XMMINFO_READACC)
|
||||
{
|
||||
if (!(xmminfo & XMMINFO_WRITEACC) && (g_pCurInstInfo->fpuregs[_Ft_] & EEINST_LASTUSE))
|
||||
mmregacc = _checkXMMreg(XMMTYPE_FPACC, 0, MODE_READ);
|
||||
else mmregacc = _allocFPACCtoXMMreg(-1, MODE_READ);
|
||||
else
|
||||
mmregacc = _allocFPACCtoXMMreg(-1, MODE_READ);
|
||||
}
|
||||
|
||||
if( xmminfo & XMMINFO_WRITEACC ) {
|
||||
if (xmminfo & XMMINFO_WRITEACC)
|
||||
{
|
||||
|
||||
// check for last used, if so don't alloc a new XMM reg
|
||||
int readacc = MODE_WRITE|((xmminfo&XMMINFO_READACC)?MODE_READ:0);
|
||||
int readacc = MODE_WRITE | ((xmminfo & XMMINFO_READACC) ? MODE_READ : 0);
|
||||
|
||||
mmregacc = _checkXMMreg(XMMTYPE_FPACC, 0, readacc);
|
||||
|
||||
if( mmregacc < 0 ) {
|
||||
if( (xmminfo&XMMINFO_READT) && mmregt >= 0 && (FPUINST_LASTUSE(_Ft_) || !FPUINST_ISLIVE(_Ft_)) ) {
|
||||
if( FPUINST_ISLIVE(_Ft_) ) {
|
||||
if (mmregacc < 0)
|
||||
{
|
||||
if ((xmminfo & XMMINFO_READT) && mmregt >= 0 && (FPUINST_LASTUSE(_Ft_) || !FPUINST_ISLIVE(_Ft_)))
|
||||
{
|
||||
if (FPUINST_ISLIVE(_Ft_))
|
||||
{
|
||||
_freeXMMreg(mmregt);
|
||||
info &= ~PROCESS_EE_MODEWRITET;
|
||||
}
|
||||
|
@ -640,8 +760,10 @@ void eeFPURecompileCode(R5900FNPTR_INFO xmmcode, R5900FNPTR fpucode, int xmminfo
|
|||
xmmregs[mmregt].type = XMMTYPE_FPACC;
|
||||
mmregacc = mmregt;
|
||||
}
|
||||
else if( (xmminfo&XMMINFO_READS) && mmregs >= 0 && (FPUINST_LASTUSE(_Fs_) || !FPUINST_ISLIVE(_Fs_)) ) {
|
||||
if( FPUINST_ISLIVE(_Fs_) ) {
|
||||
else if ((xmminfo & XMMINFO_READS) && mmregs >= 0 && (FPUINST_LASTUSE(_Fs_) || !FPUINST_ISLIVE(_Fs_)))
|
||||
{
|
||||
if (FPUINST_ISLIVE(_Fs_))
|
||||
{
|
||||
_freeXMMreg(mmregs);
|
||||
info &= ~PROCESS_EE_MODEWRITES;
|
||||
}
|
||||
|
@ -651,20 +773,27 @@ void eeFPURecompileCode(R5900FNPTR_INFO xmmcode, R5900FNPTR fpucode, int xmminfo
|
|||
xmmregs[mmregs].type = XMMTYPE_FPACC;
|
||||
mmregacc = mmregs;
|
||||
}
|
||||
else mmregacc = _allocFPACCtoXMMreg(-1, readacc);
|
||||
else
|
||||
mmregacc = _allocFPACCtoXMMreg(-1, readacc);
|
||||
}
|
||||
|
||||
xmmregs[mmregacc].mode |= MODE_WRITE;
|
||||
}
|
||||
else if( xmminfo & XMMINFO_WRITED ) {
|
||||
else if (xmminfo & XMMINFO_WRITED)
|
||||
{
|
||||
// check for last used, if so don't alloc a new XMM reg
|
||||
int readd = MODE_WRITE|((xmminfo&XMMINFO_READD)?MODE_READ:0);
|
||||
if( xmminfo&XMMINFO_READD ) mmregd = _allocFPtoXMMreg(-1, _Fd_, readd);
|
||||
else mmregd = _checkXMMreg(XMMTYPE_FPREG, _Fd_, readd);
|
||||
int readd = MODE_WRITE | ((xmminfo & XMMINFO_READD) ? MODE_READ : 0);
|
||||
if (xmminfo & XMMINFO_READD)
|
||||
mmregd = _allocFPtoXMMreg(-1, _Fd_, readd);
|
||||
else
|
||||
mmregd = _checkXMMreg(XMMTYPE_FPREG, _Fd_, readd);
|
||||
|
||||
if( mmregd < 0 ) {
|
||||
if( (xmminfo&XMMINFO_READT) && mmregt >= 0 && (FPUINST_LASTUSE(_Ft_) || !FPUINST_ISLIVE(_Ft_)) ) {
|
||||
if( FPUINST_ISLIVE(_Ft_) ) {
|
||||
if (mmregd < 0)
|
||||
{
|
||||
if ((xmminfo & XMMINFO_READT) && mmregt >= 0 && (FPUINST_LASTUSE(_Ft_) || !FPUINST_ISLIVE(_Ft_)))
|
||||
{
|
||||
if (FPUINST_ISLIVE(_Ft_))
|
||||
{
|
||||
_freeXMMreg(mmregt);
|
||||
info &= ~PROCESS_EE_MODEWRITET;
|
||||
}
|
||||
|
@ -673,8 +802,10 @@ void eeFPURecompileCode(R5900FNPTR_INFO xmmcode, R5900FNPTR fpucode, int xmminfo
|
|||
xmmregs[mmregt].mode = readd;
|
||||
mmregd = mmregt;
|
||||
}
|
||||
else if( (xmminfo&XMMINFO_READS) && mmregs >= 0 && (FPUINST_LASTUSE(_Fs_) || !FPUINST_ISLIVE(_Fs_)) ) {
|
||||
if( FPUINST_ISLIVE(_Fs_) ) {
|
||||
else if ((xmminfo & XMMINFO_READS) && mmregs >= 0 && (FPUINST_LASTUSE(_Fs_) || !FPUINST_ISLIVE(_Fs_)))
|
||||
{
|
||||
if (FPUINST_ISLIVE(_Fs_))
|
||||
{
|
||||
_freeXMMreg(mmregs);
|
||||
info &= ~PROCESS_EE_MODEWRITES;
|
||||
}
|
||||
|
@ -683,8 +814,9 @@ void eeFPURecompileCode(R5900FNPTR_INFO xmmcode, R5900FNPTR fpucode, int xmminfo
|
|||
xmmregs[mmregs].mode = readd;
|
||||
mmregd = mmregs;
|
||||
}
|
||||
else if( (xmminfo&XMMINFO_READACC) && mmregacc >= 0 && (FPUINST_LASTUSE(XMMFPU_ACC) || !FPUINST_ISLIVE(XMMFPU_ACC)) ) {
|
||||
if( FPUINST_ISLIVE(XMMFPU_ACC) )
|
||||
else if ((xmminfo & XMMINFO_READACC) && mmregacc >= 0 && (FPUINST_LASTUSE(XMMFPU_ACC) || !FPUINST_ISLIVE(XMMFPU_ACC)))
|
||||
{
|
||||
if (FPUINST_ISLIVE(XMMFPU_ACC))
|
||||
_freeXMMreg(mmregacc);
|
||||
xmmregs[mmregacc].inuse = 1;
|
||||
xmmregs[mmregacc].reg = _Fd_;
|
||||
|
@ -692,31 +824,41 @@ void eeFPURecompileCode(R5900FNPTR_INFO xmmcode, R5900FNPTR fpucode, int xmminfo
|
|||
xmmregs[mmregacc].type = XMMTYPE_FPREG;
|
||||
mmregd = mmregacc;
|
||||
}
|
||||
else mmregd = _allocFPtoXMMreg(-1, _Fd_, readd);
|
||||
else
|
||||
mmregd = _allocFPtoXMMreg(-1, _Fd_, readd);
|
||||
}
|
||||
}
|
||||
|
||||
pxAssert( mmregs >= 0 || mmregt >= 0 || mmregd >= 0 || mmregacc >= 0 );
|
||||
pxAssert(mmregs >= 0 || mmregt >= 0 || mmregd >= 0 || mmregacc >= 0);
|
||||
|
||||
if( xmminfo & XMMINFO_WRITED ) {
|
||||
pxAssert( mmregd >= 0 );
|
||||
if (xmminfo & XMMINFO_WRITED)
|
||||
{
|
||||
pxAssert(mmregd >= 0);
|
||||
info |= PROCESS_EE_SET_D(mmregd);
|
||||
}
|
||||
if( xmminfo & (XMMINFO_WRITEACC|XMMINFO_READACC) ) {
|
||||
if( mmregacc >= 0 ) info |= PROCESS_EE_SET_ACC(mmregacc)|PROCESS_EE_ACC;
|
||||
else pxAssert( !(xmminfo&XMMINFO_WRITEACC));
|
||||
if (xmminfo & (XMMINFO_WRITEACC | XMMINFO_READACC))
|
||||
{
|
||||
if (mmregacc >= 0)
|
||||
info |= PROCESS_EE_SET_ACC(mmregacc) | PROCESS_EE_ACC;
|
||||
else
|
||||
pxAssert(!(xmminfo & XMMINFO_WRITEACC));
|
||||
}
|
||||
|
||||
if( xmminfo & XMMINFO_READS ) {
|
||||
if( mmregs >= 0 ) info |= PROCESS_EE_SET_S(mmregs)|PROCESS_EE_S;
|
||||
if (xmminfo & XMMINFO_READS)
|
||||
{
|
||||
if (mmregs >= 0)
|
||||
info |= PROCESS_EE_SET_S(mmregs) | PROCESS_EE_S;
|
||||
}
|
||||
if( xmminfo & XMMINFO_READT ) {
|
||||
if( mmregt >= 0 ) info |= PROCESS_EE_SET_T(mmregt)|PROCESS_EE_T;
|
||||
if (xmminfo & XMMINFO_READT)
|
||||
{
|
||||
if (mmregt >= 0)
|
||||
info |= PROCESS_EE_SET_T(mmregt) | PROCESS_EE_T;
|
||||
}
|
||||
|
||||
// at least one must be in xmm
|
||||
if( (xmminfo & (XMMINFO_READS|XMMINFO_READT)) == (XMMINFO_READS|XMMINFO_READT) ) {
|
||||
pxAssert( mmregs >= 0 || mmregt >= 0 );
|
||||
if ((xmminfo & (XMMINFO_READS | XMMINFO_READT)) == (XMMINFO_READS | XMMINFO_READT))
|
||||
{
|
||||
pxAssert(mmregs >= 0 || mmregt >= 0);
|
||||
}
|
||||
|
||||
xmmcode(info);
|
||||
|
|
|
@ -37,22 +37,22 @@ protected:
|
|||
bool m_free;
|
||||
|
||||
public:
|
||||
iAllocRegSSE() :
|
||||
m_reg( xmm0 ),
|
||||
m_free( !!_hasFreeXMMreg() )
|
||||
iAllocRegSSE()
|
||||
: m_reg(xmm0)
|
||||
, m_free(!!_hasFreeXMMreg())
|
||||
{
|
||||
if( m_free )
|
||||
m_reg = xRegisterSSE( _allocTempXMMreg( XMMT_INT, -1 ) );
|
||||
if (m_free)
|
||||
m_reg = xRegisterSSE(_allocTempXMMreg(XMMT_INT, -1));
|
||||
else
|
||||
xStoreReg( m_reg );
|
||||
xStoreReg(m_reg);
|
||||
}
|
||||
|
||||
~iAllocRegSSE()
|
||||
{
|
||||
if( m_free )
|
||||
_freeXMMreg( m_reg.Id );
|
||||
if (m_free)
|
||||
_freeXMMreg(m_reg.Id);
|
||||
else
|
||||
xRestoreReg( m_reg );
|
||||
xRestoreReg(m_reg);
|
||||
}
|
||||
|
||||
operator xRegisterSSE() const { return m_reg; }
|
||||
|
@ -62,37 +62,38 @@ public:
|
|||
// This instruction always uses an SSE register, even if all registers are allocated! It
|
||||
// saves an SSE register to memory first, performs the copy, and restores the register.
|
||||
//
|
||||
static void iMOV128_SSE( const xIndirectVoid& destRm, const xIndirectVoid& srcRm )
|
||||
static void iMOV128_SSE(const xIndirectVoid& destRm, const xIndirectVoid& srcRm)
|
||||
{
|
||||
iAllocRegSSE reg;
|
||||
xMOVDQA( reg, srcRm );
|
||||
xMOVDQA( destRm, reg );
|
||||
xMOVDQA(reg, srcRm);
|
||||
xMOVDQA(destRm, reg);
|
||||
}
|
||||
|
||||
// Moves 64 bits of data from point B to point A, using either SSE, or x86 registers
|
||||
//
|
||||
static void iMOV64_Smart( const xIndirectVoid& destRm, const xIndirectVoid& srcRm )
|
||||
static void iMOV64_Smart(const xIndirectVoid& destRm, const xIndirectVoid& srcRm)
|
||||
{
|
||||
if (wordsize == 8) {
|
||||
if (wordsize == 8)
|
||||
{
|
||||
xMOV(rax, srcRm);
|
||||
xMOV(destRm, rax);
|
||||
return;
|
||||
}
|
||||
|
||||
if( _hasFreeXMMreg() )
|
||||
if (_hasFreeXMMreg())
|
||||
{
|
||||
// Move things using MOVLPS:
|
||||
xRegisterSSE reg( _allocTempXMMreg( XMMT_INT, -1 ) );
|
||||
xMOVL.PS( reg, srcRm );
|
||||
xMOVL.PS( destRm, reg );
|
||||
_freeXMMreg( reg.Id );
|
||||
xRegisterSSE reg(_allocTempXMMreg(XMMT_INT, -1));
|
||||
xMOVL.PS(reg, srcRm);
|
||||
xMOVL.PS(destRm, reg);
|
||||
_freeXMMreg(reg.Id);
|
||||
return;
|
||||
}
|
||||
|
||||
xMOV( eax, srcRm );
|
||||
xMOV( destRm, eax );
|
||||
xMOV( eax, srcRm+4 );
|
||||
xMOV( destRm+4, eax );
|
||||
xMOV(eax, srcRm);
|
||||
xMOV(destRm, eax);
|
||||
xMOV(eax, srcRm + 4);
|
||||
xMOV(destRm + 4, eax);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -159,80 +160,80 @@ namespace vtlb_private
|
|||
// Warning dirty ebx (in case someone got the very bad idea to move this code)
|
||||
EE::Profiler.EmitMem();
|
||||
|
||||
xMOV( eax, arg1regd );
|
||||
xSHR( eax, VTLB_PAGE_BITS );
|
||||
xMOV( rax, ptrNative[xComplexAddress(rbx, vtlbdata.vmap, rax*wordsize)] );
|
||||
u32* writeback = xLEA_Writeback( rbx );
|
||||
xADD( arg1reg, rax );
|
||||
xMOV(eax, arg1regd);
|
||||
xSHR(eax, VTLB_PAGE_BITS);
|
||||
xMOV(rax, ptrNative[xComplexAddress(rbx, vtlbdata.vmap, rax * wordsize)]);
|
||||
u32* writeback = xLEA_Writeback(rbx);
|
||||
xADD(arg1reg, rax);
|
||||
|
||||
return writeback;
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------------------
|
||||
static void DynGen_DirectRead( u32 bits, bool sign )
|
||||
static void DynGen_DirectRead(u32 bits, bool sign)
|
||||
{
|
||||
switch( bits )
|
||||
switch (bits)
|
||||
{
|
||||
case 8:
|
||||
if( sign )
|
||||
xMOVSX( eax, ptr8[arg1reg] );
|
||||
if (sign)
|
||||
xMOVSX(eax, ptr8[arg1reg]);
|
||||
else
|
||||
xMOVZX( eax, ptr8[arg1reg] );
|
||||
break;
|
||||
xMOVZX(eax, ptr8[arg1reg]);
|
||||
break;
|
||||
|
||||
case 16:
|
||||
if( sign )
|
||||
xMOVSX( eax, ptr16[arg1reg] );
|
||||
if (sign)
|
||||
xMOVSX(eax, ptr16[arg1reg]);
|
||||
else
|
||||
xMOVZX( eax, ptr16[arg1reg] );
|
||||
break;
|
||||
xMOVZX(eax, ptr16[arg1reg]);
|
||||
break;
|
||||
|
||||
case 32:
|
||||
xMOV( eax, ptr[arg1reg] );
|
||||
break;
|
||||
xMOV(eax, ptr[arg1reg]);
|
||||
break;
|
||||
|
||||
case 64:
|
||||
iMOV64_Smart( ptr[arg2reg], ptr[arg1reg] );
|
||||
break;
|
||||
iMOV64_Smart(ptr[arg2reg], ptr[arg1reg]);
|
||||
break;
|
||||
|
||||
case 128:
|
||||
iMOV128_SSE( ptr[arg2reg], ptr[arg1reg] );
|
||||
break;
|
||||
iMOV128_SSE(ptr[arg2reg], ptr[arg1reg]);
|
||||
break;
|
||||
|
||||
jNO_DEFAULT
|
||||
jNO_DEFAULT
|
||||
}
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------------------
|
||||
static void DynGen_DirectWrite( u32 bits )
|
||||
static void DynGen_DirectWrite(u32 bits)
|
||||
{
|
||||
// TODO: x86Emitter can't use dil
|
||||
switch(bits)
|
||||
switch (bits)
|
||||
{
|
||||
//8 , 16, 32 : data on EDX
|
||||
case 8:
|
||||
xMOV( edx, arg2regd );
|
||||
xMOV( ptr[arg1reg], dl );
|
||||
break;
|
||||
xMOV(edx, arg2regd);
|
||||
xMOV(ptr[arg1reg], dl);
|
||||
break;
|
||||
|
||||
case 16:
|
||||
xMOV( ptr[arg1reg], xRegister16(arg2reg) );
|
||||
break;
|
||||
xMOV(ptr[arg1reg], xRegister16(arg2reg));
|
||||
break;
|
||||
|
||||
case 32:
|
||||
xMOV( ptr[arg1reg], arg2regd );
|
||||
break;
|
||||
xMOV(ptr[arg1reg], arg2regd);
|
||||
break;
|
||||
|
||||
case 64:
|
||||
iMOV64_Smart( ptr[arg1reg], ptr[arg2reg] );
|
||||
break;
|
||||
iMOV64_Smart(ptr[arg1reg], ptr[arg2reg]);
|
||||
break;
|
||||
|
||||
case 128:
|
||||
iMOV128_SSE( ptr[arg1reg], ptr[arg2reg] );
|
||||
break;
|
||||
iMOV128_SSE(ptr[arg1reg], ptr[arg2reg]);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
} // namespace vtlb_private
|
||||
|
||||
// ------------------------------------------------------------------------
|
||||
// allocate one page for our naked indirect dispatcher function.
|
||||
|
@ -246,7 +247,7 @@ static __pagealigned u8 m_IndirectDispatchers[__pagesize];
|
|||
// mode - 0 for read, 1 for write!
|
||||
// operandsize - 0 thru 4 represents 8, 16, 32, 64, and 128 bits.
|
||||
//
|
||||
static u8* GetIndirectDispatcherPtr( int mode, int operandsize, int sign = 0 )
|
||||
static u8* GetIndirectDispatcherPtr(int mode, int operandsize, int sign = 0)
|
||||
{
|
||||
assert(mode || operandsize >= 2 ? !sign : true);
|
||||
|
||||
|
@ -259,46 +260,50 @@ static u8* GetIndirectDispatcherPtr( int mode, int operandsize, int sign = 0 )
|
|||
// Gregory: a 32 bytes alignment is likely enough and more cache friendly
|
||||
const int A = 32;
|
||||
|
||||
return &m_IndirectDispatchers[(mode*(7*A)) + (sign*5*A) + (operandsize*A)];
|
||||
return &m_IndirectDispatchers[(mode * (7 * A)) + (sign * 5 * A) + (operandsize * A)];
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------------------
|
||||
// Generates a JS instruction that targets the appropriate templated instance of
|
||||
// the vtlb Indirect Dispatcher.
|
||||
//
|
||||
static void DynGen_IndirectDispatch( int mode, int bits, bool sign = false )
|
||||
static void DynGen_IndirectDispatch(int mode, int bits, bool sign = false)
|
||||
{
|
||||
int szidx = 0;
|
||||
switch( bits )
|
||||
switch (bits)
|
||||
{
|
||||
case 8: szidx=0; break;
|
||||
case 16: szidx=1; break;
|
||||
case 32: szidx=2; break;
|
||||
case 64: szidx=3; break;
|
||||
case 128: szidx=4; break;
|
||||
case 8: szidx = 0; break;
|
||||
case 16: szidx = 1; break;
|
||||
case 32: szidx = 2; break;
|
||||
case 64: szidx = 3; break;
|
||||
case 128: szidx = 4; break;
|
||||
jNO_DEFAULT;
|
||||
}
|
||||
xJS( GetIndirectDispatcherPtr( mode, szidx, sign ) );
|
||||
xJS(GetIndirectDispatcherPtr(mode, szidx, sign));
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------------------
|
||||
// Generates the various instances of the indirect dispatchers
|
||||
// In: arg1reg: vtlb entry, arg2reg: data ptr (if mode >= 64), rbx: function return ptr
|
||||
// Out: eax: result (if mode < 64)
|
||||
static void DynGen_IndirectTlbDispatcher( int mode, int bits, bool sign )
|
||||
static void DynGen_IndirectTlbDispatcher(int mode, int bits, bool sign)
|
||||
{
|
||||
xMOVZX( eax, al );
|
||||
if (wordsize != 8) xSUB( arg1regd, 0x80000000 );
|
||||
xSUB( arg1regd, eax );
|
||||
xMOVZX(eax, al);
|
||||
if (wordsize != 8)
|
||||
xSUB(arg1regd, 0x80000000);
|
||||
xSUB(arg1regd, eax);
|
||||
|
||||
// jump to the indirect handler, which is a __fastcall C++ function.
|
||||
// [ecx is address, edx is data]
|
||||
sptr table = (sptr)vtlbdata.RWFT[bits][mode];
|
||||
if (table == (s32)table) {
|
||||
xFastCall(ptrNative[(rax*wordsize) + table], arg1reg, arg2reg);
|
||||
} else {
|
||||
if (table == (s32)table)
|
||||
{
|
||||
xFastCall(ptrNative[(rax * wordsize) + table], arg1reg, arg2reg);
|
||||
}
|
||||
else
|
||||
{
|
||||
xLEA(arg3reg, ptr[(void*)table]);
|
||||
xFastCall(ptrNative[(rax*wordsize) + arg3reg], arg1reg, arg2reg);
|
||||
xFastCall(ptrNative[(rax * wordsize) + arg3reg], arg1reg, arg2reg);
|
||||
}
|
||||
|
||||
if (!mode)
|
||||
|
@ -319,7 +324,7 @@ static void DynGen_IndirectTlbDispatcher( int mode, int bits, bool sign )
|
|||
}
|
||||
}
|
||||
|
||||
xJMP( rbx );
|
||||
xJMP(rbx);
|
||||
}
|
||||
|
||||
// One-time initialization procedure. Multiple subsequent calls during the lifespan of the
|
||||
|
@ -328,34 +333,35 @@ static void DynGen_IndirectTlbDispatcher( int mode, int bits, bool sign )
|
|||
void vtlb_dynarec_init()
|
||||
{
|
||||
static bool hasBeenCalled = false;
|
||||
if (hasBeenCalled) return;
|
||||
if (hasBeenCalled)
|
||||
return;
|
||||
hasBeenCalled = true;
|
||||
|
||||
// In case init gets called multiple times:
|
||||
HostSys::MemProtectStatic( m_IndirectDispatchers, PageAccess_ReadWrite() );
|
||||
HostSys::MemProtectStatic(m_IndirectDispatchers, PageAccess_ReadWrite());
|
||||
|
||||
// clear the buffer to 0xcc (easier debugging).
|
||||
memset( m_IndirectDispatchers, 0xcc, __pagesize);
|
||||
memset(m_IndirectDispatchers, 0xcc, __pagesize);
|
||||
|
||||
for( int mode=0; mode<2; ++mode )
|
||||
for (int mode = 0; mode < 2; ++mode)
|
||||
{
|
||||
for( int bits=0; bits<5; ++bits )
|
||||
for (int bits = 0; bits < 5; ++bits)
|
||||
{
|
||||
for (int sign = 0; sign < (!mode && bits < 2 ? 2 : 1); sign++)
|
||||
{
|
||||
xSetPtr( GetIndirectDispatcherPtr( mode, bits, !!sign ) );
|
||||
xSetPtr(GetIndirectDispatcherPtr(mode, bits, !!sign));
|
||||
|
||||
DynGen_IndirectTlbDispatcher( mode, bits, !!sign );
|
||||
DynGen_IndirectTlbDispatcher(mode, bits, !!sign);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
HostSys::MemProtectStatic( m_IndirectDispatchers, PageAccess_ExecOnly() );
|
||||
HostSys::MemProtectStatic(m_IndirectDispatchers, PageAccess_ExecOnly());
|
||||
|
||||
Perf::any.map((uptr)m_IndirectDispatchers, __pagesize, "TLB Dispatcher");
|
||||
}
|
||||
|
||||
static void vtlb_SetWriteback(u32 *writeback)
|
||||
static void vtlb_SetWriteback(u32* writeback)
|
||||
{
|
||||
uptr val = (uptr)xGetPtr();
|
||||
if (wordsize == 8)
|
||||
|
@ -371,14 +377,14 @@ static void vtlb_SetWriteback(u32 *writeback)
|
|||
// Dynarec Load Implementations
|
||||
void vtlb_DynGenRead64(u32 bits)
|
||||
{
|
||||
pxAssume( bits == 64 || bits == 128 );
|
||||
pxAssume(bits == 64 || bits == 128);
|
||||
|
||||
u32* writeback = DynGen_PrepRegs();
|
||||
|
||||
DynGen_IndirectDispatch( 0, bits );
|
||||
DynGen_DirectRead( bits, false );
|
||||
DynGen_IndirectDispatch(0, bits);
|
||||
DynGen_DirectRead(bits, false);
|
||||
|
||||
vtlb_SetWriteback(writeback); // return target for indirect's call/ret
|
||||
vtlb_SetWriteback(writeback); // return target for indirect's call/ret
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------------------
|
||||
|
@ -387,12 +393,12 @@ void vtlb_DynGenRead64(u32 bits)
|
|||
// Returns read value in eax.
|
||||
void vtlb_DynGenRead32(u32 bits, bool sign)
|
||||
{
|
||||
pxAssume( bits <= 32 );
|
||||
pxAssume(bits <= 32);
|
||||
|
||||
u32* writeback = DynGen_PrepRegs();
|
||||
|
||||
DynGen_IndirectDispatch( 0, bits, sign && bits < 32 );
|
||||
DynGen_DirectRead( bits, sign );
|
||||
DynGen_IndirectDispatch(0, bits, sign && bits < 32);
|
||||
DynGen_DirectRead(bits, sign);
|
||||
|
||||
vtlb_SetWriteback(writeback);
|
||||
}
|
||||
|
@ -400,25 +406,25 @@ void vtlb_DynGenRead32(u32 bits, bool sign)
|
|||
// ------------------------------------------------------------------------
|
||||
// TLB lookup is performed in const, with the assumption that the COP0/TLB will clear the
|
||||
// recompiler if the TLB is changed.
|
||||
void vtlb_DynGenRead64_Const( u32 bits, u32 addr_const )
|
||||
void vtlb_DynGenRead64_Const(u32 bits, u32 addr_const)
|
||||
{
|
||||
EE::Profiler.EmitConstMem(addr_const);
|
||||
|
||||
auto vmv = vtlbdata.vmap[addr_const>>VTLB_PAGE_BITS];
|
||||
if( !vmv.isHandler(addr_const) )
|
||||
auto vmv = vtlbdata.vmap[addr_const >> VTLB_PAGE_BITS];
|
||||
if (!vmv.isHandler(addr_const))
|
||||
{
|
||||
auto ppf = vmv.assumePtr(addr_const);
|
||||
switch( bits )
|
||||
switch (bits)
|
||||
{
|
||||
case 64:
|
||||
iMOV64_Smart( ptr[arg2reg], ptr[(void*)ppf] );
|
||||
break;
|
||||
iMOV64_Smart(ptr[arg2reg], ptr[(void*)ppf]);
|
||||
break;
|
||||
|
||||
case 128:
|
||||
iMOV128_SSE( ptr[arg2reg], ptr[(void*)ppf] );
|
||||
break;
|
||||
iMOV128_SSE(ptr[arg2reg], ptr[(void*)ppf]);
|
||||
break;
|
||||
|
||||
jNO_DEFAULT
|
||||
jNO_DEFAULT
|
||||
}
|
||||
}
|
||||
else
|
||||
|
@ -427,14 +433,14 @@ void vtlb_DynGenRead64_Const( u32 bits, u32 addr_const )
|
|||
u32 paddr = vmv.assumeHandlerGetPAddr(addr_const);
|
||||
|
||||
int szidx = 0;
|
||||
switch( bits )
|
||||
switch (bits)
|
||||
{
|
||||
case 64: szidx=3; break;
|
||||
case 128: szidx=4; break;
|
||||
case 64: szidx = 3; break;
|
||||
case 128: szidx = 4; break;
|
||||
}
|
||||
|
||||
iFlushCall(FLUSH_FULLVTLB);
|
||||
xFastCall( vmv.assumeHandlerGetRaw(szidx, 0), paddr, arg2reg );
|
||||
xFastCall(vmv.assumeHandlerGetRaw(szidx, 0), paddr, arg2reg);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -446,33 +452,33 @@ void vtlb_DynGenRead64_Const( u32 bits, u32 addr_const )
|
|||
// TLB lookup is performed in const, with the assumption that the COP0/TLB will clear the
|
||||
// recompiler if the TLB is changed.
|
||||
//
|
||||
void vtlb_DynGenRead32_Const( u32 bits, bool sign, u32 addr_const )
|
||||
void vtlb_DynGenRead32_Const(u32 bits, bool sign, u32 addr_const)
|
||||
{
|
||||
EE::Profiler.EmitConstMem(addr_const);
|
||||
|
||||
auto vmv = vtlbdata.vmap[addr_const>>VTLB_PAGE_BITS];
|
||||
if( !vmv.isHandler(addr_const) )
|
||||
auto vmv = vtlbdata.vmap[addr_const >> VTLB_PAGE_BITS];
|
||||
if (!vmv.isHandler(addr_const))
|
||||
{
|
||||
auto ppf = vmv.assumePtr(addr_const);
|
||||
switch( bits )
|
||||
switch (bits)
|
||||
{
|
||||
case 8:
|
||||
if( sign )
|
||||
xMOVSX( eax, ptr8[(u8*)ppf] );
|
||||
if (sign)
|
||||
xMOVSX(eax, ptr8[(u8*)ppf]);
|
||||
else
|
||||
xMOVZX( eax, ptr8[(u8*)ppf] );
|
||||
break;
|
||||
xMOVZX(eax, ptr8[(u8*)ppf]);
|
||||
break;
|
||||
|
||||
case 16:
|
||||
if( sign )
|
||||
xMOVSX( eax, ptr16[(u16*)ppf] );
|
||||
if (sign)
|
||||
xMOVSX(eax, ptr16[(u16*)ppf]);
|
||||
else
|
||||
xMOVZX( eax, ptr16[(u16*)ppf] );
|
||||
break;
|
||||
xMOVZX(eax, ptr16[(u16*)ppf]);
|
||||
break;
|
||||
|
||||
case 32:
|
||||
xMOV( eax, ptr32[(u32*)ppf] );
|
||||
break;
|
||||
xMOV(eax, ptr32[(u32*)ppf]);
|
||||
break;
|
||||
}
|
||||
}
|
||||
else
|
||||
|
@ -481,38 +487,38 @@ void vtlb_DynGenRead32_Const( u32 bits, bool sign, u32 addr_const )
|
|||
u32 paddr = vmv.assumeHandlerGetPAddr(addr_const);
|
||||
|
||||
int szidx = 0;
|
||||
switch( bits )
|
||||
switch (bits)
|
||||
{
|
||||
case 8: szidx=0; break;
|
||||
case 16: szidx=1; break;
|
||||
case 32: szidx=2; break;
|
||||
case 8: szidx = 0; break;
|
||||
case 16: szidx = 1; break;
|
||||
case 32: szidx = 2; break;
|
||||
}
|
||||
|
||||
// Shortcut for the INTC_STAT register, which many games like to spin on heavily.
|
||||
if( (bits == 32) && !EmuConfig.Speedhacks.IntcStat && (paddr == INTC_STAT) )
|
||||
if ((bits == 32) && !EmuConfig.Speedhacks.IntcStat && (paddr == INTC_STAT))
|
||||
{
|
||||
xMOV( eax, ptr[&psHu32( INTC_STAT )] );
|
||||
xMOV(eax, ptr[&psHu32(INTC_STAT)]);
|
||||
}
|
||||
else
|
||||
{
|
||||
iFlushCall(FLUSH_FULLVTLB);
|
||||
xFastCall( vmv.assumeHandlerGetRaw(szidx, false), paddr );
|
||||
xFastCall(vmv.assumeHandlerGetRaw(szidx, false), paddr);
|
||||
|
||||
// perform sign extension on the result:
|
||||
|
||||
if( bits==8 )
|
||||
if (bits == 8)
|
||||
{
|
||||
if( sign )
|
||||
xMOVSX( eax, al );
|
||||
if (sign)
|
||||
xMOVSX(eax, al);
|
||||
else
|
||||
xMOVZX( eax, al );
|
||||
xMOVZX(eax, al);
|
||||
}
|
||||
else if( bits==16 )
|
||||
else if (bits == 16)
|
||||
{
|
||||
if( sign )
|
||||
xMOVSX( eax, ax );
|
||||
if (sign)
|
||||
xMOVSX(eax, ax);
|
||||
else
|
||||
xMOVZX( eax, ax );
|
||||
xMOVZX(eax, ax);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -525,8 +531,8 @@ void vtlb_DynGenWrite(u32 sz)
|
|||
{
|
||||
u32* writeback = DynGen_PrepRegs();
|
||||
|
||||
DynGen_IndirectDispatch( 1, sz );
|
||||
DynGen_DirectWrite( sz );
|
||||
DynGen_IndirectDispatch(1, sz);
|
||||
DynGen_DirectWrite(sz);
|
||||
|
||||
vtlb_SetWriteback(writeback);
|
||||
}
|
||||
|
@ -536,40 +542,39 @@ void vtlb_DynGenWrite(u32 sz)
|
|||
// Generates code for a store instruction, where the address is a known constant.
|
||||
// TLB lookup is performed in const, with the assumption that the COP0/TLB will clear the
|
||||
// recompiler if the TLB is changed.
|
||||
void vtlb_DynGenWrite_Const( u32 bits, u32 addr_const )
|
||||
void vtlb_DynGenWrite_Const(u32 bits, u32 addr_const)
|
||||
{
|
||||
EE::Profiler.EmitConstMem(addr_const);
|
||||
|
||||
auto vmv = vtlbdata.vmap[addr_const>>VTLB_PAGE_BITS];
|
||||
if( !vmv.isHandler(addr_const) )
|
||||
auto vmv = vtlbdata.vmap[addr_const >> VTLB_PAGE_BITS];
|
||||
if (!vmv.isHandler(addr_const))
|
||||
{
|
||||
// TODO: x86Emitter can't use dil
|
||||
auto ppf = vmv.assumePtr(addr_const);
|
||||
switch(bits)
|
||||
switch (bits)
|
||||
{
|
||||
//8 , 16, 32 : data on arg2
|
||||
case 8:
|
||||
xMOV( edx, arg2regd );
|
||||
xMOV( ptr[(void*)ppf], dl );
|
||||
break;
|
||||
xMOV(edx, arg2regd);
|
||||
xMOV(ptr[(void*)ppf], dl);
|
||||
break;
|
||||
|
||||
case 16:
|
||||
xMOV( ptr[(void*)ppf], xRegister16(arg2reg) );
|
||||
break;
|
||||
xMOV(ptr[(void*)ppf], xRegister16(arg2reg));
|
||||
break;
|
||||
|
||||
case 32:
|
||||
xMOV( ptr[(void*)ppf], arg2regd );
|
||||
break;
|
||||
xMOV(ptr[(void*)ppf], arg2regd);
|
||||
break;
|
||||
|
||||
case 64:
|
||||
iMOV64_Smart( ptr[(void*)ppf], ptr[arg2reg] );
|
||||
break;
|
||||
iMOV64_Smart(ptr[(void*)ppf], ptr[arg2reg]);
|
||||
break;
|
||||
|
||||
case 128:
|
||||
iMOV128_SSE( ptr[(void*)ppf], ptr[arg2reg] );
|
||||
break;
|
||||
iMOV128_SSE(ptr[(void*)ppf], ptr[arg2reg]);
|
||||
break;
|
||||
}
|
||||
|
||||
}
|
||||
else
|
||||
{
|
||||
|
@ -577,17 +582,17 @@ void vtlb_DynGenWrite_Const( u32 bits, u32 addr_const )
|
|||
u32 paddr = vmv.assumeHandlerGetPAddr(addr_const);
|
||||
|
||||
int szidx = 0;
|
||||
switch( bits )
|
||||
switch (bits)
|
||||
{
|
||||
case 8: szidx=0; break;
|
||||
case 16: szidx=1; break;
|
||||
case 32: szidx=2; break;
|
||||
case 64: szidx=3; break;
|
||||
case 128: szidx=4; break;
|
||||
case 8: szidx=0; break;
|
||||
case 16: szidx=1; break;
|
||||
case 32: szidx=2; break;
|
||||
case 64: szidx=3; break;
|
||||
case 128: szidx=4; break;
|
||||
}
|
||||
|
||||
iFlushCall(FLUSH_FULLVTLB);
|
||||
xFastCall( vmv.assumeHandlerGetRaw(szidx, true), paddr, arg2reg );
|
||||
xFastCall(vmv.assumeHandlerGetRaw(szidx, true), paddr, arg2reg);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -603,7 +608,7 @@ void vtlb_DynV2P()
|
|||
xAND(ecx, VTLB_PAGE_MASK); // vaddr & VTLB_PAGE_MASK
|
||||
|
||||
xSHR(eax, VTLB_PAGE_BITS);
|
||||
xMOV(eax, ptr[xComplexAddress(rdx, vtlbdata.ppmap, rax*4)]); //vtlbdata.ppmap[vaddr>>VTLB_PAGE_BITS];
|
||||
xMOV(eax, ptr[xComplexAddress(rdx, vtlbdata.ppmap, rax * 4)]); // vtlbdata.ppmap[vaddr >> VTLB_PAGE_BITS];
|
||||
|
||||
xOR(eax, ecx);
|
||||
}
|
||||
|
|
|
@ -39,9 +39,9 @@ void mVUreserveCache(microVU& mVU)
|
|||
mVU.cache_reserve = new RecompiledCodeReserve(pxsFmt("Micro VU%u Recompiler Cache", mVU.index), _16mb);
|
||||
mVU.cache_reserve->SetProfilerName(pxsFmt("mVU%urec", mVU.index));
|
||||
|
||||
mVU.cache = mVU.index ?
|
||||
(u8*)mVU.cache_reserve->Reserve(GetVmMemory().MainMemory(), HostMemoryMap::mVU1recOffset, mVU.cacheSize * _1mb) :
|
||||
(u8*)mVU.cache_reserve->Reserve(GetVmMemory().MainMemory(), HostMemoryMap::mVU0recOffset, mVU.cacheSize * _1mb);
|
||||
mVU.cache = mVU.index
|
||||
? (u8*)mVU.cache_reserve->Reserve(GetVmMemory().MainMemory(), HostMemoryMap::mVU1recOffset, mVU.cacheSize * _1mb)
|
||||
: (u8*)mVU.cache_reserve->Reserve(GetVmMemory().MainMemory(), HostMemoryMap::mVU0recOffset, mVU.cacheSize * _1mb);
|
||||
|
||||
mVU.cache_reserve->ThrowIfNotOk();
|
||||
}
|
||||
|
@ -55,17 +55,17 @@ void mVUinit(microVU& mVU, uint vuIndex)
|
|||
|
||||
memzero(mVU.prog);
|
||||
|
||||
mVU.index = vuIndex;
|
||||
mVU.cop2 = 0;
|
||||
mVU.vuMemSize = (mVU.index ? 0x4000 : 0x1000);
|
||||
mVU.index = vuIndex;
|
||||
mVU.cop2 = 0;
|
||||
mVU.vuMemSize = (mVU.index ? 0x4000 : 0x1000);
|
||||
mVU.microMemSize = (mVU.index ? 0x4000 : 0x1000);
|
||||
mVU.progSize = (mVU.index ? 0x4000 : 0x1000) / 4;
|
||||
mVU.progMemMask = mVU.progSize - 1;
|
||||
mVU.cacheSize = vuIndex ? mVU1cacheReserve : mVU0cacheReserve;
|
||||
mVU.cache = NULL;
|
||||
mVU.dispCache = NULL;
|
||||
mVU.startFunct = NULL;
|
||||
mVU.exitFunct = NULL;
|
||||
mVU.progSize = (mVU.index ? 0x4000 : 0x1000) / 4;
|
||||
mVU.progMemMask = mVU.progSize-1;
|
||||
mVU.cacheSize = vuIndex ? mVU1cacheReserve : mVU0cacheReserve;
|
||||
mVU.cache = NULL;
|
||||
mVU.dispCache = NULL;
|
||||
mVU.startFunct = NULL;
|
||||
mVU.exitFunct = NULL;
|
||||
|
||||
mVUreserveCache(mVU);
|
||||
|
||||
|
@ -110,17 +110,17 @@ void mVUreset(microVU& mVU, bool resetReserve)
|
|||
mVU.profiler.Reset(mVU.index);
|
||||
|
||||
// Program Variables
|
||||
mVU.prog.cleared = 1;
|
||||
mVU.prog.isSame = -1;
|
||||
mVU.prog.cur = NULL;
|
||||
mVU.prog.total = 0;
|
||||
mVU.prog.curFrame = 0;
|
||||
mVU.prog.cleared = 1;
|
||||
mVU.prog.isSame = -1;
|
||||
mVU.prog.cur = NULL;
|
||||
mVU.prog.total = 0;
|
||||
mVU.prog.curFrame = 0;
|
||||
|
||||
// Setup Dynarec Cache Limits for Each Program
|
||||
u8* z = mVU.cache;
|
||||
mVU.prog.x86start = z;
|
||||
mVU.prog.x86ptr = z;
|
||||
mVU.prog.x86end = z + ((mVU.cacheSize - mVUcacheSafeZone) * _1mb);
|
||||
mVU.prog.x86ptr = z;
|
||||
mVU.prog.x86end = z + ((mVU.cacheSize - mVUcacheSafeZone) * _1mb);
|
||||
//memset(mVU.prog.x86start, 0xcc, mVU.cacheSize*_1mb);
|
||||
|
||||
for (u32 i = 0; i < (mVU.progSize / 2); i++)
|
||||
|
@ -294,13 +294,9 @@ __fi bool mVUcmpProg(microVU& mVU, microProgram& prog, const bool cmpWholeProg)
|
|||
{
|
||||
auto cmpOffset = [&](void* x) { return (u8*)x + range.start; };
|
||||
if ((range.start < 0) || (range.end < 0))
|
||||
{
|
||||
DevCon.Error("microVU%d: Negative Range![%d][%d]", mVU.index, range.start, range.end);
|
||||
}
|
||||
if (memcmp_mmx(cmpOffset(prog.data), cmpOffset(mVU.regs().Micro), (range.end - range.start)))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
mVU.prog.cleared = 0;
|
||||
|
@ -314,10 +310,10 @@ _mVUt __fi void* mVUsearchProg(u32 startPC, uptr pState)
|
|||
{
|
||||
microVU& mVU = mVUx;
|
||||
microProgramQuick& quick = mVU.prog.quick[mVU.regs().start_pc / 8];
|
||||
microProgramList* list = mVU.prog.prog[mVU.regs().start_pc / 8];
|
||||
microProgramList* list = mVU.prog.prog [mVU.regs().start_pc / 8];
|
||||
|
||||
if (!quick.prog)
|
||||
{ // If null, we need to search for new program
|
||||
if (!quick.prog) // If null, we need to search for new program
|
||||
{
|
||||
std::deque<microProgram*>::iterator it(list->begin());
|
||||
for (; it != list->end(); ++it)
|
||||
{
|
||||
|
@ -326,7 +322,7 @@ _mVUt __fi void* mVUsearchProg(u32 startPC, uptr pState)
|
|||
if (b)
|
||||
{
|
||||
quick.block = it[0]->block[startPC / 8];
|
||||
quick.prog = it[0];
|
||||
quick.prog = it[0];
|
||||
list->erase(it);
|
||||
list->push_front(quick.prog);
|
||||
|
||||
|
@ -342,11 +338,11 @@ _mVUt __fi void* mVUsearchProg(u32 startPC, uptr pState)
|
|||
|
||||
// If cleared and program not found, make a new program instance
|
||||
mVU.prog.cleared = 0;
|
||||
mVU.prog.isSame = 1;
|
||||
mVU.prog.cur = mVUcreateProg(mVU, mVU.regs().start_pc / 8);
|
||||
void* entryPoint = mVUblockFetch(mVU, startPC, pState);
|
||||
quick.block = mVU.prog.cur->block[startPC / 8];
|
||||
quick.prog = mVU.prog.cur;
|
||||
mVU.prog.isSame = 1;
|
||||
mVU.prog.cur = mVUcreateProg(mVU, mVU.regs().start_pc/8);
|
||||
void* entryPoint = mVUblockFetch(mVU, startPC, pState);
|
||||
quick.block = mVU.prog.cur->block[startPC/8];
|
||||
quick.prog = mVU.prog.cur;
|
||||
list->push_front(mVU.prog.cur);
|
||||
//mVUprintUniqueRatio(mVU);
|
||||
return entryPoint;
|
||||
|
@ -371,16 +367,8 @@ _mVUt __fi void* mVUsearchProg(u32 startPC, uptr pState)
|
|||
//------------------------------------------------------------------
|
||||
// recMicroVU0 / recMicroVU1
|
||||
//------------------------------------------------------------------
|
||||
recMicroVU0::recMicroVU0()
|
||||
{
|
||||
m_Idx = 0;
|
||||
IsInterpreter = false;
|
||||
}
|
||||
recMicroVU1::recMicroVU1()
|
||||
{
|
||||
m_Idx = 1;
|
||||
IsInterpreter = false;
|
||||
}
|
||||
recMicroVU0::recMicroVU0() { m_Idx = 0; IsInterpreter = false; }
|
||||
recMicroVU1::recMicroVU1() { m_Idx = 1; IsInterpreter = false; }
|
||||
void recMicroVU0::Vsync() noexcept { mVUvsyncUpdate(microVU0); }
|
||||
void recMicroVU1::Vsync() noexcept { mVUvsyncUpdate(microVU1); }
|
||||
|
||||
|
|
|
@ -37,33 +37,39 @@ using namespace x86Emitter;
|
|||
#include "microVU_Profiler.h"
|
||||
#include "common/Perf.h"
|
||||
|
||||
struct microBlockLink {
|
||||
microBlock block;
|
||||
microBlockLink* next;
|
||||
struct microBlockLink
|
||||
{
|
||||
microBlock block;
|
||||
microBlockLink* next;
|
||||
};
|
||||
|
||||
class microBlockManager {
|
||||
class microBlockManager
|
||||
{
|
||||
private:
|
||||
microBlockLink* qBlockList, *qBlockEnd; // Quick Search
|
||||
microBlockLink* fBlockList, *fBlockEnd; // Full Search
|
||||
microBlockLink *qBlockList, *qBlockEnd; // Quick Search
|
||||
microBlockLink *fBlockList, *fBlockEnd; // Full Search
|
||||
int qListI, fListI;
|
||||
|
||||
public:
|
||||
inline int getFullListCount() const { return fListI; }
|
||||
microBlockManager() {
|
||||
microBlockManager()
|
||||
{
|
||||
qListI = fListI = 0;
|
||||
qBlockEnd = qBlockList = NULL;
|
||||
fBlockEnd = fBlockList = NULL;
|
||||
}
|
||||
~microBlockManager() { reset(); }
|
||||
void reset() {
|
||||
for(microBlockLink* linkI = qBlockList; linkI != NULL; ) {
|
||||
void reset()
|
||||
{
|
||||
for (microBlockLink* linkI = qBlockList; linkI != NULL;)
|
||||
{
|
||||
microBlockLink* freeI = linkI;
|
||||
safe_delete_array(linkI->block.jumpCache);
|
||||
linkI = linkI->next;
|
||||
_aligned_free(freeI);
|
||||
}
|
||||
for(microBlockLink* linkI = fBlockList; linkI != NULL; ) {
|
||||
for (microBlockLink* linkI = fBlockList; linkI != NULL;)
|
||||
{
|
||||
microBlockLink* freeI = linkI;
|
||||
safe_delete_array(linkI->block.jumpCache);
|
||||
linkI = linkI->next;
|
||||
|
@ -73,11 +79,16 @@ public:
|
|||
qBlockEnd = qBlockList = NULL;
|
||||
fBlockEnd = fBlockList = NULL;
|
||||
};
|
||||
microBlock* add(microBlock* pBlock) {
|
||||
microBlock* add(microBlock* pBlock)
|
||||
{
|
||||
microBlock* thisBlock = search(&pBlock->pState);
|
||||
if (!thisBlock) {
|
||||
u8 fullCmp = pBlock->pState.needExactMatch;
|
||||
if (fullCmp) fListI++; else qListI++;
|
||||
if (!thisBlock)
|
||||
{
|
||||
u8 fullCmp = pBlock->pState.needExactMatch;
|
||||
if (fullCmp)
|
||||
fListI++;
|
||||
else
|
||||
qListI++;
|
||||
|
||||
microBlockLink*& blockList = fullCmp ? fBlockList : qBlockList;
|
||||
microBlockLink*& blockEnd = fullCmp ? fBlockEnd : qBlockEnd;
|
||||
|
@ -85,28 +96,35 @@ public:
|
|||
newBlock->block.jumpCache = NULL;
|
||||
newBlock->next = NULL;
|
||||
|
||||
if (blockEnd) {
|
||||
blockEnd->next = newBlock;
|
||||
blockEnd = newBlock;
|
||||
if (blockEnd)
|
||||
{
|
||||
blockEnd->next = newBlock;
|
||||
blockEnd = newBlock;
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
blockEnd = blockList = newBlock;
|
||||
}
|
||||
|
||||
memcpy(&newBlock->block, pBlock, sizeof(microBlock));
|
||||
thisBlock = &newBlock->block;
|
||||
thisBlock = &newBlock->block;
|
||||
}
|
||||
return thisBlock;
|
||||
}
|
||||
__ri microBlock* search(microRegInfo* pState) {
|
||||
if (pState->needExactMatch) { // Needs Detailed Search (Exact Match of Pipeline State)
|
||||
for(microBlockLink* linkI = fBlockList; linkI != NULL; linkI = linkI->next) {
|
||||
__ri microBlock* search(microRegInfo* pState)
|
||||
{
|
||||
if (pState->needExactMatch) // Needs Detailed Search (Exact Match of Pipeline State)
|
||||
{
|
||||
for (microBlockLink* linkI = fBlockList; linkI != NULL; linkI = linkI->next)
|
||||
{
|
||||
if (mVUquickSearch((void*)pState, (void*)&linkI->block.pState, sizeof(microRegInfo)))
|
||||
return &linkI->block;
|
||||
}
|
||||
}
|
||||
else { // Can do Simple Search (Only Matches the Important Pipeline Stuff)
|
||||
for(microBlockLink* linkI = qBlockList; linkI != NULL; linkI = linkI->next) {
|
||||
else // Can do Simple Search (Only Matches the Important Pipeline Stuff)
|
||||
{
|
||||
for (microBlockLink* linkI = qBlockList; linkI != NULL; linkI = linkI->next)
|
||||
{
|
||||
if (linkI->block.pState.quick32[0] != pState->quick32[0]) continue;
|
||||
if (linkI->block.pState.quick32[1] != pState->quick32[1]) continue;
|
||||
if (doConstProp && (linkI->block.pState.vi15 != pState->vi15)) continue;
|
||||
|
@ -116,112 +134,123 @@ public:
|
|||
}
|
||||
return NULL;
|
||||
}
|
||||
void printInfo(int pc, bool printQuick) {
|
||||
void printInfo(int pc, bool printQuick)
|
||||
{
|
||||
int listI = printQuick ? qListI : fListI;
|
||||
if (listI < 7) return;
|
||||
if (listI < 7)
|
||||
return;
|
||||
microBlockLink* linkI = printQuick ? qBlockList : fBlockList;
|
||||
for (int i = 0; i <= listI; i++) {
|
||||
u32 viCRC = 0, vfCRC = 0, crc = 0, z = sizeof(microRegInfo)/4;
|
||||
for (int i = 0; i <= listI; i++)
|
||||
{
|
||||
u32 viCRC = 0, vfCRC = 0, crc = 0, z = sizeof(microRegInfo) / 4;
|
||||
for (u32 j = 0; j < 4; j++) viCRC -= ((u32*)linkI->block.pState.VI)[j];
|
||||
for (u32 j = 0; j < 32; j++) vfCRC -= linkI->block.pState.VF[j].reg;
|
||||
for (u32 j = 0; j < z; j++) crc -= ((u32*)&linkI->block.pState)[j];
|
||||
DevCon.WriteLn(Color_Green, "[%04x][Block #%d][crc=%08x][q=%02d][p=%02d][xgkick=%d][vi15=%04x][vi15v=%d][viBackup=%02d]"
|
||||
"[flags=%02x][exactMatch=%x][blockType=%d][viCRC=%08x][vfCRC=%08x]", pc, i, crc, linkI->block.pState.q,
|
||||
linkI->block.pState.p, linkI->block.pState.xgkick, linkI->block.pState.vi15, linkI->block.pState.vi15v,
|
||||
linkI->block.pState.viBackUp, linkI->block.pState.flagInfo, linkI->block.pState.needExactMatch,
|
||||
linkI->block.pState.blockType, viCRC, vfCRC);
|
||||
DevCon.WriteLn(Color_Green,
|
||||
"[%04x][Block #%d][crc=%08x][q=%02d][p=%02d][xgkick=%d][vi15=%04x][vi15v=%d][viBackup=%02d]"
|
||||
"[flags=%02x][exactMatch=%x][blockType=%d][viCRC=%08x][vfCRC=%08x]",
|
||||
pc, i, crc, linkI->block.pState.q,
|
||||
linkI->block.pState.p, linkI->block.pState.xgkick, linkI->block.pState.vi15, linkI->block.pState.vi15v,
|
||||
linkI->block.pState.viBackUp, linkI->block.pState.flagInfo, linkI->block.pState.needExactMatch,
|
||||
linkI->block.pState.blockType, viCRC, vfCRC);
|
||||
linkI = linkI->next;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
struct microRange {
|
||||
struct microRange
|
||||
{
|
||||
s32 start; // Start PC (The opcode the block starts at)
|
||||
s32 end; // End PC (The opcode the block ends with)
|
||||
};
|
||||
|
||||
#define mProgSize (0x4000/4)
|
||||
struct microProgram {
|
||||
u32 data [mProgSize]; // Holds a copy of the VU microProgram
|
||||
microBlockManager* block[mProgSize/2]; // Array of Block Managers
|
||||
std::deque<microRange>* ranges; // The ranges of the microProgram that have already been recompiled
|
||||
#define mProgSize (0x4000 / 4)
|
||||
struct microProgram
|
||||
{
|
||||
u32 data [mProgSize]; // Holds a copy of the VU microProgram
|
||||
microBlockManager* block[mProgSize / 2]; // Array of Block Managers
|
||||
std::deque<microRange>* ranges; // The ranges of the microProgram that have already been recompiled
|
||||
u32 startPC; // Start PC of this program
|
||||
int idx; // Program index
|
||||
int idx; // Program index
|
||||
};
|
||||
|
||||
typedef std::deque<microProgram*> microProgramList;
|
||||
|
||||
struct microProgramQuick {
|
||||
microBlockManager* block; // Quick reference to valid microBlockManager for current startPC
|
||||
microProgram* prog; // The microProgram who is the owner of 'block'
|
||||
struct microProgramQuick
|
||||
{
|
||||
microBlockManager* block; // Quick reference to valid microBlockManager for current startPC
|
||||
microProgram* prog; // The microProgram who is the owner of 'block'
|
||||
};
|
||||
|
||||
struct microProgManager {
|
||||
microIR<mProgSize> IRinfo; // IR information
|
||||
microProgramList* prog [mProgSize/2]; // List of microPrograms indexed by startPC values
|
||||
microProgramQuick quick[mProgSize/2]; // Quick reference to valid microPrograms for current execution
|
||||
microProgram* cur; // Pointer to currently running MicroProgram
|
||||
int total; // Total Number of valid MicroPrograms
|
||||
int isSame; // Current cached microProgram is Exact Same program as mVU.regs().Micro (-1 = unknown, 0 = No, 1 = Yes)
|
||||
int cleared; // Micro Program is Indeterminate so must be searched for (and if no matches are found then recompile a new one)
|
||||
u32 curFrame; // Frame Counter
|
||||
u8* x86ptr; // Pointer to program's recompilation code
|
||||
u8* x86start; // Start of program's rec-cache
|
||||
u8* x86end; // Limit of program's rec-cache
|
||||
microRegInfo lpState; // Pipeline state from where program left off (useful for continuing execution)
|
||||
struct microProgManager
|
||||
{
|
||||
microIR<mProgSize> IRinfo; // IR information
|
||||
microProgramList* prog [mProgSize/2]; // List of microPrograms indexed by startPC values
|
||||
microProgramQuick quick[mProgSize/2]; // Quick reference to valid microPrograms for current execution
|
||||
microProgram* cur; // Pointer to currently running MicroProgram
|
||||
int total; // Total Number of valid MicroPrograms
|
||||
int isSame; // Current cached microProgram is Exact Same program as mVU.regs().Micro (-1 = unknown, 0 = No, 1 = Yes)
|
||||
int cleared; // Micro Program is Indeterminate so must be searched for (and if no matches are found then recompile a new one)
|
||||
u32 curFrame; // Frame Counter
|
||||
u8* x86ptr; // Pointer to program's recompilation code
|
||||
u8* x86start; // Start of program's rec-cache
|
||||
u8* x86end; // Limit of program's rec-cache
|
||||
microRegInfo lpState; // Pipeline state from where program left off (useful for continuing execution)
|
||||
};
|
||||
|
||||
static const uint mVUdispCacheSize = __pagesize; // Dispatcher Cache Size (in bytes)
|
||||
static const uint mVUcacheSafeZone = 3; // Safe-Zone for program recompilation (in megabytes)
|
||||
static const uint mVU0cacheReserve = 64; // mVU0 Reserve Cache Size (in megabytes)
|
||||
static const uint mVU1cacheReserve = 64; // mVU1 Reserve Cache Size (in megabytes)
|
||||
static const uint mVUdispCacheSize = __pagesize; // Dispatcher Cache Size (in bytes)
|
||||
static const uint mVUcacheSafeZone = 3; // Safe-Zone for program recompilation (in megabytes)
|
||||
static const uint mVU0cacheReserve = 64; // mVU0 Reserve Cache Size (in megabytes)
|
||||
static const uint mVU1cacheReserve = 64; // mVU1 Reserve Cache Size (in megabytes)
|
||||
|
||||
struct microVU {
|
||||
struct microVU
|
||||
{
|
||||
|
||||
__aligned16 u32 statFlag[4]; // 4 instances of status flag (backup for xgkick)
|
||||
__aligned16 u32 macFlag [4]; // 4 instances of mac flag (used in execution)
|
||||
__aligned16 u32 clipFlag[4]; // 4 instances of clip flag (used in execution)
|
||||
__aligned16 u32 xmmCTemp[4]; // Backup used in mVUclamp2()
|
||||
__aligned16 u32 xmmCTemp[4]; // Backup used in mVUclamp2()
|
||||
__aligned16 u32 xmmBackup[8][4]; // Backup for xmm0~xmm7
|
||||
|
||||
u32 index; // VU Index (VU0 or VU1)
|
||||
u32 cop2; // VU is in COP2 mode? (No/Yes)
|
||||
u32 vuMemSize; // VU Main Memory Size (in bytes)
|
||||
u32 microMemSize; // VU Micro Memory Size (in bytes)
|
||||
u32 progSize; // VU Micro Memory Size (in u32's)
|
||||
u32 progMemMask; // VU Micro Memory Size (in u32's)
|
||||
u32 cacheSize; // VU Cache Size
|
||||
u32 index; // VU Index (VU0 or VU1)
|
||||
u32 cop2; // VU is in COP2 mode? (No/Yes)
|
||||
u32 vuMemSize; // VU Main Memory Size (in bytes)
|
||||
u32 microMemSize; // VU Micro Memory Size (in bytes)
|
||||
u32 progSize; // VU Micro Memory Size (in u32's)
|
||||
u32 progMemMask; // VU Micro Memory Size (in u32's)
|
||||
u32 cacheSize; // VU Cache Size
|
||||
|
||||
microProgManager prog; // Micro Program Data
|
||||
microProfiler profiler; // Opcode Profiler
|
||||
std::unique_ptr<microRegAlloc> regAlloc; // Reg Alloc Class
|
||||
std::unique_ptr<AsciiFile> logFile; // Log File Pointer
|
||||
microProgManager prog; // Micro Program Data
|
||||
microProfiler profiler; // Opcode Profiler
|
||||
std::unique_ptr<microRegAlloc> regAlloc; // Reg Alloc Class
|
||||
std::unique_ptr<AsciiFile> logFile; // Log File Pointer
|
||||
|
||||
RecompiledCodeReserve* cache_reserve;
|
||||
u8* cache; // Dynarec Cache Start (where we will start writing the recompiled code to)
|
||||
u8* dispCache; // Dispatchers Cache (where startFunct and exitFunct are written to)
|
||||
u8* startFunct; // Function Ptr to the recompiler dispatcher (start)
|
||||
u8* exitFunct; // Function Ptr to the recompiler dispatcher (exit)
|
||||
u8* startFunctXG; // Function Ptr to the recompiler dispatcher (xgkick resume)
|
||||
u8* exitFunctXG; // Function Ptr to the recompiler dispatcher (xgkick exit)
|
||||
u8* resumePtrXG; // Ptr to recompiled code position to resume xgkick
|
||||
u32 code; // Contains the current Instruction
|
||||
u32 divFlag; // 1 instance of I/D flags
|
||||
u32 VIbackup; // Holds a backup of a VI reg if modified before a branch
|
||||
u32 VIxgkick; // Holds a backup of a VI reg used for xgkick-delays
|
||||
u32 branch; // Holds branch compare result (IBxx) OR Holds address to Jump to (JALR/JR)
|
||||
u32 badBranch; // For Branches in Branch Delay Slots, holds Address the first Branch went to + 8
|
||||
u32 evilBranch; // For Branches in Branch Delay Slots, holds Address to Jump to
|
||||
u32 p; // Holds current P instance index
|
||||
u32 q; // Holds current Q instance index
|
||||
u32 totalCycles; // Total Cycles that mVU is expected to run for
|
||||
u32 cycles; // Cycles Counter
|
||||
u8* cache; // Dynarec Cache Start (where we will start writing the recompiled code to)
|
||||
u8* dispCache; // Dispatchers Cache (where startFunct and exitFunct are written to)
|
||||
u8* startFunct; // Function Ptr to the recompiler dispatcher (start)
|
||||
u8* exitFunct; // Function Ptr to the recompiler dispatcher (exit)
|
||||
u8* startFunctXG; // Function Ptr to the recompiler dispatcher (xgkick resume)
|
||||
u8* exitFunctXG; // Function Ptr to the recompiler dispatcher (xgkick exit)
|
||||
u8* resumePtrXG; // Ptr to recompiled code position to resume xgkick
|
||||
u32 code; // Contains the current Instruction
|
||||
u32 divFlag; // 1 instance of I/D flags
|
||||
u32 VIbackup; // Holds a backup of a VI reg if modified before a branch
|
||||
u32 VIxgkick; // Holds a backup of a VI reg used for xgkick-delays
|
||||
u32 branch; // Holds branch compare result (IBxx) OR Holds address to Jump to (JALR/JR)
|
||||
u32 badBranch; // For Branches in Branch Delay Slots, holds Address the first Branch went to + 8
|
||||
u32 evilBranch; // For Branches in Branch Delay Slots, holds Address to Jump to
|
||||
u32 p; // Holds current P instance index
|
||||
u32 q; // Holds current Q instance index
|
||||
u32 totalCycles; // Total Cycles that mVU is expected to run for
|
||||
u32 cycles; // Cycles Counter
|
||||
|
||||
VURegs& regs() const { return ::vuRegs[index]; }
|
||||
|
||||
__fi REG_VI& getVI(uint reg) const { return regs().VI[reg]; }
|
||||
__fi VECTOR& getVF(uint reg) const { return regs().VF[reg]; }
|
||||
__fi VIFregisters& getVifRegs() const {
|
||||
__fi REG_VI& getVI(uint reg) const { return regs().VI[reg]; }
|
||||
__fi VECTOR& getVF(uint reg) const { return regs().VF[reg]; }
|
||||
__fi VIFregisters& getVifRegs() const
|
||||
{
|
||||
return (index && THREAD_VU1) ? vu1Thread.vifRegs : regs().GetVifRegs();
|
||||
}
|
||||
};
|
||||
|
@ -234,35 +263,37 @@ __aligned16 microVU microVU1;
|
|||
int mVUdebugNow = 0;
|
||||
|
||||
// Main Functions
|
||||
extern void mVUclear(mV, u32, u32);
|
||||
extern void mVUreset(microVU& mVU, bool resetReserve);
|
||||
extern void mVUclear(mV, u32, u32);
|
||||
extern void mVUreset(microVU& mVU, bool resetReserve);
|
||||
extern void* mVUblockFetch(microVU& mVU, u32 startPC, uptr pState);
|
||||
_mVUt extern void* __fastcall mVUcompileJIT(u32 startPC, uptr ptr);
|
||||
|
||||
// Prototypes for Linux
|
||||
extern void __fastcall mVUcleanUpVU0();
|
||||
extern void __fastcall mVUcleanUpVU1();
|
||||
extern void __fastcall mVUcleanUpVU0();
|
||||
extern void __fastcall mVUcleanUpVU1();
|
||||
mVUop(mVUopU);
|
||||
mVUop(mVUopL);
|
||||
|
||||
// Private Functions
|
||||
extern void mVUcacheProg (microVU& mVU, microProgram& prog);
|
||||
extern void mVUdeleteProg(microVU& mVU, microProgram*& prog);
|
||||
extern void mVUcacheProg(microVU& mVU, microProgram& prog);
|
||||
extern void mVUdeleteProg(microVU& mVU, microProgram*& prog);
|
||||
_mVUt extern void* mVUsearchProg(u32 startPC, uptr pState);
|
||||
extern void* __fastcall mVUexecuteVU0(u32 startPC, u32 cycles);
|
||||
extern void* __fastcall mVUexecuteVU1(u32 startPC, u32 cycles);
|
||||
|
||||
// recCall Function Pointer
|
||||
typedef void (__fastcall *mVUrecCall)(u32, u32);
|
||||
typedef void(__fastcall* mVUrecCall)(u32, u32);
|
||||
typedef void (*mVUrecCallXG)(void);
|
||||
|
||||
template<typename T>
|
||||
void makeUnique(T& v) { // Removes Duplicates
|
||||
template <typename T>
|
||||
void makeUnique(T& v)
|
||||
{ // Removes Duplicates
|
||||
v.erase(unique(v.begin(), v.end()), v.end());
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void sortVector(T& v) {
|
||||
template <typename T>
|
||||
void sortVector(T& v)
|
||||
{
|
||||
sort(v.begin(), v.end());
|
||||
}
|
||||
|
||||
|
|
|
@ -25,7 +25,7 @@
|
|||
|
||||
__fi static const x32& getFlagReg(uint fInst)
|
||||
{
|
||||
static const x32* const gprFlags[4] = { &gprF0, &gprF1, &gprF2, &gprF3 };
|
||||
static const x32* const gprFlags[4] = {&gprF0, &gprF1, &gprF2, &gprF3};
|
||||
pxAssert(fInst < 4);
|
||||
return *gprFlags[fInst];
|
||||
}
|
||||
|
@ -67,11 +67,12 @@ __ri void mVUallocSFLAGc(const x32& reg, const x32& regT, int fInstance)
|
|||
setBitSFLAG(reg, regT, 0x00f0, 0x0080); // SS Bit
|
||||
xAND(regT, 0xffff0000); // DS/DI/OS/US/D/I/O/U Bits
|
||||
xSHR(regT, 14);
|
||||
xOR (reg, regT);
|
||||
xOR(reg, regT);
|
||||
}
|
||||
|
||||
// Denormalizes Status Flag
|
||||
__ri void mVUallocSFLAGd(u32* memAddr) {
|
||||
__ri void mVUallocSFLAGd(u32* memAddr)
|
||||
{
|
||||
xMOV(edx, ptr32[memAddr]);
|
||||
xMOV(eax, edx);
|
||||
xSHR(eax, 3);
|
||||
|
@ -80,11 +81,11 @@ __ri void mVUallocSFLAGd(u32* memAddr) {
|
|||
xMOV(ecx, edx);
|
||||
xSHL(ecx, 11);
|
||||
xAND(ecx, 0x1800);
|
||||
xOR (eax, ecx);
|
||||
xOR(eax, ecx);
|
||||
|
||||
xSHL(edx, 14);
|
||||
xAND(edx, 0x3cf0000);
|
||||
xOR (eax, edx);
|
||||
xOR(eax, edx);
|
||||
}
|
||||
|
||||
__fi void mVUallocMFLAGa(mV, const x32& reg, int fInstance)
|
||||
|
@ -95,20 +96,20 @@ __fi void mVUallocMFLAGa(mV, const x32& reg, int fInstance)
|
|||
__fi void mVUallocMFLAGb(mV, const x32& reg, int fInstance)
|
||||
{
|
||||
//xAND(reg, 0xffff);
|
||||
if (fInstance < 4) xMOV(ptr32[&mVU.macFlag[fInstance]], reg); // microVU
|
||||
else xMOV(ptr32[&mVU.regs().VI[REG_MAC_FLAG].UL], reg); // macroVU
|
||||
if (fInstance < 4) xMOV(ptr32[&mVU.macFlag[fInstance]], reg); // microVU
|
||||
else xMOV(ptr32[&mVU.regs().VI[REG_MAC_FLAG].UL], reg); // macroVU
|
||||
}
|
||||
|
||||
__fi void mVUallocCFLAGa(mV, const x32& reg, int fInstance)
|
||||
{
|
||||
if (fInstance < 4) xMOV(reg, ptr32[&mVU.clipFlag[fInstance]]); // microVU
|
||||
else xMOV(reg, ptr32[&mVU.regs().VI[REG_CLIP_FLAG].UL]); // macroVU
|
||||
if (fInstance < 4) xMOV(reg, ptr32[&mVU.clipFlag[fInstance]]); // microVU
|
||||
else xMOV(reg, ptr32[&mVU.regs().VI[REG_CLIP_FLAG].UL]); // macroVU
|
||||
}
|
||||
|
||||
__fi void mVUallocCFLAGb(mV, const x32& reg, int fInstance)
|
||||
{
|
||||
if (fInstance < 4) xMOV(ptr32[&mVU.clipFlag[fInstance]], reg); // microVU
|
||||
else xMOV(ptr32[&mVU.regs().VI[REG_CLIP_FLAG].UL], reg); // macroVU
|
||||
if (fInstance < 4) xMOV(ptr32[&mVU.clipFlag[fInstance]], reg); // microVU
|
||||
else xMOV(ptr32[&mVU.regs().VI[REG_CLIP_FLAG].UL], reg); // macroVU
|
||||
|
||||
// On COP2 modifying the CLIP flag we need to update the microVU version for when it's restored on new program
|
||||
if (fInstance == 0xff)
|
||||
|
@ -125,7 +126,7 @@ __fi void mVUallocCFLAGb(mV, const x32& reg, int fInstance)
|
|||
|
||||
__ri void mVUallocVIa(mV, const x32& GPRreg, int _reg_, bool signext = false)
|
||||
{
|
||||
if (!_reg_)
|
||||
if (!_reg_)
|
||||
xXOR(GPRreg, GPRreg);
|
||||
else if (signext)
|
||||
xMOVSX(GPRreg, ptr16[&mVU.regs().VI[_reg_].SL]);
|
||||
|
@ -135,15 +136,18 @@ __ri void mVUallocVIa(mV, const x32& GPRreg, int _reg_, bool signext = false)
|
|||
|
||||
__ri void mVUallocVIb(mV, const x32& GPRreg, int _reg_)
|
||||
{
|
||||
if (mVUlow.backupVI) { // Backs up reg to memory (used when VI is modified b4 a branch)
|
||||
if (mVUlow.backupVI) // Backs up reg to memory (used when VI is modified b4 a branch)
|
||||
{
|
||||
xMOVZX(gprT3, ptr16[&mVU.regs().VI[_reg_].UL]);
|
||||
xMOV (ptr32[&mVU.VIbackup], gprT3);
|
||||
}
|
||||
|
||||
if (_reg_ == 0) {
|
||||
if (_reg_ == 0)
|
||||
{
|
||||
return;
|
||||
}
|
||||
else if (_reg_ < 16) {
|
||||
else if (_reg_ < 16)
|
||||
{
|
||||
xMOV(ptr16[&mVU.regs().VI[_reg_].UL], xRegister16(GPRreg.Id));
|
||||
}
|
||||
}
|
||||
|
@ -168,5 +172,6 @@ __ri void writeQreg(const xmm& reg, int qInstance)
|
|||
{
|
||||
if (qInstance)
|
||||
xINSERTPS(xmmPQ, reg, _MM_MK_INSERTPS_NDX(0, 1, 0));
|
||||
else xMOVSS(xmmPQ, reg);
|
||||
else
|
||||
xMOVSS(xmmPQ, reg);
|
||||
}
|
||||
|
|
|
@ -34,9 +34,11 @@ __ri void analyzeReg1(mV, int xReg, microVFreg& vfRead) {
|
|||
}
|
||||
|
||||
// Write to a VF reg
|
||||
__ri void analyzeReg2(mV, int xReg, microVFreg& vfWrite, bool isLowOp) {
|
||||
if (xReg) {
|
||||
#define bReg(x, y) mVUregsTemp.VFreg[y] = x; mVUregsTemp.VF[y]
|
||||
__ri void analyzeReg2(mV, int xReg, microVFreg& vfWrite, bool isLowOp)
|
||||
{
|
||||
if (xReg)
|
||||
{
|
||||
#define bReg(x, y) mVUregsTemp.VFreg[y] = x; mVUregsTemp.VF[y]
|
||||
if (_X) { bReg(xReg, isLowOp).x = 4; vfWrite.reg = xReg; vfWrite.x = 4; }
|
||||
if (_Y) { bReg(xReg, isLowOp).y = 4; vfWrite.reg = xReg; vfWrite.y = 4; }
|
||||
if (_Z) { bReg(xReg, isLowOp).z = 4; vfWrite.reg = xReg; vfWrite.z = 4; }
|
||||
|
@ -45,24 +47,30 @@ __ri void analyzeReg2(mV, int xReg, microVFreg& vfWrite, bool isLowOp) {
|
|||
}
|
||||
|
||||
// Read a VF reg (BC opcodes)
|
||||
__ri void analyzeReg3(mV, int xReg, microVFreg& vfRead) {
|
||||
if (xReg) {
|
||||
if (_bc_x) {
|
||||
__ri void analyzeReg3(mV, int xReg, microVFreg& vfRead)
|
||||
{
|
||||
if (xReg)
|
||||
{
|
||||
if (_bc_x)
|
||||
{
|
||||
mVUstall = std::max(mVUstall, mVUregs.VF[xReg].x);
|
||||
vfRead.reg = xReg;
|
||||
vfRead.x = 1;
|
||||
}
|
||||
else if (_bc_y) {
|
||||
else if (_bc_y)
|
||||
{
|
||||
mVUstall = std::max(mVUstall, mVUregs.VF[xReg].y);
|
||||
vfRead.reg = xReg;
|
||||
vfRead.y = 1;
|
||||
}
|
||||
else if (_bc_z) {
|
||||
else if (_bc_z)
|
||||
{
|
||||
mVUstall = std::max(mVUstall, mVUregs.VF[xReg].z);
|
||||
vfRead.reg = xReg;
|
||||
vfRead.z = 1;
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
mVUstall = std::max(mVUstall, mVUregs.VF[xReg].w);
|
||||
vfRead.reg = xReg;
|
||||
vfRead.w = 1;
|
||||
|
@ -71,8 +79,10 @@ __ri void analyzeReg3(mV, int xReg, microVFreg& vfRead) {
|
|||
}
|
||||
|
||||
// For Clip Opcode
|
||||
__ri void analyzeReg4(mV, int xReg, microVFreg& vfRead) {
|
||||
if (xReg) {
|
||||
__ri void analyzeReg4(mV, int xReg, microVFreg& vfRead)
|
||||
{
|
||||
if (xReg)
|
||||
{
|
||||
mVUstall = std::max(mVUstall, mVUregs.VF[xReg].w);
|
||||
vfRead.reg = xReg;
|
||||
vfRead.w = 1;
|
||||
|
@ -80,9 +90,12 @@ __ri void analyzeReg4(mV, int xReg, microVFreg& vfRead) {
|
|||
}
|
||||
|
||||
// Read VF reg (FsF/FtF)
|
||||
__ri void analyzeReg5(mV, int xReg, int fxf, microVFreg& vfRead) {
|
||||
if (xReg) {
|
||||
switch (fxf) {
|
||||
__ri void analyzeReg5(mV, int xReg, int fxf, microVFreg& vfRead)
|
||||
{
|
||||
if (xReg)
|
||||
{
|
||||
switch (fxf)
|
||||
{
|
||||
case 0: mVUstall = std::max(mVUstall, mVUregs.VF[xReg].x); vfRead.reg = xReg; vfRead.x = 1; break;
|
||||
case 1: mVUstall = std::max(mVUstall, mVUregs.VF[xReg].y); vfRead.reg = xReg; vfRead.y = 1; break;
|
||||
case 2: mVUstall = std::max(mVUstall, mVUregs.VF[xReg].z); vfRead.reg = xReg; vfRead.z = 1; break;
|
||||
|
@ -92,8 +105,10 @@ __ri void analyzeReg5(mV, int xReg, int fxf, microVFreg& vfRead) {
|
|||
}
|
||||
|
||||
// Flips xyzw stalls to yzwx (MR32 Opcode)
|
||||
__ri void analyzeReg6(mV, int xReg, microVFreg& vfRead) {
|
||||
if (xReg) {
|
||||
__ri void analyzeReg6(mV, int xReg, microVFreg& vfRead)
|
||||
{
|
||||
if (xReg)
|
||||
{
|
||||
if (_X) { mVUstall = std::max(mVUstall, mVUregs.VF[xReg].y); vfRead.reg = xReg; vfRead.y = 1; }
|
||||
if (_Y) { mVUstall = std::max(mVUstall, mVUregs.VF[xReg].z); vfRead.reg = xReg; vfRead.z = 1; }
|
||||
if (_Z) { mVUstall = std::max(mVUstall, mVUregs.VF[xReg].w); vfRead.reg = xReg; vfRead.w = 1; }
|
||||
|
@ -102,8 +117,10 @@ __ri void analyzeReg6(mV, int xReg, microVFreg& vfRead) {
|
|||
}
|
||||
|
||||
// Reading a VI reg
|
||||
__ri void analyzeVIreg1(mV, int xReg, microVIreg& viRead) {
|
||||
if (xReg) {
|
||||
__ri void analyzeVIreg1(mV, int xReg, microVIreg& viRead)
|
||||
{
|
||||
if (xReg)
|
||||
{
|
||||
mVUstall = std::max(mVUstall, mVUregs.VI[xReg]);
|
||||
viRead.reg = xReg;
|
||||
viRead.used = 1;
|
||||
|
@ -111,8 +128,10 @@ __ri void analyzeVIreg1(mV, int xReg, microVIreg& viRead) {
|
|||
}
|
||||
|
||||
// Writing to a VI reg
|
||||
__ri void analyzeVIreg2(mV, int xReg, microVIreg& viWrite, int aCycles) {
|
||||
if (xReg) {
|
||||
__ri void analyzeVIreg2(mV, int xReg, microVIreg& viWrite, int aCycles)
|
||||
{
|
||||
if (xReg)
|
||||
{
|
||||
mVUconstReg[xReg].isValid = 0;
|
||||
mVUregsTemp.VIreg = xReg;
|
||||
mVUregsTemp.VI = aCycles;
|
||||
|
@ -121,18 +140,43 @@ __ri void analyzeVIreg2(mV, int xReg, microVIreg& viWrite, int aCycles) {
|
|||
}
|
||||
}
|
||||
|
||||
#define analyzeQreg(x) { mVUregsTemp.q = x; mVUstall = std::max(mVUstall, mVUregs.q); }
|
||||
#define analyzePreg(x) { mVUregsTemp.p = x; mVUstall = std::max(mVUstall, (u8)((mVUregs.p) ? (mVUregs.p - 1) : 0)); }
|
||||
#define analyzeRreg() { mVUregsTemp.r = 1; }
|
||||
#define analyzeXGkick1() { mVUstall = std::max(mVUstall, mVUregs.xgkick); }
|
||||
#define analyzeXGkick2(x) { mVUregsTemp.xgkick = x; }
|
||||
#define setConstReg(x, v) { if (x) { mVUconstReg[x].isValid = 1; mVUconstReg[x].regValue = v; } }
|
||||
#define analyzeQreg(x) \
|
||||
{ \
|
||||
mVUregsTemp.q = x; \
|
||||
mVUstall = std::max(mVUstall, mVUregs.q); \
|
||||
}
|
||||
#define analyzePreg(x) \
|
||||
{ \
|
||||
mVUregsTemp.p = x; \
|
||||
mVUstall = std::max(mVUstall, (u8)((mVUregs.p) ? (mVUregs.p - 1) : 0)); \
|
||||
}
|
||||
#define analyzeRreg() \
|
||||
{ \
|
||||
mVUregsTemp.r = 1; \
|
||||
}
|
||||
#define analyzeXGkick1() \
|
||||
{ \
|
||||
mVUstall = std::max(mVUstall, mVUregs.xgkick); \
|
||||
}
|
||||
#define analyzeXGkick2(x) \
|
||||
{ \
|
||||
mVUregsTemp.xgkick = x; \
|
||||
}
|
||||
#define setConstReg(x, v) \
|
||||
{ \
|
||||
if (x) \
|
||||
{ \
|
||||
mVUconstReg[x].isValid = 1; \
|
||||
mVUconstReg[x].regValue = v; \
|
||||
} \
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------
|
||||
// FMAC1 - Normal FMAC Opcodes
|
||||
//------------------------------------------------------------------
|
||||
|
||||
__fi void mVUanalyzeFMAC1(mV, int Fd, int Fs, int Ft) {
|
||||
__fi void mVUanalyzeFMAC1(mV, int Fd, int Fs, int Ft)
|
||||
{
|
||||
sFLAG.doFlag = 1;
|
||||
analyzeReg1(mVU, Fs, mVUup.VF_read[0]);
|
||||
analyzeReg1(mVU, Ft, mVUup.VF_read[1]);
|
||||
|
@ -143,7 +187,8 @@ __fi void mVUanalyzeFMAC1(mV, int Fd, int Fs, int Ft) {
|
|||
// FMAC2 - ABS/FTOI/ITOF Opcodes
|
||||
//------------------------------------------------------------------
|
||||
|
||||
__fi void mVUanalyzeFMAC2(mV, int Fs, int Ft) {
|
||||
__fi void mVUanalyzeFMAC2(mV, int Fs, int Ft)
|
||||
{
|
||||
analyzeReg1(mVU, Fs, mVUup.VF_read[0]);
|
||||
analyzeReg2(mVU, Ft, mVUup.VF_write, 0);
|
||||
}
|
||||
|
@ -152,7 +197,8 @@ __fi void mVUanalyzeFMAC2(mV, int Fs, int Ft) {
|
|||
// FMAC3 - BC(xyzw) FMAC Opcodes
|
||||
//------------------------------------------------------------------
|
||||
|
||||
__fi void mVUanalyzeFMAC3(mV, int Fd, int Fs, int Ft) {
|
||||
__fi void mVUanalyzeFMAC3(mV, int Fd, int Fs, int Ft)
|
||||
{
|
||||
sFLAG.doFlag = 1;
|
||||
analyzeReg1(mVU, Fs, mVUup.VF_read[0]);
|
||||
analyzeReg3(mVU, Ft, mVUup.VF_read[1]);
|
||||
|
@ -163,7 +209,8 @@ __fi void mVUanalyzeFMAC3(mV, int Fd, int Fs, int Ft) {
|
|||
// FMAC4 - Clip FMAC Opcode
|
||||
//------------------------------------------------------------------
|
||||
|
||||
__fi void mVUanalyzeFMAC4(mV, int Fs, int Ft) {
|
||||
__fi void mVUanalyzeFMAC4(mV, int Fs, int Ft)
|
||||
{
|
||||
cFLAG.doFlag = 1;
|
||||
analyzeReg1(mVU, Fs, mVUup.VF_read[0]);
|
||||
analyzeReg4(mVU, Ft, mVUup.VF_read[1]);
|
||||
|
@ -173,30 +220,42 @@ __fi void mVUanalyzeFMAC4(mV, int Fs, int Ft) {
|
|||
// IALU - IALU Opcodes
|
||||
//------------------------------------------------------------------
|
||||
|
||||
__fi void mVUanalyzeIALU1(mV, int Id, int Is, int It) {
|
||||
if (!Id) mVUlow.isNOP = 1;
|
||||
__fi void mVUanalyzeIALU1(mV, int Id, int Is, int It)
|
||||
{
|
||||
if (!Id)
|
||||
mVUlow.isNOP = 1;
|
||||
analyzeVIreg1(mVU, Is, mVUlow.VI_read[0]);
|
||||
analyzeVIreg1(mVU, It, mVUlow.VI_read[1]);
|
||||
analyzeVIreg2(mVU, Id, mVUlow.VI_write, 1);
|
||||
}
|
||||
|
||||
__fi void mVUanalyzeIALU2(mV, int Is, int It) {
|
||||
if (!It) mVUlow.isNOP = 1;
|
||||
__fi void mVUanalyzeIALU2(mV, int Is, int It)
|
||||
{
|
||||
if (!It)
|
||||
mVUlow.isNOP = 1;
|
||||
analyzeVIreg1(mVU, Is, mVUlow.VI_read[0]);
|
||||
analyzeVIreg2(mVU, It, mVUlow.VI_write, 1);
|
||||
}
|
||||
|
||||
__fi void mVUanalyzeIADDI(mV, int Is, int It, s16 imm) {
|
||||
__fi void mVUanalyzeIADDI(mV, int Is, int It, s16 imm)
|
||||
{
|
||||
mVUanalyzeIALU2(mVU, Is, It);
|
||||
if (!Is) { setConstReg(It, imm); }
|
||||
if (!Is)
|
||||
{
|
||||
setConstReg(It, imm);
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------
|
||||
// MR32 - MR32 Opcode
|
||||
//------------------------------------------------------------------
|
||||
|
||||
__fi void mVUanalyzeMR32(mV, int Fs, int Ft) {
|
||||
if (!Ft) { mVUlow.isNOP = 1; }
|
||||
__fi void mVUanalyzeMR32(mV, int Fs, int Ft)
|
||||
{
|
||||
if (!Ft)
|
||||
{
|
||||
mVUlow.isNOP = 1;
|
||||
}
|
||||
analyzeReg6(mVU, Fs, mVUlow.VF_read[0]);
|
||||
analyzeReg2(mVU, Ft, mVUlow.VF_write, 1);
|
||||
}
|
||||
|
@ -205,7 +264,8 @@ __fi void mVUanalyzeMR32(mV, int Fs, int Ft) {
|
|||
// FDIV - DIV/SQRT/RSQRT Opcodes
|
||||
//------------------------------------------------------------------
|
||||
|
||||
__fi void mVUanalyzeFDIV(mV, int Fs, int Fsf, int Ft, int Ftf, u8 xCycles) {
|
||||
__fi void mVUanalyzeFDIV(mV, int Fs, int Fsf, int Ft, int Ftf, u8 xCycles)
|
||||
{
|
||||
analyzeReg5(mVU, Fs, Fsf, mVUlow.VF_read[0]);
|
||||
analyzeReg5(mVU, Ft, Ftf, mVUlow.VF_read[1]);
|
||||
analyzeQreg(xCycles);
|
||||
|
@ -215,12 +275,14 @@ __fi void mVUanalyzeFDIV(mV, int Fs, int Fsf, int Ft, int Ftf, u8 xCycles) {
|
|||
// EFU - EFU Opcodes
|
||||
//------------------------------------------------------------------
|
||||
|
||||
__fi void mVUanalyzeEFU1(mV, int Fs, int Fsf, u8 xCycles) {
|
||||
__fi void mVUanalyzeEFU1(mV, int Fs, int Fsf, u8 xCycles)
|
||||
{
|
||||
analyzeReg5(mVU, Fs, Fsf, mVUlow.VF_read[0]);
|
||||
analyzePreg(xCycles);
|
||||
}
|
||||
|
||||
__fi void mVUanalyzeEFU2(mV, int Fs, u8 xCycles) {
|
||||
__fi void mVUanalyzeEFU2(mV, int Fs, u8 xCycles)
|
||||
{
|
||||
analyzeReg1(mVU, Fs, mVUlow.VF_read[0]);
|
||||
analyzePreg(xCycles);
|
||||
}
|
||||
|
@ -229,8 +291,10 @@ __fi void mVUanalyzeEFU2(mV, int Fs, u8 xCycles) {
|
|||
// MFP - MFP Opcode
|
||||
//------------------------------------------------------------------
|
||||
|
||||
__fi void mVUanalyzeMFP(mV, int Ft) {
|
||||
if (!Ft) mVUlow.isNOP = 1;
|
||||
__fi void mVUanalyzeMFP(mV, int Ft)
|
||||
{
|
||||
if (!Ft)
|
||||
mVUlow.isNOP = 1;
|
||||
analyzeReg2(mVU, Ft, mVUlow.VF_write, 1);
|
||||
}
|
||||
|
||||
|
@ -238,8 +302,10 @@ __fi void mVUanalyzeMFP(mV, int Ft) {
|
|||
// MOVE - MOVE Opcode
|
||||
//------------------------------------------------------------------
|
||||
|
||||
__fi void mVUanalyzeMOVE(mV, int Fs, int Ft) {
|
||||
if (!Ft||(Ft == Fs)) mVUlow.isNOP = 1;
|
||||
__fi void mVUanalyzeMOVE(mV, int Fs, int Ft)
|
||||
{
|
||||
if (!Ft || (Ft == Fs))
|
||||
mVUlow.isNOP = 1;
|
||||
analyzeReg1(mVU, Fs, mVUlow.VF_read[0]);
|
||||
analyzeReg2(mVU, Ft, mVUlow.VF_write, 1);
|
||||
}
|
||||
|
@ -248,36 +314,59 @@ __fi void mVUanalyzeMOVE(mV, int Fs, int Ft) {
|
|||
// LQx - LQ/LQD/LQI Opcodes
|
||||
//------------------------------------------------------------------
|
||||
|
||||
__fi void mVUanalyzeLQ(mV, int Ft, int Is, bool writeIs) {
|
||||
__fi void mVUanalyzeLQ(mV, int Ft, int Is, bool writeIs)
|
||||
{
|
||||
analyzeVIreg1(mVU, Is, mVUlow.VI_read[0]);
|
||||
analyzeReg2 (mVU, Ft, mVUlow.VF_write, 1);
|
||||
if (!Ft) { if (writeIs && Is) { mVUlow.noWriteVF = 1; } else { mVUlow.isNOP = 1; } }
|
||||
if (writeIs) { analyzeVIreg2(mVU, Is, mVUlow.VI_write, 1); }
|
||||
analyzeReg2(mVU, Ft, mVUlow.VF_write, 1);
|
||||
if (!Ft)
|
||||
{
|
||||
if (writeIs && Is)
|
||||
{
|
||||
mVUlow.noWriteVF = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
mVUlow.isNOP = 1;
|
||||
}
|
||||
}
|
||||
if (writeIs)
|
||||
{
|
||||
analyzeVIreg2(mVU, Is, mVUlow.VI_write, 1);
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------
|
||||
// SQx - SQ/SQD/SQI Opcodes
|
||||
//------------------------------------------------------------------
|
||||
|
||||
__fi void mVUanalyzeSQ(mV, int Fs, int It, bool writeIt) {
|
||||
analyzeReg1 (mVU, Fs, mVUlow.VF_read[0]);
|
||||
__fi void mVUanalyzeSQ(mV, int Fs, int It, bool writeIt)
|
||||
{
|
||||
analyzeReg1(mVU, Fs, mVUlow.VF_read[0]);
|
||||
analyzeVIreg1(mVU, It, mVUlow.VI_read[0]);
|
||||
if (writeIt) { analyzeVIreg2(mVU, It, mVUlow.VI_write, 1); }
|
||||
if (writeIt)
|
||||
{
|
||||
analyzeVIreg2(mVU, It, mVUlow.VI_write, 1);
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------
|
||||
// R*** - R Reg Opcodes
|
||||
//------------------------------------------------------------------
|
||||
|
||||
__fi void mVUanalyzeR1(mV, int Fs, int Fsf) {
|
||||
__fi void mVUanalyzeR1(mV, int Fs, int Fsf)
|
||||
{
|
||||
analyzeReg5(mVU, Fs, Fsf, mVUlow.VF_read[0]);
|
||||
analyzeRreg();
|
||||
}
|
||||
|
||||
__fi void mVUanalyzeR2(mV, int Ft, bool canBeNOP) {
|
||||
if (!Ft) {
|
||||
if (canBeNOP) mVUlow.isNOP = 1;
|
||||
else mVUlow.noWriteVF = 1;
|
||||
__fi void mVUanalyzeR2(mV, int Ft, bool canBeNOP)
|
||||
{
|
||||
if (!Ft)
|
||||
{
|
||||
if (canBeNOP)
|
||||
mVUlow.isNOP = 1;
|
||||
else
|
||||
mVUlow.noWriteVF = 1;
|
||||
}
|
||||
analyzeReg2(mVU, Ft, mVUlow.VF_write, 1);
|
||||
analyzeRreg();
|
||||
|
@ -286,21 +375,25 @@ __fi void mVUanalyzeR2(mV, int Ft, bool canBeNOP) {
|
|||
//------------------------------------------------------------------
|
||||
// Sflag - Status Flag Opcodes
|
||||
//------------------------------------------------------------------
|
||||
__ri void flagSet(mV, bool setMacFlag) {
|
||||
__ri void flagSet(mV, bool setMacFlag)
|
||||
{
|
||||
int curPC = iPC;
|
||||
int calcOPS = 0;
|
||||
|
||||
|
||||
//Check which ops need to do the flag settings, also check for runs of ops as they can do multiple calculations to get the sticky status flags (VP2)
|
||||
//Make sure we get the last 4 calculations (Bloody Roar 3, possibly others)
|
||||
for (int i = mVUcount, j = 0; i > 0; i--, j++) {
|
||||
for (int i = mVUcount, j = 0; i > 0; i--, j++)
|
||||
{
|
||||
j += mVUstall;
|
||||
incPC(-2);
|
||||
|
||||
if (calcOPS >= 4 && mVUup.VF_write.reg) break;
|
||||
if (calcOPS >= 4 && mVUup.VF_write.reg)
|
||||
break;
|
||||
|
||||
if (sFLAG.doFlag && (j >= 3))
|
||||
{
|
||||
if (setMacFlag) mFLAG.doFlag = 1;
|
||||
if (setMacFlag)
|
||||
mFLAG.doFlag = 1;
|
||||
sFLAG.doNonSticky = 1;
|
||||
calcOPS++;
|
||||
}
|
||||
|
@ -310,22 +403,29 @@ __ri void flagSet(mV, bool setMacFlag) {
|
|||
setCode();
|
||||
}
|
||||
|
||||
__ri void mVUanalyzeSflag(mV, int It) {
|
||||
__ri void mVUanalyzeSflag(mV, int It)
|
||||
{
|
||||
mVUlow.readFlags = true;
|
||||
analyzeVIreg2(mVU, It, mVUlow.VI_write, 1);
|
||||
if (!It) { mVUlow.isNOP = 1; }
|
||||
else {
|
||||
if (!It)
|
||||
{
|
||||
mVUlow.isNOP = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
//mVUsFlagHack = 0; // Don't Optimize Out Status Flags for this block
|
||||
mVUinfo.swapOps = 1;
|
||||
flagSet(mVU, 0);
|
||||
if (mVUcount < 4) {
|
||||
if (mVUcount < 4)
|
||||
{
|
||||
if (!(mVUpBlock->pState.needExactMatch & 1)) // The only time this should happen is on the first program block
|
||||
DevCon.WriteLn(Color_Green, "microVU%d: pState's sFlag Info was expected to be set [%04x]", getIndex, xPC);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__ri void mVUanalyzeFSSET(mV) {
|
||||
__ri void mVUanalyzeFSSET(mV)
|
||||
{
|
||||
mVUlow.isFSSET = 1;
|
||||
mVUlow.readFlags = true;
|
||||
}
|
||||
|
@ -334,15 +434,21 @@ __ri void mVUanalyzeFSSET(mV) {
|
|||
// Mflag - Mac Flag Opcodes
|
||||
//------------------------------------------------------------------
|
||||
|
||||
__ri void mVUanalyzeMflag(mV, int Is, int It) {
|
||||
__ri void mVUanalyzeMflag(mV, int Is, int It)
|
||||
{
|
||||
mVUlow.readFlags = true;
|
||||
analyzeVIreg1(mVU, Is, mVUlow.VI_read[0]);
|
||||
analyzeVIreg2(mVU, It, mVUlow.VI_write, 1);
|
||||
if (!It) { mVUlow.isNOP = 1; }
|
||||
else {
|
||||
if (!It)
|
||||
{
|
||||
mVUlow.isNOP = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
mVUinfo.swapOps = 1;
|
||||
flagSet(mVU, 1);
|
||||
if (mVUcount < 4) {
|
||||
if (mVUcount < 4)
|
||||
{
|
||||
if (!(mVUpBlock->pState.needExactMatch & 2)) // The only time this should happen is on the first program block
|
||||
DevCon.WriteLn(Color_Green, "microVU%d: pState's mFlag Info was expected to be set [%04x]", getIndex, xPC);
|
||||
}
|
||||
|
@ -353,10 +459,12 @@ __ri void mVUanalyzeMflag(mV, int Is, int It) {
|
|||
// Cflag - Clip Flag Opcodes
|
||||
//------------------------------------------------------------------
|
||||
|
||||
__fi void mVUanalyzeCflag(mV, int It) {
|
||||
__fi void mVUanalyzeCflag(mV, int It)
|
||||
{
|
||||
mVUinfo.swapOps = 1;
|
||||
mVUlow.readFlags = true;
|
||||
if (mVUcount < 4) {
|
||||
if (mVUcount < 4)
|
||||
{
|
||||
if (!(mVUpBlock->pState.needExactMatch & 4)) // The only time this should happen is on the first program block
|
||||
DevCon.WriteLn(Color_Green, "microVU%d: pState's cFlag Info was expected to be set [%04x]", getIndex, xPC);
|
||||
}
|
||||
|
@ -367,7 +475,8 @@ __fi void mVUanalyzeCflag(mV, int It) {
|
|||
// XGkick
|
||||
//------------------------------------------------------------------
|
||||
|
||||
__fi void mVUanalyzeXGkick(mV, int Fs, int xCycles) {
|
||||
__fi void mVUanalyzeXGkick(mV, int Fs, int xCycles)
|
||||
{
|
||||
analyzeVIreg1(mVU, Fs, mVUlow.VI_read[0]);
|
||||
analyzeXGkick1(); // Stall will cause mVUincCycles() to trigger pending xgkick
|
||||
analyzeXGkick2(xCycles);
|
||||
|
@ -375,7 +484,7 @@ __fi void mVUanalyzeXGkick(mV, int Fs, int xCycles) {
|
|||
// this code stalls on the same instruction. The only case where this
|
||||
// will be a problem with, is if you have very-specifically placed
|
||||
// FMxxx or FSxxx opcodes checking flags near this instruction AND
|
||||
// the XGKICK instruction stalls. No-game should be effected by
|
||||
// the XGKICK instruction stalls. No-game should be effected by
|
||||
// this minor difference.
|
||||
}
|
||||
|
||||
|
@ -387,9 +496,12 @@ __fi void mVUanalyzeXGkick(mV, int Fs, int xCycles) {
|
|||
// value read by the branch is the value the VI reg had at the start
|
||||
// of the instruction 4 instructions ago (assuming no stalls).
|
||||
// See: https://forums.pcsx2.net/Thread-blog-PS2-VU-Vector-Unit-Documentation-Part-1
|
||||
static void analyzeBranchVI(mV, int xReg, bool& infoVar) {
|
||||
if (!xReg) return;
|
||||
if (mVUstall) { // I assume a stall on branch means the vi reg is not modified directly b4 the branch...
|
||||
static void analyzeBranchVI(mV, int xReg, bool& infoVar)
|
||||
{
|
||||
if (!xReg)
|
||||
return;
|
||||
if (mVUstall) // I assume a stall on branch means the vi reg is not modified directly b4 the branch...
|
||||
{
|
||||
DevCon.Warning("microVU%d: %d cycle stall on branch instruction [%04x]", getIndex, mVUstall, xPC);
|
||||
return;
|
||||
}
|
||||
|
@ -398,84 +510,112 @@ static void analyzeBranchVI(mV, int xReg, bool& infoVar) {
|
|||
int iEnd = 4;
|
||||
int bPC = iPC;
|
||||
incPC2(-2);
|
||||
for (i = 0; i < iEnd && cyc < iEnd; i++) {
|
||||
if (i && mVUstall) {
|
||||
for (i = 0; i < iEnd && cyc < iEnd; i++)
|
||||
{
|
||||
if (i && mVUstall)
|
||||
{
|
||||
DevCon.Warning("microVU%d: Branch VI-Delay with %d cycle stall (%d) [%04x]", getIndex, mVUstall, i, xPC);
|
||||
}
|
||||
if (i == (int)mVUcount) {
|
||||
if (i == (int)mVUcount)
|
||||
{
|
||||
bool warn = false;
|
||||
|
||||
if (i == 1)
|
||||
warn = true;
|
||||
|
||||
if (mVUpBlock->pState.viBackUp == xReg) {
|
||||
if (mVUpBlock->pState.viBackUp == xReg)
|
||||
{
|
||||
DevCon.WriteLn(Color_Green, "microVU%d: Loading Branch VI value from previous block", getIndex);
|
||||
|
||||
if (i == 0)
|
||||
warn = true;
|
||||
|
||||
infoVar = true;
|
||||
j = i; i++;
|
||||
j = i;
|
||||
i++;
|
||||
}
|
||||
if (warn) DevCon.Warning("microVU%d: Branch VI-Delay with small block (%d) [%04x]", getIndex, i, xPC);
|
||||
if (warn)
|
||||
DevCon.Warning("microVU%d: Branch VI-Delay with small block (%d) [%04x]", getIndex, i, xPC);
|
||||
break; // if (warn), we don't have enough information to always guarantee the correct result.
|
||||
}
|
||||
if ((mVUlow.VI_write.reg == xReg) && mVUlow.VI_write.used) {
|
||||
if (mVUlow.readFlags) {
|
||||
if (i) DevCon.Warning("microVU%d: Branch VI-Delay with Read Flags Set (%d) [%04x]", getIndex, i, xPC);
|
||||
if ((mVUlow.VI_write.reg == xReg) && mVUlow.VI_write.used)
|
||||
{
|
||||
if (mVUlow.readFlags)
|
||||
{
|
||||
if (i)
|
||||
DevCon.Warning("microVU%d: Branch VI-Delay with Read Flags Set (%d) [%04x]", getIndex, i, xPC);
|
||||
break; // Not sure if on the above "if (i)" case, if we need to "continue" or if we should "break"
|
||||
}
|
||||
j = i;
|
||||
}
|
||||
else if (i == 0) {
|
||||
else if (i == 0)
|
||||
{
|
||||
break;
|
||||
}
|
||||
cyc += mVUstall + 1;
|
||||
incPC2(-2);
|
||||
}
|
||||
|
||||
if (i) {
|
||||
if (!infoVar) {
|
||||
if (i)
|
||||
{
|
||||
if (!infoVar)
|
||||
{
|
||||
iPC = bPC;
|
||||
incPC2(-2*(j+1));
|
||||
incPC2(-2 * (j + 1));
|
||||
mVUlow.backupVI = true;
|
||||
infoVar = true;
|
||||
}
|
||||
iPC = bPC;
|
||||
DevCon.WriteLn(Color_Green, "microVU%d: Branch VI-Delay (%d) [%04x][%03d]", getIndex, j+1, xPC, mVU.prog.cur->idx);
|
||||
DevCon.WriteLn(Color_Green, "microVU%d: Branch VI-Delay (%d) [%04x][%03d]", getIndex, j + 1, xPC, mVU.prog.cur->idx);
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
iPC = bPC;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
// Dead Code... the old version of analyzeBranchVI()
|
||||
__fi void analyzeBranchVI(mV, int xReg, bool& infoVar) {
|
||||
if (!xReg) return;
|
||||
__fi void analyzeBranchVI(mV, int xReg, bool& infoVar)
|
||||
{
|
||||
if (!xReg)
|
||||
return;
|
||||
int i;
|
||||
int iEnd = std::min(5, mVUcount + 1);
|
||||
int bPC = iPC;
|
||||
incPC2(-2);
|
||||
for (i = 0; i < iEnd; i++) {
|
||||
if ((i == mVUcount) && (i < 5)) {
|
||||
if (mVUpBlock->pState.viBackUp == xReg) {
|
||||
for (i = 0; i < iEnd; i++)
|
||||
{
|
||||
if ((i == mVUcount) && (i < 5))
|
||||
{
|
||||
if (mVUpBlock->pState.viBackUp == xReg)
|
||||
{
|
||||
infoVar = 1;
|
||||
i++;
|
||||
}
|
||||
break;
|
||||
}
|
||||
if ((mVUlow.VI_write.reg == xReg) && mVUlow.VI_write.used) {
|
||||
if ((mVUlow.VI_write.reg == xReg) && mVUlow.VI_write.used)
|
||||
{
|
||||
if (mVUlow.readFlags || i == 5) break;
|
||||
if (i == 0) { incPC2(-2); continue; }
|
||||
if (i == 0)
|
||||
{
|
||||
incPC2(-2);
|
||||
continue;
|
||||
}
|
||||
if (((mVUlow.VI_read[0].reg == xReg) && (mVUlow.VI_read[0].used))
|
||||
|| ((mVUlow.VI_read[1].reg == xReg) && (mVUlow.VI_read[1].used)))
|
||||
{ incPC2(-2); continue; }
|
||||
|| ((mVUlow.VI_read[1].reg == xReg) && (mVUlow.VI_read[1].used)))
|
||||
{
|
||||
incPC2(-2);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
if (i) {
|
||||
if (!infoVar) {
|
||||
if (i)
|
||||
{
|
||||
if (!infoVar)
|
||||
{
|
||||
incPC2(2);
|
||||
mVUlow.backupVI = 1;
|
||||
infoVar = 1;
|
||||
|
@ -488,48 +628,53 @@ __fi void analyzeBranchVI(mV, int xReg, bool& infoVar) {
|
|||
*/
|
||||
|
||||
// Branch in Branch Delay-Slots
|
||||
__ri int mVUbranchCheck(mV) {
|
||||
__ri int mVUbranchCheck(mV)
|
||||
{
|
||||
if (!mVUcount)
|
||||
return 0;
|
||||
|
||||
incPC(-2);
|
||||
|
||||
if (mVUlow.branch) {
|
||||
if (mVUlow.branch)
|
||||
{
|
||||
u32 branchType = mVUlow.branch;
|
||||
if (doBranchInDelaySlot) {
|
||||
mVUlow.badBranch = true;
|
||||
if (doBranchInDelaySlot)
|
||||
{
|
||||
mVUlow.badBranch = true;
|
||||
incPC(2);
|
||||
mVUlow.evilBranch = true;
|
||||
|
||||
if(mVUlow.branch == 2 || mVUlow.branch == 10) //Needs linking, we can only guess this if the next is not conditional
|
||||
if (mVUlow.branch == 2 || mVUlow.branch == 10) // Needs linking, we can only guess this if the next is not conditional
|
||||
{
|
||||
if(branchType <= 2 || branchType >= 9) //First branch is not conditional so we know what the link will be
|
||||
{ //So we can let the existing evil block do its thing! We know where to get the addr :)
|
||||
if (branchType <= 2 || branchType >= 9) // First branch is not conditional so we know what the link will be so we can let the existing evil block do its thing! We know where to get the addr :)
|
||||
{
|
||||
DevCon.Warning("yo");
|
||||
DevCon.Warning("yo");
|
||||
DevCon.Warning("yo");
|
||||
DevCon.Warning("yo");
|
||||
DevCon.Warning("yo");
|
||||
DevCon.Warning("----");
|
||||
|
||||
|
||||
mVUregs.blockType = 2;
|
||||
} //Else it is conditional, so we need to do some nasty processing later in microVU_Branch.inl
|
||||
}
|
||||
else {
|
||||
mVUregs.blockType = 2; //Second branch doesn't need linking, so can let it run its evil block course (MGS2 for testing)
|
||||
else
|
||||
{
|
||||
mVUregs.blockType = 2; //Second branch doesn't need linking, so can let it run its evil block course (MGS2 for testing)
|
||||
}
|
||||
|
||||
mVUregs.needExactMatch |= 7; // This might not be necessary, but w/e...
|
||||
mVUregs.flagInfo = 0;
|
||||
mVUregs.flagInfo = 0;
|
||||
DevCon.Warning("microVU%d: %s in %s delay slot! [%04x] - If game broken report to PCSX2 Team", mVU.index,
|
||||
branchSTR[mVUlow.branch&0xf], branchSTR[branchType&0xf], xPC);
|
||||
branchSTR[mVUlow.branch & 0xf], branchSTR[branchType & 0xf], xPC);
|
||||
return 1;
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
incPC(2);
|
||||
mVUlow.isNOP = true;
|
||||
DevCon.Warning("microVU%d: %s in %s delay slot! [%04x]", mVU.index,
|
||||
branchSTR[mVUlow.branch&0xf], branchSTR[branchType&0xf], xPC);
|
||||
branchSTR[mVUlow.branch & 0xf], branchSTR[branchType & 0xf], xPC);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
@ -537,40 +682,49 @@ __ri int mVUbranchCheck(mV) {
|
|||
return 0;
|
||||
}
|
||||
|
||||
__fi void mVUanalyzeCondBranch1(mV, int Is) {
|
||||
__fi void mVUanalyzeCondBranch1(mV, int Is)
|
||||
{
|
||||
analyzeVIreg1(mVU, Is, mVUlow.VI_read[0]);
|
||||
if (!mVUbranchCheck(mVU)) {
|
||||
if (!mVUbranchCheck(mVU))
|
||||
{
|
||||
analyzeBranchVI(mVU, Is, mVUlow.memReadIs);
|
||||
}
|
||||
}
|
||||
|
||||
__fi void mVUanalyzeCondBranch2(mV, int Is, int It) {
|
||||
__fi void mVUanalyzeCondBranch2(mV, int Is, int It)
|
||||
{
|
||||
analyzeVIreg1(mVU, Is, mVUlow.VI_read[0]);
|
||||
analyzeVIreg1(mVU, It, mVUlow.VI_read[1]);
|
||||
if (!mVUbranchCheck(mVU)) {
|
||||
if (!mVUbranchCheck(mVU))
|
||||
{
|
||||
analyzeBranchVI(mVU, Is, mVUlow.memReadIs);
|
||||
analyzeBranchVI(mVU, It, mVUlow.memReadIt);
|
||||
}
|
||||
}
|
||||
|
||||
__fi void mVUanalyzeNormBranch(mV, int It, bool isBAL) {
|
||||
__fi void mVUanalyzeNormBranch(mV, int It, bool isBAL)
|
||||
{
|
||||
mVUbranchCheck(mVU);
|
||||
if (isBAL) {
|
||||
analyzeVIreg2(mVU, It, mVUlow.VI_write, 1);
|
||||
if (isBAL)
|
||||
{
|
||||
analyzeVIreg2(mVU, It, mVUlow.VI_write, 1);
|
||||
setConstReg(It, bSaveAddr);
|
||||
}
|
||||
}
|
||||
|
||||
__ri void mVUanalyzeJump(mV, int Is, int It, bool isJALR) {
|
||||
__ri void mVUanalyzeJump(mV, int Is, int It, bool isJALR)
|
||||
{
|
||||
mVUlow.branch = (isJALR) ? 10 : 9;
|
||||
mVUbranchCheck(mVU);
|
||||
if (mVUconstReg[Is].isValid && doConstProp) {
|
||||
if (mVUconstReg[Is].isValid && doConstProp)
|
||||
{
|
||||
mVUlow.constJump.isValid = 1;
|
||||
mVUlow.constJump.regValue = mVUconstReg[Is].regValue;
|
||||
//DevCon.Status("microVU%d: Constant JR/JALR Address Optimization", mVU.index);
|
||||
}
|
||||
analyzeVIreg1(mVU, Is, mVUlow.VI_read[0]);
|
||||
if (isJALR) {
|
||||
if (isJALR)
|
||||
{
|
||||
analyzeVIreg2(mVU, It, mVUlow.VI_write, 1);
|
||||
setConstReg(It, bSaveAddr);
|
||||
}
|
||||
|
|
|
@ -27,25 +27,17 @@ __fi int getLastFlagInst(microRegInfo& pState, int* xFlag, int flagType, int isE
|
|||
return (((pState.flagInfo >> (2 * flagType + 2)) & 3) - 1) & 3;
|
||||
}
|
||||
|
||||
void mVU0clearlpStateJIT()
|
||||
{
|
||||
if (!microVU0.prog.cleared)
|
||||
memzero(microVU0.prog.lpState);
|
||||
}
|
||||
void mVU1clearlpStateJIT()
|
||||
{
|
||||
if (!microVU1.prog.cleared)
|
||||
memzero(microVU1.prog.lpState);
|
||||
}
|
||||
void mVU0clearlpStateJIT() { if (!microVU0.prog.cleared) memzero(microVU0.prog.lpState); }
|
||||
void mVU1clearlpStateJIT() { if (!microVU1.prog.cleared) memzero(microVU1.prog.lpState); }
|
||||
|
||||
void mVUDTendProgram(mV, microFlagCycles* mFC, int isEbit)
|
||||
{
|
||||
|
||||
int fStatus = getLastFlagInst(mVUpBlock->pState, mFC->xStatus, 0, isEbit);
|
||||
int fMac = getLastFlagInst(mVUpBlock->pState, mFC->xMac, 1, isEbit);
|
||||
int fClip = getLastFlagInst(mVUpBlock->pState, mFC->xClip, 2, isEbit);
|
||||
int qInst = 0;
|
||||
int pInst = 0;
|
||||
int fMac = getLastFlagInst(mVUpBlock->pState, mFC->xMac, 1, isEbit);
|
||||
int fClip = getLastFlagInst(mVUpBlock->pState, mFC->xClip, 2, isEbit);
|
||||
int qInst = 0;
|
||||
int pInst = 0;
|
||||
microBlock stateBackup;
|
||||
memcpy(&stateBackup, &mVUregs, sizeof(mVUregs)); //backup the state, it's about to get screwed with.
|
||||
|
||||
|
@ -78,9 +70,7 @@ void mVUDTendProgram(mV, microFlagCycles* mFC, int isEbit)
|
|||
|
||||
// Save P/Q Regs
|
||||
if (qInst)
|
||||
{
|
||||
xPSHUF.D(xmmPQ, xmmPQ, 0xe1);
|
||||
}
|
||||
xMOVSS(ptr32[&mVU.regs().VI[REG_Q].UL], xmmPQ);
|
||||
xPSHUF.D(xmmPQ, xmmPQ, 0xe1);
|
||||
xMOVSS(ptr32[&mVU.regs().pending_q], xmmPQ);
|
||||
|
@ -89,9 +79,7 @@ void mVUDTendProgram(mV, microFlagCycles* mFC, int isEbit)
|
|||
if (isVU1)
|
||||
{
|
||||
if (pInst)
|
||||
{
|
||||
xPSHUF.D(xmmPQ, xmmPQ, 0xb4);
|
||||
} // Swap Pending/Active P
|
||||
xPSHUF.D(xmmPQ, xmmPQ, 0xb4); // Swap Pending/Active P
|
||||
xPSHUF.D(xmmPQ, xmmPQ, 0xC6); // 3 0 1 2
|
||||
xMOVSS(ptr32[&mVU.regs().VI[REG_P].UL], xmmPQ);
|
||||
xPSHUF.D(xmmPQ, xmmPQ, 0x87); // 0 2 1 3
|
||||
|
@ -107,8 +95,8 @@ void mVUDTendProgram(mV, microFlagCycles* mFC, int isEbit)
|
|||
xMOV(ptr32[&mVU.regs().VI[REG_MAC_FLAG].UL], gprT1);
|
||||
xMOV(ptr32[&mVU.regs().VI[REG_CLIP_FLAG].UL], gprT2);
|
||||
|
||||
if (!isEbit)
|
||||
{ // Backup flag instances
|
||||
if (!isEbit) // Backup flag instances
|
||||
{
|
||||
xMOVAPS(xmmT1, ptr128[mVU.macFlag]);
|
||||
xMOVAPS(ptr128[&mVU.regs().micro_macflags], xmmT1);
|
||||
xMOVAPS(xmmT1, ptr128[mVU.clipFlag]);
|
||||
|
@ -119,8 +107,8 @@ void mVUDTendProgram(mV, microFlagCycles* mFC, int isEbit)
|
|||
xMOV(ptr32[&mVU.regs().micro_statusflags[2]], gprF2);
|
||||
xMOV(ptr32[&mVU.regs().micro_statusflags[3]], gprF3);
|
||||
}
|
||||
else
|
||||
{ // Flush flag instances
|
||||
else // Flush flag instances
|
||||
{
|
||||
xMOVDZX(xmmT1, ptr32[&mVU.regs().VI[REG_CLIP_FLAG].UL]);
|
||||
xSHUF.PS(xmmT1, xmmT1, 0);
|
||||
xMOVAPS(ptr128[&mVU.regs().micro_clipflags], xmmT1);
|
||||
|
@ -134,8 +122,8 @@ void mVUDTendProgram(mV, microFlagCycles* mFC, int isEbit)
|
|||
xMOVAPS(ptr128[&mVU.regs().micro_statusflags], xmmT1);
|
||||
}
|
||||
|
||||
if (isEbit)
|
||||
{ // Clear 'is busy' Flags
|
||||
if (isEbit) // Clear 'is busy' Flags
|
||||
{
|
||||
xMOV(ptr32[&mVU.regs().nextBlockCycles], 0);
|
||||
if (!mVU.index || !THREAD_VU1)
|
||||
{
|
||||
|
@ -147,8 +135,8 @@ void mVUDTendProgram(mV, microFlagCycles* mFC, int isEbit)
|
|||
else
|
||||
xMOV(ptr32[&mVU.regs().nextBlockCycles], mVUcycles);
|
||||
|
||||
if (isEbit != 2)
|
||||
{ // Save PC, and Jump to Exit Point
|
||||
if (isEbit != 2) // Save PC, and Jump to Exit Point
|
||||
{
|
||||
xMOV(ptr32[&mVU.regs().VI[REG_TPC].UL], xPC);
|
||||
xJMP(mVU.exitFunct);
|
||||
}
|
||||
|
@ -159,10 +147,10 @@ void mVUendProgram(mV, microFlagCycles* mFC, int isEbit)
|
|||
{
|
||||
|
||||
int fStatus = getLastFlagInst(mVUpBlock->pState, mFC->xStatus, 0, isEbit && isEbit != 3);
|
||||
int fMac = getLastFlagInst(mVUpBlock->pState, mFC->xMac, 1, isEbit && isEbit != 3);
|
||||
int fClip = getLastFlagInst(mVUpBlock->pState, mFC->xClip, 2, isEbit && isEbit != 3);
|
||||
int qInst = 0;
|
||||
int pInst = 0;
|
||||
int fMac = getLastFlagInst(mVUpBlock->pState, mFC->xMac, 1, isEbit && isEbit != 3);
|
||||
int fClip = getLastFlagInst(mVUpBlock->pState, mFC->xClip, 2, isEbit && isEbit != 3);
|
||||
int qInst = 0;
|
||||
int pInst = 0;
|
||||
microBlock stateBackup;
|
||||
memcpy(&stateBackup, &mVUregs, sizeof(mVUregs)); //backup the state, it's about to get screwed with.
|
||||
if (!isEbit || isEbit == 3)
|
||||
|
@ -196,9 +184,7 @@ void mVUendProgram(mV, microFlagCycles* mFC, int isEbit)
|
|||
|
||||
// Save P/Q Regs
|
||||
if (qInst)
|
||||
{
|
||||
xPSHUF.D(xmmPQ, xmmPQ, 0xe1);
|
||||
}
|
||||
xMOVSS(ptr32[&mVU.regs().VI[REG_Q].UL], xmmPQ);
|
||||
xPSHUF.D(xmmPQ, xmmPQ, 0xe1);
|
||||
xMOVSS(ptr32[&mVU.regs().pending_q], xmmPQ);
|
||||
|
@ -207,9 +193,7 @@ void mVUendProgram(mV, microFlagCycles* mFC, int isEbit)
|
|||
if (isVU1)
|
||||
{
|
||||
if (pInst)
|
||||
{
|
||||
xPSHUF.D(xmmPQ, xmmPQ, 0xb4);
|
||||
} // Swap Pending/Active P
|
||||
xPSHUF.D(xmmPQ, xmmPQ, 0xb4); // Swap Pending/Active P
|
||||
xPSHUF.D(xmmPQ, xmmPQ, 0xC6); // 3 0 1 2
|
||||
xMOVSS(ptr32[&mVU.regs().VI[REG_P].UL], xmmPQ);
|
||||
xPSHUF.D(xmmPQ, xmmPQ, 0x87); // 0 2 1 3
|
||||
|
@ -225,8 +209,8 @@ void mVUendProgram(mV, microFlagCycles* mFC, int isEbit)
|
|||
xMOV(ptr32[&mVU.regs().VI[REG_MAC_FLAG].UL], gprT1);
|
||||
xMOV(ptr32[&mVU.regs().VI[REG_CLIP_FLAG].UL], gprT2);
|
||||
|
||||
if (!isEbit || isEbit == 3)
|
||||
{ // Backup flag instances
|
||||
if (!isEbit || isEbit == 3) // Backup flag instances
|
||||
{
|
||||
xMOVAPS(xmmT1, ptr128[mVU.macFlag]);
|
||||
xMOVAPS(ptr128[&mVU.regs().micro_macflags], xmmT1);
|
||||
xMOVAPS(xmmT1, ptr128[mVU.clipFlag]);
|
||||
|
@ -237,8 +221,8 @@ void mVUendProgram(mV, microFlagCycles* mFC, int isEbit)
|
|||
xMOV(ptr32[&mVU.regs().micro_statusflags[2]], gprF2);
|
||||
xMOV(ptr32[&mVU.regs().micro_statusflags[3]], gprF3);
|
||||
}
|
||||
else
|
||||
{ // Flush flag instances
|
||||
else // Flush flag instances
|
||||
{
|
||||
xMOVDZX(xmmT1, ptr32[&mVU.regs().VI[REG_CLIP_FLAG].UL]);
|
||||
xSHUF.PS(xmmT1, xmmT1, 0);
|
||||
xMOVAPS(ptr128[&mVU.regs().micro_clipflags], xmmT1);
|
||||
|
@ -253,8 +237,8 @@ void mVUendProgram(mV, microFlagCycles* mFC, int isEbit)
|
|||
}
|
||||
|
||||
|
||||
if ((isEbit && isEbit != 3))
|
||||
{ // Clear 'is busy' Flags
|
||||
if ((isEbit && isEbit != 3)) // Clear 'is busy' Flags
|
||||
{
|
||||
xMOV(ptr32[&mVU.regs().nextBlockCycles], 0);
|
||||
if (!mVU.index || !THREAD_VU1)
|
||||
{
|
||||
|
@ -266,8 +250,8 @@ void mVUendProgram(mV, microFlagCycles* mFC, int isEbit)
|
|||
else
|
||||
xMOV(ptr32[&mVU.regs().nextBlockCycles], mVUcycles);
|
||||
|
||||
if (isEbit != 2 && isEbit != 3)
|
||||
{ // Save PC, and Jump to Exit Point
|
||||
if (isEbit != 2 && isEbit != 3) // Save PC, and Jump to Exit Point
|
||||
{
|
||||
xMOV(ptr32[&mVU.regs().VI[REG_TPC].UL], xPC);
|
||||
xJMP(mVU.exitFunct);
|
||||
}
|
||||
|
@ -277,15 +261,12 @@ void mVUendProgram(mV, microFlagCycles* mFC, int isEbit)
|
|||
// Recompiles Code for Proper Flags and Q/P regs on Block Linkings
|
||||
void mVUsetupBranch(mV, microFlagCycles& mFC)
|
||||
{
|
||||
|
||||
mVU.regAlloc->flushAll(); // Flush Allocated Regs
|
||||
mVUsetupFlags(mVU, mFC); // Shuffle Flag Instances
|
||||
mVUsetupFlags(mVU, mFC); // Shuffle Flag Instances
|
||||
|
||||
// Shuffle P/Q regs since every block starts at instance #0
|
||||
if (mVU.p || mVU.q)
|
||||
{
|
||||
xPSHUF.D(xmmPQ, xmmPQ, shufflePQ);
|
||||
}
|
||||
mVU.p = 0, mVU.q = 0;
|
||||
}
|
||||
|
||||
|
@ -295,13 +276,9 @@ void normBranchCompile(microVU& mVU, u32 branchPC)
|
|||
blockCreate(branchPC / 8);
|
||||
pBlock = mVUblocks[branchPC / 8]->search((microRegInfo*)&mVUregs);
|
||||
if (pBlock)
|
||||
{
|
||||
xJMP(pBlock->x86ptrStart);
|
||||
}
|
||||
else
|
||||
{
|
||||
mVUcompile(mVU, branchPC, (uptr)&mVUregs);
|
||||
}
|
||||
}
|
||||
|
||||
void normJumpCompile(mV, microFlagCycles& mFC, bool isEvilJump)
|
||||
|
@ -310,8 +287,8 @@ void normJumpCompile(mV, microFlagCycles& mFC, bool isEvilJump)
|
|||
mVUsetupBranch(mVU, mFC);
|
||||
mVUbackupRegs(mVU);
|
||||
|
||||
if (!mVUpBlock->jumpCache)
|
||||
{ // Create the jump cache for this block
|
||||
if (!mVUpBlock->jumpCache) // Create the jump cache for this block
|
||||
{
|
||||
mVUpBlock->jumpCache = new microJumpCache[mProgSize / 2];
|
||||
}
|
||||
|
||||
|
@ -480,9 +457,9 @@ void condBranch(mV, microFlagCycles& mFC, int JMPcc)
|
|||
mVUDTendProgram(mVU, &mFC, 2);
|
||||
xCMP(ptr16[&mVU.branch], 0);
|
||||
xForwardJump32 tJMP(xInvertCond((JccComparisonType)JMPcc));
|
||||
incPC(4); // Set PC to First instruction of Non-Taken Side
|
||||
xMOV(ptr32[&mVU.regs().VI[REG_TPC].UL], xPC);
|
||||
xJMP(mVU.exitFunct);
|
||||
incPC(4); // Set PC to First instruction of Non-Taken Side
|
||||
xMOV(ptr32[&mVU.regs().VI[REG_TPC].UL], xPC);
|
||||
xJMP(mVU.exitFunct);
|
||||
tJMP.SetTarget();
|
||||
incPC(-4); // Go Back to Branch Opcode to get branchAddr
|
||||
iPC = branchAddr(mVU) / 4;
|
||||
|
@ -504,9 +481,9 @@ void condBranch(mV, microFlagCycles& mFC, int JMPcc)
|
|||
mVUDTendProgram(mVU, &mFC, 2);
|
||||
xCMP(ptr16[&mVU.branch], 0);
|
||||
xForwardJump32 dJMP(xInvertCond((JccComparisonType)JMPcc));
|
||||
incPC(4); // Set PC to First instruction of Non-Taken Side
|
||||
xMOV(ptr32[&mVU.regs().VI[REG_TPC].UL], xPC);
|
||||
xJMP(mVU.exitFunct);
|
||||
incPC(4); // Set PC to First instruction of Non-Taken Side
|
||||
xMOV(ptr32[&mVU.regs().VI[REG_TPC].UL], xPC);
|
||||
xJMP(mVU.exitFunct);
|
||||
dJMP.SetTarget();
|
||||
incPC(-4); // Go Back to Branch Opcode to get branchAddr
|
||||
iPC = branchAddr(mVU) / 4;
|
||||
|
@ -537,8 +514,8 @@ void condBranch(mV, microFlagCycles& mFC, int JMPcc)
|
|||
xJMP(mVU.exitFunct);
|
||||
iPC = tempPC;
|
||||
}
|
||||
if (mVUup.eBit)
|
||||
{ // Conditional Branch With E-Bit Set
|
||||
if (mVUup.eBit) // Conditional Branch With E-Bit Set
|
||||
{
|
||||
if (mVUlow.evilBranch)
|
||||
DevCon.Warning("End on evil branch! - Not implemented! - If game broken report to PCSX2 Team");
|
||||
|
||||
|
@ -547,9 +524,9 @@ void condBranch(mV, microFlagCycles& mFC, int JMPcc)
|
|||
|
||||
incPC(3);
|
||||
xForwardJump32 eJMP(((JccComparisonType)JMPcc));
|
||||
incPC(1); // Set PC to First instruction of Non-Taken Side
|
||||
xMOV(ptr32[&mVU.regs().VI[REG_TPC].UL], xPC);
|
||||
xJMP(mVU.exitFunct);
|
||||
incPC(1); // Set PC to First instruction of Non-Taken Side
|
||||
xMOV(ptr32[&mVU.regs().VI[REG_TPC].UL], xPC);
|
||||
xJMP(mVU.exitFunct);
|
||||
eJMP.SetTarget();
|
||||
incPC(-4); // Go Back to Branch Opcode to get branchAddr
|
||||
|
||||
|
@ -558,15 +535,14 @@ void condBranch(mV, microFlagCycles& mFC, int JMPcc)
|
|||
xJMP(mVU.exitFunct);
|
||||
return;
|
||||
}
|
||||
else
|
||||
{ // Normal Conditional Branch
|
||||
else // Normal Conditional Branch
|
||||
{
|
||||
xCMP(ptr16[&mVU.branch], 0);
|
||||
|
||||
incPC(3);
|
||||
if (mVUlow.evilBranch) //We are dealing with an evil evil block, so we need to process this slightly differently
|
||||
if (mVUlow.evilBranch) // We are dealing with an evil evil block, so we need to process this slightly differently
|
||||
{
|
||||
|
||||
if (mVUlow.branch == 10 || mVUlow.branch == 2) //Evil branch is a jump of some measure
|
||||
if (mVUlow.branch == 10 || mVUlow.branch == 2) // Evil branch is a jump of some measure
|
||||
{
|
||||
//Because of how it is linked, we need to make sure the target is recompiled if taken
|
||||
condJumpProcessingEvil(mVU, mFC, JMPcc);
|
||||
|
@ -578,8 +554,8 @@ void condBranch(mV, microFlagCycles& mFC, int JMPcc)
|
|||
blockCreate(iPC / 2);
|
||||
bBlock = mVUblocks[iPC / 2]->search((microRegInfo*)&mVUregs);
|
||||
incPC2(-1);
|
||||
if (bBlock)
|
||||
{ // Branch non-taken has already been compiled
|
||||
if (bBlock) // Branch non-taken has already been compiled
|
||||
{
|
||||
xJcc(xInvertCond((JccComparisonType)JMPcc), bBlock->x86ptrStart);
|
||||
incPC(-3); // Go back to branch opcode (to get branch imm addr)
|
||||
normBranchCompile(mVU, branchAddr(mVU));
|
||||
|
@ -608,10 +584,10 @@ void normJump(mV, microFlagCycles& mFC)
|
|||
{
|
||||
DevCon.Warning("M-Bit on Jump! Please report if broken");
|
||||
}
|
||||
if (mVUlow.constJump.isValid)
|
||||
{ // Jump Address is Constant
|
||||
if (mVUup.eBit)
|
||||
{ // E-bit Jump
|
||||
if (mVUlow.constJump.isValid) // Jump Address is Constant
|
||||
{
|
||||
if (mVUup.eBit) // E-bit Jump
|
||||
{
|
||||
iPC = (mVUlow.constJump.regValue * 2) & (mVU.progMemMask);
|
||||
mVUendProgram(mVU, &mFC, 1);
|
||||
return;
|
||||
|
@ -666,8 +642,8 @@ void normJump(mV, microFlagCycles& mFC)
|
|||
xJMP(mVU.exitFunct);
|
||||
eJMP.SetTarget();
|
||||
}
|
||||
if (mVUup.eBit)
|
||||
{ // E-bit Jump
|
||||
if (mVUup.eBit) // E-bit Jump
|
||||
{
|
||||
mVUendProgram(mVU, &mFC, 2);
|
||||
xMOV(gprT1, ptr32[&mVU.branch]);
|
||||
xMOV(ptr32[&mVU.regs().VI[REG_TPC].UL], gprT1);
|
||||
|
|
|
@ -20,23 +20,26 @@
|
|||
//------------------------------------------------------------------
|
||||
|
||||
const __aligned16 u32 sse4_minvals[2][4] = {
|
||||
{ 0xff7fffff, 0xffffffff, 0xffffffff, 0xffffffff }, //1000
|
||||
{ 0xff7fffff, 0xff7fffff, 0xff7fffff, 0xff7fffff }, //1111
|
||||
{0xff7fffff, 0xffffffff, 0xffffffff, 0xffffffff}, //1000
|
||||
{0xff7fffff, 0xff7fffff, 0xff7fffff, 0xff7fffff}, //1111
|
||||
};
|
||||
const __aligned16 u32 sse4_maxvals[2][4] = {
|
||||
{ 0x7f7fffff, 0x7fffffff, 0x7fffffff, 0x7fffffff }, //1000
|
||||
{ 0x7f7fffff, 0x7f7fffff, 0x7f7fffff, 0x7f7fffff }, //1111
|
||||
{0x7f7fffff, 0x7fffffff, 0x7fffffff, 0x7fffffff}, //1000
|
||||
{0x7f7fffff, 0x7f7fffff, 0x7f7fffff, 0x7f7fffff}, //1111
|
||||
};
|
||||
|
||||
// Used for Result Clamping
|
||||
// Note: This function will not preserve NaN values' sign.
|
||||
// The theory behind this is that when we compute a result, and we've
|
||||
// gotten a NaN value, then something went wrong; and the NaN's sign
|
||||
// is not to be trusted. Games like positive values better usually,
|
||||
// is not to be trusted. Games like positive values better usually,
|
||||
// and its faster... so just always make NaNs into positive infinity.
|
||||
void mVUclamp1(const xmm& reg, const xmm& regT1, int xyzw, bool bClampE = 0) {
|
||||
if ((!clampE && CHECK_VU_OVERFLOW) || (clampE && bClampE)) {
|
||||
switch (xyzw) {
|
||||
void mVUclamp1(const xmm& reg, const xmm& regT1, int xyzw, bool bClampE = 0)
|
||||
{
|
||||
if ((!clampE && CHECK_VU_OVERFLOW) || (clampE && bClampE))
|
||||
{
|
||||
switch (xyzw)
|
||||
{
|
||||
case 1: case 2: case 4: case 8:
|
||||
xMIN.SS(reg, ptr32[mVUglob.maxvals]);
|
||||
xMAX.SS(reg, ptr32[mVUglob.minvals]);
|
||||
|
@ -54,27 +57,34 @@ void mVUclamp1(const xmm& reg, const xmm& regT1, int xyzw, bool bClampE = 0) {
|
|||
// Note 2: Using regalloc here seems to contaminate some regs in certain games.
|
||||
// Must be some specific case I've overlooked (or I used regalloc improperly on an opcode)
|
||||
// so we just use a temporary mem location for our backup for now... (non-sse4 version only)
|
||||
void mVUclamp2(microVU& mVU, const xmm& reg, const xmm& regT1in, int xyzw, bool bClampE = 0) {
|
||||
if ((!clampE && CHECK_VU_SIGN_OVERFLOW) || (clampE && bClampE && CHECK_VU_SIGN_OVERFLOW)) {
|
||||
int i = (xyzw==1||xyzw==2||xyzw==4||xyzw==8) ? 0: 1;
|
||||
void mVUclamp2(microVU& mVU, const xmm& reg, const xmm& regT1in, int xyzw, bool bClampE = 0)
|
||||
{
|
||||
if ((!clampE && CHECK_VU_SIGN_OVERFLOW) || (clampE && bClampE && CHECK_VU_SIGN_OVERFLOW))
|
||||
{
|
||||
int i = (xyzw == 1 || xyzw == 2 || xyzw == 4 || xyzw == 8) ? 0 : 1;
|
||||
xPMIN.SD(reg, ptr128[&sse4_maxvals[i][0]]);
|
||||
xPMIN.UD(reg, ptr128[&sse4_minvals[i][0]]);
|
||||
return;
|
||||
}
|
||||
else mVUclamp1(reg, regT1in, xyzw, bClampE);
|
||||
else
|
||||
mVUclamp1(reg, regT1in, xyzw, bClampE);
|
||||
}
|
||||
|
||||
// Used for operand clamping on every SSE instruction (add/sub/mul/div)
|
||||
void mVUclamp3(microVU& mVU, const xmm& reg, const xmm& regT1, int xyzw) {
|
||||
if (clampE) mVUclamp2(mVU, reg, regT1, xyzw, 1);
|
||||
void mVUclamp3(microVU& mVU, const xmm& reg, const xmm& regT1, int xyzw)
|
||||
{
|
||||
if (clampE)
|
||||
mVUclamp2(mVU, reg, regT1, xyzw, 1);
|
||||
}
|
||||
|
||||
// Used for result clamping on every SSE instruction (add/sub/mul/div)
|
||||
// Note: Disabled in "preserve sign" mode because in certain cases it
|
||||
// makes too much code-gen, and you get jump8-overflows in certain
|
||||
// emulated opcodes (causing crashes). Since we're clamping the operands
|
||||
// with mVUclamp3, we should almost never be getting a NaN result,
|
||||
// emulated opcodes (causing crashes). Since we're clamping the operands
|
||||
// with mVUclamp3, we should almost never be getting a NaN result,
|
||||
// but this clamp is just a precaution just-in-case.
|
||||
void mVUclamp4(const xmm& reg, const xmm& regT1, int xyzw) {
|
||||
if (clampE && !CHECK_VU_SIGN_OVERFLOW) mVUclamp1(reg, regT1, xyzw, 1);
|
||||
void mVUclamp4(const xmm& reg, const xmm& regT1, int xyzw)
|
||||
{
|
||||
if (clampE && !CHECK_VU_SIGN_OVERFLOW)
|
||||
mVUclamp1(reg, regT1, xyzw, 1);
|
||||
}
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -20,15 +20,16 @@
|
|||
//------------------------------------------------------------------
|
||||
|
||||
// Generates the code for entering/exit recompiled blocks
|
||||
void mVUdispatcherAB(mV) {
|
||||
void mVUdispatcherAB(mV)
|
||||
{
|
||||
mVU.startFunct = x86Ptr;
|
||||
|
||||
{
|
||||
xScopedStackFrame frame(false, true);
|
||||
|
||||
// __fastcall = The caller has already put the needed parameters in ecx/edx:
|
||||
if (!isVU1) { xFastCall((void*)mVUexecuteVU0, arg1reg, arg2reg); }
|
||||
else { xFastCall((void*)mVUexecuteVU1, arg1reg, arg2reg); }
|
||||
if (!isVU1) xFastCall((void*)mVUexecuteVU0, arg1reg, arg2reg);
|
||||
else xFastCall((void*)mVUexecuteVU1, arg1reg, arg2reg);
|
||||
|
||||
// Load VU's MXCSR state
|
||||
xLDMXCSR(g_sseVUMXCSR);
|
||||
|
@ -42,7 +43,7 @@ void mVUdispatcherAB(mV) {
|
|||
xPSHUF.D(xmmPQ, xmmPQ, 0xe1);
|
||||
xMOVSS(xmmPQ, xmmT2);
|
||||
xPSHUF.D(xmmPQ, xmmPQ, 0xe1);
|
||||
|
||||
|
||||
if (isVU1)
|
||||
{
|
||||
//Load in other P instance
|
||||
|
@ -74,18 +75,19 @@ void mVUdispatcherAB(mV) {
|
|||
|
||||
// __fastcall = The first two DWORD or smaller arguments are passed in ECX and EDX registers;
|
||||
// all other arguments are passed right to left.
|
||||
if (!isVU1) { xFastCall((void*)mVUcleanUpVU0); }
|
||||
else { xFastCall((void*)mVUcleanUpVU1); }
|
||||
if (!isVU1) xFastCall((void*)mVUcleanUpVU0);
|
||||
else xFastCall((void*)mVUcleanUpVU1);
|
||||
}
|
||||
|
||||
xRET();
|
||||
|
||||
pxAssertDev(xGetPtr() < (mVU.dispCache + mVUdispCacheSize),
|
||||
"microVU: Dispatcher generation exceeded reserved cache area!");
|
||||
"microVU: Dispatcher generation exceeded reserved cache area!");
|
||||
}
|
||||
|
||||
// Generates the code for resuming/exit xgkick
|
||||
void mVUdispatcherCD(mV) {
|
||||
void mVUdispatcherCD(mV)
|
||||
{
|
||||
mVU.startFunctXG = x86Ptr;
|
||||
|
||||
{
|
||||
|
@ -116,7 +118,6 @@ void mVUdispatcherCD(mV) {
|
|||
|
||||
// Load EE's MXCSR state
|
||||
xLDMXCSR(g_sseMXCSR);
|
||||
|
||||
}
|
||||
|
||||
xRET();
|
||||
|
@ -130,15 +131,17 @@ void mVUdispatcherCD(mV) {
|
|||
//------------------------------------------------------------------
|
||||
|
||||
// Executes for number of cycles
|
||||
_mVUt void* __fastcall mVUexecute(u32 startPC, u32 cycles) {
|
||||
_mVUt void* __fastcall mVUexecute(u32 startPC, u32 cycles)
|
||||
{
|
||||
|
||||
microVU& mVU = mVUx;
|
||||
u32 vuLimit = vuIndex ? 0x3ff8 : 0xff8;
|
||||
if (startPC > vuLimit + 7) {
|
||||
u32 vuLimit = vuIndex ? 0x3ff8 : 0xff8;
|
||||
if (startPC > vuLimit + 7)
|
||||
{
|
||||
DevCon.Warning("microVU%x Warning: startPC = 0x%x, cycles = 0x%x", vuIndex, startPC, cycles);
|
||||
}
|
||||
|
||||
mVU.cycles = cycles;
|
||||
mVU.cycles = cycles;
|
||||
mVU.totalCycles = cycles;
|
||||
|
||||
xSetPtr(mVU.prog.x86ptr); // Set x86ptr to where last program left off
|
||||
|
@ -149,7 +152,8 @@ _mVUt void* __fastcall mVUexecute(u32 startPC, u32 cycles) {
|
|||
// Cleanup Functions
|
||||
//------------------------------------------------------------------
|
||||
|
||||
_mVUt void mVUcleanUp() {
|
||||
_mVUt void mVUcleanUp()
|
||||
{
|
||||
microVU& mVU = mVUx;
|
||||
//mVUprint("microVU: Program exited successfully!");
|
||||
//mVUprint("microVU: VF0 = {%x,%x,%x,%x}", mVU.regs().VF[0].UL[0], mVU.regs().VF[0].UL[1], mVU.regs().VF[0].UL[2], mVU.regs().VF[0].UL[3]);
|
||||
|
@ -157,7 +161,8 @@ _mVUt void mVUcleanUp() {
|
|||
|
||||
mVU.prog.x86ptr = x86Ptr;
|
||||
|
||||
if ((xGetPtr() < mVU.prog.x86start) || (xGetPtr() >= mVU.prog.x86end)) {
|
||||
if ((xGetPtr() < mVU.prog.x86start) || (xGetPtr() >= mVU.prog.x86end))
|
||||
{
|
||||
Console.WriteLn(vuIndex ? Color_Orange : Color_Magenta, "microVU%d: Program cache limit reached.", mVU.index);
|
||||
mVUreset(mVU, false);
|
||||
}
|
||||
|
@ -165,9 +170,11 @@ _mVUt void mVUcleanUp() {
|
|||
mVU.cycles = mVU.totalCycles - mVU.cycles;
|
||||
mVU.regs().cycle += mVU.cycles;
|
||||
|
||||
if (!vuIndex || !THREAD_VU1) {
|
||||
if (!vuIndex || !THREAD_VU1)
|
||||
{
|
||||
u32 cycles_passed = std::min(mVU.cycles, 3000u) * EmuConfig.Speedhacks.EECycleSkip;
|
||||
if (cycles_passed > 0) {
|
||||
if (cycles_passed > 0)
|
||||
{
|
||||
s32 vu0_offset = VU0.cycle - cpuRegs.cycle;
|
||||
cpuRegs.cycle += cycles_passed;
|
||||
|
||||
|
@ -196,5 +203,5 @@ _mVUt void mVUcleanUp() {
|
|||
|
||||
void* __fastcall mVUexecuteVU0(u32 startPC, u32 cycles) { return mVUexecute<0>(startPC, cycles); }
|
||||
void* __fastcall mVUexecuteVU1(u32 startPC, u32 cycles) { return mVUexecute<1>(startPC, cycles); }
|
||||
void __fastcall mVUcleanUpVU0() { mVUcleanUp<0>(); }
|
||||
void __fastcall mVUcleanUpVU1() { mVUcleanUp<1>(); }
|
||||
void __fastcall mVUcleanUpVU0() { mVUcleanUp<0>(); }
|
||||
void __fastcall mVUcleanUpVU1() { mVUcleanUp<1>(); }
|
||||
|
|
|
@ -16,39 +16,50 @@
|
|||
#pragma once
|
||||
|
||||
// Sets FDIV Flags at the proper time
|
||||
__fi void mVUdivSet(mV) {
|
||||
if (mVUinfo.doDivFlag) {
|
||||
if (!sFLAG.doFlag) { xMOV(getFlagReg(sFLAG.write), getFlagReg(sFLAG.lastWrite)); }
|
||||
__fi void mVUdivSet(mV)
|
||||
{
|
||||
if (mVUinfo.doDivFlag)
|
||||
{
|
||||
if (!sFLAG.doFlag)
|
||||
xMOV(getFlagReg(sFLAG.write), getFlagReg(sFLAG.lastWrite));
|
||||
xAND(getFlagReg(sFLAG.write), 0xfff3ffff);
|
||||
xOR (getFlagReg(sFLAG.write), ptr32[&mVU.divFlag]);
|
||||
xOR(getFlagReg(sFLAG.write), ptr32[&mVU.divFlag]);
|
||||
}
|
||||
}
|
||||
|
||||
// Optimizes out unneeded status flag updates
|
||||
// This can safely be done when there is an FSSET opcode
|
||||
__fi void mVUstatusFlagOp(mV) {
|
||||
__fi void mVUstatusFlagOp(mV)
|
||||
{
|
||||
int curPC = iPC;
|
||||
int i = mVUcount;
|
||||
bool runLoop = true;
|
||||
|
||||
if (sFLAG.doFlag) {
|
||||
if (sFLAG.doFlag)
|
||||
{
|
||||
sFLAG.doNonSticky = true;
|
||||
}
|
||||
else {
|
||||
for (; i > 0; i--) {
|
||||
else
|
||||
{
|
||||
for (; i > 0; i--)
|
||||
{
|
||||
incPC2(-2);
|
||||
if (sFLAG.doNonSticky) {
|
||||
if (sFLAG.doNonSticky)
|
||||
{
|
||||
runLoop = false;
|
||||
break;
|
||||
}
|
||||
else if (sFLAG.doFlag) {
|
||||
else if (sFLAG.doFlag)
|
||||
{
|
||||
sFLAG.doNonSticky = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (runLoop) {
|
||||
for (; i > 0; i--) {
|
||||
if (runLoop)
|
||||
{
|
||||
for (; i > 0; i--)
|
||||
{
|
||||
incPC2(-2);
|
||||
|
||||
if (sFLAG.doNonSticky)
|
||||
|
@ -61,145 +72,181 @@ __fi void mVUstatusFlagOp(mV) {
|
|||
DevCon.WriteLn(Color_Green, "microVU%d: FSSET Optimization", getIndex);
|
||||
}
|
||||
|
||||
int findFlagInst(int* fFlag, int cycles) {
|
||||
int findFlagInst(int* fFlag, int cycles)
|
||||
{
|
||||
int j = 0, jValue = -1;
|
||||
for(int i = 0; i < 4; i++) {
|
||||
if ((fFlag[i] <= cycles) && (fFlag[i] > jValue)) {
|
||||
j = i; jValue = fFlag[i];
|
||||
for (int i = 0; i < 4; i++)
|
||||
{
|
||||
if ((fFlag[i] <= cycles) && (fFlag[i] > jValue))
|
||||
{
|
||||
j = i;
|
||||
jValue = fFlag[i];
|
||||
}
|
||||
}
|
||||
return j;
|
||||
}
|
||||
|
||||
// Setup Last 4 instances of Status/Mac/Clip flags (needed for accurate block linking)
|
||||
int sortFlag(int* fFlag, int* bFlag, int cycles) {
|
||||
int sortFlag(int* fFlag, int* bFlag, int cycles)
|
||||
{
|
||||
int lFlag = -5;
|
||||
int x = 0;
|
||||
for(int i = 0; i < 4; i++) {
|
||||
for (int i = 0; i < 4; i++)
|
||||
{
|
||||
bFlag[i] = findFlagInst(fFlag, cycles);
|
||||
if (lFlag != bFlag[i]) { x++; }
|
||||
if (lFlag != bFlag[i])
|
||||
x++;
|
||||
lFlag = bFlag[i];
|
||||
cycles++;
|
||||
}
|
||||
return x; // Returns the number of Valid Flag Instances
|
||||
}
|
||||
|
||||
void sortFullFlag(int* fFlag, int* bFlag) {
|
||||
void sortFullFlag(int* fFlag, int* bFlag)
|
||||
{
|
||||
int m = std::max(std::max(fFlag[0], fFlag[1]), std::max(fFlag[2], fFlag[3]));
|
||||
for(int i = 0; i < 4; i++) {
|
||||
for (int i = 0; i < 4; i++)
|
||||
{
|
||||
int t = 3 - (m - fFlag[i]);
|
||||
bFlag[i] = (t < 0) ? 0 : t+1;
|
||||
bFlag[i] = (t < 0) ? 0 : t + 1;
|
||||
}
|
||||
}
|
||||
|
||||
#define sFlagCond (sFLAG.doFlag || mVUlow.isFSSET || mVUinfo.doDivFlag )
|
||||
#define sFlagCond (sFLAG.doFlag || mVUlow.isFSSET || mVUinfo.doDivFlag)
|
||||
#define sHackCond (mVUsFlagHack && !sFLAG.doNonSticky)
|
||||
|
||||
// Note: Flag handling is 'very' complex, it requires full knowledge of how microVU recs work, so don't touch!
|
||||
__fi void mVUsetFlags(mV, microFlagCycles& mFC) {
|
||||
int endPC = iPC;
|
||||
__fi void mVUsetFlags(mV, microFlagCycles& mFC)
|
||||
{
|
||||
int endPC = iPC;
|
||||
u32 aCount = 0; // Amount of instructions needed to get valid mac flag instances for block linking
|
||||
//bool writeProtect = false;
|
||||
|
||||
// Ensure last ~4+ instructions update mac/status flags (if next block's first 4 instructions will read them)
|
||||
for(int i = mVUcount; i > 0; i--, aCount++) {
|
||||
if (sFLAG.doFlag) {
|
||||
for (int i = mVUcount; i > 0; i--, aCount++)
|
||||
{
|
||||
if (sFLAG.doFlag)
|
||||
{
|
||||
|
||||
if (__Mac) {
|
||||
if (__Mac)
|
||||
{
|
||||
mFLAG.doFlag = true;
|
||||
//writeProtect = true;
|
||||
}
|
||||
|
||||
if (__Status) {
|
||||
if (__Status)
|
||||
{
|
||||
sFLAG.doNonSticky = true;
|
||||
//writeProtect = true;
|
||||
}
|
||||
|
||||
if (aCount >= 3){
|
||||
if (aCount >= 3)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
incPC2(-2);
|
||||
}
|
||||
|
||||
|
||||
// Status/Mac Flags Setup Code
|
||||
int xS = 0, xM = 0, xC = 0;
|
||||
|
||||
for(int i = 0; i < 4; i++) {
|
||||
for (int i = 0; i < 4; i++)
|
||||
{
|
||||
mFC.xStatus[i] = i;
|
||||
mFC.xMac [i] = i;
|
||||
mFC.xClip [i] = i;
|
||||
}
|
||||
|
||||
if(!(mVUpBlock->pState.needExactMatch & 1)) {
|
||||
|
||||
if (!(mVUpBlock->pState.needExactMatch & 1))
|
||||
{
|
||||
xS = (mVUpBlock->pState.flagInfo >> 2) & 3;
|
||||
mFC.xStatus[0] = -1; mFC.xStatus[1] = -1;
|
||||
mFC.xStatus[2] = -1; mFC.xStatus[3] = -1;
|
||||
mFC.xStatus[(xS-1)&3] = 0;
|
||||
mFC.xStatus[0] = -1;
|
||||
mFC.xStatus[1] = -1;
|
||||
mFC.xStatus[2] = -1;
|
||||
mFC.xStatus[3] = -1;
|
||||
mFC.xStatus[(xS - 1) & 3] = 0;
|
||||
}
|
||||
|
||||
if(!(mVUpBlock->pState.needExactMatch & 2)) {
|
||||
if (!(mVUpBlock->pState.needExactMatch & 2))
|
||||
{
|
||||
//xM = (mVUpBlock->pState.flagInfo >> 4) & 3;
|
||||
mFC.xMac[0] = -1; mFC.xMac[1] = -1;
|
||||
mFC.xMac[2] = -1; mFC.xMac[3] = -1;
|
||||
mFC.xMac[0] = -1;
|
||||
mFC.xMac[1] = -1;
|
||||
mFC.xMac[2] = -1;
|
||||
mFC.xMac[3] = -1;
|
||||
//mFC.xMac[(xM-1)&3] = 0;
|
||||
}
|
||||
|
||||
if(!(mVUpBlock->pState.needExactMatch & 4)) {
|
||||
if (!(mVUpBlock->pState.needExactMatch & 4))
|
||||
{
|
||||
xC = (mVUpBlock->pState.flagInfo >> 6) & 3;
|
||||
mFC.xClip[0] = -1; mFC.xClip[1] = -1;
|
||||
mFC.xClip[2] = -1; mFC.xClip[3] = -1;
|
||||
mFC.xClip[(xC-1)&3] = 0;
|
||||
mFC.xClip[0] = -1;
|
||||
mFC.xClip[1] = -1;
|
||||
mFC.xClip[2] = -1;
|
||||
mFC.xClip[3] = -1;
|
||||
mFC.xClip[(xC - 1) & 3] = 0;
|
||||
}
|
||||
|
||||
mFC.cycles = 0;
|
||||
u32 xCount = mVUcount; // Backup count
|
||||
iPC = mVUstartPC;
|
||||
for(mVUcount = 0; mVUcount < xCount; mVUcount++) {
|
||||
if (mVUlow.isFSSET && !noFlagOpts) {
|
||||
if (__Status) { // Don't Optimize out on the last ~4+ instructions
|
||||
if ((xCount - mVUcount) > aCount) { mVUstatusFlagOp(mVU); }
|
||||
mFC.cycles = 0;
|
||||
u32 xCount = mVUcount; // Backup count
|
||||
iPC = mVUstartPC;
|
||||
for (mVUcount = 0; mVUcount < xCount; mVUcount++)
|
||||
{
|
||||
if (mVUlow.isFSSET && !noFlagOpts)
|
||||
{
|
||||
if (__Status) // Don't Optimize out on the last ~4+ instructions
|
||||
{
|
||||
if ((xCount - mVUcount) > aCount)
|
||||
mVUstatusFlagOp(mVU);
|
||||
}
|
||||
else mVUstatusFlagOp(mVU);
|
||||
else
|
||||
mVUstatusFlagOp(mVU);
|
||||
}
|
||||
mFC.cycles += mVUstall;
|
||||
|
||||
sFLAG.read = doSFlagInsts ? findFlagInst(mFC.xStatus, mFC.cycles) : 0;
|
||||
mFLAG.read = doMFlagInsts ? findFlagInst(mFC.xMac, mFC.cycles) : 0;
|
||||
cFLAG.read = doCFlagInsts ? findFlagInst(mFC.xClip, mFC.cycles) : 0;
|
||||
|
||||
sFLAG.read = doSFlagInsts ? findFlagInst(mFC.xStatus, mFC.cycles) : 0;
|
||||
mFLAG.read = doMFlagInsts ? findFlagInst(mFC.xMac, mFC.cycles) : 0;
|
||||
cFLAG.read = doCFlagInsts ? findFlagInst(mFC.xClip, mFC.cycles) : 0;
|
||||
|
||||
sFLAG.write = doSFlagInsts ? xS : 0;
|
||||
mFLAG.write = doMFlagInsts ? xM : 0;
|
||||
cFLAG.write = doCFlagInsts ? xC : 0;
|
||||
|
||||
sFLAG.lastWrite = doSFlagInsts ? (xS-1) & 3 : 0;
|
||||
mFLAG.lastWrite = doMFlagInsts ? (xM-1) & 3 : 0;
|
||||
cFLAG.lastWrite = doCFlagInsts ? (xC-1) & 3 : 0;
|
||||
sFLAG.lastWrite = doSFlagInsts ? (xS - 1) & 3 : 0;
|
||||
mFLAG.lastWrite = doMFlagInsts ? (xM - 1) & 3 : 0;
|
||||
cFLAG.lastWrite = doCFlagInsts ? (xC - 1) & 3 : 0;
|
||||
|
||||
if (sHackCond) {
|
||||
if (sHackCond)
|
||||
{
|
||||
sFLAG.doFlag = false;
|
||||
}
|
||||
|
||||
if (sFLAG.doFlag) {
|
||||
if(noFlagOpts) {
|
||||
if (sFLAG.doFlag)
|
||||
{
|
||||
if (noFlagOpts)
|
||||
{
|
||||
sFLAG.doNonSticky = true;
|
||||
mFLAG.doFlag = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (sFlagCond) {
|
||||
if (sFlagCond)
|
||||
{
|
||||
mFC.xStatus[xS] = mFC.cycles + 4;
|
||||
xS = (xS+1) & 3;
|
||||
xS = (xS + 1) & 3;
|
||||
}
|
||||
|
||||
if (mFLAG.doFlag) {
|
||||
if (mFLAG.doFlag)
|
||||
{
|
||||
mFC.xMac[xM] = mFC.cycles + 4;
|
||||
xM = (xM+1) & 3;
|
||||
xM = (xM + 1) & 3;
|
||||
}
|
||||
|
||||
if (cFLAG.doFlag) {
|
||||
if (cFLAG.doFlag)
|
||||
{
|
||||
mFC.xClip[xC] = mFC.cycles + 4;
|
||||
xC = (xC+1) & 3;
|
||||
xC = (xC + 1) & 3;
|
||||
}
|
||||
|
||||
mFC.cycles++;
|
||||
|
@ -212,64 +259,76 @@ __fi void mVUsetFlags(mV, microFlagCycles& mFC) {
|
|||
iPC = endPC;
|
||||
}
|
||||
|
||||
#define getFlagReg2(x) ((bStatus[0] == x) ? getFlagReg(x) : gprT1)
|
||||
#define getFlagReg3(x) ((gFlag == x) ? gprT1 : getFlagReg(x))
|
||||
#define getFlagReg4(x) ((gFlag == x) ? gprT1 : gprT2)
|
||||
#define shuffleMac ((bMac [3]<<6)|(bMac [2]<<4)|(bMac [1]<<2)|bMac [0])
|
||||
#define shuffleClip ((bClip[3]<<6)|(bClip[2]<<4)|(bClip[1]<<2)|bClip[0])
|
||||
#define getFlagReg2(x) ((bStatus[0] == x) ? getFlagReg(x) : gprT1)
|
||||
#define getFlagReg3(x) ((gFlag == x) ? gprT1 : getFlagReg(x))
|
||||
#define getFlagReg4(x) ((gFlag == x) ? gprT1 : gprT2)
|
||||
#define shuffleMac ((bMac[3] << 6) | (bMac[2] << 4) | (bMac[1] << 2) | bMac[0])
|
||||
#define shuffleClip ((bClip[3] << 6) | (bClip[2] << 4) | (bClip[1] << 2) | bClip[0])
|
||||
|
||||
// Recompiles Code for Proper Flags on Block Linkings
|
||||
__fi void mVUsetupFlags(mV, microFlagCycles& mFC) {
|
||||
__fi void mVUsetupFlags(mV, microFlagCycles& mFC)
|
||||
{
|
||||
|
||||
if (mVUregs.flagInfo & 1) {
|
||||
if (mVUregs.needExactMatch) DevCon.Error("mVU ERROR!!!");
|
||||
if (mVUregs.flagInfo & 1)
|
||||
{
|
||||
if (mVUregs.needExactMatch)
|
||||
DevCon.Error("mVU ERROR!!!");
|
||||
}
|
||||
|
||||
const bool pf = false; // Print Flag Info
|
||||
if (pf) DevCon.WriteLn("mVU%d - [#%d][sPC=%04x][bPC=%04x][mVUBranch=%d][branch=%d]",
|
||||
mVU.index, mVU.prog.cur->idx, mVUstartPC/2*8, xPC, mVUbranch, mVUlow.branch);
|
||||
if (pf)
|
||||
DevCon.WriteLn("mVU%d - [#%d][sPC=%04x][bPC=%04x][mVUBranch=%d][branch=%d]",
|
||||
mVU.index, mVU.prog.cur->idx, mVUstartPC / 2 * 8, xPC, mVUbranch, mVUlow.branch);
|
||||
|
||||
if (doSFlagInsts && __Status) {
|
||||
if (pf) DevCon.WriteLn("mVU%d - Status Flag", mVU.index);
|
||||
if (doSFlagInsts && __Status)
|
||||
{
|
||||
if (pf)
|
||||
DevCon.WriteLn("mVU%d - Status Flag", mVU.index);
|
||||
int bStatus[4];
|
||||
int sortRegs = sortFlag(mFC.xStatus, bStatus, mFC.cycles);
|
||||
// DevCon::Status("sortRegs = %d", params sortRegs);
|
||||
// Note: Emitter will optimize out mov(reg1, reg1) cases...
|
||||
if (sortRegs == 1) {
|
||||
xMOV(gprF0, getFlagReg(bStatus[0]));
|
||||
xMOV(gprF1, getFlagReg(bStatus[1]));
|
||||
xMOV(gprF2, getFlagReg(bStatus[2]));
|
||||
xMOV(gprF3, getFlagReg(bStatus[3]));
|
||||
if (sortRegs == 1)
|
||||
{
|
||||
xMOV(gprF0, getFlagReg(bStatus[0]));
|
||||
xMOV(gprF1, getFlagReg(bStatus[1]));
|
||||
xMOV(gprF2, getFlagReg(bStatus[2]));
|
||||
xMOV(gprF3, getFlagReg(bStatus[3]));
|
||||
}
|
||||
else if (sortRegs == 2) {
|
||||
xMOV(gprT1, getFlagReg (bStatus[3]));
|
||||
xMOV(gprF0, getFlagReg (bStatus[0]));
|
||||
xMOV(gprF1, getFlagReg2(bStatus[1]));
|
||||
xMOV(gprF2, getFlagReg2(bStatus[2]));
|
||||
xMOV(gprF3, gprT1);
|
||||
else if (sortRegs == 2)
|
||||
{
|
||||
xMOV(gprT1, getFlagReg (bStatus[3]));
|
||||
xMOV(gprF0, getFlagReg (bStatus[0]));
|
||||
xMOV(gprF1, getFlagReg2(bStatus[1]));
|
||||
xMOV(gprF2, getFlagReg2(bStatus[2]));
|
||||
xMOV(gprF3, gprT1);
|
||||
}
|
||||
else if (sortRegs == 3) {
|
||||
else if (sortRegs == 3)
|
||||
{
|
||||
int gFlag = (bStatus[0] == bStatus[1]) ? bStatus[2] : bStatus[1];
|
||||
xMOV(gprT1, getFlagReg (gFlag));
|
||||
xMOV(gprT2, getFlagReg (bStatus[3]));
|
||||
xMOV(gprF0, getFlagReg (bStatus[0]));
|
||||
xMOV(gprF1, getFlagReg3(bStatus[1]));
|
||||
xMOV(gprF2, getFlagReg4(bStatus[2]));
|
||||
xMOV(gprF3, gprT2);
|
||||
xMOV(gprT1, getFlagReg (gFlag));
|
||||
xMOV(gprT2, getFlagReg (bStatus[3]));
|
||||
xMOV(gprF0, getFlagReg (bStatus[0]));
|
||||
xMOV(gprF1, getFlagReg3(bStatus[1]));
|
||||
xMOV(gprF2, getFlagReg4(bStatus[2]));
|
||||
xMOV(gprF3, gprT2);
|
||||
}
|
||||
else {
|
||||
xMOV(gprT1, getFlagReg(bStatus[0]));
|
||||
xMOV(gprT2, getFlagReg(bStatus[1]));
|
||||
xMOV(gprT3, getFlagReg(bStatus[2]));
|
||||
xMOV(gprF3, getFlagReg(bStatus[3]));
|
||||
xMOV(gprF0, gprT1);
|
||||
xMOV(gprF1, gprT2);
|
||||
xMOV(gprF2, gprT3);
|
||||
else
|
||||
{
|
||||
xMOV(gprT1, getFlagReg(bStatus[0]));
|
||||
xMOV(gprT2, getFlagReg(bStatus[1]));
|
||||
xMOV(gprT3, getFlagReg(bStatus[2]));
|
||||
xMOV(gprF3, getFlagReg(bStatus[3]));
|
||||
xMOV(gprF0, gprT1);
|
||||
xMOV(gprF1, gprT2);
|
||||
xMOV(gprF2, gprT3);
|
||||
}
|
||||
}
|
||||
|
||||
if (doMFlagInsts && __Mac) {
|
||||
if (pf) DevCon.WriteLn("mVU%d - Mac Flag", mVU.index);
|
||||
|
||||
if (doMFlagInsts && __Mac)
|
||||
{
|
||||
if (pf)
|
||||
DevCon.WriteLn("mVU%d - Mac Flag", mVU.index);
|
||||
int bMac[4];
|
||||
sortFlag(mFC.xMac, bMac, mFC.cycles);
|
||||
xMOVAPS(xmmT1, ptr128[mVU.macFlag]);
|
||||
|
@ -277,8 +336,10 @@ __fi void mVUsetupFlags(mV, microFlagCycles& mFC) {
|
|||
xMOVAPS(ptr128[mVU.macFlag], xmmT1);
|
||||
}
|
||||
|
||||
if (doCFlagInsts && __Clip) {
|
||||
if (pf) DevCon.WriteLn("mVU%d - Clip Flag", mVU.index);
|
||||
if (doCFlagInsts && __Clip)
|
||||
{
|
||||
if (pf)
|
||||
DevCon.WriteLn("mVU%d - Clip Flag", mVU.index);
|
||||
int bClip[4];
|
||||
sortFlag(mFC.xClip, bClip, mFC.cycles);
|
||||
xMOVAPS(xmmT2, ptr128[mVU.clipFlag]);
|
||||
|
@ -287,94 +348,142 @@ __fi void mVUsetupFlags(mV, microFlagCycles& mFC) {
|
|||
}
|
||||
}
|
||||
|
||||
#define shortBranch() { \
|
||||
if ((branch == 3) || (branch == 4)) { /*Branches*/ \
|
||||
_mVUflagPass(mVU, aBranchAddr, sCount+found, found, v); \
|
||||
if (branch == 3) break; /*Non-conditional Branch*/ \
|
||||
branch = 0; \
|
||||
} \
|
||||
else if (branch == 5) { /*JR/JARL*/ \
|
||||
if(sCount+found<4) { \
|
||||
mVUregs.needExactMatch |= 7; \
|
||||
} \
|
||||
break; \
|
||||
} \
|
||||
else break; /*E-Bit End*/ \
|
||||
}
|
||||
#define shortBranch() \
|
||||
{ \
|
||||
if ((branch == 3) || (branch == 4)) /*Branches*/ \
|
||||
{ \
|
||||
_mVUflagPass(mVU, aBranchAddr, sCount + found, found, v); \
|
||||
if (branch == 3) /*Non-conditional Branch*/ \
|
||||
break; \
|
||||
branch = 0; \
|
||||
} \
|
||||
else if (branch == 5) /*JR/JARL*/ \
|
||||
{ \
|
||||
if (sCount + found < 4) \
|
||||
mVUregs.needExactMatch |= 7; \
|
||||
break; \
|
||||
} \
|
||||
else /*E-Bit End*/ \
|
||||
break; \
|
||||
}
|
||||
|
||||
// Scan through instructions and check if flags are read (FSxxx, FMxxx, FCxxx opcodes)
|
||||
void _mVUflagPass(mV, u32 startPC, u32 sCount, u32 found, std::vector<u32>& v) {
|
||||
void _mVUflagPass(mV, u32 startPC, u32 sCount, u32 found, std::vector<u32>& v)
|
||||
{
|
||||
|
||||
for (u32 i = 0; i < v.size(); i++) {
|
||||
if (v[i] == startPC) return; // Prevent infinite recursion
|
||||
for (u32 i = 0; i < v.size(); i++)
|
||||
{
|
||||
if (v[i] == startPC)
|
||||
return; // Prevent infinite recursion
|
||||
}
|
||||
v.push_back(startPC);
|
||||
|
||||
int oldPC = iPC;
|
||||
int oldBranch = mVUbranch;
|
||||
int oldPC = iPC;
|
||||
int oldBranch = mVUbranch;
|
||||
int aBranchAddr = 0;
|
||||
iPC = startPC / 4;
|
||||
iPC = startPC / 4;
|
||||
mVUbranch = 0;
|
||||
for(int branch = 0; sCount < 4; sCount += found) {
|
||||
for (int branch = 0; sCount < 4; sCount += found)
|
||||
{
|
||||
mVUregs.needExactMatch &= 7;
|
||||
incPC(1);
|
||||
mVUopU(mVU, 3);
|
||||
found |= (mVUregs.needExactMatch&8)>>3;
|
||||
found |= (mVUregs.needExactMatch & 8) >> 3;
|
||||
mVUregs.needExactMatch &= 7;
|
||||
if ( curI & _Ebit_ ) { branch = 1; }
|
||||
if ( curI & _Tbit_ ) { branch = 6; }
|
||||
if ( (curI & _Dbit_) && doDBitHandling ) { branch = 6; }
|
||||
if (!(curI & _Ibit_) ) { incPC(-1); mVUopL(mVU, 3); incPC(1); }
|
||||
|
||||
if (curI & _Ebit_)
|
||||
{
|
||||
branch = 1;
|
||||
}
|
||||
if (curI & _Tbit_)
|
||||
{
|
||||
branch = 6;
|
||||
}
|
||||
if ((curI & _Dbit_) && doDBitHandling)
|
||||
{
|
||||
branch = 6;
|
||||
}
|
||||
if (!(curI & _Ibit_))
|
||||
{
|
||||
incPC(-1);
|
||||
mVUopL(mVU, 3);
|
||||
incPC(1);
|
||||
}
|
||||
|
||||
// if (mVUbranch&&(branch>=3)&&(branch<=5)) { DevCon.Error("Double Branch [%x]", xPC); mVUregs.needExactMatch |= 7; break; }
|
||||
|
||||
if (branch >= 2) { shortBranch(); }
|
||||
else if (branch == 1) { branch = 2; }
|
||||
if (mVUbranch) { branch = ((mVUbranch>8)?(5):((mVUbranch<3)?3:4)); incPC(-1); aBranchAddr = branchAddr(mVU); incPC(1); mVUbranch = 0; }
|
||||
|
||||
if (branch >= 2)
|
||||
{
|
||||
shortBranch();
|
||||
}
|
||||
else if (branch == 1)
|
||||
{
|
||||
branch = 2;
|
||||
}
|
||||
if (mVUbranch)
|
||||
{
|
||||
branch = ((mVUbranch > 8) ? (5) : ((mVUbranch < 3) ? 3 : 4));
|
||||
incPC(-1);
|
||||
aBranchAddr = branchAddr(mVU);
|
||||
incPC(1);
|
||||
mVUbranch = 0;
|
||||
}
|
||||
incPC(1);
|
||||
if ((mVUregs.needExactMatch&7)==7) break;
|
||||
if ((mVUregs.needExactMatch & 7) == 7)
|
||||
break;
|
||||
}
|
||||
iPC = oldPC;
|
||||
iPC = oldPC;
|
||||
mVUbranch = oldBranch;
|
||||
mVUregs.needExactMatch &= 7;
|
||||
setCode();
|
||||
}
|
||||
|
||||
void mVUflagPass(mV, u32 startPC, u32 sCount = 0, u32 found = 0) {
|
||||
void mVUflagPass(mV, u32 startPC, u32 sCount = 0, u32 found = 0)
|
||||
{
|
||||
std::vector<u32> v;
|
||||
_mVUflagPass(mVU, startPC, sCount, found, v);
|
||||
}
|
||||
|
||||
// Checks if the first ~4 instructions of a block will read flags
|
||||
void mVUsetFlagInfo(mV) {
|
||||
if (noFlagOpts) {
|
||||
mVUregs.needExactMatch = 0x7;
|
||||
mVUregs.flagInfo = 0x0;
|
||||
void mVUsetFlagInfo(mV)
|
||||
{
|
||||
if (noFlagOpts)
|
||||
{
|
||||
mVUregs.needExactMatch = 0x7;
|
||||
mVUregs.flagInfo = 0x0;
|
||||
return;
|
||||
}
|
||||
if (mVUbranch <= 2) { // B/BAL
|
||||
if (mVUbranch <= 2) // B/BAL
|
||||
{
|
||||
incPC(-1);
|
||||
mVUflagPass (mVU, branchAddr(mVU));
|
||||
mVUflagPass(mVU, branchAddr(mVU));
|
||||
incPC(1);
|
||||
|
||||
mVUregs.needExactMatch &= 0x7;
|
||||
}
|
||||
else if (mVUbranch <= 8) { // Conditional Branch
|
||||
else if (mVUbranch <= 8) // Conditional Branch
|
||||
{
|
||||
incPC(-1); // Branch Taken
|
||||
mVUflagPass (mVU, branchAddr(mVU));
|
||||
int backupFlagInfo = mVUregs.needExactMatch;
|
||||
mVUflagPass(mVU, branchAddr(mVU));
|
||||
int backupFlagInfo = mVUregs.needExactMatch;
|
||||
mVUregs.needExactMatch = 0;
|
||||
|
||||
|
||||
incPC(4); // Branch Not Taken
|
||||
mVUflagPass (mVU, xPC);
|
||||
mVUflagPass(mVU, xPC);
|
||||
incPC(-3);
|
||||
|
||||
mVUregs.needExactMatch |= backupFlagInfo;
|
||||
mVUregs.needExactMatch &= 0x7;
|
||||
}
|
||||
else { // JR/JALR
|
||||
if (!doConstProp || !mVUlow.constJump.isValid) { mVUregs.needExactMatch |= 0x7; }
|
||||
else { mVUflagPass(mVU, (mVUlow.constJump.regValue*8)&(mVU.microMemSize-8)); }
|
||||
else // JR/JALR
|
||||
{
|
||||
if (!doConstProp || !mVUlow.constJump.isValid)
|
||||
{
|
||||
mVUregs.needExactMatch |= 0x7;
|
||||
}
|
||||
else
|
||||
{
|
||||
mVUflagPass(mVU, (mVUlow.constJump.regValue * 8) & (mVU.microMemSize - 8));
|
||||
}
|
||||
mVUregs.needExactMatch &= 0x7;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -15,9 +15,11 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
union regInfo {
|
||||
union regInfo
|
||||
{
|
||||
u32 reg;
|
||||
struct {
|
||||
struct
|
||||
{
|
||||
u8 x;
|
||||
u8 y;
|
||||
u8 z;
|
||||
|
@ -31,219 +33,250 @@ union regInfo {
|
|||
// vi15 is only used if microVU const-prop is enabled (it is *not* by default). When constprop
|
||||
// is disabled the vi15 field acts as additional padding that is required for 16 byte alignment
|
||||
// needed by the xmm compare.
|
||||
union __aligned16 microRegInfo {
|
||||
struct {
|
||||
union {
|
||||
struct {
|
||||
u8 needExactMatch; // If set, block needs an exact match of pipeline state
|
||||
u8 flagInfo; // xC * 2 | xM * 2 | xS * 2 | 0 * 1 | fullFlag Valid * 1
|
||||
union __aligned16 microRegInfo
|
||||
{
|
||||
struct
|
||||
{
|
||||
union
|
||||
{
|
||||
struct
|
||||
{
|
||||
u8 needExactMatch; // If set, block needs an exact match of pipeline state
|
||||
u8 flagInfo; // xC * 2 | xM * 2 | xS * 2 | 0 * 1 | fullFlag Valid * 1
|
||||
u8 q;
|
||||
u8 p;
|
||||
u8 xgkick;
|
||||
u8 viBackUp; // VI reg number that was written to on branch-delay slot
|
||||
u8 blockType; // 0 = Normal; 1,2 = Compile one instruction (E-bit/Branch Ending)
|
||||
u8 viBackUp; // VI reg number that was written to on branch-delay slot
|
||||
u8 blockType; // 0 = Normal; 1,2 = Compile one instruction (E-bit/Branch Ending)
|
||||
u8 r;
|
||||
};
|
||||
u32 quick32[2];
|
||||
};
|
||||
|
||||
u8 vi15v; // 'vi15' constant is valid
|
||||
u16 vi15; // Constant Prop Info for vi15
|
||||
u8 vi15v; // 'vi15' constant is valid
|
||||
u16 vi15; // Constant Prop Info for vi15
|
||||
|
||||
struct {
|
||||
struct
|
||||
{
|
||||
u8 VI[16];
|
||||
regInfo VF[32];
|
||||
};
|
||||
};
|
||||
|
||||
u128 full128[160/sizeof(u128)];
|
||||
u64 full64[160/sizeof(u64)];
|
||||
u32 full32[160/sizeof(u32)];
|
||||
|
||||
u128 full128[160 / sizeof(u128)];
|
||||
u64 full64[160 / sizeof(u64)];
|
||||
u32 full32[160 / sizeof(u32)];
|
||||
};
|
||||
|
||||
static_assert(sizeof(microRegInfo) == 160, "microRegInfo was not 160 bytes");
|
||||
|
||||
struct microProgram;
|
||||
struct microJumpCache {
|
||||
struct microJumpCache
|
||||
{
|
||||
microJumpCache() : prog(NULL), x86ptrStart(NULL) {}
|
||||
microProgram* prog; // Program to which the entry point below is part of
|
||||
void* x86ptrStart; // Start of code (Entry point for block)
|
||||
microProgram* prog; // Program to which the entry point below is part of
|
||||
void* x86ptrStart; // Start of code (Entry point for block)
|
||||
};
|
||||
|
||||
struct __aligned16 microBlock {
|
||||
microRegInfo pState; // Detailed State of Pipeline
|
||||
microRegInfo pStateEnd; // Detailed State of Pipeline at End of Block (needed by JR/JALR opcodes)
|
||||
u8* x86ptrStart; // Start of code (Entry point for block)
|
||||
microJumpCache* jumpCache; // Will point to an array of entry points of size [16k/8] if block ends in JR/JALR
|
||||
struct __aligned16 microBlock
|
||||
{
|
||||
microRegInfo pState; // Detailed State of Pipeline
|
||||
microRegInfo pStateEnd; // Detailed State of Pipeline at End of Block (needed by JR/JALR opcodes)
|
||||
u8* x86ptrStart; // Start of code (Entry point for block)
|
||||
microJumpCache* jumpCache; // Will point to an array of entry points of size [16k/8] if block ends in JR/JALR
|
||||
};
|
||||
|
||||
struct microTempRegInfo {
|
||||
regInfo VF[2]; // Holds cycle info for Fd, VF[0] = Upper Instruction, VF[1] = Lower Instruction
|
||||
u8 VFreg[2]; // Index of the VF reg
|
||||
u8 VI; // Holds cycle info for Id
|
||||
u8 VIreg; // Index of the VI reg
|
||||
u8 q; // Holds cycle info for Q reg
|
||||
u8 p; // Holds cycle info for P reg
|
||||
u8 r; // Holds cycle info for R reg (Will never cause stalls, but useful to know if R is modified)
|
||||
u8 xgkick; // Holds the cycle info for XGkick
|
||||
struct microTempRegInfo
|
||||
{
|
||||
regInfo VF[2]; // Holds cycle info for Fd, VF[0] = Upper Instruction, VF[1] = Lower Instruction
|
||||
u8 VFreg[2]; // Index of the VF reg
|
||||
u8 VI; // Holds cycle info for Id
|
||||
u8 VIreg; // Index of the VI reg
|
||||
u8 q; // Holds cycle info for Q reg
|
||||
u8 p; // Holds cycle info for P reg
|
||||
u8 r; // Holds cycle info for R reg (Will never cause stalls, but useful to know if R is modified)
|
||||
u8 xgkick; // Holds the cycle info for XGkick
|
||||
};
|
||||
|
||||
struct microVFreg {
|
||||
struct microVFreg
|
||||
{
|
||||
u8 reg; // Reg Index
|
||||
u8 x; // X vector read/written to?
|
||||
u8 y; // Y vector read/written to?
|
||||
u8 z; // Z vector read/written to?
|
||||
u8 w; // W vector read/written to?
|
||||
u8 x; // X vector read/written to?
|
||||
u8 y; // Y vector read/written to?
|
||||
u8 z; // Z vector read/written to?
|
||||
u8 w; // W vector read/written to?
|
||||
};
|
||||
|
||||
struct microVIreg {
|
||||
u8 reg; // Reg Index
|
||||
u8 used; // Reg is Used? (Read/Written)
|
||||
struct microVIreg
|
||||
{
|
||||
u8 reg; // Reg Index
|
||||
u8 used; // Reg is Used? (Read/Written)
|
||||
};
|
||||
|
||||
struct microConstInfo {
|
||||
u8 isValid; // Is the constant in regValue valid?
|
||||
u32 regValue; // Constant Value
|
||||
struct microConstInfo
|
||||
{
|
||||
u8 isValid; // Is the constant in regValue valid?
|
||||
u32 regValue; // Constant Value
|
||||
};
|
||||
|
||||
struct microUpperOp {
|
||||
bool eBit; // Has E-bit set
|
||||
bool iBit; // Has I-bit set
|
||||
bool mBit; // Has M-bit set
|
||||
bool tBit; // Has T-bit set
|
||||
bool dBit; // Has D-bit set
|
||||
microVFreg VF_write; // VF Vectors written to by this instruction
|
||||
microVFreg VF_read[2]; // VF Vectors read by this instruction
|
||||
struct microUpperOp
|
||||
{
|
||||
bool eBit; // Has E-bit set
|
||||
bool iBit; // Has I-bit set
|
||||
bool mBit; // Has M-bit set
|
||||
bool tBit; // Has T-bit set
|
||||
bool dBit; // Has D-bit set
|
||||
microVFreg VF_write; // VF Vectors written to by this instruction
|
||||
microVFreg VF_read[2]; // VF Vectors read by this instruction
|
||||
};
|
||||
|
||||
struct microLowerOp {
|
||||
microVFreg VF_write; // VF Vectors written to by this instruction
|
||||
microVFreg VF_read[2]; // VF Vectors read by this instruction
|
||||
microVIreg VI_write; // VI reg written to by this instruction
|
||||
microVIreg VI_read[2]; // VI regs read by this instruction
|
||||
struct microLowerOp
|
||||
{
|
||||
microVFreg VF_write; // VF Vectors written to by this instruction
|
||||
microVFreg VF_read[2]; // VF Vectors read by this instruction
|
||||
microVIreg VI_write; // VI reg written to by this instruction
|
||||
microVIreg VI_read[2]; // VI regs read by this instruction
|
||||
microConstInfo constJump; // Constant Reg Info for JR/JARL instructions
|
||||
u32 branch; // Branch Type (0 = Not a Branch, 1 = B. 2 = BAL, 3~8 = Conditional Branches, 9 = JR, 10 = JALR)
|
||||
bool badBranch; // This instruction is a Branch who has another branch in its Delay Slot
|
||||
bool evilBranch;// This instruction is a Branch in a Branch Delay Slot (Instruction after badBranch)
|
||||
bool isNOP; // This instruction is a NOP
|
||||
bool isFSSET; // This instruction is a FSSET
|
||||
bool noWriteVF; // Don't write back the result of a lower op to VF reg if upper op writes to same reg (or if VF = 0)
|
||||
bool backupVI; // Backup VI reg to memory if modified before branch (branch uses old VI value unless opcode is ILW or ILWR)
|
||||
bool memReadIs; // Read Is (VI reg) from memory (used by branches)
|
||||
bool memReadIt; // Read If (VI reg) from memory (used by branches)
|
||||
bool readFlags; // Current Instruction reads Status, Mac, or Clip flags
|
||||
u32 branch; // Branch Type (0 = Not a Branch, 1 = B. 2 = BAL, 3~8 = Conditional Branches, 9 = JR, 10 = JALR)
|
||||
bool badBranch; // This instruction is a Branch who has another branch in its Delay Slot
|
||||
bool evilBranch; // This instruction is a Branch in a Branch Delay Slot (Instruction after badBranch)
|
||||
bool isNOP; // This instruction is a NOP
|
||||
bool isFSSET; // This instruction is a FSSET
|
||||
bool noWriteVF; // Don't write back the result of a lower op to VF reg if upper op writes to same reg (or if VF = 0)
|
||||
bool backupVI; // Backup VI reg to memory if modified before branch (branch uses old VI value unless opcode is ILW or ILWR)
|
||||
bool memReadIs; // Read Is (VI reg) from memory (used by branches)
|
||||
bool memReadIt; // Read If (VI reg) from memory (used by branches)
|
||||
bool readFlags; // Current Instruction reads Status, Mac, or Clip flags
|
||||
};
|
||||
|
||||
struct microFlagInst {
|
||||
bool doFlag; // Update Flag on this Instruction
|
||||
struct microFlagInst
|
||||
{
|
||||
bool doFlag; // Update Flag on this Instruction
|
||||
bool doNonSticky; // Update O,U,S,Z (non-sticky) bits on this Instruction (status flag only)
|
||||
u8 write; // Points to the instance that should be written to (s-stage write)
|
||||
u8 lastWrite; // Points to the instance that was last written to (most up-to-date flag)
|
||||
u8 read; // Points to the instance that should be read by a lower instruction (t-stage read)
|
||||
u8 write; // Points to the instance that should be written to (s-stage write)
|
||||
u8 lastWrite; // Points to the instance that was last written to (most up-to-date flag)
|
||||
u8 read; // Points to the instance that should be read by a lower instruction (t-stage read)
|
||||
};
|
||||
|
||||
struct microFlagCycles {
|
||||
struct microFlagCycles
|
||||
{
|
||||
int xStatus[4];
|
||||
int xMac[4];
|
||||
int xClip[4];
|
||||
int cycles;
|
||||
};
|
||||
|
||||
struct microOp {
|
||||
u8 stall; // Info on how much current instruction stalled
|
||||
bool isBadOp; // Cur Instruction is a bad opcode (not a legal instruction)
|
||||
bool isEOB; // Cur Instruction is last instruction in block (End of Block)
|
||||
bool isBdelay; // Cur Instruction in Branch Delay slot
|
||||
bool swapOps; // Run Lower Instruction before Upper Instruction
|
||||
bool backupVF; // Backup mVUlow.VF_write.reg, and restore it before the Upper Instruction is called
|
||||
bool doXGKICK; // Do XGKICK transfer on this instruction
|
||||
struct microOp
|
||||
{
|
||||
u8 stall; // Info on how much current instruction stalled
|
||||
bool isBadOp; // Cur Instruction is a bad opcode (not a legal instruction)
|
||||
bool isEOB; // Cur Instruction is last instruction in block (End of Block)
|
||||
bool isBdelay; // Cur Instruction in Branch Delay slot
|
||||
bool swapOps; // Run Lower Instruction before Upper Instruction
|
||||
bool backupVF; // Backup mVUlow.VF_write.reg, and restore it before the Upper Instruction is called
|
||||
bool doXGKICK; // Do XGKICK transfer on this instruction
|
||||
u32 XGKICKPC; // The PC in which the XGKick has taken place, so if we break early (before it) we don run it.
|
||||
bool doDivFlag; // Transfer Div flag to Status Flag on this instruction
|
||||
int readQ; // Q instance for reading
|
||||
int writeQ; // Q instance for writing
|
||||
int readP; // P instance for reading
|
||||
int writeP; // P instance for writing
|
||||
bool doDivFlag; // Transfer Div flag to Status Flag on this instruction
|
||||
int readQ; // Q instance for reading
|
||||
int writeQ; // Q instance for writing
|
||||
int readP; // P instance for reading
|
||||
int writeP; // P instance for writing
|
||||
microFlagInst sFlag; // Status Flag Instance Info
|
||||
microFlagInst mFlag; // Mac Flag Instance Info
|
||||
microFlagInst mFlag; // Mac Flag Instance Info
|
||||
microFlagInst cFlag; // Clip Flag Instance Info
|
||||
microUpperOp uOp; // Upper Op Info
|
||||
microLowerOp lOp; // Lower Op Info
|
||||
microUpperOp uOp; // Upper Op Info
|
||||
microLowerOp lOp; // Lower Op Info
|
||||
};
|
||||
|
||||
template<u32 pSize>
|
||||
struct microIR {
|
||||
microBlock block; // Block/Pipeline info
|
||||
microBlock* pBlock; // Pointer to a block in mVUblocks
|
||||
microTempRegInfo regsTemp; // Temp Pipeline info (used so that new pipeline info isn't conflicting between upper and lower instructions in the same cycle)
|
||||
microOp info[pSize/2]; // Info for Instructions in current block
|
||||
microConstInfo constReg[16]; // Simple Const Propagation Info for VI regs within blocks
|
||||
template <u32 pSize>
|
||||
struct microIR
|
||||
{
|
||||
microBlock block; // Block/Pipeline info
|
||||
microBlock* pBlock; // Pointer to a block in mVUblocks
|
||||
microTempRegInfo regsTemp; // Temp Pipeline info (used so that new pipeline info isn't conflicting between upper and lower instructions in the same cycle)
|
||||
microOp info[pSize / 2]; // Info for Instructions in current block
|
||||
microConstInfo constReg[16]; // Simple Const Propagation Info for VI regs within blocks
|
||||
u8 branch;
|
||||
u32 cycles; // Cycles for current block
|
||||
u32 count; // Number of VU 64bit instructions ran (starts at 0 for each block)
|
||||
u32 curPC; // Current PC
|
||||
u32 startPC; // Start PC for Cur Block
|
||||
u32 sFlagHack; // Optimize out all Status flag updates if microProgram doesn't use Status flags
|
||||
u32 cycles; // Cycles for current block
|
||||
u32 count; // Number of VU 64bit instructions ran (starts at 0 for each block)
|
||||
u32 curPC; // Current PC
|
||||
u32 startPC; // Start PC for Cur Block
|
||||
u32 sFlagHack; // Optimize out all Status flag updates if microProgram doesn't use Status flags
|
||||
};
|
||||
|
||||
//------------------------------------------------------------------
|
||||
// Reg Alloc
|
||||
//------------------------------------------------------------------
|
||||
|
||||
struct microMapXMM {
|
||||
int VFreg; // VF Reg Number Stored (-1 = Temp; 0 = vf0 and will not be written back; 32 = ACC; 33 = I reg)
|
||||
int xyzw; // xyzw to write back (0 = Don't write back anything AND cached vfReg has all vectors valid)
|
||||
int count; // Count of when last used
|
||||
bool isNeeded; // Is needed for current instruction
|
||||
struct microMapXMM
|
||||
{
|
||||
int VFreg; // VF Reg Number Stored (-1 = Temp; 0 = vf0 and will not be written back; 32 = ACC; 33 = I reg)
|
||||
int xyzw; // xyzw to write back (0 = Don't write back anything AND cached vfReg has all vectors valid)
|
||||
int count; // Count of when last used
|
||||
bool isNeeded; // Is needed for current instruction
|
||||
};
|
||||
|
||||
class microRegAlloc {
|
||||
class microRegAlloc
|
||||
{
|
||||
protected:
|
||||
static const int xmmTotal = 7; // Don't allocate PQ?
|
||||
microMapXMM xmmMap[xmmTotal];
|
||||
int counter; // Current allocation count
|
||||
int index; // VU0 or VU1
|
||||
static const int xmmTotal = 7; // Don't allocate PQ?
|
||||
microMapXMM xmmMap[xmmTotal];
|
||||
int counter; // Current allocation count
|
||||
int index; // VU0 or VU1
|
||||
|
||||
// Helper functions to get VU regs
|
||||
VURegs& regs() const { return ::vuRegs[index]; }
|
||||
__fi REG_VI& getVI(uint reg) const { return regs().VI[reg]; }
|
||||
__fi VECTOR& getVF(uint reg) const { return regs().VF[reg]; }
|
||||
VURegs& regs() const { return ::vuRegs[index]; }
|
||||
__fi REG_VI& getVI(uint reg) const { return regs().VI[reg]; }
|
||||
__fi VECTOR& getVF(uint reg) const { return regs().VF[reg]; }
|
||||
|
||||
__ri void loadIreg(const xmm& reg, int xyzw) {
|
||||
__ri void loadIreg(const xmm& reg, int xyzw)
|
||||
{
|
||||
xMOVSSZX(reg, ptr32[&getVI(REG_I)]);
|
||||
if (!_XYZWss(xyzw)) xSHUF.PS(reg, reg, 0);
|
||||
if (!_XYZWss(xyzw))
|
||||
xSHUF.PS(reg, reg, 0);
|
||||
}
|
||||
|
||||
int findFreeRegRec(int startIdx) {
|
||||
for(int i = startIdx; i < xmmTotal; i++) {
|
||||
if (!xmmMap[i].isNeeded) {
|
||||
int x = findFreeRegRec(i+1);
|
||||
if (x == -1) return i;
|
||||
|
||||
int findFreeRegRec(int startIdx)
|
||||
{
|
||||
for (int i = startIdx; i < xmmTotal; i++)
|
||||
{
|
||||
if (!xmmMap[i].isNeeded)
|
||||
{
|
||||
int x = findFreeRegRec(i + 1);
|
||||
if (x == -1)
|
||||
return i;
|
||||
return ((xmmMap[i].count < xmmMap[x].count) ? i : x);
|
||||
}
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
int findFreeReg() {
|
||||
for(int i = 0; i < xmmTotal; i++) {
|
||||
if (!xmmMap[i].isNeeded && (xmmMap[i].VFreg < 0)) {
|
||||
int findFreeReg()
|
||||
{
|
||||
for (int i = 0; i < xmmTotal; i++)
|
||||
{
|
||||
if (!xmmMap[i].isNeeded && (xmmMap[i].VFreg < 0))
|
||||
{
|
||||
return i; // Reg is not needed and was a temp reg
|
||||
}
|
||||
}
|
||||
int x = findFreeRegRec(0);
|
||||
pxAssertDev( x >= 0, "microVU register allocation failure!" );
|
||||
pxAssertDev(x >= 0, "microVU register allocation failure!");
|
||||
return x;
|
||||
}
|
||||
|
||||
public:
|
||||
microRegAlloc(int _index) {
|
||||
microRegAlloc(int _index)
|
||||
{
|
||||
index = _index;
|
||||
reset();
|
||||
}
|
||||
|
||||
// Fully resets the regalloc by clearing all cached data
|
||||
void reset() {
|
||||
for(int i = 0; i < xmmTotal; i++) {
|
||||
void reset()
|
||||
{
|
||||
for (int i = 0; i < xmmTotal; i++)
|
||||
{
|
||||
clearReg(i);
|
||||
}
|
||||
counter = 0;
|
||||
|
@ -252,19 +285,24 @@ public:
|
|||
// Flushes all allocated registers (i.e. writes-back to memory all modified registers).
|
||||
// If clearState is 0, then it keeps cached reg data valid
|
||||
// If clearState is 1, then it invalidates all cached reg data after write-back
|
||||
void flushAll(bool clearState = true) {
|
||||
for(int i = 0; i < xmmTotal; i++) {
|
||||
void flushAll(bool clearState = true)
|
||||
{
|
||||
for (int i = 0; i < xmmTotal; i++)
|
||||
{
|
||||
writeBackReg(xmm(i));
|
||||
if (clearState)
|
||||
clearReg(i);
|
||||
}
|
||||
}
|
||||
|
||||
void TDwritebackAll(bool clearState = false) {
|
||||
for(int i = 0; i < xmmTotal; i++) {
|
||||
void TDwritebackAll(bool clearState = false)
|
||||
{
|
||||
for (int i = 0; i < xmmTotal; i++)
|
||||
{
|
||||
microMapXMM& mapX = xmmMap[xmm(i).Id];
|
||||
|
||||
if ((mapX.VFreg > 0) && mapX.xyzw) { // Reg was modified and not Temp or vf0
|
||||
if ((mapX.VFreg > 0) && mapX.xyzw) // Reg was modified and not Temp or vf0
|
||||
{
|
||||
if (mapX.VFreg == 33)
|
||||
xMOVSS(ptr32[&getVI(REG_I)], xmm(i));
|
||||
else if (mapX.VFreg == 32)
|
||||
|
@ -276,27 +314,33 @@ public:
|
|||
}
|
||||
|
||||
void clearReg(const xmm& reg) { clearReg(reg.Id); }
|
||||
void clearReg(int regId) {
|
||||
void clearReg(int regId)
|
||||
{
|
||||
microMapXMM& clear = xmmMap[regId];
|
||||
clear.VFreg = -1;
|
||||
clear.count = 0;
|
||||
clear.xyzw = 0;
|
||||
clear.isNeeded = 0;
|
||||
clear.VFreg = -1;
|
||||
clear.count = 0;
|
||||
clear.xyzw = 0;
|
||||
clear.isNeeded = 0;
|
||||
}
|
||||
|
||||
void clearRegVF(int VFreg) {
|
||||
for(int i = 0; i < xmmTotal; i++) {
|
||||
if (xmmMap[i].VFreg == VFreg) clearReg(i);
|
||||
void clearRegVF(int VFreg)
|
||||
{
|
||||
for (int i = 0; i < xmmTotal; i++)
|
||||
{
|
||||
if (xmmMap[i].VFreg == VFreg)
|
||||
clearReg(i);
|
||||
}
|
||||
}
|
||||
|
||||
// Writes back modified reg to memory.
|
||||
// If all vectors modified, then keeps the VF reg cached in the xmm register.
|
||||
// If reg was not modified, then keeps the VF reg cached in the xmm register.
|
||||
void writeBackReg(const xmm& reg, bool invalidateRegs = true) {
|
||||
void writeBackReg(const xmm& reg, bool invalidateRegs = true)
|
||||
{
|
||||
microMapXMM& mapX = xmmMap[reg.Id];
|
||||
|
||||
if ((mapX.VFreg > 0) && mapX.xyzw) { // Reg was modified and not Temp or vf0
|
||||
if ((mapX.VFreg > 0) && mapX.xyzw) // Reg was modified and not Temp or vf0
|
||||
{
|
||||
if (mapX.VFreg == 33)
|
||||
xMOVSS(ptr32[&getVI(REG_I)], reg);
|
||||
else if (mapX.VFreg == 32)
|
||||
|
@ -304,20 +348,25 @@ public:
|
|||
else
|
||||
mVUsaveReg(reg, ptr[&getVF(mapX.VFreg)], mapX.xyzw, true);
|
||||
|
||||
if (invalidateRegs) {
|
||||
for(int i = 0; i < xmmTotal; i++) {
|
||||
if (invalidateRegs)
|
||||
{
|
||||
for (int i = 0; i < xmmTotal; i++)
|
||||
{
|
||||
microMapXMM& mapI = xmmMap[i];
|
||||
|
||||
if ((i == reg.Id) || mapI.isNeeded)
|
||||
continue;
|
||||
|
||||
if (mapI.VFreg == mapX.VFreg) {
|
||||
if (mapI.xyzw && mapI.xyzw < 0xf) DevCon.Error("microVU Error: writeBackReg() [%d]", mapI.VFreg);
|
||||
if (mapI.VFreg == mapX.VFreg)
|
||||
{
|
||||
if (mapI.xyzw && mapI.xyzw < 0xf)
|
||||
DevCon.Error("microVU Error: writeBackReg() [%d]", mapI.VFreg);
|
||||
clearReg(i); // Invalidate any Cached Regs of same vf Reg
|
||||
}
|
||||
}
|
||||
}
|
||||
if (mapX.xyzw == 0xf) { // Make Cached Reg if All Vectors were Modified
|
||||
if (mapX.xyzw == 0xf) // Make Cached Reg if All Vectors were Modified
|
||||
{
|
||||
mapX.count = counter;
|
||||
mapX.xyzw = 0;
|
||||
mapX.isNeeded = false;
|
||||
|
@ -325,7 +374,8 @@ public:
|
|||
}
|
||||
clearReg(reg);
|
||||
}
|
||||
else if (mapX.xyzw) { // Clear reg if modified and is VF0 or temp reg...
|
||||
else if (mapX.xyzw) // Clear reg if modified and is VF0 or temp reg...
|
||||
{
|
||||
clearReg(reg);
|
||||
}
|
||||
}
|
||||
|
@ -335,64 +385,82 @@ public:
|
|||
// This is to guarantee proper merging between registers... When a written-to reg is cleared,
|
||||
// it invalidates other cached registers of the same VF reg, and merges partial-vector
|
||||
// writes into them.
|
||||
void clearNeeded(const xmm& reg) {
|
||||
void clearNeeded(const xmm& reg)
|
||||
{
|
||||
|
||||
if ((reg.Id < 0) || (reg.Id >= xmmTotal)) return; // Sometimes xmmPQ hits this
|
||||
if ((reg.Id < 0) || (reg.Id >= xmmTotal)) // Sometimes xmmPQ hits this
|
||||
return;
|
||||
|
||||
microMapXMM& clear = xmmMap[reg.Id];
|
||||
clear.isNeeded = false;
|
||||
if (clear.xyzw) { // Reg was modified
|
||||
if (clear.VFreg > 0) {
|
||||
if (clear.xyzw) // Reg was modified
|
||||
{
|
||||
if (clear.VFreg > 0)
|
||||
{
|
||||
int mergeRegs = 0;
|
||||
if (clear.xyzw < 0xf) mergeRegs = 1; // Try to merge partial writes
|
||||
for(int i = 0; i < xmmTotal; i++) { // Invalidate any other read-only regs of same vfReg
|
||||
if (i == reg.Id) continue;
|
||||
if (clear.xyzw < 0xf) // Try to merge partial writes
|
||||
mergeRegs = 1;
|
||||
for (int i = 0; i < xmmTotal; i++) // Invalidate any other read-only regs of same vfReg
|
||||
{
|
||||
if (i == reg.Id)
|
||||
continue;
|
||||
microMapXMM& mapI = xmmMap[i];
|
||||
if (mapI.VFreg == clear.VFreg) {
|
||||
if (mapI.xyzw && mapI.xyzw < 0xf) {
|
||||
if (mapI.VFreg == clear.VFreg)
|
||||
{
|
||||
if (mapI.xyzw && mapI.xyzw < 0xf)
|
||||
{
|
||||
DevCon.Error("microVU Error: clearNeeded() [%d]", mapI.VFreg);
|
||||
}
|
||||
if (mergeRegs == 1) {
|
||||
if (mergeRegs == 1)
|
||||
{
|
||||
mVUmergeRegs(xmm(i), reg, clear.xyzw, true);
|
||||
mapI.xyzw = 0xf;
|
||||
mapI.count = counter;
|
||||
mergeRegs = 2;
|
||||
}
|
||||
else clearReg(i); // Clears when mergeRegs is 0 or 2
|
||||
else
|
||||
clearReg(i); // Clears when mergeRegs is 0 or 2
|
||||
}
|
||||
}
|
||||
if (mergeRegs == 2) // Clear Current Reg if Merged
|
||||
if (mergeRegs == 2) // Clear Current Reg if Merged
|
||||
clearReg(reg);
|
||||
else if (mergeRegs == 1) // Write Back Partial Writes if couldn't merge
|
||||
writeBackReg(reg);
|
||||
}
|
||||
else clearReg(reg); // If Reg was temp or vf0, then invalidate itself
|
||||
else
|
||||
clearReg(reg); // If Reg was temp or vf0, then invalidate itself
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// vfLoadReg = VF reg to be loaded to the xmm register
|
||||
// vfWriteReg = VF reg that the returned xmm register will be considered as
|
||||
// xyzw = XYZW vectors that will be modified (and loaded)
|
||||
// cloneWrite = When loading a reg that will be written to,
|
||||
// it copies it to its own xmm reg instead of overwriting the cached one...
|
||||
// cloneWrite = When loading a reg that will be written to, it copies it to its own xmm reg instead of overwriting the cached one...
|
||||
// Notes:
|
||||
// To load a temp reg use the default param values, vfLoadReg = -1 and vfWriteReg = -1.
|
||||
// To load a full reg which won't be modified and you want cached, specify vfLoadReg >= 0 and vfWriteReg = -1
|
||||
// To load a reg which you don't want written back or cached, specify vfLoadReg >= 0 and vfWriteReg = 0
|
||||
const xmm& allocReg(int vfLoadReg = -1, int vfWriteReg = -1, int xyzw = 0, bool cloneWrite = 1) {
|
||||
const xmm& allocReg(int vfLoadReg = -1, int vfWriteReg = -1, int xyzw = 0, bool cloneWrite = 1)
|
||||
{
|
||||
//DevCon.WriteLn("vfLoadReg = %02d, vfWriteReg = %02d, xyzw = %x, clone = %d",vfLoadReg,vfWriteReg,xyzw,(int)cloneWrite);
|
||||
counter++;
|
||||
if (vfLoadReg >= 0) { // Search For Cached Regs
|
||||
for(int i = 0; i < xmmTotal; i++) {
|
||||
const xmm& xmmI = xmm::GetInstance(i);
|
||||
if (vfLoadReg >= 0) // Search For Cached Regs
|
||||
{
|
||||
for (int i = 0; i < xmmTotal; i++)
|
||||
{
|
||||
const xmm& xmmI = xmm::GetInstance(i);
|
||||
microMapXMM& mapI = xmmMap[i];
|
||||
if ((mapI.VFreg == vfLoadReg) && (!mapI.xyzw // Reg Was Not Modified
|
||||
|| (mapI.VFreg && (mapI.xyzw==0xf)))) { // Reg Had All Vectors Modified and != VF0
|
||||
if ((mapI.VFreg == vfLoadReg)
|
||||
&& (!mapI.xyzw // Reg Was Not Modified
|
||||
|| (mapI.VFreg && (mapI.xyzw == 0xf)))) // Reg Had All Vectors Modified and != VF0
|
||||
{
|
||||
int z = i;
|
||||
if (vfWriteReg >= 0) { // Reg will be modified
|
||||
if (cloneWrite) { // Clone Reg so as not to use the same Cached Reg
|
||||
if (vfWriteReg >= 0) // Reg will be modified
|
||||
{
|
||||
if (cloneWrite) // Clone Reg so as not to use the same Cached Reg
|
||||
{
|
||||
z = findFreeReg();
|
||||
const xmm& xmmZ = xmm::GetInstance(z);
|
||||
const xmm& xmmZ = xmm::GetInstance(z);
|
||||
writeBackReg(xmmZ);
|
||||
|
||||
if (xyzw == 4)
|
||||
|
@ -402,12 +470,13 @@ public:
|
|||
else if (xyzw == 1)
|
||||
xPSHUF.D(xmmZ, xmmI, 3);
|
||||
else if (z != i)
|
||||
xMOVAPS (xmmZ, xmmI);
|
||||
xMOVAPS(xmmZ, xmmI);
|
||||
|
||||
mapI.count = counter; // Reg i was used, so update counter
|
||||
}
|
||||
else { // Don't clone reg, but shuffle to adjust for SS ops
|
||||
if ((vfLoadReg!=vfWriteReg)||(xyzw!=0xf))
|
||||
else // Don't clone reg, but shuffle to adjust for SS ops
|
||||
{
|
||||
if ((vfLoadReg != vfWriteReg) || (xyzw != 0xf))
|
||||
writeBackReg(xmmI);
|
||||
|
||||
if (xyzw == 4)
|
||||
|
@ -418,19 +487,20 @@ public:
|
|||
xPSHUF.D(xmmI, xmmI, 3);
|
||||
}
|
||||
xmmMap[z].VFreg = vfWriteReg;
|
||||
xmmMap[z].xyzw = xyzw;
|
||||
xmmMap[z].xyzw = xyzw;
|
||||
}
|
||||
xmmMap[z].count = counter;
|
||||
xmmMap[z].count = counter;
|
||||
xmmMap[z].isNeeded = true;
|
||||
return xmm::GetInstance(z);
|
||||
}
|
||||
}
|
||||
}
|
||||
int x = findFreeReg();
|
||||
const xmm& xmmX = xmm::GetInstance(x);
|
||||
const xmm& xmmX = xmm::GetInstance(x);
|
||||
writeBackReg(xmmX);
|
||||
|
||||
if (vfWriteReg >= 0) { // Reg Will Be Modified (allow partial reg loading)
|
||||
if (vfWriteReg >= 0) // Reg Will Be Modified (allow partial reg loading)
|
||||
{
|
||||
if ((vfLoadReg == 0) && !(xyzw & 1))
|
||||
xPXOR(xmmX, xmmX);
|
||||
else if (vfLoadReg == 33)
|
||||
|
@ -443,12 +513,13 @@ public:
|
|||
xmmMap[x].VFreg = vfWriteReg;
|
||||
xmmMap[x].xyzw = xyzw;
|
||||
}
|
||||
else { // Reg Will Not Be Modified (always load full reg for caching)
|
||||
else // Reg Will Not Be Modified (always load full reg for caching)
|
||||
{
|
||||
if (vfLoadReg == 33)
|
||||
loadIreg(xmmX, 0xf);
|
||||
else if (vfLoadReg == 32)
|
||||
xMOVAPS (xmmX, ptr128[®s().ACC]);
|
||||
else if (vfLoadReg >= 0)
|
||||
else if (vfLoadReg >= 0)
|
||||
xMOVAPS (xmmX, ptr128[&getVF(vfLoadReg)]);
|
||||
|
||||
xmmMap[x].VFreg = vfLoadReg;
|
||||
|
|
|
@ -12,16 +12,18 @@
|
|||
* You should have received a copy of the GNU General Public License along with PCSX2.
|
||||
* If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "Utilities/AsciiFile.h"
|
||||
|
||||
// writes text directly to mVU.logFile, no newlines appended.
|
||||
_mVUt void __mVULog(const char* fmt, ...) {
|
||||
_mVUt void __mVULog(const char* fmt, ...)
|
||||
{
|
||||
|
||||
microVU& mVU = mVUx;
|
||||
if (!mVU.logFile) return;
|
||||
if (!mVU.logFile)
|
||||
return;
|
||||
|
||||
char tmp[2024];
|
||||
va_list list;
|
||||
|
@ -31,21 +33,29 @@ _mVUt void __mVULog(const char* fmt, ...) {
|
|||
vsprintf(tmp, fmt, list);
|
||||
va_end(list);
|
||||
|
||||
mVU.logFile->Write( tmp );
|
||||
mVU.logFile->Write(tmp);
|
||||
mVU.logFile->Flush();
|
||||
}
|
||||
|
||||
#define commaIf() { if (bitX[6]) { mVUlog(","); bitX[6] = false; } }
|
||||
#define commaIf() \
|
||||
{ \
|
||||
if (bitX[6]) \
|
||||
{ \
|
||||
mVUlog(","); \
|
||||
bitX[6] = false; \
|
||||
} \
|
||||
}
|
||||
|
||||
#include "AppConfig.h"
|
||||
|
||||
void __mVUdumpProgram(microVU& mVU, microProgram& prog) {
|
||||
void __mVUdumpProgram(microVU& mVU, microProgram& prog)
|
||||
{
|
||||
bool bitX[7];
|
||||
int delay = 0;
|
||||
int bBranch = mVUbranch;
|
||||
int bCode = mVU.code;
|
||||
int bPC = iPC;
|
||||
mVUbranch = 0;
|
||||
int bCode = mVU.code;
|
||||
int bPC = iPC;
|
||||
mVUbranch = 0;
|
||||
|
||||
const wxString logname(wxsFormat(L"microVU%d prog - %02d.html", mVU.index, prog.idx));
|
||||
mVU.logFile = std::unique_ptr<AsciiFile>(new AsciiFile(Path::Combine(g_Conf->Folders.Logs, logname), L"w"));
|
||||
|
@ -56,16 +66,27 @@ void __mVUdumpProgram(microVU& mVU, microProgram& prog) {
|
|||
mVUlog("<font face=\"Courier New\" color=\"#ffffff\">\n");
|
||||
|
||||
mVUlog("<font size=\"5\" color=\"#7099ff\">");
|
||||
mVUlog("*********************\n<br>", prog.idx);
|
||||
mVUlog("* Micro-Program #%02d *\n<br>", prog.idx);
|
||||
mVUlog("*********************\n\n<br><br>", prog.idx);
|
||||
mVUlog("*********************\n<br>", prog.idx);
|
||||
mVUlog("* Micro-Program #%02d *\n<br>", prog.idx);
|
||||
mVUlog("*********************\n\n<br><br>", prog.idx);
|
||||
mVUlog("</font>");
|
||||
|
||||
for (u32 i = 0; i < mVU.progSize; i+=2) {
|
||||
for (u32 i = 0; i < mVU.progSize; i += 2)
|
||||
{
|
||||
|
||||
if (delay) { delay--; mVUlog("</font>"); if (!delay) mVUlog("<hr/>"); }
|
||||
if (mVUbranch) { delay = 1; mVUbranch = 0; }
|
||||
mVU.code = prog.data[i+1];
|
||||
if (delay)
|
||||
{
|
||||
delay--;
|
||||
mVUlog("</font>");
|
||||
if (!delay)
|
||||
mVUlog("<hr/>");
|
||||
}
|
||||
if (mVUbranch)
|
||||
{
|
||||
delay = 1;
|
||||
mVUbranch = 0;
|
||||
}
|
||||
mVU.code = prog.data[i + 1];
|
||||
|
||||
bitX[0] = false;
|
||||
bitX[1] = false;
|
||||
|
@ -84,14 +105,15 @@ void __mVUdumpProgram(microVU& mVU, microProgram& prog) {
|
|||
if (delay == 2) { mVUlog("<font color=\"#FFFF00\">"); }
|
||||
if (delay == 1) { mVUlog("<font color=\"#999999\">"); }
|
||||
|
||||
iPC = (i+1);
|
||||
mVUlog("<a name=\"addr%04x\">", i*4);
|
||||
mVUlog("[%04x] (%08x)</a> ", i*4, mVU.code);
|
||||
iPC = (i + 1);
|
||||
mVUlog("<a name=\"addr%04x\">", i * 4);
|
||||
mVUlog("[%04x] (%08x)</a> ", i * 4, mVU.code);
|
||||
mVUopU(mVU, 2);
|
||||
|
||||
if (bitX[5]) {
|
||||
if (bitX[5])
|
||||
{
|
||||
mVUlog(" (");
|
||||
if (bitX[0]) { mVUlog("I"); bitX[6] = true; }
|
||||
if (bitX[0]) { mVUlog("I"); bitX[6] = true; }
|
||||
if (bitX[1]) { commaIf(); mVUlog("E"); bitX[6] = true; }
|
||||
if (bitX[2]) { commaIf(); mVUlog("M"); bitX[6] = true; }
|
||||
if (bitX[3]) { commaIf(); mVUlog("D"); bitX[6] = true; }
|
||||
|
@ -99,20 +121,23 @@ void __mVUdumpProgram(microVU& mVU, microProgram& prog) {
|
|||
mVUlog(")");
|
||||
}
|
||||
|
||||
if (mVUstall) {
|
||||
if (mVUstall)
|
||||
{
|
||||
mVUlog(" Stall %d Cycles", mVUstall);
|
||||
}
|
||||
|
||||
iPC = i;
|
||||
mVU.code = prog.data[i];
|
||||
|
||||
if(bitX[0]) {
|
||||
if (bitX[0])
|
||||
{
|
||||
mVUlog("<br>\n<font color=\"#FF7000\">");
|
||||
mVUlog("[%04x] (%08x) %f", i*4, mVU.code, *(float*)&mVU.code);
|
||||
mVUlog("[%04x] (%08x) %f", i * 4, mVU.code, *(float*)&mVU.code);
|
||||
mVUlog("</font>\n\n<br><br>");
|
||||
}
|
||||
else {
|
||||
mVUlog("<br>\n[%04x] (%08x) ", i*4, mVU.code);
|
||||
else
|
||||
{
|
||||
mVUlog("<br>\n[%04x] (%08x) ", i * 4, mVU.code);
|
||||
mVUopL(mVU, 2);
|
||||
mVUlog("\n\n<br><br>");
|
||||
}
|
||||
|
@ -123,9 +148,8 @@ void __mVUdumpProgram(microVU& mVU, microProgram& prog) {
|
|||
|
||||
mVUbranch = bBranch;
|
||||
mVU.code = bCode;
|
||||
iPC = bPC;
|
||||
iPC = bPC;
|
||||
setCode();
|
||||
|
||||
mVU.logFile.reset(nullptr);
|
||||
}
|
||||
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -38,23 +38,23 @@ void setupMacroOp(int mode, const char* opName)
|
|||
memset(µVU0.prog.IRinfo.info[0], 0, sizeof(microVU0.prog.IRinfo.info[0]));
|
||||
iFlushCall(FLUSH_EVERYTHING);
|
||||
microVU0.regAlloc->reset();
|
||||
if (mode & 0x01)
|
||||
{ // Q-Reg will be Read
|
||||
if (mode & 0x01) // Q-Reg will be Read
|
||||
{
|
||||
xMOVSSZX(xmmPQ, ptr32[&vu0Regs.VI[REG_Q].UL]);
|
||||
}
|
||||
if (mode & 0x08)
|
||||
{ // Clip Instruction
|
||||
microVU0.prog.IRinfo.info[0].cFlag.write = 0xff;
|
||||
if (mode & 0x08) // Clip Instruction
|
||||
{
|
||||
microVU0.prog.IRinfo.info[0].cFlag.write = 0xff;
|
||||
microVU0.prog.IRinfo.info[0].cFlag.lastWrite = 0xff;
|
||||
}
|
||||
if (mode & 0x10)
|
||||
{ // Update Status/Mac Flags
|
||||
microVU0.prog.IRinfo.info[0].sFlag.doFlag = true;
|
||||
if (mode & 0x10) // Update Status/Mac Flags
|
||||
{
|
||||
microVU0.prog.IRinfo.info[0].sFlag.doFlag = true;
|
||||
microVU0.prog.IRinfo.info[0].sFlag.doNonSticky = true;
|
||||
microVU0.prog.IRinfo.info[0].sFlag.write = 0;
|
||||
microVU0.prog.IRinfo.info[0].sFlag.lastWrite = 0;
|
||||
microVU0.prog.IRinfo.info[0].mFlag.doFlag = true;
|
||||
microVU0.prog.IRinfo.info[0].mFlag.write = 0xff;
|
||||
microVU0.prog.IRinfo.info[0].sFlag.write = 0;
|
||||
microVU0.prog.IRinfo.info[0].sFlag.lastWrite = 0;
|
||||
microVU0.prog.IRinfo.info[0].mFlag.doFlag = true;
|
||||
microVU0.prog.IRinfo.info[0].mFlag.write = 0xff;
|
||||
//Denormalize
|
||||
mVUallocSFLAGd(&vu0Regs.VI[REG_STATUS_FLAG].UL);
|
||||
|
||||
|
@ -64,20 +64,20 @@ void setupMacroOp(int mode, const char* opName)
|
|||
|
||||
void endMacroOp(int mode)
|
||||
{
|
||||
if (mode & 0x02)
|
||||
{ // Q-Reg was Written To
|
||||
if (mode & 0x02) // Q-Reg was Written To
|
||||
{
|
||||
xMOVSS(ptr32[&vu0Regs.VI[REG_Q].UL], xmmPQ);
|
||||
}
|
||||
if (mode & 0x10)
|
||||
{ // Status/Mac Flags were Updated
|
||||
if (mode & 0x10) // Status/Mac Flags were Updated
|
||||
{
|
||||
// Normalize
|
||||
mVUallocSFLAGc(eax, gprF0, 0);
|
||||
xMOV(ptr32[&vu0Regs.VI[REG_STATUS_FLAG].UL], eax);
|
||||
}
|
||||
microVU0.regAlloc->flushAll();
|
||||
|
||||
if (mode & 0x10)
|
||||
{ // Update VU0 Status/Mac instances after flush to avoid corrupting anything
|
||||
if (mode & 0x10) // Update VU0 Status/Mac instances after flush to avoid corrupting anything
|
||||
{
|
||||
mVUallocSFLAGd(&vu0Regs.VI[REG_STATUS_FLAG].UL);
|
||||
xMOVDZX(xmmT1, eax);
|
||||
xSHUF.PS(xmmT1, xmmT1, 0);
|
||||
|
@ -124,91 +124,91 @@ void endMacroOp(int mode)
|
|||
// Macro VU - Redirect Upper Instructions
|
||||
//------------------------------------------------------------------
|
||||
|
||||
REC_COP2_mVU0(ABS, "ABS", 0x00);
|
||||
REC_COP2_mVU0(ITOF0, "ITOF0", 0x00);
|
||||
REC_COP2_mVU0(ITOF4, "ITOF4", 0x00);
|
||||
REC_COP2_mVU0(ABS, "ABS", 0x00);
|
||||
REC_COP2_mVU0(ITOF0, "ITOF0", 0x00);
|
||||
REC_COP2_mVU0(ITOF4, "ITOF4", 0x00);
|
||||
REC_COP2_mVU0(ITOF12, "ITOF12", 0x00);
|
||||
REC_COP2_mVU0(ITOF15, "ITOF15", 0x00);
|
||||
REC_COP2_mVU0(FTOI0, "FTOI0", 0x00);
|
||||
REC_COP2_mVU0(FTOI4, "FTOI4", 0x00);
|
||||
REC_COP2_mVU0(FTOI0, "FTOI0", 0x00);
|
||||
REC_COP2_mVU0(FTOI4, "FTOI4", 0x00);
|
||||
REC_COP2_mVU0(FTOI12, "FTOI12", 0x00);
|
||||
REC_COP2_mVU0(FTOI15, "FTOI15", 0x00);
|
||||
REC_COP2_mVU0(ADD, "ADD", 0x10);
|
||||
REC_COP2_mVU0(ADDi, "ADDi", 0x10);
|
||||
REC_COP2_mVU0(ADDq, "ADDq", 0x11);
|
||||
REC_COP2_mVU0(ADDx, "ADDx", 0x10);
|
||||
REC_COP2_mVU0(ADDy, "ADDy", 0x10);
|
||||
REC_COP2_mVU0(ADDz, "ADDz", 0x10);
|
||||
REC_COP2_mVU0(ADDw, "ADDw", 0x10);
|
||||
REC_COP2_mVU0(ADDA, "ADDA", 0x10);
|
||||
REC_COP2_mVU0(ADDAi, "ADDAi", 0x10);
|
||||
REC_COP2_mVU0(ADDAq, "ADDAq", 0x11);
|
||||
REC_COP2_mVU0(ADDAx, "ADDAx", 0x10);
|
||||
REC_COP2_mVU0(ADDAy, "ADDAy", 0x10);
|
||||
REC_COP2_mVU0(ADDAz, "ADDAz", 0x10);
|
||||
REC_COP2_mVU0(ADDAw, "ADDAw", 0x10);
|
||||
REC_COP2_mVU0(SUB, "SUB", 0x10);
|
||||
REC_COP2_mVU0(SUBi, "SUBi", 0x10);
|
||||
REC_COP2_mVU0(SUBq, "SUBq", 0x11);
|
||||
REC_COP2_mVU0(SUBx, "SUBx", 0x10);
|
||||
REC_COP2_mVU0(SUBy, "SUBy", 0x10);
|
||||
REC_COP2_mVU0(SUBz, "SUBz", 0x10);
|
||||
REC_COP2_mVU0(SUBw, "SUBw", 0x10);
|
||||
REC_COP2_mVU0(SUBA, "SUBA", 0x10);
|
||||
REC_COP2_mVU0(SUBAi, "SUBAi", 0x10);
|
||||
REC_COP2_mVU0(SUBAq, "SUBAq", 0x11);
|
||||
REC_COP2_mVU0(SUBAx, "SUBAx", 0x10);
|
||||
REC_COP2_mVU0(SUBAy, "SUBAy", 0x10);
|
||||
REC_COP2_mVU0(SUBAz, "SUBAz", 0x10);
|
||||
REC_COP2_mVU0(SUBAw, "SUBAw", 0x10);
|
||||
REC_COP2_mVU0(MUL, "MUL", 0x10);
|
||||
REC_COP2_mVU0(MULi, "MULi", 0x10);
|
||||
REC_COP2_mVU0(MULq, "MULq", 0x11);
|
||||
REC_COP2_mVU0(MULx, "MULx", 0x10);
|
||||
REC_COP2_mVU0(MULy, "MULy", 0x10);
|
||||
REC_COP2_mVU0(MULz, "MULz", 0x10);
|
||||
REC_COP2_mVU0(MULw, "MULw", 0x10);
|
||||
REC_COP2_mVU0(MULA, "MULA", 0x10);
|
||||
REC_COP2_mVU0(MULAi, "MULAi", 0x10);
|
||||
REC_COP2_mVU0(MULAq, "MULAq", 0x11);
|
||||
REC_COP2_mVU0(MULAx, "MULAx", 0x10);
|
||||
REC_COP2_mVU0(MULAy, "MULAy", 0x10);
|
||||
REC_COP2_mVU0(MULAz, "MULAz", 0x10);
|
||||
REC_COP2_mVU0(MULAw, "MULAw", 0x10);
|
||||
REC_COP2_mVU0(MAX, "MAX", 0x00);
|
||||
REC_COP2_mVU0(MAXi, "MAXi", 0x00);
|
||||
REC_COP2_mVU0(MAXx, "MAXx", 0x00);
|
||||
REC_COP2_mVU0(MAXy, "MAXy", 0x00);
|
||||
REC_COP2_mVU0(MAXz, "MAXz", 0x00);
|
||||
REC_COP2_mVU0(MAXw, "MAXw", 0x00);
|
||||
REC_COP2_mVU0(MINI, "MINI", 0x00);
|
||||
REC_COP2_mVU0(MINIi, "MINIi", 0x00);
|
||||
REC_COP2_mVU0(MINIx, "MINIx", 0x00);
|
||||
REC_COP2_mVU0(MINIy, "MINIy", 0x00);
|
||||
REC_COP2_mVU0(MINIz, "MINIz", 0x00);
|
||||
REC_COP2_mVU0(MINIw, "MINIw", 0x00);
|
||||
REC_COP2_mVU0(MADD, "MADD", 0x10);
|
||||
REC_COP2_mVU0(MADDi, "MADDi", 0x10);
|
||||
REC_COP2_mVU0(MADDq, "MADDq", 0x11);
|
||||
REC_COP2_mVU0(MADDx, "MADDx", 0x10);
|
||||
REC_COP2_mVU0(MADDy, "MADDy", 0x10);
|
||||
REC_COP2_mVU0(MADDz, "MADDz", 0x10);
|
||||
REC_COP2_mVU0(MADDw, "MADDw", 0x10);
|
||||
REC_COP2_mVU0(MADDA, "MADDA", 0x10);
|
||||
REC_COP2_mVU0(ADD, "ADD", 0x10);
|
||||
REC_COP2_mVU0(ADDi, "ADDi", 0x10);
|
||||
REC_COP2_mVU0(ADDq, "ADDq", 0x11);
|
||||
REC_COP2_mVU0(ADDx, "ADDx", 0x10);
|
||||
REC_COP2_mVU0(ADDy, "ADDy", 0x10);
|
||||
REC_COP2_mVU0(ADDz, "ADDz", 0x10);
|
||||
REC_COP2_mVU0(ADDw, "ADDw", 0x10);
|
||||
REC_COP2_mVU0(ADDA, "ADDA", 0x10);
|
||||
REC_COP2_mVU0(ADDAi, "ADDAi", 0x10);
|
||||
REC_COP2_mVU0(ADDAq, "ADDAq", 0x11);
|
||||
REC_COP2_mVU0(ADDAx, "ADDAx", 0x10);
|
||||
REC_COP2_mVU0(ADDAy, "ADDAy", 0x10);
|
||||
REC_COP2_mVU0(ADDAz, "ADDAz", 0x10);
|
||||
REC_COP2_mVU0(ADDAw, "ADDAw", 0x10);
|
||||
REC_COP2_mVU0(SUB, "SUB", 0x10);
|
||||
REC_COP2_mVU0(SUBi, "SUBi", 0x10);
|
||||
REC_COP2_mVU0(SUBq, "SUBq", 0x11);
|
||||
REC_COP2_mVU0(SUBx, "SUBx", 0x10);
|
||||
REC_COP2_mVU0(SUBy, "SUBy", 0x10);
|
||||
REC_COP2_mVU0(SUBz, "SUBz", 0x10);
|
||||
REC_COP2_mVU0(SUBw, "SUBw", 0x10);
|
||||
REC_COP2_mVU0(SUBA, "SUBA", 0x10);
|
||||
REC_COP2_mVU0(SUBAi, "SUBAi", 0x10);
|
||||
REC_COP2_mVU0(SUBAq, "SUBAq", 0x11);
|
||||
REC_COP2_mVU0(SUBAx, "SUBAx", 0x10);
|
||||
REC_COP2_mVU0(SUBAy, "SUBAy", 0x10);
|
||||
REC_COP2_mVU0(SUBAz, "SUBAz", 0x10);
|
||||
REC_COP2_mVU0(SUBAw, "SUBAw", 0x10);
|
||||
REC_COP2_mVU0(MUL, "MUL", 0x10);
|
||||
REC_COP2_mVU0(MULi, "MULi", 0x10);
|
||||
REC_COP2_mVU0(MULq, "MULq", 0x11);
|
||||
REC_COP2_mVU0(MULx, "MULx", 0x10);
|
||||
REC_COP2_mVU0(MULy, "MULy", 0x10);
|
||||
REC_COP2_mVU0(MULz, "MULz", 0x10);
|
||||
REC_COP2_mVU0(MULw, "MULw", 0x10);
|
||||
REC_COP2_mVU0(MULA, "MULA", 0x10);
|
||||
REC_COP2_mVU0(MULAi, "MULAi", 0x10);
|
||||
REC_COP2_mVU0(MULAq, "MULAq", 0x11);
|
||||
REC_COP2_mVU0(MULAx, "MULAx", 0x10);
|
||||
REC_COP2_mVU0(MULAy, "MULAy", 0x10);
|
||||
REC_COP2_mVU0(MULAz, "MULAz", 0x10);
|
||||
REC_COP2_mVU0(MULAw, "MULAw", 0x10);
|
||||
REC_COP2_mVU0(MAX, "MAX", 0x00);
|
||||
REC_COP2_mVU0(MAXi, "MAXi", 0x00);
|
||||
REC_COP2_mVU0(MAXx, "MAXx", 0x00);
|
||||
REC_COP2_mVU0(MAXy, "MAXy", 0x00);
|
||||
REC_COP2_mVU0(MAXz, "MAXz", 0x00);
|
||||
REC_COP2_mVU0(MAXw, "MAXw", 0x00);
|
||||
REC_COP2_mVU0(MINI, "MINI", 0x00);
|
||||
REC_COP2_mVU0(MINIi, "MINIi", 0x00);
|
||||
REC_COP2_mVU0(MINIx, "MINIx", 0x00);
|
||||
REC_COP2_mVU0(MINIy, "MINIy", 0x00);
|
||||
REC_COP2_mVU0(MINIz, "MINIz", 0x00);
|
||||
REC_COP2_mVU0(MINIw, "MINIw", 0x00);
|
||||
REC_COP2_mVU0(MADD, "MADD", 0x10);
|
||||
REC_COP2_mVU0(MADDi, "MADDi", 0x10);
|
||||
REC_COP2_mVU0(MADDq, "MADDq", 0x11);
|
||||
REC_COP2_mVU0(MADDx, "MADDx", 0x10);
|
||||
REC_COP2_mVU0(MADDy, "MADDy", 0x10);
|
||||
REC_COP2_mVU0(MADDz, "MADDz", 0x10);
|
||||
REC_COP2_mVU0(MADDw, "MADDw", 0x10);
|
||||
REC_COP2_mVU0(MADDA, "MADDA", 0x10);
|
||||
REC_COP2_mVU0(MADDAi, "MADDAi", 0x10);
|
||||
REC_COP2_mVU0(MADDAq, "MADDAq", 0x11);
|
||||
REC_COP2_mVU0(MADDAx, "MADDAx", 0x10);
|
||||
REC_COP2_mVU0(MADDAy, "MADDAy", 0x10);
|
||||
REC_COP2_mVU0(MADDAz, "MADDAz", 0x10);
|
||||
REC_COP2_mVU0(MADDAw, "MADDAw", 0x10);
|
||||
REC_COP2_mVU0(MSUB, "MSUB", 0x10);
|
||||
REC_COP2_mVU0(MSUBi, "MSUBi", 0x10);
|
||||
REC_COP2_mVU0(MSUBq, "MSUBq", 0x11);
|
||||
REC_COP2_mVU0(MSUBx, "MSUBx", 0x10);
|
||||
REC_COP2_mVU0(MSUBy, "MSUBy", 0x10);
|
||||
REC_COP2_mVU0(MSUBz, "MSUBz", 0x10);
|
||||
REC_COP2_mVU0(MSUBw, "MSUBw", 0x10);
|
||||
REC_COP2_mVU0(MSUBA, "MSUBA", 0x10);
|
||||
REC_COP2_mVU0(MSUB, "MSUB", 0x10);
|
||||
REC_COP2_mVU0(MSUBi, "MSUBi", 0x10);
|
||||
REC_COP2_mVU0(MSUBq, "MSUBq", 0x11);
|
||||
REC_COP2_mVU0(MSUBx, "MSUBx", 0x10);
|
||||
REC_COP2_mVU0(MSUBy, "MSUBy", 0x10);
|
||||
REC_COP2_mVU0(MSUBz, "MSUBz", 0x10);
|
||||
REC_COP2_mVU0(MSUBw, "MSUBw", 0x10);
|
||||
REC_COP2_mVU0(MSUBA, "MSUBA", 0x10);
|
||||
REC_COP2_mVU0(MSUBAi, "MSUBAi", 0x10);
|
||||
REC_COP2_mVU0(MSUBAq, "MSUBAq", 0x11);
|
||||
REC_COP2_mVU0(MSUBAx, "MSUBAx", 0x10);
|
||||
|
@ -217,34 +217,34 @@ REC_COP2_mVU0(MSUBAz, "MSUBAz", 0x10);
|
|||
REC_COP2_mVU0(MSUBAw, "MSUBAw", 0x10);
|
||||
REC_COP2_mVU0(OPMULA, "OPMULA", 0x10);
|
||||
REC_COP2_mVU0(OPMSUB, "OPMSUB", 0x10);
|
||||
REC_COP2_mVU0(CLIP, "CLIP", 0x08);
|
||||
REC_COP2_mVU0(CLIP, "CLIP", 0x08);
|
||||
|
||||
//------------------------------------------------------------------
|
||||
// Macro VU - Redirect Lower Instructions
|
||||
//------------------------------------------------------------------
|
||||
|
||||
REC_COP2_mVU0(DIV, "DIV", 0x12);
|
||||
REC_COP2_mVU0(SQRT, "SQRT", 0x12);
|
||||
REC_COP2_mVU0(DIV, "DIV", 0x12);
|
||||
REC_COP2_mVU0(SQRT, "SQRT", 0x12);
|
||||
REC_COP2_mVU0(RSQRT, "RSQRT", 0x12);
|
||||
REC_COP2_mVU0(IADD, "IADD", 0x04);
|
||||
REC_COP2_mVU0(IADD, "IADD", 0x04);
|
||||
REC_COP2_mVU0(IADDI, "IADDI", 0x04);
|
||||
REC_COP2_mVU0(IAND, "IAND", 0x04);
|
||||
REC_COP2_mVU0(IOR, "IOR", 0x04);
|
||||
REC_COP2_mVU0(ISUB, "ISUB", 0x04);
|
||||
REC_COP2_mVU0(ILWR, "ILWR", 0x04);
|
||||
REC_COP2_mVU0(ISWR, "ISWR", 0x00);
|
||||
REC_COP2_mVU0(LQI, "LQI", 0x04);
|
||||
REC_COP2_mVU0(LQD, "LQD", 0x04);
|
||||
REC_COP2_mVU0(SQI, "SQI", 0x00);
|
||||
REC_COP2_mVU0(SQD, "SQD", 0x00);
|
||||
REC_COP2_mVU0(MFIR, "MFIR", 0x04);
|
||||
REC_COP2_mVU0(MTIR, "MTIR", 0x04);
|
||||
REC_COP2_mVU0(MOVE, "MOVE", 0x00);
|
||||
REC_COP2_mVU0(MR32, "MR32", 0x00);
|
||||
REC_COP2_mVU0(IAND, "IAND", 0x04);
|
||||
REC_COP2_mVU0(IOR, "IOR", 0x04);
|
||||
REC_COP2_mVU0(ISUB, "ISUB", 0x04);
|
||||
REC_COP2_mVU0(ILWR, "ILWR", 0x04);
|
||||
REC_COP2_mVU0(ISWR, "ISWR", 0x00);
|
||||
REC_COP2_mVU0(LQI, "LQI", 0x04);
|
||||
REC_COP2_mVU0(LQD, "LQD", 0x04);
|
||||
REC_COP2_mVU0(SQI, "SQI", 0x00);
|
||||
REC_COP2_mVU0(SQD, "SQD", 0x00);
|
||||
REC_COP2_mVU0(MFIR, "MFIR", 0x04);
|
||||
REC_COP2_mVU0(MTIR, "MTIR", 0x04);
|
||||
REC_COP2_mVU0(MOVE, "MOVE", 0x00);
|
||||
REC_COP2_mVU0(MR32, "MR32", 0x00);
|
||||
REC_COP2_mVU0(RINIT, "RINIT", 0x00);
|
||||
REC_COP2_mVU0(RGET, "RGET", 0x04);
|
||||
REC_COP2_mVU0(RGET, "RGET", 0x04);
|
||||
REC_COP2_mVU0(RNEXT, "RNEXT", 0x04);
|
||||
REC_COP2_mVU0(RXOR, "RXOR", 0x00);
|
||||
REC_COP2_mVU0(RXOR, "RXOR", 0x00);
|
||||
|
||||
//------------------------------------------------------------------
|
||||
// Macro VU - Misc...
|
||||
|
@ -268,10 +268,10 @@ void _setupBranchTest(u32*(jmpType)(u32), bool isLikely)
|
|||
recDoBranchImm(jmpType(0), isLikely);
|
||||
}
|
||||
|
||||
void recBC2F() { _setupBranchTest(JNZ32, false); }
|
||||
void recBC2T() { _setupBranchTest(JZ32, false); }
|
||||
void recBC2FL() { _setupBranchTest(JNZ32, true); }
|
||||
void recBC2TL() { _setupBranchTest(JZ32, true); }
|
||||
void recBC2F() { _setupBranchTest(JNZ32, false); }
|
||||
void recBC2T() { _setupBranchTest(JZ32, false); }
|
||||
void recBC2FL() { _setupBranchTest(JNZ32, true); }
|
||||
void recBC2TL() { _setupBranchTest(JZ32, true); }
|
||||
|
||||
//------------------------------------------------------------------
|
||||
// Macro VU - COP2 Transfer Instructions
|
||||
|
@ -302,8 +302,8 @@ void TEST_FBRST_RESET(FnType_Void* resetFunct, int vuIndex)
|
|||
{
|
||||
xTEST(eax, (vuIndex) ? 0x200 : 0x002);
|
||||
xForwardJZ8 skip;
|
||||
xFastCall((void*)resetFunct);
|
||||
xMOV(eax, ptr32[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
xFastCall((void*)resetFunct);
|
||||
xMOV(eax, ptr32[&cpuRegs.GPR.r[_Rt_].UL[0]]);
|
||||
skip.SetTarget();
|
||||
}
|
||||
|
||||
|
@ -335,15 +335,13 @@ static void recCFC2()
|
|||
skipvuidle.SetTarget();
|
||||
}
|
||||
|
||||
if (_Rd_ == REG_STATUS_FLAG)
|
||||
{ // Normalize Status Flag
|
||||
if (_Rd_ == REG_STATUS_FLAG) // Normalize Status Flag
|
||||
xMOV(eax, ptr32[&vu0Regs.VI[REG_STATUS_FLAG].UL]);
|
||||
}
|
||||
else
|
||||
xMOV(eax, ptr32[&vu0Regs.VI[_Rd_].UL]);
|
||||
|
||||
if (_Rd_ == REG_TPC)
|
||||
{ // Divide TPC register value by 8 during copying
|
||||
if (_Rd_ == REG_TPC) // Divide TPC register value by 8 during copying
|
||||
{
|
||||
// Ok, this deserves an explanation.
|
||||
// Accoring to the official PS2 VU0 coding manual there are 3 ways to execute a micro subroutine on VU0
|
||||
// one of which is using the VCALLMSR intruction.
|
||||
|
@ -571,282 +569,55 @@ void _vuRegsCOP22(VURegs* VU, _VURegsNum* VUregsn) {}
|
|||
|
||||
// Recompilation
|
||||
void (*recCOP2t[32])() = {
|
||||
rec_C2UNK,
|
||||
recQMFC2,
|
||||
recCFC2,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
recQMTC2,
|
||||
recCTC2,
|
||||
rec_C2UNK,
|
||||
recCOP2_BC2,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
recCOP2_SPEC1,
|
||||
recCOP2_SPEC1,
|
||||
recCOP2_SPEC1,
|
||||
recCOP2_SPEC1,
|
||||
recCOP2_SPEC1,
|
||||
recCOP2_SPEC1,
|
||||
recCOP2_SPEC1,
|
||||
recCOP2_SPEC1,
|
||||
recCOP2_SPEC1,
|
||||
recCOP2_SPEC1,
|
||||
recCOP2_SPEC1,
|
||||
recCOP2_SPEC1,
|
||||
recCOP2_SPEC1,
|
||||
recCOP2_SPEC1,
|
||||
recCOP2_SPEC1,
|
||||
recCOP2_SPEC1,
|
||||
rec_C2UNK, recQMFC2, recCFC2, rec_C2UNK, rec_C2UNK, recQMTC2, recCTC2, rec_C2UNK,
|
||||
recCOP2_BC2, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK,
|
||||
recCOP2_SPEC1, recCOP2_SPEC1, recCOP2_SPEC1, recCOP2_SPEC1, recCOP2_SPEC1, recCOP2_SPEC1, recCOP2_SPEC1, recCOP2_SPEC1,
|
||||
recCOP2_SPEC1, recCOP2_SPEC1, recCOP2_SPEC1, recCOP2_SPEC1, recCOP2_SPEC1, recCOP2_SPEC1, recCOP2_SPEC1, recCOP2_SPEC1,
|
||||
};
|
||||
|
||||
void (*recCOP2_BC2t[32])() = {
|
||||
recBC2F,
|
||||
recBC2T,
|
||||
recBC2FL,
|
||||
recBC2TL,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
recBC2F, recBC2T, recBC2FL, recBC2TL, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK,
|
||||
rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK,
|
||||
rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK,
|
||||
rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK,
|
||||
};
|
||||
|
||||
void (*recCOP2SPECIAL1t[64])() = {
|
||||
recVADDx,
|
||||
recVADDy,
|
||||
recVADDz,
|
||||
recVADDw,
|
||||
recVSUBx,
|
||||
recVSUBy,
|
||||
recVSUBz,
|
||||
recVSUBw,
|
||||
recVMADDx,
|
||||
recVMADDy,
|
||||
recVMADDz,
|
||||
recVMADDw,
|
||||
recVMSUBx,
|
||||
recVMSUBy,
|
||||
recVMSUBz,
|
||||
recVMSUBw,
|
||||
recVMAXx,
|
||||
recVMAXy,
|
||||
recVMAXz,
|
||||
recVMAXw,
|
||||
recVMINIx,
|
||||
recVMINIy,
|
||||
recVMINIz,
|
||||
recVMINIw,
|
||||
recVMULx,
|
||||
recVMULy,
|
||||
recVMULz,
|
||||
recVMULw,
|
||||
recVMULq,
|
||||
recVMAXi,
|
||||
recVMULi,
|
||||
recVMINIi,
|
||||
recVADDq,
|
||||
recVMADDq,
|
||||
recVADDi,
|
||||
recVMADDi,
|
||||
recVSUBq,
|
||||
recVMSUBq,
|
||||
recVSUBi,
|
||||
recVMSUBi,
|
||||
recVADD,
|
||||
recVMADD,
|
||||
recVMUL,
|
||||
recVMAX,
|
||||
recVSUB,
|
||||
recVMSUB,
|
||||
recVOPMSUB,
|
||||
recVMINI,
|
||||
recVIADD,
|
||||
recVISUB,
|
||||
recVIADDI,
|
||||
rec_C2UNK,
|
||||
recVIAND,
|
||||
recVIOR,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
recVCALLMS,
|
||||
recVCALLMSR,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
recCOP2_SPEC2,
|
||||
recCOP2_SPEC2,
|
||||
recCOP2_SPEC2,
|
||||
recCOP2_SPEC2,
|
||||
recVADDx, recVADDy, recVADDz, recVADDw, recVSUBx, recVSUBy, recVSUBz, recVSUBw,
|
||||
recVMADDx, recVMADDy, recVMADDz, recVMADDw, recVMSUBx, recVMSUBy, recVMSUBz, recVMSUBw,
|
||||
recVMAXx, recVMAXy, recVMAXz, recVMAXw, recVMINIx, recVMINIy, recVMINIz, recVMINIw,
|
||||
recVMULx, recVMULy, recVMULz, recVMULw, recVMULq, recVMAXi, recVMULi, recVMINIi,
|
||||
recVADDq, recVMADDq, recVADDi, recVMADDi, recVSUBq, recVMSUBq, recVSUBi, recVMSUBi,
|
||||
recVADD, recVMADD, recVMUL, recVMAX, recVSUB, recVMSUB, recVOPMSUB, recVMINI,
|
||||
recVIADD, recVISUB, recVIADDI, rec_C2UNK, recVIAND, recVIOR, rec_C2UNK, rec_C2UNK,
|
||||
recVCALLMS, recVCALLMSR,rec_C2UNK, rec_C2UNK, recCOP2_SPEC2, recCOP2_SPEC2, recCOP2_SPEC2, recCOP2_SPEC2,
|
||||
};
|
||||
|
||||
void (*recCOP2SPECIAL2t[128])() = {
|
||||
recVADDAx,
|
||||
recVADDAy,
|
||||
recVADDAz,
|
||||
recVADDAw,
|
||||
recVSUBAx,
|
||||
recVSUBAy,
|
||||
recVSUBAz,
|
||||
recVSUBAw,
|
||||
recVMADDAx,
|
||||
recVMADDAy,
|
||||
recVMADDAz,
|
||||
recVMADDAw,
|
||||
recVMSUBAx,
|
||||
recVMSUBAy,
|
||||
recVMSUBAz,
|
||||
recVMSUBAw,
|
||||
recVITOF0,
|
||||
recVITOF4,
|
||||
recVITOF12,
|
||||
recVITOF15,
|
||||
recVFTOI0,
|
||||
recVFTOI4,
|
||||
recVFTOI12,
|
||||
recVFTOI15,
|
||||
recVMULAx,
|
||||
recVMULAy,
|
||||
recVMULAz,
|
||||
recVMULAw,
|
||||
recVMULAq,
|
||||
recVABS,
|
||||
recVMULAi,
|
||||
recVCLIP,
|
||||
recVADDAq,
|
||||
recVMADDAq,
|
||||
recVADDAi,
|
||||
recVMADDAi,
|
||||
recVSUBAq,
|
||||
recVMSUBAq,
|
||||
recVSUBAi,
|
||||
recVMSUBAi,
|
||||
recVADDA,
|
||||
recVMADDA,
|
||||
recVMULA,
|
||||
rec_C2UNK,
|
||||
recVSUBA,
|
||||
recVMSUBA,
|
||||
recVOPMULA,
|
||||
recVNOP,
|
||||
recVMOVE,
|
||||
recVMR32,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
recVLQI,
|
||||
recVSQI,
|
||||
recVLQD,
|
||||
recVSQD,
|
||||
recVDIV,
|
||||
recVSQRT,
|
||||
recVRSQRT,
|
||||
recVWAITQ,
|
||||
recVMTIR,
|
||||
recVMFIR,
|
||||
recVILWR,
|
||||
recVISWR,
|
||||
recVRNEXT,
|
||||
recVRGET,
|
||||
recVRINIT,
|
||||
recVRXOR,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
rec_C2UNK,
|
||||
recVADDAx, recVADDAy, recVADDAz, recVADDAw, recVSUBAx, recVSUBAy, recVSUBAz, recVSUBAw,
|
||||
recVMADDAx,recVMADDAy, recVMADDAz, recVMADDAw, recVMSUBAx, recVMSUBAy, recVMSUBAz, recVMSUBAw,
|
||||
recVITOF0, recVITOF4, recVITOF12, recVITOF15, recVFTOI0, recVFTOI4, recVFTOI12, recVFTOI15,
|
||||
recVMULAx, recVMULAy, recVMULAz, recVMULAw, recVMULAq, recVABS, recVMULAi, recVCLIP,
|
||||
recVADDAq, recVMADDAq,recVADDAi, recVMADDAi, recVSUBAq, recVMSUBAq, recVSUBAi, recVMSUBAi,
|
||||
recVADDA, recVMADDA, recVMULA, rec_C2UNK, recVSUBA, recVMSUBA, recVOPMULA, recVNOP,
|
||||
recVMOVE, recVMR32, rec_C2UNK, rec_C2UNK, recVLQI, recVSQI, recVLQD, recVSQD,
|
||||
recVDIV, recVSQRT, recVRSQRT, recVWAITQ, recVMTIR, recVMFIR, recVILWR, recVISWR,
|
||||
recVRNEXT, recVRGET, recVRINIT, recVRXOR, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK,
|
||||
rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK,
|
||||
rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK,
|
||||
rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK,
|
||||
rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK,
|
||||
rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK,
|
||||
rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK,
|
||||
rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK, rec_C2UNK,
|
||||
};
|
||||
|
||||
namespace R5900
|
||||
{
|
||||
namespace Dynarec
|
||||
{
|
||||
namespace OpcodeImpl
|
||||
{
|
||||
void recCOP2() { recCOP2t[_Rs_](); }
|
||||
} // namespace OpcodeImpl
|
||||
} // namespace Dynarec
|
||||
namespace R5900 {
|
||||
namespace Dynarec {
|
||||
namespace OpcodeImpl {
|
||||
void recCOP2() { recCOP2t[_Rs_](); }
|
||||
} // namespace OpcodeImpl
|
||||
} // namespace Dynarec
|
||||
} // namespace R5900
|
||||
void recCOP2_BC2() { recCOP2_BC2t[_Rt_](); }
|
||||
void recCOP2_SPEC1()
|
||||
|
|
|
@ -26,48 +26,49 @@ struct microVU;
|
|||
// Global Variables
|
||||
//------------------------------------------------------------------
|
||||
|
||||
struct mVU_Globals {
|
||||
u32 absclip[4], signbit[4], minvals[4], maxvals[4];
|
||||
u32 one[4];
|
||||
u32 Pi4[4];
|
||||
u32 T1[4], T2[4], T3[4], T4[4], T5[4], T6[4], T7[4], T8[4];
|
||||
u32 S2[4], S3[4], S4[4], S5[4];
|
||||
u32 E1[4], E2[4], E3[4], E4[4], E5[4], E6[4];
|
||||
float FTOI_4[4], FTOI_12[4], FTOI_15[4];
|
||||
float ITOF_4[4], ITOF_12[4], ITOF_15[4];
|
||||
struct mVU_Globals
|
||||
{
|
||||
u32 absclip[4], signbit[4], minvals[4], maxvals[4];
|
||||
u32 one[4];
|
||||
u32 Pi4[4];
|
||||
u32 T1[4], T2[4], T3[4], T4[4], T5[4], T6[4], T7[4], T8[4];
|
||||
u32 S2[4], S3[4], S4[4], S5[4];
|
||||
u32 E1[4], E2[4], E3[4], E4[4], E5[4], E6[4];
|
||||
float FTOI_4[4], FTOI_12[4], FTOI_15[4];
|
||||
float ITOF_4[4], ITOF_12[4], ITOF_15[4];
|
||||
};
|
||||
|
||||
#define __four(val) { val, val, val, val }
|
||||
#define __four(val) { val, val, val, val }
|
||||
static const __aligned(32) mVU_Globals mVUglob = {
|
||||
__four(0x7fffffff), // absclip
|
||||
__four(0x80000000), // signbit
|
||||
__four(0xff7fffff), // minvals
|
||||
__four(0x7f7fffff), // maxvals
|
||||
__four(0x3f800000), // ONE!
|
||||
__four(0x3f490fdb), // PI4!
|
||||
__four(0x3f7ffff5), // T1
|
||||
__four(0xbeaaa61c), // T5
|
||||
__four(0x3e4c40a6), // T2
|
||||
__four(0xbe0e6c63), // T3
|
||||
__four(0x3dc577df), // T4
|
||||
__four(0xbd6501c4), // T6
|
||||
__four(0x3cb31652), // T7
|
||||
__four(0xbb84d7e7), // T8
|
||||
__four(0xbe2aaaa4), // S2
|
||||
__four(0x3c08873e), // S3
|
||||
__four(0xb94fb21f), // S4
|
||||
__four(0x362e9c14), // S5
|
||||
__four(0x3e7fffa8), // E1
|
||||
__four(0x3d0007f4), // E2
|
||||
__four(0x3b29d3ff), // E3
|
||||
__four(0x3933e553), // E4
|
||||
__four(0x36b63510), // E5
|
||||
__four(0x353961ac), // E6
|
||||
__four(16.0), // FTOI_4
|
||||
__four(4096.0), // FTOI_12
|
||||
__four(32768.0), // FTOI_15
|
||||
__four(0.0625f), // ITOF_4
|
||||
__four(0.000244140625), // ITOF_12
|
||||
__four(0x7fffffff), // absclip
|
||||
__four(0x80000000), // signbit
|
||||
__four(0xff7fffff), // minvals
|
||||
__four(0x7f7fffff), // maxvals
|
||||
__four(0x3f800000), // ONE!
|
||||
__four(0x3f490fdb), // PI4!
|
||||
__four(0x3f7ffff5), // T1
|
||||
__four(0xbeaaa61c), // T5
|
||||
__four(0x3e4c40a6), // T2
|
||||
__four(0xbe0e6c63), // T3
|
||||
__four(0x3dc577df), // T4
|
||||
__four(0xbd6501c4), // T6
|
||||
__four(0x3cb31652), // T7
|
||||
__four(0xbb84d7e7), // T8
|
||||
__four(0xbe2aaaa4), // S2
|
||||
__four(0x3c08873e), // S3
|
||||
__four(0xb94fb21f), // S4
|
||||
__four(0x362e9c14), // S5
|
||||
__four(0x3e7fffa8), // E1
|
||||
__four(0x3d0007f4), // E2
|
||||
__four(0x3b29d3ff), // E3
|
||||
__four(0x3933e553), // E4
|
||||
__four(0x36b63510), // E5
|
||||
__four(0x353961ac), // E6
|
||||
__four(16.0), // FTOI_4
|
||||
__four(4096.0), // FTOI_12
|
||||
__four(32768.0), // FTOI_15
|
||||
__four(0.0625f), // ITOF_4
|
||||
__four(0.000244140625), // ITOF_12
|
||||
__four(0.000030517578125) // ITOF_15
|
||||
};
|
||||
|
||||
|
@ -91,47 +92,47 @@ static const char branchSTR[16][8] = {
|
|||
// Helper Macros
|
||||
//------------------------------------------------------------------
|
||||
|
||||
#define _Ft_ ((mVU.code >> 16) & 0x1F) // The ft part of the instruction register
|
||||
#define _Fs_ ((mVU.code >> 11) & 0x1F) // The fs part of the instruction register
|
||||
#define _Fd_ ((mVU.code >> 6) & 0x1F) // The fd part of the instruction register
|
||||
#define _Ft_ ((mVU.code >> 16) & 0x1F) // The ft part of the instruction register
|
||||
#define _Fs_ ((mVU.code >> 11) & 0x1F) // The fs part of the instruction register
|
||||
#define _Fd_ ((mVU.code >> 6) & 0x1F) // The fd part of the instruction register
|
||||
|
||||
#define _It_ ((mVU.code >> 16) & 0xF) // The it part of the instruction register
|
||||
#define _Is_ ((mVU.code >> 11) & 0xF) // The is part of the instruction register
|
||||
#define _Id_ ((mVU.code >> 6) & 0xF) // The id part of the instruction register
|
||||
#define _It_ ((mVU.code >> 16) & 0xF) // The it part of the instruction register
|
||||
#define _Is_ ((mVU.code >> 11) & 0xF) // The is part of the instruction register
|
||||
#define _Id_ ((mVU.code >> 6) & 0xF) // The id part of the instruction register
|
||||
|
||||
#define _X ((mVU.code>>24) & 0x1)
|
||||
#define _Y ((mVU.code>>23) & 0x1)
|
||||
#define _Z ((mVU.code>>22) & 0x1)
|
||||
#define _W ((mVU.code>>21) & 0x1)
|
||||
#define _X ((mVU.code >> 24) & 0x1)
|
||||
#define _Y ((mVU.code >> 23) & 0x1)
|
||||
#define _Z ((mVU.code >> 22) & 0x1)
|
||||
#define _W ((mVU.code >> 21) & 0x1)
|
||||
|
||||
#define _X_Y_Z_W (((mVU.code >> 21 ) & 0xF))
|
||||
#define _XYZW_SS (_X+_Y+_Z+_W==1)
|
||||
#define _XYZW_SS2 (_XYZW_SS && (_X_Y_Z_W != 8))
|
||||
#define _XYZW_PS (_X_Y_Z_W == 0xf)
|
||||
#define _XYZWss(x) ((x==8) || (x==4) || (x==2) || (x==1))
|
||||
#define _X_Y_Z_W (((mVU.code >> 21) & 0xF))
|
||||
#define _XYZW_SS (_X + _Y + _Z + _W == 1)
|
||||
#define _XYZW_SS2 (_XYZW_SS && (_X_Y_Z_W != 8))
|
||||
#define _XYZW_PS (_X_Y_Z_W == 0xf)
|
||||
#define _XYZWss(x) ((x == 8) || (x == 4) || (x == 2) || (x == 1))
|
||||
|
||||
#define _bc_ (mVU.code & 0x3)
|
||||
#define _bc_x ((mVU.code & 0x3) == 0)
|
||||
#define _bc_y ((mVU.code & 0x3) == 1)
|
||||
#define _bc_z ((mVU.code & 0x3) == 2)
|
||||
#define _bc_w ((mVU.code & 0x3) == 3)
|
||||
#define _bc_ (mVU.code & 0x3)
|
||||
#define _bc_x ((mVU.code & 0x3) == 0)
|
||||
#define _bc_y ((mVU.code & 0x3) == 1)
|
||||
#define _bc_z ((mVU.code & 0x3) == 2)
|
||||
#define _bc_w ((mVU.code & 0x3) == 3)
|
||||
|
||||
#define _Fsf_ ((mVU.code >> 21) & 0x03)
|
||||
#define _Ftf_ ((mVU.code >> 23) & 0x03)
|
||||
#define _Fsf_ ((mVU.code >> 21) & 0x03)
|
||||
#define _Ftf_ ((mVU.code >> 23) & 0x03)
|
||||
|
||||
#define _Imm5_ ((s16) (((mVU.code & 0x400) ? 0xfff0 : 0) | ((mVU.code >> 6) & 0xf)))
|
||||
#define _Imm11_ ((s32) ((mVU.code & 0x400) ? (0xfffffc00 | (mVU.code & 0x3ff)) : (mVU.code & 0x3ff)))
|
||||
#define _Imm12_ ((u32)((((mVU.code >> 21) & 0x1) << 11) | (mVU.code & 0x7ff)))
|
||||
#define _Imm15_ ((u32) (((mVU.code >> 10) & 0x7800) | (mVU.code & 0x7ff)))
|
||||
#define _Imm24_ ((u32) (mVU.code & 0xffffff))
|
||||
#define _Imm5_ ((s16) (((mVU.code & 0x400) ? 0xfff0 : 0) | ((mVU.code >> 6) & 0xf)))
|
||||
#define _Imm11_ ((s32) ((mVU.code & 0x400) ? (0xfffffc00 | (mVU.code & 0x3ff)) : (mVU.code & 0x3ff)))
|
||||
#define _Imm12_ ((u32)((((mVU.code >> 21) & 0x1) << 11) | (mVU.code & 0x7ff)))
|
||||
#define _Imm15_ ((u32) (((mVU.code >> 10) & 0x7800) | (mVU.code & 0x7ff)))
|
||||
#define _Imm24_ ((u32) (mVU.code & 0xffffff))
|
||||
|
||||
#define isCOP2 (mVU.cop2 != 0)
|
||||
#define isVU1 (mVU.index != 0)
|
||||
#define isVU0 (mVU.index == 0)
|
||||
#define getIndex (isVU1 ? 1 : 0)
|
||||
#define getVUmem(x) (((isVU1) ? (x & 0x3ff) : ((x >= 0x400) ? (x & 0x43f) : (x & 0xff))) * 16)
|
||||
#define offsetSS ((_X) ? (0) : ((_Y) ? (4) : ((_Z) ? 8: 12)))
|
||||
#define offsetReg ((_X) ? (0) : ((_Y) ? (1) : ((_Z) ? 2: 3)))
|
||||
#define isCOP2 (mVU.cop2 != 0)
|
||||
#define isVU1 (mVU.index != 0)
|
||||
#define isVU0 (mVU.index == 0)
|
||||
#define getIndex (isVU1 ? 1 : 0)
|
||||
#define getVUmem(x) (((isVU1) ? (x & 0x3ff) : ((x >= 0x400) ? (x & 0x43f) : (x & 0xff))) * 16)
|
||||
#define offsetSS ((_X) ? (0) : ((_Y) ? (4) : ((_Z) ? 8 : 12)))
|
||||
#define offsetReg ((_X) ? (0) : ((_Y) ? (1) : ((_Z) ? 2 : 3)))
|
||||
|
||||
#define xmmT1 xmm0 // Used for regAlloc
|
||||
#define xmmT2 xmm1 // Used for regAlloc
|
||||
|
@ -174,9 +175,9 @@ typedef void __fastcall Fntype_mVUrecInst(microVU& mVU, int recPass);
|
|||
typedef Fntype_mVUrecInst* Fnptr_mVUrecInst;
|
||||
|
||||
// Function/Template Stuff
|
||||
#define mVUx (vuIndex ? microVU1 : microVU0)
|
||||
#define mVUop(opName) static void __fastcall opName (mP)
|
||||
#define _mVUt template<int vuIndex>
|
||||
#define mVUx (vuIndex ? microVU1 : microVU0)
|
||||
#define mVUop(opName) static void __fastcall opName(mP)
|
||||
#define _mVUt template <int vuIndex>
|
||||
|
||||
// Define Passes
|
||||
#define pass1 if (recPass == 0) // Analyze
|
||||
|
@ -194,84 +195,89 @@ typedef Fntype_mVUrecInst* Fnptr_mVUrecInst;
|
|||
// Define mVUquickSearch
|
||||
//------------------------------------------------------------------
|
||||
extern __pagealigned u8 mVUsearchXMM[__pagesize];
|
||||
typedef u32 (__fastcall *mVUCall)(void*, void*);
|
||||
typedef u32(__fastcall* mVUCall)(void*, void*);
|
||||
#define mVUquickSearch(dest, src, size) ((((mVUCall)((void*)mVUsearchXMM))(dest, src)) == 0xf)
|
||||
#define mVUemitSearch() { mVUcustomSearch(); }
|
||||
#define mVUemitSearch() \
|
||||
{ \
|
||||
mVUcustomSearch(); \
|
||||
}
|
||||
//------------------------------------------------------------------
|
||||
|
||||
// Misc Macros...
|
||||
#define mVUcurProg mVU.prog.cur[0]
|
||||
#define mVUblocks mVU.prog.cur->block
|
||||
#define mVUir mVU.prog.IRinfo
|
||||
#define mVUbranch mVU.prog.IRinfo.branch
|
||||
#define mVUcycles mVU.prog.IRinfo.cycles
|
||||
#define mVUcount mVU.prog.IRinfo.count
|
||||
#define mVUpBlock mVU.prog.IRinfo.pBlock
|
||||
#define mVUblock mVU.prog.IRinfo.block
|
||||
#define mVUregs mVU.prog.IRinfo.block.pState
|
||||
#define mVUregsTemp mVU.prog.IRinfo.regsTemp
|
||||
#define iPC mVU.prog.IRinfo.curPC
|
||||
#define mVUblocks mVU.prog.cur->block
|
||||
#define mVUir mVU.prog.IRinfo
|
||||
#define mVUbranch mVU.prog.IRinfo.branch
|
||||
#define mVUcycles mVU.prog.IRinfo.cycles
|
||||
#define mVUcount mVU.prog.IRinfo.count
|
||||
#define mVUpBlock mVU.prog.IRinfo.pBlock
|
||||
#define mVUblock mVU.prog.IRinfo.block
|
||||
#define mVUregs mVU.prog.IRinfo.block.pState
|
||||
#define mVUregsTemp mVU.prog.IRinfo.regsTemp
|
||||
#define iPC mVU.prog.IRinfo.curPC
|
||||
#define mVUsFlagHack mVU.prog.IRinfo.sFlagHack
|
||||
#define mVUconstReg mVU.prog.IRinfo.constReg
|
||||
#define mVUstartPC mVU.prog.IRinfo.startPC
|
||||
#define mVUinfo mVU.prog.IRinfo.info[iPC / 2]
|
||||
#define mVUstall mVUinfo.stall
|
||||
#define mVUup mVUinfo.uOp
|
||||
#define mVUlow mVUinfo.lOp
|
||||
#define sFLAG mVUinfo.sFlag
|
||||
#define mFLAG mVUinfo.mFlag
|
||||
#define cFLAG mVUinfo.cFlag
|
||||
#define mVUconstReg mVU.prog.IRinfo.constReg
|
||||
#define mVUstartPC mVU.prog.IRinfo.startPC
|
||||
#define mVUinfo mVU.prog.IRinfo.info[iPC / 2]
|
||||
#define mVUstall mVUinfo.stall
|
||||
#define mVUup mVUinfo.uOp
|
||||
#define mVUlow mVUinfo.lOp
|
||||
#define sFLAG mVUinfo.sFlag
|
||||
#define mFLAG mVUinfo.mFlag
|
||||
#define cFLAG mVUinfo.cFlag
|
||||
#define mVUrange (mVUcurProg.ranges[0])[0]
|
||||
#define isEvilBlock (mVUpBlock->pState.blockType == 2)
|
||||
#define isEvilBlock (mVUpBlock->pState.blockType == 2)
|
||||
#define isBadOrEvil (mVUlow.badBranch || mVUlow.evilBranch)
|
||||
#define xPC ((iPC / 2) * 8)
|
||||
#define curI ((u32*)mVU.regs().Micro)[iPC] //mVUcurProg.data[iPC]
|
||||
#define setCode() { mVU.code = curI; }
|
||||
#define bSaveAddr (((xPC + 16) & (mVU.microMemSize-8)) / 8)
|
||||
#define shufflePQ (((mVU.p) ? 0xb0 : 0xe0) | ((mVU.q) ? 0x01 : 0x04))
|
||||
#define Rmem &mVU.regs().VI[REG_R].UL
|
||||
#define aWrap(x, m) ((x > m) ? 0 : x)
|
||||
#define shuffleSS(x) ((x==1)?(0x27):((x==2)?(0xc6):((x==4)?(0xe1):(0xe4))))
|
||||
#define xPC ((iPC / 2) * 8)
|
||||
#define curI ((u32*)mVU.regs().Micro)[iPC] //mVUcurProg.data[iPC]
|
||||
#define setCode() { mVU.code = curI; }
|
||||
#define bSaveAddr (((xPC + 16) & (mVU.microMemSize-8)) / 8)
|
||||
#define shufflePQ (((mVU.p) ? 0xb0 : 0xe0) | ((mVU.q) ? 0x01 : 0x04))
|
||||
#define Rmem &mVU.regs().VI[REG_R].UL
|
||||
#define aWrap(x, m) ((x > m) ? 0 : x)
|
||||
#define shuffleSS(x) ((x == 1) ? (0x27) : ((x == 2) ? (0xc6) : ((x == 4) ? (0xe1) : (0xe4))))
|
||||
#define clampE CHECK_VU_EXTRA_OVERFLOW
|
||||
#define varPrint(x) DevCon.WriteLn(#x " = %d", (int)x)
|
||||
#define islowerOP ((iPC & 1) == 0)
|
||||
|
||||
#define blockCreate(addr) { \
|
||||
if (!mVUblocks[addr]) mVUblocks[addr] = new microBlockManager(); \
|
||||
}
|
||||
#define blockCreate(addr) \
|
||||
{ \
|
||||
if (!mVUblocks[addr]) \
|
||||
mVUblocks[addr] = new microBlockManager(); \
|
||||
}
|
||||
|
||||
// Fetches the PC and instruction opcode relative to the current PC. Used to rewind and
|
||||
// fast-forward the IR state while calculating VU pipeline conditions (branches, writebacks, etc)
|
||||
#define incPC(x) { iPC = ((iPC + (x)) & mVU.progMemMask); mVU.code = curI; }
|
||||
#define incPC2(x) { iPC = ((iPC + (x)) & mVU.progMemMask); }
|
||||
#define incPC(x) { iPC = ((iPC + (x)) & mVU.progMemMask); mVU.code = curI; }
|
||||
#define incPC2(x) { iPC = ((iPC + (x)) & mVU.progMemMask); }
|
||||
|
||||
// Flag Info (Set if next-block's first 4 ops will read current-block's flags)
|
||||
#define __Status (mVUregs.needExactMatch & 1)
|
||||
#define __Mac (mVUregs.needExactMatch & 2)
|
||||
#define __Clip (mVUregs.needExactMatch & 4)
|
||||
#define __Status (mVUregs.needExactMatch & 1)
|
||||
#define __Mac (mVUregs.needExactMatch & 2)
|
||||
#define __Clip (mVUregs.needExactMatch & 4)
|
||||
|
||||
// Pass 3 Helper Macros (Used for program logging)
|
||||
#define _Fsf_String ((_Fsf_ == 3) ? "w" : ((_Fsf_ == 2) ? "z" : ((_Fsf_ == 1) ? "y" : "x")))
|
||||
#define _Ftf_String ((_Ftf_ == 3) ? "w" : ((_Ftf_ == 2) ? "z" : ((_Ftf_ == 1) ? "y" : "x")))
|
||||
#define xyzwStr(x,s) (_X_Y_Z_W == x) ? s :
|
||||
#define _Fsf_String ((_Fsf_ == 3) ? "w" : ((_Fsf_ == 2) ? "z" : ((_Fsf_ == 1) ? "y" : "x")))
|
||||
#define _Ftf_String ((_Ftf_ == 3) ? "w" : ((_Ftf_ == 2) ? "z" : ((_Ftf_ == 1) ? "y" : "x")))
|
||||
#define xyzwStr(x, s) (_X_Y_Z_W == x) ? s:
|
||||
#define _XYZW_String (xyzwStr(1, "w") (xyzwStr(2, "z") (xyzwStr(3, "zw") (xyzwStr(4, "y") (xyzwStr(5, "yw") (xyzwStr(6, "yz") (xyzwStr(7, "yzw") (xyzwStr(8, "x") (xyzwStr(9, "xw") (xyzwStr(10, "xz") (xyzwStr(11, "xzw") (xyzwStr(12, "xy") (xyzwStr(13, "xyw") (xyzwStr(14, "xyz") "xyzw"))))))))))))))
|
||||
#define _BC_String (_bc_x ? "x" : (_bc_y ? "y" : (_bc_z ? "z" : "w")))
|
||||
#define _BC_String (_bc_x ? "x" : (_bc_y ? "y" : (_bc_z ? "z" : "w")))
|
||||
#define mVUlogFtFs() { mVUlog(".%s vf%02d, vf%02d", _XYZW_String, _Ft_, _Fs_); }
|
||||
#define mVUlogFd() { mVUlog(".%s vf%02d, vf%02d", _XYZW_String, _Fd_, _Fs_); }
|
||||
#define mVUlogACC() { mVUlog(".%s ACC, vf%02d", _XYZW_String, _Fs_); }
|
||||
#define mVUlogFt() { mVUlog(", vf%02d", _Ft_); }
|
||||
#define mVUlogBC() { mVUlog(", vf%02d%s", _Ft_, _BC_String); }
|
||||
#define mVUlogI() { mVUlog(", I"); }
|
||||
#define mVUlogQ() { mVUlog(", Q"); }
|
||||
#define mVUlogFd() { mVUlog(".%s vf%02d, vf%02d", _XYZW_String, _Fd_, _Fs_); }
|
||||
#define mVUlogACC() { mVUlog(".%s ACC, vf%02d", _XYZW_String, _Fs_); }
|
||||
#define mVUlogFt() { mVUlog(", vf%02d", _Ft_); }
|
||||
#define mVUlogBC() { mVUlog(", vf%02d%s", _Ft_, _BC_String); }
|
||||
#define mVUlogI() { mVUlog(", I"); }
|
||||
#define mVUlogQ() { mVUlog(", Q"); }
|
||||
#define mVUlogCLIP() { mVUlog("w.xyz vf%02d, vf%02dw", _Fs_, _Ft_); }
|
||||
|
||||
// Program Logging...
|
||||
#ifdef mVUlogProg
|
||||
#define mVUlog ((isVU1) ? __mVULog<1> : __mVULog<0>)
|
||||
#define mVUdumpProg __mVUdumpProgram
|
||||
#define mVUlog ((isVU1) ? __mVULog<1> : __mVULog<0>)
|
||||
#define mVUdumpProg __mVUdumpProgram
|
||||
#else
|
||||
#define mVUlog(...) if (0) {}
|
||||
#define mVUdumpProg(...) if (0) {}
|
||||
#define mVUlog(...) if (0) {}
|
||||
#define mVUdumpProg(...) if (0) {}
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------
|
||||
|
@ -344,12 +350,12 @@ static const bool doDBitHandling = false;
|
|||
//------------------------------------------------------------------
|
||||
|
||||
// Status Flag Speed Hack
|
||||
#define CHECK_VU_FLAGHACK (EmuConfig.Speedhacks.vuFlagHack)
|
||||
#define CHECK_VU_FLAGHACK (EmuConfig.Speedhacks.vuFlagHack)
|
||||
// This hack only updates the Status Flag on blocks that will read it.
|
||||
// Most blocks do not read status flags, so this is a big speedup.
|
||||
|
||||
// Min/Max Speed Hack
|
||||
#define CHECK_VU_MINMAXHACK 0 //(EmuConfig.Speedhacks.vuMinMax)
|
||||
#define CHECK_VU_MINMAXHACK 0 //(EmuConfig.Speedhacks.vuMinMax)
|
||||
// This hack uses SSE min/max instructions instead of emulated "logical min/max"
|
||||
// The PS2 does not consider denormals as zero on the mini/max opcodes.
|
||||
// This speedup is minor, but on AMD X2 CPUs it can be a 1~3% speedup
|
||||
|
@ -365,6 +371,6 @@ static const bool doDBitHandling = false;
|
|||
|
||||
//------------------------------------------------------------------
|
||||
|
||||
extern void mVUmergeRegs(const xmm& dest, const xmm& src, int xyzw, bool modXYZW=false);
|
||||
extern void mVUmergeRegs(const xmm& dest, const xmm& src, int xyzw, bool modXYZW = false);
|
||||
extern void mVUsaveReg(const xmm& reg, xAddressVoid ptr, int xyzw, bool modXYZW);
|
||||
extern void mVUloadReg(const xmm& reg, xAddressVoid ptr, int xyzw);
|
||||
|
|
|
@ -21,7 +21,8 @@
|
|||
|
||||
void mVUunpack_xyzw(const xmm& dstreg, const xmm& srcreg, int xyzw)
|
||||
{
|
||||
switch ( xyzw ) {
|
||||
switch (xyzw)
|
||||
{
|
||||
case 0: xPSHUF.D(dstreg, srcreg, 0x00); break; // XXXX
|
||||
case 1: xPSHUF.D(dstreg, srcreg, 0x55); break; // YYYY
|
||||
case 2: xPSHUF.D(dstreg, srcreg, 0xaa); break; // ZZZZ
|
||||
|
@ -31,19 +32,21 @@ void mVUunpack_xyzw(const xmm& dstreg, const xmm& srcreg, int xyzw)
|
|||
|
||||
void mVUloadReg(const xmm& reg, xAddressVoid ptr, int xyzw)
|
||||
{
|
||||
switch( xyzw ) {
|
||||
case 8: xMOVSSZX(reg, ptr32[ptr]); break; // X
|
||||
case 4: xMOVSSZX(reg, ptr32[ptr+4]); break; // Y
|
||||
case 2: xMOVSSZX(reg, ptr32[ptr+8]); break; // Z
|
||||
case 1: xMOVSSZX(reg, ptr32[ptr+12]); break; // W
|
||||
default: xMOVAPS (reg, ptr128[ptr]); break;
|
||||
switch (xyzw)
|
||||
{
|
||||
case 8: xMOVSSZX(reg, ptr32[ptr ]); break; // X
|
||||
case 4: xMOVSSZX(reg, ptr32[ptr + 4]); break; // Y
|
||||
case 2: xMOVSSZX(reg, ptr32[ptr + 8]); break; // Z
|
||||
case 1: xMOVSSZX(reg, ptr32[ptr + 12]); break; // W
|
||||
default: xMOVAPS (reg, ptr128[ptr]); break;
|
||||
}
|
||||
}
|
||||
|
||||
void mVUloadIreg(const xmm& reg, int xyzw, VURegs* vuRegs)
|
||||
{
|
||||
xMOVSSZX(reg, ptr32[&vuRegs->VI[REG_I].UL]);
|
||||
if (!_XYZWss(xyzw)) xSHUF.PS(reg, reg, 0);
|
||||
if (!_XYZWss(xyzw))
|
||||
xSHUF.PS(reg, reg, 0);
|
||||
}
|
||||
|
||||
// Modifies the Source Reg!
|
||||
|
@ -58,44 +61,67 @@ void mVUsaveReg(const xmm& reg, xAddressVoid ptr, int xyzw, bool modXYZW)
|
|||
xMOVAPS(ptr128[ptr], xmmT2);
|
||||
return;*/
|
||||
|
||||
switch ( xyzw ) {
|
||||
case 5: xEXTRACTPS(ptr32[ptr+4], reg, 1);
|
||||
xEXTRACTPS(ptr32[ptr+12], reg, 3);
|
||||
break; // YW
|
||||
case 6: xPSHUF.D(reg, reg, 0xc9);
|
||||
xMOVL.PS(ptr64[ptr+4], reg);
|
||||
break; // YZ
|
||||
case 7: xMOVH.PS(ptr64[ptr+8], reg);
|
||||
xEXTRACTPS(ptr32[ptr+4], reg, 1);
|
||||
break; // YZW
|
||||
case 9: xMOVSS(ptr32[ptr], reg);
|
||||
xEXTRACTPS(ptr32[ptr+12], reg, 3);
|
||||
break; // XW
|
||||
case 10: xMOVSS(ptr32[ptr], reg);
|
||||
xEXTRACTPS(ptr32[ptr+8], reg, 2);
|
||||
break; //XZ
|
||||
case 11: xMOVSS(ptr32[ptr], reg);
|
||||
xMOVH.PS(ptr64[ptr+8], reg);
|
||||
break; //XZW
|
||||
case 13: xMOVL.PS(ptr64[ptr], reg);
|
||||
xEXTRACTPS(ptr32[ptr+12], reg, 3);
|
||||
break; // XYW
|
||||
case 14: xMOVL.PS(ptr64[ptr], reg);
|
||||
xEXTRACTPS(ptr32[ptr+8], reg, 2);
|
||||
break; // XYZ
|
||||
case 4: if (!modXYZW) mVUunpack_xyzw(reg, reg, 1);
|
||||
xMOVSS(ptr32[ptr+4], reg);
|
||||
break; // Y
|
||||
case 2: if (!modXYZW) mVUunpack_xyzw(reg, reg, 2);
|
||||
xMOVSS(ptr32[ptr+8], reg);
|
||||
break; // Z
|
||||
case 1: if (!modXYZW) mVUunpack_xyzw(reg, reg, 3);
|
||||
xMOVSS(ptr32[ptr+12], reg);
|
||||
break; // W
|
||||
case 8: xMOVSS(ptr32[ptr], reg); break; // X
|
||||
case 12: xMOVL.PS(ptr64[ptr], reg); break; // XY
|
||||
case 3: xMOVH.PS(ptr64[ptr+8], reg); break; // ZW
|
||||
default: xMOVAPS(ptr128[ptr], reg); break; // XYZW
|
||||
switch (xyzw)
|
||||
{
|
||||
case 5: // YW
|
||||
xEXTRACTPS(ptr32[ptr + 4], reg, 1);
|
||||
xEXTRACTPS(ptr32[ptr + 12], reg, 3);
|
||||
break;
|
||||
case 6: // YZ
|
||||
xPSHUF.D(reg, reg, 0xc9);
|
||||
xMOVL.PS(ptr64[ptr + 4], reg);
|
||||
break;
|
||||
case 7: // YZW
|
||||
xMOVH.PS(ptr64[ptr + 8], reg);
|
||||
xEXTRACTPS(ptr32[ptr + 4], reg, 1);
|
||||
break;
|
||||
case 9: // XW
|
||||
xMOVSS(ptr32[ptr], reg);
|
||||
xEXTRACTPS(ptr32[ptr + 12], reg, 3);
|
||||
break;
|
||||
case 10: // XZ
|
||||
xMOVSS(ptr32[ptr], reg);
|
||||
xEXTRACTPS(ptr32[ptr + 8], reg, 2);
|
||||
break;
|
||||
case 11: // XZW
|
||||
xMOVSS(ptr32[ptr], reg);
|
||||
xMOVH.PS(ptr64[ptr + 8], reg);
|
||||
break;
|
||||
case 13: // XYW
|
||||
xMOVL.PS(ptr64[ptr], reg);
|
||||
xEXTRACTPS(ptr32[ptr + 12], reg, 3);
|
||||
break;
|
||||
case 14: // XYZ
|
||||
xMOVL.PS(ptr64[ptr], reg);
|
||||
xEXTRACTPS(ptr32[ptr + 8], reg, 2);
|
||||
break;
|
||||
case 4: // Y
|
||||
if (!modXYZW)
|
||||
mVUunpack_xyzw(reg, reg, 1);
|
||||
xMOVSS(ptr32[ptr + 4], reg);
|
||||
break;
|
||||
case 2: // Z
|
||||
if (!modXYZW)
|
||||
mVUunpack_xyzw(reg, reg, 2);
|
||||
xMOVSS(ptr32[ptr + 8], reg);
|
||||
break;
|
||||
case 1: // W
|
||||
if (!modXYZW)
|
||||
mVUunpack_xyzw(reg, reg, 3);
|
||||
xMOVSS(ptr32[ptr + 12], reg);
|
||||
break;
|
||||
case 8: // X
|
||||
xMOVSS(ptr32[ptr], reg);
|
||||
break;
|
||||
case 12: // XY
|
||||
xMOVL.PS(ptr64[ptr], reg);
|
||||
break;
|
||||
case 3: // ZW
|
||||
xMOVH.PS(ptr64[ptr + 8], reg);
|
||||
break;
|
||||
default: // XYZW
|
||||
xMOVAPS(ptr128[ptr], reg);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -103,7 +129,7 @@ void mVUsaveReg(const xmm& reg, xAddressVoid ptr, int xyzw, bool modXYZW)
|
|||
void mVUmergeRegs(const xmm& dest, const xmm& src, int xyzw, bool modXYZW)
|
||||
{
|
||||
xyzw &= 0xf;
|
||||
if ( (dest != src) && (xyzw != 0) )
|
||||
if ((dest != src) && (xyzw != 0))
|
||||
{
|
||||
if (xyzw == 0x8)
|
||||
xMOVSS(dest, src);
|
||||
|
@ -111,15 +137,16 @@ void mVUmergeRegs(const xmm& dest, const xmm& src, int xyzw, bool modXYZW)
|
|||
xMOVAPS(dest, src);
|
||||
else
|
||||
{
|
||||
if (modXYZW) {
|
||||
if (xyzw == 1) { xINSERTPS(dest, src, _MM_MK_INSERTPS_NDX(0, 3, 0)); return; }
|
||||
if (modXYZW)
|
||||
{
|
||||
if (xyzw == 1) { xINSERTPS(dest, src, _MM_MK_INSERTPS_NDX(0, 3, 0)); return; }
|
||||
else if (xyzw == 2) { xINSERTPS(dest, src, _MM_MK_INSERTPS_NDX(0, 2, 0)); return; }
|
||||
else if (xyzw == 4) { xINSERTPS(dest, src, _MM_MK_INSERTPS_NDX(0, 1, 0)); return; }
|
||||
}
|
||||
xyzw = ((xyzw & 1) << 3) | ((xyzw & 2) << 1) | ((xyzw & 4) >> 1) | ((xyzw & 8) >> 3);
|
||||
xBLEND.PS(dest, src, xyzw);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------
|
||||
|
@ -127,48 +154,64 @@ void mVUmergeRegs(const xmm& dest, const xmm& src, int xyzw, bool modXYZW)
|
|||
//------------------------------------------------------------------
|
||||
|
||||
// Backup Volatile Regs (EAX, ECX, EDX, MM0~7, XMM0~7, are all volatile according to 32bit Win/Linux ABI)
|
||||
__fi void mVUbackupRegs(microVU& mVU, bool toMemory = false) {
|
||||
if (toMemory) {
|
||||
for(int i = 0; i < 8; i++) {
|
||||
__fi void mVUbackupRegs(microVU& mVU, bool toMemory = false)
|
||||
{
|
||||
if (toMemory)
|
||||
{
|
||||
for (int i = 0; i < 8; i++)
|
||||
{
|
||||
xMOVAPS(ptr128[&mVU.xmmBackup[i][0]], xmm(i));
|
||||
}
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
mVU.regAlloc->flushAll(); // Flush Regalloc
|
||||
xMOVAPS(ptr128[&mVU.xmmBackup[xmmPQ.Id][0]], xmmPQ);
|
||||
}
|
||||
}
|
||||
|
||||
// Restore Volatile Regs
|
||||
__fi void mVUrestoreRegs(microVU& mVU, bool fromMemory = false) {
|
||||
if (fromMemory) {
|
||||
for(int i = 0; i < 8; i++) {
|
||||
__fi void mVUrestoreRegs(microVU& mVU, bool fromMemory = false)
|
||||
{
|
||||
if (fromMemory)
|
||||
{
|
||||
for (int i = 0; i < 8; i++)
|
||||
{
|
||||
xMOVAPS(xmm(i), ptr128[&mVU.xmmBackup[i][0]]);
|
||||
}
|
||||
}
|
||||
else xMOVAPS(xmmPQ, ptr128[&mVU.xmmBackup[xmmPQ.Id][0]]);
|
||||
else
|
||||
xMOVAPS(xmmPQ, ptr128[&mVU.xmmBackup[xmmPQ.Id][0]]);
|
||||
}
|
||||
|
||||
class mVUScopedXMMBackup {
|
||||
class mVUScopedXMMBackup
|
||||
{
|
||||
microVU& mVU;
|
||||
bool fromMemory;
|
||||
|
||||
public:
|
||||
mVUScopedXMMBackup(microVU& mVU, bool fromMemory): mVU(mVU), fromMemory(fromMemory) {
|
||||
mVUScopedXMMBackup(microVU& mVU, bool fromMemory)
|
||||
: mVU(mVU) , fromMemory(fromMemory)
|
||||
{
|
||||
mVUbackupRegs(mVU, fromMemory);
|
||||
}
|
||||
~mVUScopedXMMBackup() {
|
||||
~mVUScopedXMMBackup()
|
||||
{
|
||||
mVUrestoreRegs(mVU, fromMemory);
|
||||
}
|
||||
};
|
||||
|
||||
_mVUt void __fc mVUprintRegs() {
|
||||
_mVUt void __fc mVUprintRegs()
|
||||
{
|
||||
microVU& mVU = mVUx;
|
||||
for(int i = 0; i < 8; i++) {
|
||||
for (int i = 0; i < 8; i++)
|
||||
{
|
||||
Console.WriteLn("xmm%d = [0x%08x,0x%08x,0x%08x,0x%08x]", i,
|
||||
mVU.xmmBackup[i][0], mVU.xmmBackup[i][1],
|
||||
mVU.xmmBackup[i][2], mVU.xmmBackup[i][3]);
|
||||
}
|
||||
for(int i = 0; i < 8; i++) {
|
||||
for (int i = 0; i < 8; i++)
|
||||
{
|
||||
Console.WriteLn("xmm%d = [%f,%f,%f,%f]", i,
|
||||
(float&)mVU.xmmBackup[i][0], (float&)mVU.xmmBackup[i][1],
|
||||
(float&)mVU.xmmBackup[i][2], (float&)mVU.xmmBackup[i][3]);
|
||||
|
@ -176,17 +219,20 @@ _mVUt void __fc mVUprintRegs() {
|
|||
}
|
||||
|
||||
// Gets called by mVUaddrFix at execution-time
|
||||
static void __fc mVUwarningRegAccess(u32 prog, u32 pc) {
|
||||
static void __fc mVUwarningRegAccess(u32 prog, u32 pc)
|
||||
{
|
||||
Console.Error("microVU0 Warning: Accessing VU1 Regs! [%04x] [%x]", pc, prog);
|
||||
}
|
||||
|
||||
static void __fc mVUTBit() {
|
||||
static void __fc mVUTBit()
|
||||
{
|
||||
u32 old = vu1Thread.mtvuInterrupts.fetch_or(VU_Thread::InterruptFlagVUTBit, std::memory_order_release);
|
||||
if (old & VU_Thread::InterruptFlagVUTBit)
|
||||
DevCon.Warning("Old TBit not registered");
|
||||
}
|
||||
|
||||
static void __fc mVUEBit() {
|
||||
static void __fc mVUEBit()
|
||||
{
|
||||
vu1Thread.mtvuInterrupts.fetch_or(VU_Thread::InterruptFlagVUEBit, std::memory_order_release);
|
||||
}
|
||||
|
||||
|
@ -203,29 +249,35 @@ static inline u32 branchAddr(const mV)
|
|||
return ((((iPC + 2) + (_Imm11_ * 2)) & mVU.progMemMask) * 4);
|
||||
}
|
||||
|
||||
static void __fc mVUwaitMTVU() {
|
||||
if (IsDevBuild) DevCon.WriteLn("microVU0: Waiting on VU1 thread to access VU1 regs!");
|
||||
static void __fc mVUwaitMTVU()
|
||||
{
|
||||
if (IsDevBuild)
|
||||
DevCon.WriteLn("microVU0: Waiting on VU1 thread to access VU1 regs!");
|
||||
vu1Thread.WaitVU();
|
||||
}
|
||||
|
||||
// Transforms the Address in gprReg to valid VU0/VU1 Address
|
||||
__fi void mVUaddrFix(mV, const xAddressReg& gprReg)
|
||||
{
|
||||
if (isVU1) {
|
||||
if (isVU1)
|
||||
{
|
||||
xAND(xRegister32(gprReg.Id), 0x3ff); // wrap around
|
||||
xSHL(xRegister32(gprReg.Id), 4);
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
xTEST(xRegister32(gprReg.Id), 0x400);
|
||||
xForwardJNZ8 jmpA; // if addr & 0x4000, reads VU1's VF regs and VI regs
|
||||
xForwardJNZ8 jmpA; // if addr & 0x4000, reads VU1's VF regs and VI regs
|
||||
xAND(xRegister32(gprReg.Id), 0xff); // if !(addr & 0x4000), wrap around
|
||||
xForwardJump32 jmpB;
|
||||
jmpA.SetTarget();
|
||||
if (THREAD_VU1) {
|
||||
if (THREAD_VU1)
|
||||
{
|
||||
{
|
||||
mVUScopedXMMBackup mVUSave(mVU, true);
|
||||
xScopedSavedRegisters save {gprT1q, gprT2q, gprT3q};
|
||||
if (IsDevBuild && !isCOP2) { // Lets see which games do this!
|
||||
xScopedSavedRegisters save{gprT1q, gprT2q, gprT3q};
|
||||
if (IsDevBuild && !isCOP2) // Lets see which games do this!
|
||||
{
|
||||
xMOV(arg1regd, mVU.prog.cur->idx); // Note: Kernel does it via COP2 to initialize VU1!
|
||||
xMOV(arg2regd, xPC); // So we don't spam console, we'll only check micro-mode...
|
||||
xFastCall((void*)mVUwarningRegAccess, arg1regd, arg2regd);
|
||||
|
@ -244,13 +296,16 @@ __fi void mVUaddrFix(mV, const xAddressReg& gprReg)
|
|||
// Micro VU - Custom SSE Instructions
|
||||
//------------------------------------------------------------------
|
||||
|
||||
struct SSEMasks { u32 MIN_MAX_1[4], MIN_MAX_2[4], ADD_SS[4]; };
|
||||
struct SSEMasks
|
||||
{
|
||||
u32 MIN_MAX_1[4], MIN_MAX_2[4], ADD_SS[4];
|
||||
};
|
||||
|
||||
static const __aligned16 SSEMasks sseMasks =
|
||||
{
|
||||
{0xffffffff, 0x80000000, 0xffffffff, 0x80000000},
|
||||
{0x00000000, 0x40000000, 0x00000000, 0x40000000},
|
||||
{0x80000000, 0xffffffff, 0xffffffff, 0xffffffff}
|
||||
{0x80000000, 0xffffffff, 0xffffffff, 0xffffffff},
|
||||
};
|
||||
|
||||
|
||||
|
@ -260,7 +315,8 @@ void MIN_MAX_PS(microVU& mVU, const xmm& to, const xmm& from, const xmm& t1in, c
|
|||
const xmm& t1 = t1in.IsEmpty() ? mVU.regAlloc->allocReg() : t1in;
|
||||
const xmm& t2 = t2in.IsEmpty() ? mVU.regAlloc->allocReg() : t2in;
|
||||
|
||||
if (0) { // use double comparison
|
||||
if (0) // use double comparison
|
||||
{
|
||||
// ZW
|
||||
xPSHUF.D(t1, to, 0xfa);
|
||||
xPAND (t1, ptr128[sseMasks.MIN_MAX_1]);
|
||||
|
@ -283,7 +339,8 @@ void MIN_MAX_PS(microVU& mVU, const xmm& to, const xmm& from, const xmm& t1in, c
|
|||
|
||||
xSHUF.PS(to, t1, 0x88);
|
||||
}
|
||||
else { // use integer comparison
|
||||
else // use integer comparison
|
||||
{
|
||||
const xmm& c1 = min ? t2 : t1;
|
||||
const xmm& c2 = min ? t1 : t2;
|
||||
|
||||
|
@ -312,12 +369,13 @@ void MIN_MAX_SS(mV, const xmm& to, const xmm& from, const xmm& t1in, bool min)
|
|||
{
|
||||
const xmm& t1 = t1in.IsEmpty() ? mVU.regAlloc->allocReg() : t1in;
|
||||
xSHUF.PS(to, from, 0);
|
||||
xPAND (to, ptr128[sseMasks.MIN_MAX_1]);
|
||||
xPOR (to, ptr128[sseMasks.MIN_MAX_2]);
|
||||
xPAND (to, ptr128[sseMasks.MIN_MAX_1]);
|
||||
xPOR (to, ptr128[sseMasks.MIN_MAX_2]);
|
||||
xPSHUF.D(t1, to, 0xee);
|
||||
if (min) xMIN.PD(to, t1);
|
||||
else xMAX.PD(to, t1);
|
||||
if (t1 != t1in) mVU.regAlloc->clearNeeded(t1);
|
||||
if (t1 != t1in)
|
||||
mVU.regAlloc->clearNeeded(t1);
|
||||
}
|
||||
|
||||
// Not Used! - TriAce games only need a portion of this code to boot (see function below)
|
||||
|
@ -375,7 +433,8 @@ void ADD_SS_Single_Guard_Bit(microVU& mVU, const xmm& to, const xmm& from, const
|
|||
case_end4.SetTarget();
|
||||
|
||||
xADD.SS(to, from);
|
||||
if (t1 != t1in) mVU.regAlloc->clearNeeded(t1);
|
||||
if (t1 != t1in)
|
||||
mVU.regAlloc->clearNeeded(t1);
|
||||
}
|
||||
|
||||
// Turns out only this is needed to get TriAce games booting with mVU
|
||||
|
@ -408,37 +467,48 @@ void ADD_SS_TriAceHack(microVU& mVU, const xmm& to, const xmm& from)
|
|||
xADD.SS(to, from);
|
||||
}
|
||||
|
||||
#define clampOp(opX, isPS) { \
|
||||
mVUclamp3(mVU, to, t1, (isPS)?0xf:0x8); \
|
||||
mVUclamp3(mVU, from, t1, (isPS)?0xf:0x8); \
|
||||
opX(to, from); \
|
||||
mVUclamp4(to, t1, (isPS)?0xf:0x8); \
|
||||
}
|
||||
#define clampOp(opX, isPS) \
|
||||
do { \
|
||||
mVUclamp3(mVU, to, t1, (isPS) ? 0xf : 0x8); \
|
||||
mVUclamp3(mVU, from, t1, (isPS) ? 0xf : 0x8); \
|
||||
opX(to, from); \
|
||||
mVUclamp4(to, t1, (isPS) ? 0xf : 0x8); \
|
||||
} while (0)
|
||||
|
||||
void SSE_MAXPS(mV, const xmm& to, const xmm& from, const xmm& t1 = xEmptyReg, const xmm& t2 = xEmptyReg)
|
||||
{
|
||||
if (CHECK_VU_MINMAXHACK) { xMAX.PS(to, from); }
|
||||
else { MIN_MAX_PS(mVU, to, from, t1, t2, false); }
|
||||
if (CHECK_VU_MINMAXHACK)
|
||||
xMAX.PS(to, from);
|
||||
else
|
||||
MIN_MAX_PS(mVU, to, from, t1, t2, false);
|
||||
}
|
||||
void SSE_MINPS(mV, const xmm& to, const xmm& from, const xmm& t1 = xEmptyReg, const xmm& t2 = xEmptyReg)
|
||||
{
|
||||
if (CHECK_VU_MINMAXHACK) { xMIN.PS(to, from); }
|
||||
else { MIN_MAX_PS(mVU, to, from, t1, t2, true); }
|
||||
if (CHECK_VU_MINMAXHACK)
|
||||
xMIN.PS(to, from);
|
||||
else
|
||||
MIN_MAX_PS(mVU, to, from, t1, t2, true);
|
||||
}
|
||||
void SSE_MAXSS(mV, const xmm& to, const xmm& from, const xmm& t1 = xEmptyReg, const xmm& t2 = xEmptyReg)
|
||||
{
|
||||
if (CHECK_VU_MINMAXHACK) { xMAX.SS(to, from); }
|
||||
else { MIN_MAX_SS(mVU, to, from, t1, false); }
|
||||
if (CHECK_VU_MINMAXHACK)
|
||||
xMAX.SS(to, from);
|
||||
else
|
||||
MIN_MAX_SS(mVU, to, from, t1, false);
|
||||
}
|
||||
void SSE_MINSS(mV, const xmm& to, const xmm& from, const xmm& t1 = xEmptyReg, const xmm& t2 = xEmptyReg)
|
||||
{
|
||||
if (CHECK_VU_MINMAXHACK) { xMIN.SS(to, from); }
|
||||
else { MIN_MAX_SS(mVU, to, from, t1, true); }
|
||||
if (CHECK_VU_MINMAXHACK)
|
||||
xMIN.SS(to, from);
|
||||
else
|
||||
MIN_MAX_SS(mVU, to, from, t1, true);
|
||||
}
|
||||
void SSE_ADD2SS(mV, const xmm& to, const xmm& from, const xmm& t1 = xEmptyReg, const xmm& t2 = xEmptyReg)
|
||||
{
|
||||
if (!CHECK_VUADDSUBHACK) { clampOp(xADD.SS, false); }
|
||||
else { ADD_SS_TriAceHack(mVU, to, from); }
|
||||
if (!CHECK_VUADDSUBHACK)
|
||||
clampOp(xADD.SS, false);
|
||||
else
|
||||
ADD_SS_TriAceHack(mVU, to, from);
|
||||
}
|
||||
|
||||
// Does same as SSE_ADDPS since tri-ace games only need SS implementation of VUADDSUBHACK...
|
||||
|
@ -487,7 +557,8 @@ __pagealigned u8 mVUsearchXMM[__pagesize];
|
|||
|
||||
// Generates a custom optimized block-search function
|
||||
// Note: Structs must be 16-byte aligned! (GCC doesn't guarantee this)
|
||||
void mVUcustomSearch() {
|
||||
void mVUcustomSearch()
|
||||
{
|
||||
HostSys::MemProtectStatic(mVUsearchXMM, PageAccess_ReadWrite());
|
||||
memset(mVUsearchXMM, 0xcc, __pagesize);
|
||||
xSetPtr(mVUsearchXMM);
|
||||
|
@ -496,35 +567,35 @@ void mVUcustomSearch() {
|
|||
xPCMP.EQD(xmm0, ptr32[arg2reg]);
|
||||
xMOVAPS (xmm1, ptr32[arg1reg + 0x10]);
|
||||
xPCMP.EQD(xmm1, ptr32[arg2reg + 0x10]);
|
||||
xPAND (xmm0, xmm1);
|
||||
xPAND (xmm0, xmm1);
|
||||
|
||||
xMOVMSKPS(eax, xmm0);
|
||||
xCMP (eax, 0xf);
|
||||
xCMP (eax, 0xf);
|
||||
xForwardJL8 exitPoint;
|
||||
|
||||
xMOVAPS (xmm0, ptr32[arg1reg + 0x20]);
|
||||
xPCMP.EQD(xmm0, ptr32[arg2reg + 0x20]);
|
||||
xMOVAPS (xmm1, ptr32[arg1reg + 0x30]);
|
||||
xPCMP.EQD(xmm1, ptr32[arg2reg + 0x30]);
|
||||
xPAND (xmm0, xmm1);
|
||||
xPAND (xmm0, xmm1);
|
||||
|
||||
xMOVAPS (xmm2, ptr32[arg1reg + 0x40]);
|
||||
xPCMP.EQD(xmm2, ptr32[arg2reg + 0x40]);
|
||||
xMOVAPS (xmm3, ptr32[arg1reg + 0x50]);
|
||||
xPCMP.EQD(xmm3, ptr32[arg2reg + 0x50]);
|
||||
xPAND (xmm2, xmm3);
|
||||
xPAND (xmm2, xmm3);
|
||||
|
||||
xMOVAPS (xmm4, ptr32[arg1reg + 0x60]);
|
||||
xMOVAPS (xmm4, ptr32[arg1reg + 0x60]);
|
||||
xPCMP.EQD(xmm4, ptr32[arg2reg + 0x60]);
|
||||
xMOVAPS (xmm5, ptr32[arg1reg + 0x70]);
|
||||
xMOVAPS (xmm5, ptr32[arg1reg + 0x70]);
|
||||
xPCMP.EQD(xmm5, ptr32[arg2reg + 0x70]);
|
||||
xPAND (xmm4, xmm5);
|
||||
xPAND (xmm4, xmm5);
|
||||
|
||||
xMOVAPS (xmm6, ptr32[arg1reg + 0x80]);
|
||||
xPCMP.EQD(xmm6, ptr32[arg2reg + 0x80]);
|
||||
xMOVAPS (xmm7, ptr32[arg1reg + 0x90]);
|
||||
xPCMP.EQD(xmm7, ptr32[arg2reg + 0x90]);
|
||||
xPAND (xmm6, xmm7);
|
||||
xPAND (xmm6, xmm7);
|
||||
|
||||
xPAND (xmm0, xmm2);
|
||||
xPAND (xmm4, xmm6);
|
||||
|
|
|
@ -12,85 +12,86 @@
|
|||
* You should have received a copy of the GNU General Public License along with PCSX2.
|
||||
* If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#pragma once
|
||||
|
||||
enum microOpcode {
|
||||
enum microOpcode
|
||||
{
|
||||
// Upper Instructions
|
||||
opABS, opCLIP, opOPMULA, opOPMSUB, opNOP,
|
||||
opADD, opADDi, opADDq, opADDx, opADDy, opADDz, opADDw,
|
||||
opADDA, opADDAi, opADDAq, opADDAx, opADDAy, opADDAz, opADDAw,
|
||||
opSUB, opSUBi, opSUBq, opSUBx, opSUBy, opSUBz, opSUBw,
|
||||
opSUBA, opSUBAi, opSUBAq, opSUBAx, opSUBAy, opSUBAz, opSUBAw,
|
||||
opMUL, opMULi, opMULq, opMULx, opMULy, opMULz, opMULw,
|
||||
opMULA, opMULAi, opMULAq, opMULAx, opMULAy, opMULAz, opMULAw,
|
||||
opMADD, opMADDi, opMADDq, opMADDx, opMADDy, opMADDz, opMADDw,
|
||||
opMADDA, opMADDAi, opMADDAq, opMADDAx, opMADDAy, opMADDAz, opMADDAw,
|
||||
opMSUB, opMSUBi, opMSUBq, opMSUBx, opMSUBy, opMSUBz, opMSUBw,
|
||||
opMSUBA, opMSUBAi, opMSUBAq, opMSUBAx, opMSUBAy, opMSUBAz, opMSUBAw,
|
||||
opMAX, opMAXi, opMAXx, opMAXy, opMAXz, opMAXw,
|
||||
opMINI, opMINIi, opMINIx, opMINIy, opMINIz, opMINIw,
|
||||
opABS, opCLIP, opOPMULA, opOPMSUB, opNOP,
|
||||
opADD, opADDi, opADDq, opADDx, opADDy, opADDz, opADDw,
|
||||
opADDA, opADDAi, opADDAq, opADDAx, opADDAy, opADDAz, opADDAw,
|
||||
opSUB, opSUBi, opSUBq, opSUBx, opSUBy, opSUBz, opSUBw,
|
||||
opSUBA, opSUBAi, opSUBAq, opSUBAx, opSUBAy, opSUBAz, opSUBAw,
|
||||
opMUL, opMULi, opMULq, opMULx, opMULy, opMULz, opMULw,
|
||||
opMULA, opMULAi, opMULAq, opMULAx, opMULAy, opMULAz, opMULAw,
|
||||
opMADD, opMADDi, opMADDq, opMADDx, opMADDy, opMADDz, opMADDw,
|
||||
opMADDA, opMADDAi, opMADDAq, opMADDAx, opMADDAy, opMADDAz, opMADDAw,
|
||||
opMSUB, opMSUBi, opMSUBq, opMSUBx, opMSUBy, opMSUBz, opMSUBw,
|
||||
opMSUBA, opMSUBAi, opMSUBAq, opMSUBAx, opMSUBAy, opMSUBAz, opMSUBAw,
|
||||
opMAX, opMAXi, opMAXx, opMAXy, opMAXz, opMAXw,
|
||||
opMINI, opMINIi, opMINIx, opMINIy, opMINIz, opMINIw,
|
||||
opFTOI0, opFTOI4, opFTOI12, opFTOI15,
|
||||
opITOF0, opITOF4, opITOF12, opITOF15,
|
||||
// Lower Instructions
|
||||
opDIV, opSQRT, opRSQRT,
|
||||
opIADD, opIADDI, opIADDIU,
|
||||
opIAND, opIOR,
|
||||
opISUB, opISUBIU,
|
||||
opDIV, opSQRT, opRSQRT,
|
||||
opIADD, opIADDI, opIADDIU,
|
||||
opIAND, opIOR,
|
||||
opISUB, opISUBIU,
|
||||
opMOVE, opMFIR, opMTIR, opMR32, opMFP,
|
||||
opLQ, opLQD, opLQI,
|
||||
opSQ, opSQD, opSQI,
|
||||
opILW, opISW, opILWR, opISWR,
|
||||
opRINIT, opRGET, opRNEXT, opRXOR,
|
||||
opLQ, opLQD, opLQI,
|
||||
opSQ, opSQD, opSQI,
|
||||
opILW, opISW, opILWR, opISWR,
|
||||
opRINIT, opRGET, opRNEXT, opRXOR,
|
||||
opWAITQ, opWAITP,
|
||||
opFSAND, opFSEQ, opFSOR, opFSSET,
|
||||
opFMAND, opFMEQ, opFMOR,
|
||||
opFCAND, opFCEQ, opFCOR, opFCSET, opFCGET,
|
||||
opIBEQ, opIBGEZ, opIBGTZ, opIBLTZ, opIBLEZ, opIBNE,
|
||||
opB, opBAL, opJR, opJALR,
|
||||
opESADD, opERSADD, opELENG, opERLENG,
|
||||
opEATANxy, opEATANxz, opESUM, opERCPR,
|
||||
opESQRT, opERSQRT, opESIN, opEATAN,
|
||||
opFMAND, opFMEQ, opFMOR,
|
||||
opFCAND, opFCEQ, opFCOR, opFCSET, opFCGET,
|
||||
opIBEQ, opIBGEZ, opIBGTZ, opIBLTZ, opIBLEZ, opIBNE,
|
||||
opB, opBAL, opJR, opJALR,
|
||||
opESADD, opERSADD, opELENG, opERLENG,
|
||||
opEATANxy, opEATANxz, opESUM, opERCPR,
|
||||
opESQRT, opERSQRT, opESIN, opEATAN,
|
||||
opEEXP, opXITOP, opXTOP, opXGKICK,
|
||||
opLastOpcode
|
||||
};
|
||||
|
||||
static const char microOpcodeName[][16] = {
|
||||
// Upper Instructions
|
||||
"ABS", "CLIP", "OPMULA", "OPMSUB", "NOP",
|
||||
"ADD", "ADDi", "ADDq", "ADDx", "ADDy", "ADDz", "ADDw",
|
||||
"ADDA", "ADDAi", "ADDAq", "ADDAx", "ADDAy", "ADDAz", "ADDAw",
|
||||
"SUB", "SUBi", "SUBq", "SUBx", "SUBy", "SUBz", "SUBw",
|
||||
"SUBA", "SUBAi", "SUBAq", "SUBAx", "SUBAy", "SUBAz", "SUBAw",
|
||||
"MUL", "MULi", "MULq", "MULx", "MULy", "MULz", "MULw",
|
||||
"MULA", "MULAi", "MULAq", "MULAx", "MULAy", "MULAz", "MULAw",
|
||||
"MADD", "MADDi", "MADDq", "MADDx", "MADDy", "MADDz", "MADDw",
|
||||
"MADDA", "MADDAi", "MADDAq", "MADDAx", "MADDAy", "MADDAz", "MADDAw",
|
||||
"MSUB", "MSUBi", "MSUBq", "MSUBx", "MSUBy", "MSUBz", "MSUBw",
|
||||
"MSUBA", "MSUBAi", "MSUBAq", "MSUBAx", "MSUBAy", "MSUBAz", "MSUBAw",
|
||||
"MAX", "MAXi", "MAXx", "MAXy", "MAXz", "MAXw",
|
||||
"MINI", "MINIi", "MINIx", "MINIy", "MINIz", "MINIw",
|
||||
"FTOI0", "FTOI4", "FTOI12", "FTOI15",
|
||||
"ITOF0", "ITOF4", "ITOF12", "ITOF15",
|
||||
"ABS", "CLIP", "OPMULA", "OPMSUB", "NOP",
|
||||
"ADD", "ADDi", "ADDq", "ADDx", "ADDy", "ADDz", "ADDw",
|
||||
"ADDA", "ADDAi", "ADDAq", "ADDAx", "ADDAy", "ADDAz", "ADDAw",
|
||||
"SUB", "SUBi", "SUBq", "SUBx", "SUBy", "SUBz", "SUBw",
|
||||
"SUBA", "SUBAi", "SUBAq", "SUBAx", "SUBAy", "SUBAz", "SUBAw",
|
||||
"MUL", "MULi", "MULq", "MULx", "MULy", "MULz", "MULw",
|
||||
"MULA", "MULAi", "MULAq", "MULAx", "MULAy", "MULAz", "MULAw",
|
||||
"MADD", "MADDi", "MADDq", "MADDx", "MADDy", "MADDz", "MADDw",
|
||||
"MADDA", "MADDAi", "MADDAq", "MADDAx", "MADDAy", "MADDAz", "MADDAw",
|
||||
"MSUB", "MSUBi", "MSUBq", "MSUBx", "MSUBy", "MSUBz", "MSUBw",
|
||||
"MSUBA", "MSUBAi", "MSUBAq", "MSUBAx", "MSUBAy", "MSUBAz", "MSUBAw",
|
||||
"MAX", "MAXi", "MAXx", "MAXy", "MAXz", "MAXw",
|
||||
"MINI", "MINIi", "MINIx", "MINIy", "MINIz", "MINIw",
|
||||
"FTOI0", "FTOI4", "FTOI12", "FTOI15",
|
||||
"ITOF0", "ITOF4", "ITOF12", "ITOF15",
|
||||
// Lower Instructions
|
||||
"DIV", "SQRT", "RSQRT",
|
||||
"IADD", "IADDI", "IADDIU",
|
||||
"IAND", "IOR",
|
||||
"ISUB", "ISUBIU",
|
||||
"DIV", "SQRT", "RSQRT",
|
||||
"IADD", "IADDI", "IADDIU",
|
||||
"IAND", "IOR",
|
||||
"ISUB", "ISUBIU",
|
||||
"MOVE", "MFIR", "MTIR", "MR32", "MFP",
|
||||
"LQ", "LQD", "LQI",
|
||||
"SQ", "SQD", "SQI",
|
||||
"ILW", "ISW", "ILWR", "ISWR",
|
||||
"RINIT", "RGET", "RNEXT", "RXOR",
|
||||
"LQ", "LQD", "LQI",
|
||||
"SQ", "SQD", "SQI",
|
||||
"ILW", "ISW", "ILWR", "ISWR",
|
||||
"RINIT", "RGET", "RNEXT", "RXOR",
|
||||
"WAITQ", "WAITP",
|
||||
"FSAND", "FSEQ", "FSOR", "FSSET",
|
||||
"FMAND", "FMEQ", "FMOR",
|
||||
"FCAND", "FCEQ", "FCOR", "FCSET", "FCGET",
|
||||
"IBEQ", "IBGEZ", "IBGTZ", "IBLTZ", "IBLEZ", "IBNE",
|
||||
"B", "BAL", "JR", "JALR",
|
||||
"ESADD", "ERSADD", "ELENG", "ERLENG",
|
||||
"EATANxy", "EATANxz", "ESUM", "ERCPR",
|
||||
"ESQRT", "ERSQRT", "ESIN", "EATAN",
|
||||
"FMAND", "FMEQ", "FMOR",
|
||||
"FCAND", "FCEQ", "FCOR", "FCSET", "FCGET",
|
||||
"IBEQ", "IBGEZ", "IBGTZ", "IBLTZ", "IBLEZ", "IBNE",
|
||||
"B", "BAL", "JR", "JALR",
|
||||
"ESADD", "ERSADD", "ELENG", "ERLENG",
|
||||
"EATANxy", "EATANxz", "ESUM", "ERCPR",
|
||||
"ESQRT", "ERSQRT", "ESIN", "EATAN",
|
||||
"EEXP", "XITOP", "XTOP", "XGKICK"
|
||||
};
|
||||
|
||||
|
@ -99,43 +100,54 @@ static const char microOpcodeName[][16] = {
|
|||
#include <string>
|
||||
#include <algorithm>
|
||||
|
||||
struct microProfiler {
|
||||
struct microProfiler
|
||||
{
|
||||
static const u32 progLimit = 10000;
|
||||
u64 opStats[opLastOpcode];
|
||||
u32 progCount;
|
||||
int index;
|
||||
void Reset(int _index) { memzero(*this); index = _index; }
|
||||
void EmitOp(microOpcode op) {
|
||||
xADD(ptr32[&(((u32*)opStats)[op*2+0])], 1);
|
||||
xADC(ptr32[&(((u32*)opStats)[op*2+1])], 0);
|
||||
void Reset(int _index)
|
||||
{
|
||||
memzero(*this);
|
||||
index = _index;
|
||||
}
|
||||
void Print() {
|
||||
void EmitOp(microOpcode op)
|
||||
{
|
||||
xADD(ptr32[&(((u32*)opStats)[op * 2 + 0])], 1);
|
||||
xADC(ptr32[&(((u32*)opStats)[op * 2 + 1])], 0);
|
||||
}
|
||||
void Print()
|
||||
{
|
||||
progCount++;
|
||||
if ((progCount % progLimit) == 0) {
|
||||
if ((progCount % progLimit) == 0)
|
||||
{
|
||||
u64 total = 0;
|
||||
std::vector< std::pair<u32, u32> > v;
|
||||
for(int i = 0; i < opLastOpcode; i++) {
|
||||
std::vector<std::pair<u32, u32>> v;
|
||||
for (int i = 0; i < opLastOpcode; i++)
|
||||
{
|
||||
total += opStats[i];
|
||||
v.push_back(std::make_pair(opStats[i], i));
|
||||
}
|
||||
std::sort (v.begin(), v.end());
|
||||
std::sort(v.begin(), v.end());
|
||||
std::reverse(v.begin(), v.end());
|
||||
double dTotal = (double)total;
|
||||
DevCon.WriteLn("microVU%d Profiler:", index);
|
||||
for(u32 i = 0; i < v.size(); i++) {
|
||||
u64 count = v[i].first;
|
||||
double stat = (double)count / dTotal * 100.0;
|
||||
for (u32 i = 0; i < v.size(); i++)
|
||||
{
|
||||
u64 count = v[i].first;
|
||||
double stat = (double)count / dTotal * 100.0;
|
||||
std::string str = microOpcodeName[v[i].second];
|
||||
str.resize(8, ' ');
|
||||
DevCon.WriteLn("%s - [%3.4f%%][count=%u]",
|
||||
str.c_str(), stat, (u32)count);
|
||||
}
|
||||
DevCon.WriteLn("Total = 0x%x%x\n\n", (u32)(u64)(total>>32),(u32)total);
|
||||
DevCon.WriteLn("Total = 0x%x%x\n\n", (u32)(u64)(total >> 32), (u32)total);
|
||||
}
|
||||
}
|
||||
};
|
||||
#else
|
||||
struct microProfiler {
|
||||
struct microProfiler
|
||||
{
|
||||
__fi void Reset(int _index) {}
|
||||
__fi void EmitOp(microOpcode op) {}
|
||||
__fi void Print() {}
|
||||
|
|
|
@ -34,164 +34,164 @@ mVUop(mVUunknown);
|
|||
// Opcode Tables
|
||||
//------------------------------------------------------------------
|
||||
static const Fnptr_mVUrecInst mVULOWER_OPCODE[128] = {
|
||||
mVU_LQ , mVU_SQ , mVUunknown , mVUunknown,
|
||||
mVU_ILW , mVU_ISW , mVUunknown , mVUunknown,
|
||||
mVU_IADDIU , mVU_ISUBIU , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVU_FCEQ , mVU_FCSET , mVU_FCAND , mVU_FCOR,
|
||||
mVU_FSEQ , mVU_FSSET , mVU_FSAND , mVU_FSOR,
|
||||
mVU_FMEQ , mVUunknown , mVU_FMAND , mVU_FMOR,
|
||||
mVU_FCGET , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVU_B , mVU_BAL , mVUunknown , mVUunknown,
|
||||
mVU_JR , mVU_JALR , mVUunknown , mVUunknown,
|
||||
mVU_IBEQ , mVU_IBNE , mVUunknown , mVUunknown,
|
||||
mVU_IBLTZ , mVU_IBGTZ , mVU_IBLEZ , mVU_IBGEZ,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVULowerOP , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVU_LQ , mVU_SQ , mVUunknown , mVUunknown,
|
||||
mVU_ILW , mVU_ISW , mVUunknown , mVUunknown,
|
||||
mVU_IADDIU , mVU_ISUBIU , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVU_FCEQ , mVU_FCSET , mVU_FCAND , mVU_FCOR,
|
||||
mVU_FSEQ , mVU_FSSET , mVU_FSAND , mVU_FSOR,
|
||||
mVU_FMEQ , mVUunknown , mVU_FMAND , mVU_FMOR,
|
||||
mVU_FCGET , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVU_B , mVU_BAL , mVUunknown , mVUunknown,
|
||||
mVU_JR , mVU_JALR , mVUunknown , mVUunknown,
|
||||
mVU_IBEQ , mVU_IBNE , mVUunknown , mVUunknown,
|
||||
mVU_IBLTZ , mVU_IBGTZ , mVU_IBLEZ , mVU_IBGEZ,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVULowerOP , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
};
|
||||
|
||||
static const Fnptr_mVUrecInst mVULowerOP_T3_00_OPCODE[32] = {
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVU_MOVE , mVU_LQI , mVU_DIV , mVU_MTIR,
|
||||
mVU_RNEXT , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVU_MFP , mVU_XTOP , mVU_XGKICK,
|
||||
mVU_ESADD , mVU_EATANxy , mVU_ESQRT , mVU_ESIN,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVU_MOVE , mVU_LQI , mVU_DIV , mVU_MTIR,
|
||||
mVU_RNEXT , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVU_MFP , mVU_XTOP , mVU_XGKICK,
|
||||
mVU_ESADD , mVU_EATANxy, mVU_ESQRT , mVU_ESIN,
|
||||
};
|
||||
|
||||
static const Fnptr_mVUrecInst mVULowerOP_T3_01_OPCODE[32] = {
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVU_MR32 , mVU_SQI , mVU_SQRT , mVU_MFIR,
|
||||
mVU_RGET , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVU_XITOP , mVUunknown,
|
||||
mVU_ERSADD , mVU_EATANxz , mVU_ERSQRT , mVU_EATAN,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVU_MR32 , mVU_SQI , mVU_SQRT , mVU_MFIR,
|
||||
mVU_RGET , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVU_XITOP , mVUunknown,
|
||||
mVU_ERSADD , mVU_EATANxz, mVU_ERSQRT , mVU_EATAN,
|
||||
};
|
||||
|
||||
static const Fnptr_mVUrecInst mVULowerOP_T3_10_OPCODE[32] = {
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVU_LQD , mVU_RSQRT , mVU_ILWR,
|
||||
mVU_RINIT , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVU_ELENG , mVU_ESUM , mVU_ERCPR , mVU_EEXP,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVU_LQD , mVU_RSQRT , mVU_ILWR,
|
||||
mVU_RINIT , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVU_ELENG , mVU_ESUM , mVU_ERCPR , mVU_EEXP,
|
||||
};
|
||||
|
||||
const Fnptr_mVUrecInst mVULowerOP_T3_11_OPCODE [32] = {
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVU_SQD , mVU_WAITQ , mVU_ISWR,
|
||||
mVU_RXOR , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVU_ERLENG , mVUunknown , mVU_WAITP , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVU_SQD , mVU_WAITQ , mVU_ISWR,
|
||||
mVU_RXOR , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVU_ERLENG , mVUunknown , mVU_WAITP , mVUunknown,
|
||||
};
|
||||
|
||||
static const Fnptr_mVUrecInst mVULowerOP_OPCODE[64] = {
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVU_IADD , mVU_ISUB , mVU_IADDI , mVUunknown,
|
||||
mVU_IAND , mVU_IOR , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVU_IADD , mVU_ISUB , mVU_IADDI , mVUunknown,
|
||||
mVU_IAND , mVU_IOR , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVULowerOP_T3_00, mVULowerOP_T3_01, mVULowerOP_T3_10, mVULowerOP_T3_11,
|
||||
};
|
||||
|
||||
static const Fnptr_mVUrecInst mVU_UPPER_OPCODE[64] = {
|
||||
mVU_ADDx , mVU_ADDy , mVU_ADDz , mVU_ADDw,
|
||||
mVU_SUBx , mVU_SUBy , mVU_SUBz , mVU_SUBw,
|
||||
mVU_MADDx , mVU_MADDy , mVU_MADDz , mVU_MADDw,
|
||||
mVU_MSUBx , mVU_MSUBy , mVU_MSUBz , mVU_MSUBw,
|
||||
mVU_MAXx , mVU_MAXy , mVU_MAXz , mVU_MAXw,
|
||||
mVU_MINIx , mVU_MINIy , mVU_MINIz , mVU_MINIw,
|
||||
mVU_MULx , mVU_MULy , mVU_MULz , mVU_MULw,
|
||||
mVU_MULq , mVU_MAXi , mVU_MULi , mVU_MINIi,
|
||||
mVU_ADDq , mVU_MADDq , mVU_ADDi , mVU_MADDi,
|
||||
mVU_SUBq , mVU_MSUBq , mVU_SUBi , mVU_MSUBi,
|
||||
mVU_ADD , mVU_MADD , mVU_MUL , mVU_MAX,
|
||||
mVU_SUB , mVU_MSUB , mVU_OPMSUB , mVU_MINI,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVU_ADDx , mVU_ADDy , mVU_ADDz , mVU_ADDw,
|
||||
mVU_SUBx , mVU_SUBy , mVU_SUBz , mVU_SUBw,
|
||||
mVU_MADDx , mVU_MADDy , mVU_MADDz , mVU_MADDw,
|
||||
mVU_MSUBx , mVU_MSUBy , mVU_MSUBz , mVU_MSUBw,
|
||||
mVU_MAXx , mVU_MAXy , mVU_MAXz , mVU_MAXw,
|
||||
mVU_MINIx , mVU_MINIy , mVU_MINIz , mVU_MINIw,
|
||||
mVU_MULx , mVU_MULy , mVU_MULz , mVU_MULw,
|
||||
mVU_MULq , mVU_MAXi , mVU_MULi , mVU_MINIi,
|
||||
mVU_ADDq , mVU_MADDq , mVU_ADDi , mVU_MADDi,
|
||||
mVU_SUBq , mVU_MSUBq , mVU_SUBi , mVU_MSUBi,
|
||||
mVU_ADD , mVU_MADD , mVU_MUL , mVU_MAX,
|
||||
mVU_SUB , mVU_MSUB , mVU_OPMSUB , mVU_MINI,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVU_UPPER_FD_00, mVU_UPPER_FD_01, mVU_UPPER_FD_10, mVU_UPPER_FD_11,
|
||||
};
|
||||
|
||||
static const Fnptr_mVUrecInst mVU_UPPER_FD_00_TABLE [32] = {
|
||||
mVU_ADDAx , mVU_SUBAx , mVU_MADDAx , mVU_MSUBAx,
|
||||
mVU_ITOF0 , mVU_FTOI0 , mVU_MULAx , mVU_MULAq,
|
||||
mVU_ADDAq , mVU_SUBAq , mVU_ADDA , mVU_SUBA,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVU_ADDAx , mVU_SUBAx , mVU_MADDAx , mVU_MSUBAx,
|
||||
mVU_ITOF0 , mVU_FTOI0 , mVU_MULAx , mVU_MULAq,
|
||||
mVU_ADDAq , mVU_SUBAq , mVU_ADDA , mVU_SUBA,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
};
|
||||
|
||||
static const Fnptr_mVUrecInst mVU_UPPER_FD_01_TABLE [32] = {
|
||||
mVU_ADDAy , mVU_SUBAy , mVU_MADDAy , mVU_MSUBAy,
|
||||
mVU_ITOF4 , mVU_FTOI4 , mVU_MULAy , mVU_ABS,
|
||||
mVU_MADDAq , mVU_MSUBAq , mVU_MADDA , mVU_MSUBA,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVU_ADDAy , mVU_SUBAy , mVU_MADDAy , mVU_MSUBAy,
|
||||
mVU_ITOF4 , mVU_FTOI4 , mVU_MULAy , mVU_ABS,
|
||||
mVU_MADDAq , mVU_MSUBAq , mVU_MADDA , mVU_MSUBA,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
};
|
||||
|
||||
static const Fnptr_mVUrecInst mVU_UPPER_FD_10_TABLE [32] = {
|
||||
mVU_ADDAz , mVU_SUBAz , mVU_MADDAz , mVU_MSUBAz,
|
||||
mVU_ITOF12 , mVU_FTOI12 , mVU_MULAz , mVU_MULAi,
|
||||
mVU_ADDAi , mVU_SUBAi , mVU_MULA , mVU_OPMULA,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVU_ADDAz , mVU_SUBAz , mVU_MADDAz , mVU_MSUBAz,
|
||||
mVU_ITOF12 , mVU_FTOI12 , mVU_MULAz , mVU_MULAi,
|
||||
mVU_ADDAi , mVU_SUBAi , mVU_MULA , mVU_OPMULA,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
};
|
||||
|
||||
static const Fnptr_mVUrecInst mVU_UPPER_FD_11_TABLE [32] = {
|
||||
mVU_ADDAw , mVU_SUBAw , mVU_MADDAw , mVU_MSUBAw,
|
||||
mVU_ITOF15 , mVU_FTOI15 , mVU_MULAw , mVU_CLIP,
|
||||
mVU_MADDAi , mVU_MSUBAi , mVUunknown , mVU_NOP,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVU_ADDAw , mVU_SUBAw , mVU_MADDAw , mVU_MSUBAw,
|
||||
mVU_ITOF15 , mVU_FTOI15 , mVU_MULAw , mVU_CLIP,
|
||||
mVU_MADDAi , mVU_MSUBAi , mVUunknown , mVU_NOP,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
mVUunknown , mVUunknown , mVUunknown , mVUunknown,
|
||||
};
|
||||
|
||||
|
||||
|
@ -199,20 +199,28 @@ static const Fnptr_mVUrecInst mVU_UPPER_FD_11_TABLE [32] = {
|
|||
// Table Functions
|
||||
//------------------------------------------------------------------
|
||||
|
||||
mVUop(mVU_UPPER_FD_00) { mVU_UPPER_FD_00_TABLE [((mVU.code >> 6) & 0x1f)](mX); }
|
||||
mVUop(mVU_UPPER_FD_01) { mVU_UPPER_FD_01_TABLE [((mVU.code >> 6) & 0x1f)](mX); }
|
||||
mVUop(mVU_UPPER_FD_10) { mVU_UPPER_FD_10_TABLE [((mVU.code >> 6) & 0x1f)](mX); }
|
||||
mVUop(mVU_UPPER_FD_11) { mVU_UPPER_FD_11_TABLE [((mVU.code >> 6) & 0x1f)](mX); }
|
||||
mVUop(mVULowerOP) { mVULowerOP_OPCODE [ (mVU.code & 0x3f) ](mX); }
|
||||
mVUop(mVULowerOP_T3_00) { mVULowerOP_T3_00_OPCODE [((mVU.code >> 6) & 0x1f)](mX); }
|
||||
mVUop(mVULowerOP_T3_01) { mVULowerOP_T3_01_OPCODE [((mVU.code >> 6) & 0x1f)](mX); }
|
||||
mVUop(mVULowerOP_T3_10) { mVULowerOP_T3_10_OPCODE [((mVU.code >> 6) & 0x1f)](mX); }
|
||||
mVUop(mVULowerOP_T3_11) { mVULowerOP_T3_11_OPCODE [((mVU.code >> 6) & 0x1f)](mX); }
|
||||
mVUop(mVUopU) { mVU_UPPER_OPCODE [ (mVU.code & 0x3f) ](mX); } // Gets Upper Opcode
|
||||
mVUop(mVUopL) { mVULOWER_OPCODE [ (mVU.code >> 25) ](mX); } // Gets Lower Opcode
|
||||
mVUop(mVUunknown) {
|
||||
pass1 { if (mVU.code != 0x8000033c) mVUinfo.isBadOp = true; }
|
||||
pass2 { if(mVU.code != 0x8000033c) Console.Error("microVU%d: Unknown Micro VU opcode called (%x) [%04x]\n", getIndex, mVU.code, xPC); }
|
||||
mVUop(mVU_UPPER_FD_00) { mVU_UPPER_FD_00_TABLE [((mVU.code >> 6) & 0x1f)](mX); }
|
||||
mVUop(mVU_UPPER_FD_01) { mVU_UPPER_FD_01_TABLE [((mVU.code >> 6) & 0x1f)](mX); }
|
||||
mVUop(mVU_UPPER_FD_10) { mVU_UPPER_FD_10_TABLE [((mVU.code >> 6) & 0x1f)](mX); }
|
||||
mVUop(mVU_UPPER_FD_11) { mVU_UPPER_FD_11_TABLE [((mVU.code >> 6) & 0x1f)](mX); }
|
||||
mVUop(mVULowerOP) { mVULowerOP_OPCODE [ (mVU.code & 0x3f) ](mX); }
|
||||
mVUop(mVULowerOP_T3_00) { mVULowerOP_T3_00_OPCODE [((mVU.code >> 6) & 0x1f)](mX); }
|
||||
mVUop(mVULowerOP_T3_01) { mVULowerOP_T3_01_OPCODE [((mVU.code >> 6) & 0x1f)](mX); }
|
||||
mVUop(mVULowerOP_T3_10) { mVULowerOP_T3_10_OPCODE [((mVU.code >> 6) & 0x1f)](mX); }
|
||||
mVUop(mVULowerOP_T3_11) { mVULowerOP_T3_11_OPCODE [((mVU.code >> 6) & 0x1f)](mX); }
|
||||
mVUop(mVUopU) { mVU_UPPER_OPCODE [ (mVU.code & 0x3f) ](mX); } // Gets Upper Opcode
|
||||
mVUop(mVUopL) { mVULOWER_OPCODE [ (mVU.code >> 25) ](mX); } // Gets Lower Opcode
|
||||
mVUop(mVUunknown)
|
||||
{
|
||||
pass1
|
||||
{
|
||||
if (mVU.code != 0x8000033c)
|
||||
mVUinfo.isBadOp = true;
|
||||
}
|
||||
pass2
|
||||
{
|
||||
if (mVU.code != 0x8000033c)
|
||||
Console.Error("microVU%d: Unknown Micro VU opcode called (%x) [%04x]\n", getIndex, mVU.code, xPC);
|
||||
}
|
||||
pass3 { mVUlog("Unknown", mVU.code); }
|
||||
}
|
||||
|
||||
|
|
|
@ -12,49 +12,62 @@
|
|||
* You should have received a copy of the GNU General Public License along with PCSX2.
|
||||
* If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#pragma once
|
||||
|
||||
//------------------------------------------------------------------
|
||||
// mVUupdateFlags() - Updates status/mac flags
|
||||
//------------------------------------------------------------------
|
||||
|
||||
#define AND_XYZW ((_XYZW_SS && modXYZW) ? (1) : (mFLAG.doFlag ? (_X_Y_Z_W) : (flipMask[_X_Y_Z_W])))
|
||||
#define ADD_XYZW ((_XYZW_SS && modXYZW) ? (_X ? 3 : (_Y ? 2 : (_Z ? 1 : 0))) : 0)
|
||||
#define SHIFT_XYZW(gprReg) { if (_XYZW_SS && modXYZW && !_W) { xSHL(gprReg, ADD_XYZW); } }
|
||||
#define AND_XYZW ((_XYZW_SS && modXYZW) ? (1) : (mFLAG.doFlag ? (_X_Y_Z_W) : (flipMask[_X_Y_Z_W])))
|
||||
#define ADD_XYZW ((_XYZW_SS && modXYZW) ? (_X ? 3 : (_Y ? 2 : (_Z ? 1 : 0))) : 0)
|
||||
#define SHIFT_XYZW(gprReg) \
|
||||
do { \
|
||||
if (_XYZW_SS && modXYZW && !_W) \
|
||||
{ \
|
||||
xSHL(gprReg, ADD_XYZW); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
|
||||
const __aligned16 u32 sse4_compvals[2][4] = {
|
||||
{ 0x7f7fffff, 0x7f7fffff, 0x7f7fffff, 0x7f7fffff }, //1111
|
||||
{ 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff }, //1111
|
||||
{0x7f7fffff, 0x7f7fffff, 0x7f7fffff, 0x7f7fffff}, //1111
|
||||
{0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff}, //1111
|
||||
};
|
||||
|
||||
// Note: If modXYZW is true, then it adjusts XYZW for Single Scalar operations
|
||||
static void mVUupdateFlags(mV, const xmm& reg, const xmm& regT1in = xEmptyReg, const xmm& regT2in = xEmptyReg, bool modXYZW = 1) {
|
||||
const x32& mReg = gprT1;
|
||||
const x32& sReg = getFlagReg(sFLAG.write);
|
||||
static void mVUupdateFlags(mV, const xmm& reg, const xmm& regT1in = xEmptyReg, const xmm& regT2in = xEmptyReg, bool modXYZW = 1)
|
||||
{
|
||||
const x32& mReg = gprT1;
|
||||
const x32& sReg = getFlagReg(sFLAG.write);
|
||||
bool regT1b = regT1in.IsEmpty(), regT2b = false;
|
||||
static const u16 flipMask[16] = {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15};
|
||||
|
||||
//SysPrintf("Status = %d; Mac = %d\n", sFLAG.doFlag, mFLAG.doFlag);
|
||||
if (!sFLAG.doFlag && !mFLAG.doFlag) { return; }
|
||||
if (!sFLAG.doFlag && !mFLAG.doFlag)
|
||||
return;
|
||||
|
||||
const xmm& regT1 = regT1b ? mVU.regAlloc->allocReg() : regT1in;
|
||||
|
||||
xmm regT2 = reg;
|
||||
if ((mFLAG.doFlag && !(_XYZW_SS && modXYZW))) {
|
||||
if ((mFLAG.doFlag && !(_XYZW_SS && modXYZW)))
|
||||
{
|
||||
regT2 = regT2in;
|
||||
if (regT2.IsEmpty()) {
|
||||
if (regT2.IsEmpty())
|
||||
{
|
||||
regT2 = mVU.regAlloc->allocReg();
|
||||
regT2b = true;
|
||||
}
|
||||
xPSHUF.D(regT2, reg, 0x1B); // Flip wzyx to xyzw
|
||||
}
|
||||
else regT2 = reg;
|
||||
else
|
||||
regT2 = reg;
|
||||
|
||||
if (sFLAG.doFlag) {
|
||||
mVUallocSFLAGa(sReg, sFLAG.lastWrite); // Get Prev Status Flag
|
||||
if (sFLAG.doNonSticky) xAND(sReg, 0xfffc00ff); // Clear O,U,S,Z flags
|
||||
if (sFLAG.doFlag)
|
||||
{
|
||||
mVUallocSFLAGa(sReg, sFLAG.lastWrite); // Get Prev Status Flag
|
||||
if (sFLAG.doNonSticky)
|
||||
xAND(sReg, 0xfffc00ff); // Clear O,U,S,Z flags
|
||||
}
|
||||
|
||||
//-------------------------Check for Signed flags------------------------------
|
||||
|
@ -64,23 +77,25 @@ static void mVUupdateFlags(mV, const xmm& reg, const xmm& regT1in = xEmptyReg, c
|
|||
xCMPEQ.PS(regT1, regT2); // Set all F's if each vector is zero
|
||||
xMOVMSKPS(gprT2, regT1); // Used for Zero Flag Calculation
|
||||
|
||||
xAND(mReg, AND_XYZW); // Grab "Is Signed" bits from the previous calculation
|
||||
xAND(mReg, AND_XYZW); // Grab "Is Signed" bits from the previous calculation
|
||||
xSHL(mReg, 4 + ADD_XYZW);
|
||||
|
||||
//-------------------------Check for Zero flags------------------------------
|
||||
|
||||
xAND(gprT2, AND_XYZW); // Grab "Is Zero" bits from the previous calculation
|
||||
if (mFLAG.doFlag) { SHIFT_XYZW(gprT2); }
|
||||
xAND(gprT2, AND_XYZW); // Grab "Is Zero" bits from the previous calculation
|
||||
if (mFLAG.doFlag)
|
||||
SHIFT_XYZW(gprT2);
|
||||
xOR(mReg, gprT2);
|
||||
|
||||
//-------------------------Overflow Flags-----------------------------------
|
||||
if (sFLAG.doFlag) {
|
||||
if (sFLAG.doFlag)
|
||||
{
|
||||
//Calculate overflow
|
||||
xMOVAPS(regT1, regT2);
|
||||
xAND.PS(regT1, ptr128[&sse4_compvals[1][0]]); // Remove sign flags (we don't care)
|
||||
xCMPNLT.PS(regT1, ptr128[&sse4_compvals[0][0]]); // Compare if T1 == FLT_MAX
|
||||
xMOVMSKPS(gprT2, regT1); // Grab sign bits for equal results
|
||||
xAND(gprT2, AND_XYZW); // Grab "Is FLT_MAX" bits from the previous calculation
|
||||
xAND(gprT2, AND_XYZW); // Grab "Is FLT_MAX" bits from the previous calculation
|
||||
xForwardJump32 oJMP(Jcc_Zero);
|
||||
xOR(sReg, 0x820000);
|
||||
oJMP.SetTarget();
|
||||
|
@ -90,24 +105,29 @@ static void mVUupdateFlags(mV, const xmm& reg, const xmm& regT1in = xEmptyReg, c
|
|||
}
|
||||
//-------------------------Write back flags------------------------------
|
||||
|
||||
if (mFLAG.doFlag) mVUallocMFLAGb(mVU, mReg, mFLAG.write); // Set Mac Flag
|
||||
if (sFLAG.doFlag) {
|
||||
if (mFLAG.doFlag)
|
||||
mVUallocMFLAGb(mVU, mReg, mFLAG.write); // Set Mac Flag
|
||||
if (sFLAG.doFlag)
|
||||
{
|
||||
xAND(mReg, 0xFF); // Ignore overflow bits, they're handled separately
|
||||
xOR(sReg, mReg);
|
||||
if (sFLAG.doNonSticky) {
|
||||
if (sFLAG.doNonSticky)
|
||||
{
|
||||
xSHL(mReg, 8);
|
||||
xOR (sReg, mReg);
|
||||
xOR(sReg, mReg);
|
||||
}
|
||||
}
|
||||
if (regT1b) mVU.regAlloc->clearNeeded(regT1);
|
||||
if (regT2b) mVU.regAlloc->clearNeeded(regT2);
|
||||
if (regT1b)
|
||||
mVU.regAlloc->clearNeeded(regT1);
|
||||
if (regT2b)
|
||||
mVU.regAlloc->clearNeeded(regT2);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------
|
||||
// Helper Macros and Functions
|
||||
//------------------------------------------------------------------
|
||||
|
||||
static void (*const SSE_PS[]) (microVU&, const xmm&, const xmm&, const xmm&, const xmm&) = {
|
||||
static void (*const SSE_PS[])(microVU&, const xmm&, const xmm&, const xmm&, const xmm&) = {
|
||||
SSE_ADDPS, // 0
|
||||
SSE_SUBPS, // 1
|
||||
SSE_MULPS, // 2
|
||||
|
@ -116,7 +136,7 @@ static void (*const SSE_PS[]) (microVU&, const xmm&, const xmm&, const xmm&, con
|
|||
SSE_ADD2PS // 5
|
||||
};
|
||||
|
||||
static void (*const SSE_SS[]) (microVU&, const xmm&, const xmm&, const xmm&, const xmm&) = {
|
||||
static void (*const SSE_SS[])(microVU&, const xmm&, const xmm&, const xmm&, const xmm&) = {
|
||||
SSE_ADDSS, // 0
|
||||
SSE_SUBSS, // 1
|
||||
SSE_MULSS, // 2
|
||||
|
@ -125,14 +145,16 @@ static void (*const SSE_SS[]) (microVU&, const xmm&, const xmm&, const xmm&, con
|
|||
SSE_ADD2SS // 5
|
||||
};
|
||||
|
||||
enum clampModes {
|
||||
cFt = 0x01, // Clamp Ft / I-reg / Q-reg
|
||||
cFs = 0x02, // Clamp Fs
|
||||
enum clampModes
|
||||
{
|
||||
cFt = 0x01, // Clamp Ft / I-reg / Q-reg
|
||||
cFs = 0x02, // Clamp Fs
|
||||
cACC = 0x04, // Clamp ACC
|
||||
};
|
||||
|
||||
// Prints Opcode to MicroProgram Logs
|
||||
static void mVU_printOP(microVU& mVU, int opCase, microOpcode opEnum, bool isACC) {
|
||||
static void mVU_printOP(microVU& mVU, int opCase, microOpcode opEnum, bool isACC)
|
||||
{
|
||||
mVUlog(microOpcodeName[opEnum]);
|
||||
opCase1 { if (isACC) { mVUlogACC(); } else { mVUlogFd(); } mVUlogFt(); }
|
||||
opCase2 { if (isACC) { mVUlogACC(); } else { mVUlogFd(); } mVUlogBC(); }
|
||||
|
@ -141,21 +163,24 @@ static void mVU_printOP(microVU& mVU, int opCase, microOpcode opEnum, bool isACC
|
|||
}
|
||||
|
||||
// Sets Up Pass1 Info for Normal, BC, I, and Q Cases
|
||||
static void setupPass1(microVU& mVU, int opCase, bool isACC, bool noFlagUpdate) {
|
||||
static void setupPass1(microVU& mVU, int opCase, bool isACC, bool noFlagUpdate)
|
||||
{
|
||||
opCase1 { mVUanalyzeFMAC1(mVU, ((isACC) ? 0 : _Fd_), _Fs_, _Ft_); }
|
||||
opCase2 { mVUanalyzeFMAC3(mVU, ((isACC) ? 0 : _Fd_), _Fs_, _Ft_); }
|
||||
opCase3 { mVUanalyzeFMAC1(mVU, ((isACC) ? 0 : _Fd_), _Fs_, 0); }
|
||||
opCase4 { mVUanalyzeFMAC1(mVU, ((isACC) ? 0 : _Fd_), _Fs_, 0); }
|
||||
|
||||
if (noFlagUpdate) { //Max/Min Ops
|
||||
if (noFlagUpdate) //Max/Min Ops
|
||||
sFLAG.doFlag = false;
|
||||
}
|
||||
}
|
||||
|
||||
// Safer to force 0 as the result for X minus X than to do actual subtraction
|
||||
static bool doSafeSub(microVU& mVU, int opCase, int opType, bool isACC) {
|
||||
opCase1 {
|
||||
if ((opType == 1) && (_Ft_ == _Fs_)) {
|
||||
static bool doSafeSub(microVU& mVU, int opCase, int opType, bool isACC)
|
||||
{
|
||||
opCase1
|
||||
{
|
||||
if ((opType == 1) && (_Ft_ == _Fs_))
|
||||
{
|
||||
const xmm& Fs = mVU.regAlloc->allocReg(-1, isACC ? 32 : _Fd_, _X_Y_Z_W);
|
||||
xPXOR(Fs, Fs); // Set to Positive 0
|
||||
mVUupdateFlags(mVU, Fs);
|
||||
|
@ -167,90 +192,130 @@ static bool doSafeSub(microVU& mVU, int opCase, int opType, bool isACC) {
|
|||
}
|
||||
|
||||
// Sets Up Ft Reg for Normal, BC, I, and Q Cases
|
||||
static void setupFtReg(microVU& mVU, xmm& Ft, xmm& tempFt, int opCase) {
|
||||
opCase1 {
|
||||
if (_XYZW_SS2) { Ft = mVU.regAlloc->allocReg(_Ft_, 0, _X_Y_Z_W); tempFt = Ft; }
|
||||
else if (clampE) { Ft = mVU.regAlloc->allocReg(_Ft_, 0, 0xf); tempFt = Ft; }
|
||||
else { Ft = mVU.regAlloc->allocReg(_Ft_); tempFt = xEmptyReg; }
|
||||
static void setupFtReg(microVU& mVU, xmm& Ft, xmm& tempFt, int opCase)
|
||||
{
|
||||
opCase1
|
||||
{
|
||||
if (_XYZW_SS2) { Ft = mVU.regAlloc->allocReg(_Ft_, 0, _X_Y_Z_W); tempFt = Ft; }
|
||||
else if (clampE) { Ft = mVU.regAlloc->allocReg(_Ft_, 0, 0xf); tempFt = Ft; }
|
||||
else { Ft = mVU.regAlloc->allocReg(_Ft_); tempFt = xEmptyReg; }
|
||||
}
|
||||
opCase2 {
|
||||
opCase2
|
||||
{
|
||||
tempFt = mVU.regAlloc->allocReg(_Ft_);
|
||||
Ft = mVU.regAlloc->allocReg();
|
||||
Ft = mVU.regAlloc->allocReg();
|
||||
mVUunpack_xyzw(Ft, tempFt, _bc_);
|
||||
mVU.regAlloc->clearNeeded(tempFt);
|
||||
tempFt = Ft;
|
||||
}
|
||||
opCase3 { Ft = mVU.regAlloc->allocReg(33, 0, _X_Y_Z_W); tempFt = Ft; }
|
||||
opCase4 {
|
||||
if (!clampE && _XYZW_SS && !mVUinfo.readQ) { Ft = xmmPQ; tempFt = xEmptyReg; }
|
||||
else { Ft = mVU.regAlloc->allocReg(); tempFt = Ft; getQreg(Ft, mVUinfo.readQ); }
|
||||
opCase3
|
||||
{
|
||||
Ft = mVU.regAlloc->allocReg(33, 0, _X_Y_Z_W);
|
||||
tempFt = Ft;
|
||||
}
|
||||
opCase4
|
||||
{
|
||||
if (!clampE && _XYZW_SS && !mVUinfo.readQ)
|
||||
{
|
||||
Ft = xmmPQ;
|
||||
tempFt = xEmptyReg;
|
||||
}
|
||||
else
|
||||
{
|
||||
Ft = mVU.regAlloc->allocReg();
|
||||
tempFt = Ft;
|
||||
getQreg(Ft, mVUinfo.readQ);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Normal FMAC Opcodes
|
||||
static void mVU_FMACa(microVU& mVU, int recPass, int opCase, int opType, bool isACC, microOpcode opEnum, int clampType) {
|
||||
static void mVU_FMACa(microVU& mVU, int recPass, int opCase, int opType, bool isACC, microOpcode opEnum, int clampType)
|
||||
{
|
||||
pass1 { setupPass1(mVU, opCase, isACC, ((opType == 3) || (opType == 4))); }
|
||||
pass2 {
|
||||
if (doSafeSub(mVU, opCase, opType, isACC)) return;
|
||||
|
||||
pass2
|
||||
{
|
||||
if (doSafeSub(mVU, opCase, opType, isACC))
|
||||
return;
|
||||
|
||||
xmm Fs, Ft, ACC, tempFt;
|
||||
setupFtReg(mVU, Ft, tempFt, opCase);
|
||||
|
||||
if (isACC) {
|
||||
Fs = mVU.regAlloc->allocReg(_Fs_, 0, _X_Y_Z_W);
|
||||
if (isACC)
|
||||
{
|
||||
Fs = mVU.regAlloc->allocReg(_Fs_, 0, _X_Y_Z_W);
|
||||
ACC = mVU.regAlloc->allocReg((_X_Y_Z_W == 0xf) ? -1 : 32, 32, 0xf, 0);
|
||||
if (_XYZW_SS2) xPSHUF.D(ACC, ACC, shuffleSS(_X_Y_Z_W));
|
||||
if (_XYZW_SS2)
|
||||
xPSHUF.D(ACC, ACC, shuffleSS(_X_Y_Z_W));
|
||||
}
|
||||
else
|
||||
{
|
||||
Fs = mVU.regAlloc->allocReg(_Fs_, _Fd_, _X_Y_Z_W);
|
||||
}
|
||||
else { Fs = mVU.regAlloc->allocReg(_Fs_, _Fd_, _X_Y_Z_W); }
|
||||
|
||||
if (clampType & cFt) mVUclamp2(mVU, Ft, xEmptyReg, _X_Y_Z_W);
|
||||
if (clampType & cFs) mVUclamp2(mVU, Fs, xEmptyReg, _X_Y_Z_W);
|
||||
|
||||
if (_XYZW_SS) SSE_SS[opType](mVU, Fs, Ft, xEmptyReg, xEmptyReg);
|
||||
else SSE_PS[opType](mVU, Fs, Ft, xEmptyReg, xEmptyReg);
|
||||
else SSE_PS[opType](mVU, Fs, Ft, xEmptyReg, xEmptyReg);
|
||||
|
||||
if (isACC) {
|
||||
if (_XYZW_SS) xMOVSS(ACC, Fs);
|
||||
else mVUmergeRegs(ACC, Fs, _X_Y_Z_W);
|
||||
if (isACC)
|
||||
{
|
||||
if (_XYZW_SS)
|
||||
xMOVSS(ACC, Fs);
|
||||
else
|
||||
mVUmergeRegs(ACC, Fs, _X_Y_Z_W);
|
||||
mVUupdateFlags(mVU, ACC, Fs, tempFt);
|
||||
if (_XYZW_SS2) xPSHUF.D(ACC, ACC, shuffleSS(_X_Y_Z_W));
|
||||
if (_XYZW_SS2)
|
||||
xPSHUF.D(ACC, ACC, shuffleSS(_X_Y_Z_W));
|
||||
mVU.regAlloc->clearNeeded(ACC);
|
||||
}
|
||||
else mVUupdateFlags(mVU, Fs, tempFt);
|
||||
else
|
||||
mVUupdateFlags(mVU, Fs, tempFt);
|
||||
|
||||
mVU.regAlloc->clearNeeded(Fs); // Always Clear Written Reg First
|
||||
mVU.regAlloc->clearNeeded(Ft);
|
||||
mVU.profiler.EmitOp(opEnum);
|
||||
}
|
||||
pass3 { mVU_printOP(mVU, opCase, opEnum, isACC); }
|
||||
pass4 { if ((opType != 3) && (opType != 4)) mVUregs.needExactMatch |= 8; }
|
||||
pass4
|
||||
{
|
||||
if ((opType != 3) && (opType != 4))
|
||||
mVUregs.needExactMatch |= 8;
|
||||
}
|
||||
}
|
||||
|
||||
// MADDA/MSUBA Opcodes
|
||||
static void mVU_FMACb(microVU& mVU, int recPass, int opCase, int opType, microOpcode opEnum, int clampType) {
|
||||
static void mVU_FMACb(microVU& mVU, int recPass, int opCase, int opType, microOpcode opEnum, int clampType)
|
||||
{
|
||||
pass1 { setupPass1(mVU, opCase, true, false); }
|
||||
pass2 {
|
||||
pass2
|
||||
{
|
||||
xmm Fs, Ft, ACC, tempFt;
|
||||
setupFtReg(mVU, Ft, tempFt, opCase);
|
||||
|
||||
Fs = mVU.regAlloc->allocReg(_Fs_, 0, _X_Y_Z_W);
|
||||
Fs = mVU.regAlloc->allocReg(_Fs_, 0, _X_Y_Z_W);
|
||||
ACC = mVU.regAlloc->allocReg(32, 32, 0xf, false);
|
||||
|
||||
if (_XYZW_SS2) { xPSHUF.D(ACC, ACC, shuffleSS(_X_Y_Z_W)); }
|
||||
if (_XYZW_SS2)
|
||||
xPSHUF.D(ACC, ACC, shuffleSS(_X_Y_Z_W));
|
||||
|
||||
if (clampType & cFt) mVUclamp2(mVU, Ft, xEmptyReg, _X_Y_Z_W);
|
||||
if (clampType & cFs) mVUclamp2(mVU, Fs, xEmptyReg, _X_Y_Z_W);
|
||||
|
||||
if (_XYZW_SS) SSE_SS[2](mVU, Fs, Ft, xEmptyReg, xEmptyReg);
|
||||
else SSE_PS[2](mVU, Fs, Ft, xEmptyReg, xEmptyReg);
|
||||
else SSE_PS[2](mVU, Fs, Ft, xEmptyReg, xEmptyReg);
|
||||
|
||||
if (_XYZW_SS || _X_Y_Z_W == 0xf) {
|
||||
if (_XYZW_SS || _X_Y_Z_W == 0xf)
|
||||
{
|
||||
if (_XYZW_SS) SSE_SS[opType](mVU, ACC, Fs, tempFt, xEmptyReg);
|
||||
else SSE_PS[opType](mVU, ACC, Fs, tempFt, xEmptyReg);
|
||||
else SSE_PS[opType](mVU, ACC, Fs, tempFt, xEmptyReg);
|
||||
mVUupdateFlags(mVU, ACC, Fs, tempFt);
|
||||
if (_XYZW_SS && _X_Y_Z_W != 8) xPSHUF.D(ACC, ACC, shuffleSS(_X_Y_Z_W));
|
||||
if (_XYZW_SS && _X_Y_Z_W != 8)
|
||||
xPSHUF.D(ACC, ACC, shuffleSS(_X_Y_Z_W));
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
const xmm& tempACC = mVU.regAlloc->allocReg();
|
||||
xMOVAPS(tempACC, ACC);
|
||||
SSE_PS[opType](mVU, tempACC, Fs, tempFt, xEmptyReg);
|
||||
|
@ -269,25 +334,30 @@ static void mVU_FMACb(microVU& mVU, int recPass, int opCase, int opType, microOp
|
|||
}
|
||||
|
||||
// MADD Opcodes
|
||||
static void mVU_FMACc(microVU& mVU, int recPass, int opCase, microOpcode opEnum, int clampType) {
|
||||
static void mVU_FMACc(microVU& mVU, int recPass, int opCase, microOpcode opEnum, int clampType)
|
||||
{
|
||||
pass1 { setupPass1(mVU, opCase, false, false); }
|
||||
pass2 {
|
||||
pass2
|
||||
{
|
||||
xmm Fs, Ft, ACC, tempFt;
|
||||
setupFtReg(mVU, Ft, tempFt, opCase);
|
||||
|
||||
ACC = mVU.regAlloc->allocReg(32);
|
||||
Fs = mVU.regAlloc->allocReg(_Fs_, _Fd_, _X_Y_Z_W);
|
||||
Fs = mVU.regAlloc->allocReg(_Fs_, _Fd_, _X_Y_Z_W);
|
||||
|
||||
if (_XYZW_SS2) { xPSHUF.D(ACC, ACC, shuffleSS(_X_Y_Z_W)); }
|
||||
if (_XYZW_SS2)
|
||||
xPSHUF.D(ACC, ACC, shuffleSS(_X_Y_Z_W));
|
||||
|
||||
if (clampType & cFt) mVUclamp2(mVU, Ft, xEmptyReg, _X_Y_Z_W);
|
||||
if (clampType & cFs) mVUclamp2(mVU, Fs, xEmptyReg, _X_Y_Z_W);
|
||||
if (clampType & cACC) mVUclamp2(mVU, ACC, xEmptyReg, _X_Y_Z_W);
|
||||
|
||||
if (_XYZW_SS) { SSE_SS[2](mVU, Fs, Ft, xEmptyReg, xEmptyReg); SSE_SS[0](mVU, Fs, ACC, tempFt, xEmptyReg); }
|
||||
else { SSE_PS[2](mVU, Fs, Ft, xEmptyReg, xEmptyReg); SSE_PS[0](mVU, Fs, ACC, tempFt, xEmptyReg); }
|
||||
|
||||
if (_XYZW_SS2) { xPSHUF.D(ACC, ACC, shuffleSS(_X_Y_Z_W)); }
|
||||
if (_XYZW_SS) { SSE_SS[2](mVU, Fs, Ft, xEmptyReg, xEmptyReg); SSE_SS[0](mVU, Fs, ACC, tempFt, xEmptyReg); }
|
||||
else { SSE_PS[2](mVU, Fs, Ft, xEmptyReg, xEmptyReg); SSE_PS[0](mVU, Fs, ACC, tempFt, xEmptyReg); }
|
||||
|
||||
if (_XYZW_SS2)
|
||||
xPSHUF.D(ACC, ACC, shuffleSS(_X_Y_Z_W));
|
||||
|
||||
mVUupdateFlags(mVU, Fs, tempFt);
|
||||
|
||||
|
@ -301,9 +371,11 @@ static void mVU_FMACc(microVU& mVU, int recPass, int opCase, microOpcode opEnum,
|
|||
}
|
||||
|
||||
// MSUB Opcodes
|
||||
static void mVU_FMACd(microVU& mVU, int recPass, int opCase, microOpcode opEnum, int clampType) {
|
||||
static void mVU_FMACd(microVU& mVU, int recPass, int opCase, microOpcode opEnum, int clampType)
|
||||
{
|
||||
pass1 { setupPass1(mVU, opCase, false, false); }
|
||||
pass2 {
|
||||
pass2
|
||||
{
|
||||
xmm Fs, Ft, Fd, tempFt;
|
||||
setupFtReg(mVU, Ft, tempFt, opCase);
|
||||
|
||||
|
@ -315,7 +387,7 @@ static void mVU_FMACd(microVU& mVU, int recPass, int opCase, microOpcode opEnum,
|
|||
if (clampType & cACC) mVUclamp2(mVU, Fd, xEmptyReg, _X_Y_Z_W);
|
||||
|
||||
if (_XYZW_SS) { SSE_SS[2](mVU, Fs, Ft, xEmptyReg, xEmptyReg); SSE_SS[1](mVU, Fd, Fs, tempFt, xEmptyReg); }
|
||||
else { SSE_PS[2](mVU, Fs, Ft, xEmptyReg, xEmptyReg); SSE_PS[1](mVU, Fd, Fs, tempFt, xEmptyReg); }
|
||||
else { SSE_PS[2](mVU, Fs, Ft, xEmptyReg, xEmptyReg); SSE_PS[1](mVU, Fd, Fs, tempFt, xEmptyReg); }
|
||||
|
||||
mVUupdateFlags(mVU, Fd, Fs, tempFt);
|
||||
|
||||
|
@ -329,23 +401,32 @@ static void mVU_FMACd(microVU& mVU, int recPass, int opCase, microOpcode opEnum,
|
|||
}
|
||||
|
||||
// ABS Opcode
|
||||
mVUop(mVU_ABS) {
|
||||
mVUop(mVU_ABS)
|
||||
{
|
||||
pass1 { mVUanalyzeFMAC2(mVU, _Fs_, _Ft_); }
|
||||
pass2 {
|
||||
if (!_Ft_) return;
|
||||
pass2
|
||||
{
|
||||
if (!_Ft_)
|
||||
return;
|
||||
const xmm& Fs = mVU.regAlloc->allocReg(_Fs_, _Ft_, _X_Y_Z_W, !((_Fs_ == _Ft_) && (_X_Y_Z_W == 0xf)));
|
||||
xAND.PS(Fs, ptr128[mVUglob.absclip]);
|
||||
mVU.regAlloc->clearNeeded(Fs);
|
||||
mVU.profiler.EmitOp(opABS);
|
||||
}
|
||||
pass3 { mVUlog("ABS"); mVUlogFtFs(); }
|
||||
pass3
|
||||
{
|
||||
mVUlog("ABS");
|
||||
mVUlogFtFs();
|
||||
}
|
||||
}
|
||||
|
||||
// OPMULA Opcode
|
||||
mVUop(mVU_OPMULA) {
|
||||
mVUop(mVU_OPMULA)
|
||||
{
|
||||
pass1 { mVUanalyzeFMAC1(mVU, 0, _Fs_, _Ft_); }
|
||||
pass2 {
|
||||
const xmm& Ft = mVU.regAlloc->allocReg(_Ft_, 0, _X_Y_Z_W);
|
||||
pass2
|
||||
{
|
||||
const xmm& Ft = mVU.regAlloc->allocReg(_Ft_, 0, _X_Y_Z_W);
|
||||
const xmm& Fs = mVU.regAlloc->allocReg(_Fs_, 32, _X_Y_Z_W);
|
||||
|
||||
xPSHUF.D(Fs, Fs, 0xC9); // WXZY
|
||||
|
@ -356,16 +437,23 @@ mVUop(mVU_OPMULA) {
|
|||
mVU.regAlloc->clearNeeded(Fs);
|
||||
mVU.profiler.EmitOp(opOPMULA);
|
||||
}
|
||||
pass3 { mVUlog("OPMULA"); mVUlogACC(); mVUlogFt(); }
|
||||
pass3
|
||||
{
|
||||
mVUlog("OPMULA");
|
||||
mVUlogACC();
|
||||
mVUlogFt();
|
||||
}
|
||||
pass4 { mVUregs.needExactMatch |= 8; }
|
||||
}
|
||||
|
||||
// OPMSUB Opcode
|
||||
mVUop(mVU_OPMSUB) {
|
||||
mVUop(mVU_OPMSUB)
|
||||
{
|
||||
pass1 { mVUanalyzeFMAC1(mVU, _Fd_, _Fs_, _Ft_); }
|
||||
pass2 {
|
||||
const xmm& Ft = mVU.regAlloc->allocReg(_Ft_, 0, 0xf);
|
||||
const xmm& Fs = mVU.regAlloc->allocReg(_Fs_, 0, 0xf);
|
||||
pass2
|
||||
{
|
||||
const xmm& Ft = mVU.regAlloc->allocReg(_Ft_, 0, 0xf);
|
||||
const xmm& Fs = mVU.regAlloc->allocReg(_Fs_, 0, 0xf);
|
||||
const xmm& ACC = mVU.regAlloc->allocReg(32, _Fd_, _X_Y_Z_W);
|
||||
|
||||
xPSHUF.D(Fs, Fs, 0xC9); // WXZY
|
||||
|
@ -378,22 +466,31 @@ mVUop(mVU_OPMSUB) {
|
|||
mVU.regAlloc->clearNeeded(ACC);
|
||||
mVU.profiler.EmitOp(opOPMSUB);
|
||||
}
|
||||
pass3 { mVUlog("OPMSUB"); mVUlogFd(); mVUlogFt(); }
|
||||
pass3
|
||||
{
|
||||
mVUlog("OPMSUB");
|
||||
mVUlogFd();
|
||||
mVUlogFt();
|
||||
}
|
||||
pass4 { mVUregs.needExactMatch |= 8; }
|
||||
}
|
||||
|
||||
// FTOI0/FTIO4/FTIO12/FTIO15 Opcodes
|
||||
static void mVU_FTOIx(mP, const float* addr, microOpcode opEnum) {
|
||||
static void mVU_FTOIx(mP, const float* addr, microOpcode opEnum)
|
||||
{
|
||||
pass1 { mVUanalyzeFMAC2(mVU, _Fs_, _Ft_); }
|
||||
pass2 {
|
||||
if (!_Ft_) return;
|
||||
pass2
|
||||
{
|
||||
if (!_Ft_)
|
||||
return;
|
||||
const xmm& Fs = mVU.regAlloc->allocReg(_Fs_, _Ft_, _X_Y_Z_W, !((_Fs_ == _Ft_) && (_X_Y_Z_W == 0xf)));
|
||||
const xmm& t1 = mVU.regAlloc->allocReg();
|
||||
const xmm& t2 = mVU.regAlloc->allocReg();
|
||||
|
||||
// Note: For help understanding this algorithm see recVUMI_FTOI_Saturate()
|
||||
xMOVAPS(t1, Fs);
|
||||
if (addr) { xMUL.PS(Fs, ptr128[addr]); }
|
||||
if (addr)
|
||||
xMUL.PS(Fs, ptr128[addr]);
|
||||
xCVTTPS2DQ(Fs, Fs);
|
||||
xPXOR(t1, ptr128[mVUglob.signbit]);
|
||||
xPSRA.D(t1, 31);
|
||||
|
@ -407,30 +504,44 @@ static void mVU_FTOIx(mP, const float* addr, microOpcode opEnum) {
|
|||
mVU.regAlloc->clearNeeded(t2);
|
||||
mVU.profiler.EmitOp(opEnum);
|
||||
}
|
||||
pass3 { mVUlog(microOpcodeName[opEnum]); mVUlogFtFs(); }
|
||||
pass3
|
||||
{
|
||||
mVUlog(microOpcodeName[opEnum]);
|
||||
mVUlogFtFs();
|
||||
}
|
||||
}
|
||||
|
||||
// ITOF0/ITOF4/ITOF12/ITOF15 Opcodes
|
||||
static void mVU_ITOFx(mP, const float* addr, microOpcode opEnum) {
|
||||
static void mVU_ITOFx(mP, const float* addr, microOpcode opEnum)
|
||||
{
|
||||
pass1 { mVUanalyzeFMAC2(mVU, _Fs_, _Ft_); }
|
||||
pass2 {
|
||||
if (!_Ft_) return;
|
||||
pass2
|
||||
{
|
||||
if (!_Ft_)
|
||||
return;
|
||||
const xmm& Fs = mVU.regAlloc->allocReg(_Fs_, _Ft_, _X_Y_Z_W, !((_Fs_ == _Ft_) && (_X_Y_Z_W == 0xf)));
|
||||
|
||||
xCVTDQ2PS(Fs, Fs);
|
||||
if (addr) { xMUL.PS(Fs, ptr128[addr]); }
|
||||
if (addr)
|
||||
xMUL.PS(Fs, ptr128[addr]);
|
||||
//mVUclamp2(Fs, xmmT1, 15); // Clamp (not sure if this is needed)
|
||||
|
||||
mVU.regAlloc->clearNeeded(Fs);
|
||||
mVU.profiler.EmitOp(opEnum);
|
||||
}
|
||||
pass3 { mVUlog(microOpcodeName[opEnum]); mVUlogFtFs(); }
|
||||
pass3
|
||||
{
|
||||
mVUlog(microOpcodeName[opEnum]);
|
||||
mVUlogFtFs();
|
||||
}
|
||||
}
|
||||
|
||||
// Clip Opcode
|
||||
mVUop(mVU_CLIP) {
|
||||
mVUop(mVU_CLIP)
|
||||
{
|
||||
pass1 { mVUanalyzeFMAC4(mVU, _Fs_, _Ft_); }
|
||||
pass2 {
|
||||
pass2
|
||||
{
|
||||
const xmm& Fs = mVU.regAlloc->allocReg(_Fs_, 0, 0xf);
|
||||
const xmm& Ft = mVU.regAlloc->allocReg(_Ft_, 0, 0x1);
|
||||
const xmm& t1 = mVU.regAlloc->allocReg();
|
||||
|
@ -466,7 +577,11 @@ mVUop(mVU_CLIP) {
|
|||
mVU.regAlloc->clearNeeded(t1);
|
||||
mVU.profiler.EmitOp(opCLIP);
|
||||
}
|
||||
pass3 { mVUlog("CLIP"); mVUlogCLIP(); }
|
||||
pass3
|
||||
{
|
||||
mVUlog("CLIP");
|
||||
mVUlogCLIP();
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------
|
||||
|
@ -514,13 +629,13 @@ mVUop(mVU_MULAq) { mVU_FMACa(mVU, recPass, 4, 2, true, opMULAq, 0); }
|
|||
mVUop(mVU_MULAx) { mVU_FMACa(mVU, recPass, 2, 2, true, opMULAx, cFs);} // Clamp (TOTA, DoM, ...)
|
||||
mVUop(mVU_MULAy) { mVU_FMACa(mVU, recPass, 2, 2, true, opMULAy, cFs);} // Clamp (TOTA, DoM, ...)
|
||||
mVUop(mVU_MULAz) { mVU_FMACa(mVU, recPass, 2, 2, true, opMULAz, cFs);} // Clamp (TOTA, DoM, ...)
|
||||
mVUop(mVU_MULAw) { mVU_FMACa(mVU, recPass, 2, 2, true, opMULAw, (_XYZW_PS) ? (cFs | cFt) : cFs); } // Clamp (TOTA, DoM, ...)- Ft for Superman - Shadow Of Apokolips
|
||||
mVUop(mVU_MADD) { mVU_FMACc(mVU, recPass, 1, opMADD, 0); }
|
||||
mVUop(mVU_MADDi) { mVU_FMACc(mVU, recPass, 3, opMADDi, 0); }
|
||||
mVUop(mVU_MADDq) { mVU_FMACc(mVU, recPass, 4, opMADDq, 0); }
|
||||
mVUop(mVU_MADDx) { mVU_FMACc(mVU, recPass, 2, opMADDx, cFs); } // Clamp (TOTA, DoM, ...)
|
||||
mVUop(mVU_MADDy) { mVU_FMACc(mVU, recPass, 2, opMADDy, cFs); } // Clamp (TOTA, DoM, ...)
|
||||
mVUop(mVU_MADDz) { mVU_FMACc(mVU, recPass, 2, opMADDz, cFs); } // Clamp (TOTA, DoM, ...)
|
||||
mVUop(mVU_MULAw) { mVU_FMACa(mVU, recPass, 2, 2, true, opMULAw, (_XYZW_PS) ? (cFs | cFt) : cFs); } // Clamp (TOTA, DoM, ...)- Ft for Superman - Shadow Of Apokolips
|
||||
mVUop(mVU_MADD) { mVU_FMACc(mVU, recPass, 1, opMADD, 0); }
|
||||
mVUop(mVU_MADDi) { mVU_FMACc(mVU, recPass, 3, opMADDi, 0); }
|
||||
mVUop(mVU_MADDq) { mVU_FMACc(mVU, recPass, 4, opMADDq, 0); }
|
||||
mVUop(mVU_MADDx) { mVU_FMACc(mVU, recPass, 2, opMADDx, cFs); } // Clamp (TOTA, DoM, ...)
|
||||
mVUop(mVU_MADDy) { mVU_FMACc(mVU, recPass, 2, opMADDy, cFs); } // Clamp (TOTA, DoM, ...)
|
||||
mVUop(mVU_MADDz) { mVU_FMACc(mVU, recPass, 2, opMADDz, cFs); } // Clamp (TOTA, DoM, ...)
|
||||
mVUop(mVU_MADDw) { mVU_FMACc(mVU, recPass, 2, opMADDw, (isCOP2)?(cACC|cFt|cFs):cFs);} // Clamp (ICO (COP2), TOTA, DoM)
|
||||
mVUop(mVU_MADDA) { mVU_FMACb(mVU, recPass, 1, 0, opMADDA, 0); }
|
||||
mVUop(mVU_MADDAi) { mVU_FMACb(mVU, recPass, 3, 0, opMADDAi, 0); }
|
||||
|
@ -529,7 +644,7 @@ mVUop(mVU_MADDAx) { mVU_FMACb(mVU, recPass, 2, 0, opMADDAx, cFs);} // Cla
|
|||
mVUop(mVU_MADDAy) { mVU_FMACb(mVU, recPass, 2, 0, opMADDAy, cFs);} // Clamp (TOTA, DoM, ...)
|
||||
mVUop(mVU_MADDAz) { mVU_FMACb(mVU, recPass, 2, 0, opMADDAz, cFs);} // Clamp (TOTA, DoM, ...)
|
||||
mVUop(mVU_MADDAw) { mVU_FMACb(mVU, recPass, 2, 0, opMADDAw, cFs);} // Clamp (TOTA, DoM, ...)
|
||||
mVUop(mVU_MSUB) { mVU_FMACd(mVU, recPass, 1, opMSUB, (isCOP2) ? cFs : 0); } // Clamp ( Superman - Shadow Of Apokolips)
|
||||
mVUop(mVU_MSUB) { mVU_FMACd(mVU, recPass, 1, opMSUB, (isCOP2) ? cFs : 0); } // Clamp ( Superman - Shadow Of Apokolips)
|
||||
mVUop(mVU_MSUBi) { mVU_FMACd(mVU, recPass, 3, opMSUBi, 0); }
|
||||
mVUop(mVU_MSUBq) { mVU_FMACd(mVU, recPass, 4, opMSUBq, 0); }
|
||||
mVUop(mVU_MSUBx) { mVU_FMACd(mVU, recPass, 2, opMSUBx, 0); }
|
||||
|
|
|
@ -24,8 +24,8 @@
|
|||
using namespace x86Emitter;
|
||||
|
||||
// newVif_HashBucket.h uses this typedef, so it has to be declared first.
|
||||
typedef u32 (__fastcall *nVifCall)(void*, const void*);
|
||||
typedef void (__fastcall *nVifrecCall)(uptr dest, uptr src);
|
||||
typedef u32 (__fastcall* nVifCall)(void*, const void*);
|
||||
typedef void(__fastcall* nVifrecCall)(uptr dest, uptr src);
|
||||
|
||||
#include "newVif_HashBucket.h"
|
||||
|
||||
|
@ -38,13 +38,13 @@ extern void dVifRelease (int idx);
|
|||
extern void VifUnpackSSE_Init();
|
||||
extern void VifUnpackSSE_Destroy();
|
||||
|
||||
_vifT extern void dVifUnpack (const u8* data, bool isFill);
|
||||
_vifT extern void dVifUnpack(const u8* data, bool isFill);
|
||||
|
||||
#define VUFT VIFUnpackFuncTable
|
||||
#define _v0 0
|
||||
#define _v1 0x55
|
||||
#define _v2 0xaa
|
||||
#define _v3 0xff
|
||||
#define _v0 0
|
||||
#define _v1 0x55
|
||||
#define _v2 0xaa
|
||||
#define _v3 0xff
|
||||
#define xmmCol0 xmm2
|
||||
#define xmmCol1 xmm3
|
||||
#define xmmCol2 xmm4
|
||||
|
@ -52,20 +52,22 @@ _vifT extern void dVifUnpack (const u8* data, bool isFill);
|
|||
#define xmmRow xmm6
|
||||
#define xmmTemp xmm7
|
||||
|
||||
struct nVifStruct {
|
||||
struct nVifStruct
|
||||
{
|
||||
// Buffer for partial transfers (should always be first to ensure alignment)
|
||||
// Maximum buffer size is 256 (vifRegs.Num max range) * 16 (quadword)
|
||||
__aligned16 u8 buffer[256*16];
|
||||
u32 bSize; // Size of 'buffer'
|
||||
__aligned16 u8 buffer[256*16];
|
||||
u32 bSize; // Size of 'buffer'
|
||||
|
||||
// VIF0 or VIF1 - provided for debugging helpfulness only, and is generally unused.
|
||||
// (templates are used for most or all VIF indexing)
|
||||
u32 idx;
|
||||
u32 idx;
|
||||
|
||||
RecompiledCodeReserve* recReserve;
|
||||
u8* recWritePtr; // current write pos into the reserve
|
||||
RecompiledCodeReserve* recReserve;
|
||||
u8* recWritePtr; // current write pos into the reserve
|
||||
|
||||
HashBucket vifBlocks; // Vif Blocks
|
||||
|
||||
HashBucket vifBlocks; // Vif Blocks
|
||||
|
||||
nVifStruct() = default;
|
||||
};
|
||||
|
@ -75,7 +77,7 @@ extern void resetNewVif(int idx);
|
|||
extern void releaseNewVif(int idx);
|
||||
|
||||
extern __aligned16 nVifStruct nVif[2];
|
||||
extern __aligned16 nVifCall nVifUpk[(2*2*16)*4]; // ([USN][Masking][Unpack Type]) [curCycle]
|
||||
extern __aligned16 u32 nVifMask[3][4][4]; // [MaskNumber][CycleNumber][Vector]
|
||||
extern __aligned16 nVifCall nVifUpk[(2 * 2 * 16) * 4]; // ([USN][Masking][Unpack Type]) [curCycle]
|
||||
extern __aligned16 u32 nVifMask[3][4][4]; // [MaskNumber][CycleNumber][Vector]
|
||||
|
||||
static const bool newVifDynaRec = 1; // Use code in newVif_Dynarec.inl
|
||||
|
|
|
@ -22,7 +22,8 @@
|
|||
#include "MTVU.h"
|
||||
#include "common/Perf.h"
|
||||
|
||||
static void recReset(int idx) {
|
||||
static void recReset(int idx)
|
||||
{
|
||||
nVif[idx].vifBlocks.reset();
|
||||
|
||||
nVif[idx].recReserve->Reset();
|
||||
|
@ -30,26 +31,30 @@ static void recReset(int idx) {
|
|||
nVif[idx].recWritePtr = nVif[idx].recReserve->GetPtr();
|
||||
}
|
||||
|
||||
void dVifReserve(int idx) {
|
||||
if(!nVif[idx].recReserve)
|
||||
void dVifReserve(int idx)
|
||||
{
|
||||
if (!nVif[idx].recReserve)
|
||||
nVif[idx].recReserve = new RecompiledCodeReserve(pxsFmt(L"VIF%u Unpack Recompiler Cache", idx), _8mb);
|
||||
|
||||
auto offset = idx ? HostMemoryMap::VIF1recOffset : HostMemoryMap::VIF0recOffset;
|
||||
nVif[idx].recReserve->Reserve(GetVmMemory().MainMemory(), offset, 8 * _1mb);
|
||||
}
|
||||
|
||||
void dVifReset(int idx) {
|
||||
void dVifReset(int idx)
|
||||
{
|
||||
pxAssertDev(nVif[idx].recReserve, "Dynamic VIF recompiler reserve must be created prior to VIF use or reset!");
|
||||
|
||||
recReset(idx);
|
||||
}
|
||||
|
||||
void dVifClose(int idx) {
|
||||
void dVifClose(int idx)
|
||||
{
|
||||
if (nVif[idx].recReserve)
|
||||
nVif[idx].recReserve->Reset();
|
||||
}
|
||||
|
||||
void dVifRelease(int idx) {
|
||||
void dVifRelease(int idx)
|
||||
{
|
||||
dVifClose(idx);
|
||||
safe_delete(nVif[idx].recReserve);
|
||||
}
|
||||
|
@ -59,61 +64,79 @@ VifUnpackSSE_Dynarec::VifUnpackSSE_Dynarec(const nVifStruct& vif_, const nVifBlo
|
|||
, vB(vifBlock_)
|
||||
{
|
||||
const int wl = vB.wl ? vB.wl : 256; //0 is taken as 256 (KH2)
|
||||
isFill = (vB.cl < wl);
|
||||
usn = (vB.upkType>>5) & 1;
|
||||
doMask = (vB.upkType>>4) & 1;
|
||||
doMode = vB.mode & 3;
|
||||
IsAligned = vB.aligned;
|
||||
vCL = 0;
|
||||
isFill = (vB.cl < wl);
|
||||
usn = (vB.upkType>>5) & 1;
|
||||
doMask = (vB.upkType>>4) & 1;
|
||||
doMode = vB.mode & 3;
|
||||
IsAligned = vB.aligned;
|
||||
vCL = 0;
|
||||
}
|
||||
|
||||
__fi void makeMergeMask(u32& x)
|
||||
{
|
||||
x = ((x&0x40)>>6) | ((x&0x10)>>3) | (x&4) | ((x&1)<<3);
|
||||
x = ((x & 0x40) >> 6) | ((x & 0x10) >> 3) | (x & 4) | ((x & 1) << 3);
|
||||
}
|
||||
|
||||
__fi void VifUnpackSSE_Dynarec::SetMasks(int cS) const {
|
||||
__fi void VifUnpackSSE_Dynarec::SetMasks(int cS) const
|
||||
{
|
||||
const int idx = v.idx;
|
||||
const vifStruct& vif = MTVU_VifX;
|
||||
|
||||
//This could have ended up copying the row when there was no row to write.1810080
|
||||
u32 m0 = vB.mask; //The actual mask example 0x03020100
|
||||
u32 m3 = ((m0 & 0xaaaaaaaa)>>1) & ~m0; //all the upper bits, so our example 0x01010000 & 0xFCFDFEFF = 0x00010000 just the cols (shifted right for maskmerge)
|
||||
u32 m2 = (m0 & 0x55555555) & (~m0>>1); // 0x1000100 & 0xFE7EFF7F = 0x00000100 Just the row
|
||||
u32 m3 = ((m0 & 0xaaaaaaaa) >> 1) & ~m0; //all the upper bits, so our example 0x01010000 & 0xFCFDFEFF = 0x00010000 just the cols (shifted right for maskmerge)
|
||||
u32 m2 = (m0 & 0x55555555) & (~m0 >> 1); // 0x1000100 & 0xFE7EFF7F = 0x00000100 Just the row
|
||||
|
||||
if((m2&&doMask)||doMode) { xMOVAPS(xmmRow, ptr128[&vif.MaskRow]); MSKPATH3_LOG("Moving row");}
|
||||
if (m3&&doMask) {
|
||||
if ((m2 && doMask) || doMode)
|
||||
{
|
||||
xMOVAPS(xmmRow, ptr128[&vif.MaskRow]);
|
||||
MSKPATH3_LOG("Moving row");
|
||||
}
|
||||
if (m3 && doMask)
|
||||
{
|
||||
MSKPATH3_LOG("Merging Cols");
|
||||
xMOVAPS(xmmCol0, ptr128[&vif.MaskCol]);
|
||||
if ((cS>=2) && (m3&0x0000ff00)) xPSHUF.D(xmmCol1, xmmCol0, _v1);
|
||||
if ((cS>=3) && (m3&0x00ff0000)) xPSHUF.D(xmmCol2, xmmCol0, _v2);
|
||||
if ((cS>=4) && (m3&0xff000000)) xPSHUF.D(xmmCol3, xmmCol0, _v3);
|
||||
if ((cS>=1) && (m3&0x000000ff)) xPSHUF.D(xmmCol0, xmmCol0, _v0);
|
||||
if ((cS >= 2) && (m3 & 0x0000ff00)) xPSHUF.D(xmmCol1, xmmCol0, _v1);
|
||||
if ((cS >= 3) && (m3 & 0x00ff0000)) xPSHUF.D(xmmCol2, xmmCol0, _v2);
|
||||
if ((cS >= 4) && (m3 & 0xff000000)) xPSHUF.D(xmmCol3, xmmCol0, _v3);
|
||||
if ((cS >= 1) && (m3 & 0x000000ff)) xPSHUF.D(xmmCol0, xmmCol0, _v0);
|
||||
}
|
||||
//if (doMask||doMode) loadRowCol((nVifStruct&)v);
|
||||
}
|
||||
|
||||
void VifUnpackSSE_Dynarec::doMaskWrite(const xRegisterSSE& regX) const {
|
||||
void VifUnpackSSE_Dynarec::doMaskWrite(const xRegisterSSE& regX) const
|
||||
{
|
||||
pxAssertDev(regX.Id <= 1, "Reg Overflow! XMM2 thru XMM6 are reserved for masking.");
|
||||
|
||||
int cc = std::min(vCL, 3);
|
||||
u32 m0 = (vB.mask >> (cc * 8)) & 0xff; //The actual mask example 0xE4 (protect, col, row, clear)
|
||||
u32 m3 = ((m0 & 0xaa)>>1) & ~m0; //all the upper bits (cols shifted right) cancelling out any write protects 0x10
|
||||
u32 m2 = (m0 & 0x55) & (~m0>>1); // all the lower bits (rows)cancelling out any write protects 0x04
|
||||
u32 m4 = (m0 & ~((m3<<1) | m2)) & 0x55; // = 0xC0 & 0x55 = 0x40 (for merge mask)
|
||||
u32 m3 = ((m0 & 0xaa) >> 1) & ~m0; //all the upper bits (cols shifted right) cancelling out any write protects 0x10
|
||||
u32 m2 = (m0 & 0x55) & (~m0 >> 1); // all the lower bits (rows)cancelling out any write protects 0x04
|
||||
u32 m4 = (m0 & ~((m3 << 1) | m2)) & 0x55; // = 0xC0 & 0x55 = 0x40 (for merge mask)
|
||||
|
||||
makeMergeMask(m2);
|
||||
makeMergeMask(m3);
|
||||
makeMergeMask(m4);
|
||||
|
||||
if (doMask&&m2) { mergeVectors(regX, xmmRow, xmmTemp, m2); } // Merge MaskRow
|
||||
if (doMask&&m3) { mergeVectors(regX, xRegisterSSE(xmmCol0.Id+cc), xmmTemp, m3); } // Merge MaskCol
|
||||
if (doMask&&m4) { xMOVAPS(xmmTemp, ptr[dstIndirect]);
|
||||
mergeVectors(regX, xmmTemp, xmmTemp, m4); } // Merge Write Protect
|
||||
if (doMode) {
|
||||
u32 m5 = ~(m2|m3|m4) & 0xf;
|
||||
if (doMask && m2) // Merge MaskRow
|
||||
{
|
||||
mergeVectors(regX, xmmRow, xmmTemp, m2);
|
||||
}
|
||||
if (doMask && m3) // Merge MaskCol
|
||||
{
|
||||
mergeVectors(regX, xRegisterSSE(xmmCol0.Id + cc), xmmTemp, m3);
|
||||
}
|
||||
if (doMask && m4) // Merge Write Protect
|
||||
{
|
||||
xMOVAPS(xmmTemp, ptr[dstIndirect]);
|
||||
mergeVectors(regX, xmmTemp, xmmTemp, m4);
|
||||
}
|
||||
if (doMode)
|
||||
{
|
||||
u32 m5 = ~(m2 | m3 | m4) & 0xf;
|
||||
|
||||
if (!doMask) m5 = 0xf;
|
||||
if (!doMask)
|
||||
m5 = 0xf;
|
||||
|
||||
if (m5 < 0xf)
|
||||
{
|
||||
|
@ -126,9 +149,9 @@ void VifUnpackSSE_Dynarec::doMaskWrite(const xRegisterSSE& regX) const {
|
|||
{
|
||||
mergeVectors(xmmTemp, xmmRow, xmmTemp, m5);
|
||||
xPADD.D(regX, xmmTemp);
|
||||
if (doMode == 2) mergeVectors(xmmRow, regX, xmmTemp, m5);
|
||||
if (doMode == 2)
|
||||
mergeVectors(xmmRow, regX, xmmTemp, m5);
|
||||
}
|
||||
|
||||
}
|
||||
else
|
||||
{
|
||||
|
@ -139,14 +162,16 @@ void VifUnpackSSE_Dynarec::doMaskWrite(const xRegisterSSE& regX) const {
|
|||
else
|
||||
{
|
||||
xPADD.D(regX, xmmRow);
|
||||
if (doMode == 2) { xMOVAPS(xmmRow, regX); }
|
||||
if (doMode == 2)
|
||||
xMOVAPS(xmmRow, regX);
|
||||
}
|
||||
}
|
||||
}
|
||||
xMOVAPS(ptr32[dstIndirect], regX);
|
||||
}
|
||||
|
||||
void VifUnpackSSE_Dynarec::writeBackRow() const {
|
||||
void VifUnpackSSE_Dynarec::writeBackRow() const
|
||||
{
|
||||
const int idx = v.idx;
|
||||
xMOVAPS(ptr128[&(MTVU_VifX.MaskRow)], xmmRow);
|
||||
|
||||
|
@ -154,62 +179,92 @@ void VifUnpackSSE_Dynarec::writeBackRow() const {
|
|||
// ToDo: Do we need to write back to vifregs.rX too!? :/
|
||||
}
|
||||
|
||||
static void ShiftDisplacementWindow( xAddressVoid& addr, const xRegisterLong& modReg )
|
||||
static void ShiftDisplacementWindow(xAddressVoid& addr, const xRegisterLong& modReg)
|
||||
{
|
||||
// Shifts the displacement factor of a given indirect address, so that the address
|
||||
// remains in the optimal 0xf0 range (which allows for byte-form displacements when
|
||||
// generating instructions).
|
||||
|
||||
int addImm = 0;
|
||||
while( addr.Displacement >= 0x80 )
|
||||
while (addr.Displacement >= 0x80)
|
||||
{
|
||||
addImm += 0xf0;
|
||||
addr -= 0xf0;
|
||||
}
|
||||
if(addImm) { xADD(modReg, addImm); }
|
||||
if (addImm)
|
||||
xADD(modReg, addImm);
|
||||
}
|
||||
|
||||
void VifUnpackSSE_Dynarec::ModUnpack( int upknum, bool PostOp )
|
||||
void VifUnpackSSE_Dynarec::ModUnpack(int upknum, bool PostOp)
|
||||
{
|
||||
|
||||
switch( upknum )
|
||||
switch (upknum)
|
||||
{
|
||||
case 0:
|
||||
case 1:
|
||||
case 2: if(PostOp) { UnpkLoopIteration++; UnpkLoopIteration = UnpkLoopIteration & 0x3; } break;
|
||||
case 2:
|
||||
if (PostOp)
|
||||
{
|
||||
UnpkLoopIteration++;
|
||||
UnpkLoopIteration = UnpkLoopIteration & 0x3;
|
||||
}
|
||||
break;
|
||||
|
||||
case 4:
|
||||
case 5:
|
||||
case 6: if(PostOp) { UnpkLoopIteration++; UnpkLoopIteration = UnpkLoopIteration & 0x1; } break;
|
||||
case 6:
|
||||
if (PostOp)
|
||||
{
|
||||
UnpkLoopIteration++;
|
||||
UnpkLoopIteration = UnpkLoopIteration & 0x1;
|
||||
}
|
||||
break;
|
||||
|
||||
case 8: if(PostOp) { UnpkLoopIteration++; UnpkLoopIteration = UnpkLoopIteration & 0x1; } break;
|
||||
case 9: if (!PostOp) { UnpkLoopIteration++; } break;
|
||||
case 10:if (!PostOp) { UnpkLoopIteration++; } break;
|
||||
case 8:
|
||||
if (PostOp)
|
||||
{
|
||||
UnpkLoopIteration++;
|
||||
UnpkLoopIteration = UnpkLoopIteration & 0x1;
|
||||
}
|
||||
break;
|
||||
case 9:
|
||||
if (!PostOp)
|
||||
{
|
||||
UnpkLoopIteration++;
|
||||
}
|
||||
break;
|
||||
case 10:
|
||||
if (!PostOp)
|
||||
{
|
||||
UnpkLoopIteration++;
|
||||
}
|
||||
break;
|
||||
|
||||
case 12: break;
|
||||
case 13: break;
|
||||
case 14: break;
|
||||
case 15: break;
|
||||
case 12:
|
||||
case 13:
|
||||
case 14:
|
||||
case 15:
|
||||
break;
|
||||
|
||||
case 3:
|
||||
case 7:
|
||||
case 11:
|
||||
pxFailRel( wxsFormat( L"Vpu/Vif - Invalid Unpack! [%d]", upknum ) );
|
||||
break;
|
||||
pxFailRel(wxsFormat(L"Vpu/Vif - Invalid Unpack! [%d]", upknum));
|
||||
break;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void VifUnpackSSE_Dynarec::CompileRoutine() {
|
||||
const int wl = vB.wl ? vB.wl : 256; //0 is taken as 256 (KH2)
|
||||
const int upkNum = vB.upkType & 0xf;
|
||||
const u8& vift = nVifT[upkNum];
|
||||
const int cycleSize = isFill ? vB.cl : wl;
|
||||
const int blockSize = isFill ? wl : vB.cl;
|
||||
const int skipSize = blockSize - cycleSize;
|
||||
void VifUnpackSSE_Dynarec::CompileRoutine()
|
||||
{
|
||||
const int wl = vB.wl ? vB.wl : 256; // 0 is taken as 256 (KH2)
|
||||
const int upkNum = vB.upkType & 0xf;
|
||||
const u8& vift = nVifT[upkNum];
|
||||
const int cycleSize = isFill ? vB.cl : wl;
|
||||
const int blockSize = isFill ? wl : vB.cl;
|
||||
const int skipSize = blockSize - cycleSize;
|
||||
|
||||
uint vNum = vB.num ? vB.num : 256;
|
||||
doMode = (upkNum == 0xf) ? 0 : doMode; // V4_5 has no mode feature.
|
||||
uint vNum = vB.num ? vB.num : 256;
|
||||
doMode = (upkNum == 0xf) ? 0 : doMode; // V4_5 has no mode feature.
|
||||
UnpkNoOfIterations = 0;
|
||||
MSKPATH3_LOG("Compiling new block, unpack number %x, mode %x, masking %x, vNum %x", upkNum, doMode, doMask, vNum);
|
||||
|
||||
|
@ -218,16 +273,18 @@ void VifUnpackSSE_Dynarec::CompileRoutine() {
|
|||
// Value passed determines # of col regs we need to load
|
||||
SetMasks(isFill ? blockSize : cycleSize);
|
||||
|
||||
while (vNum) {
|
||||
while (vNum)
|
||||
{
|
||||
|
||||
|
||||
ShiftDisplacementWindow( dstIndirect, arg1reg );
|
||||
ShiftDisplacementWindow(dstIndirect, arg1reg);
|
||||
|
||||
if(UnpkNoOfIterations == 0)
|
||||
ShiftDisplacementWindow( srcIndirect, arg2reg ); //Don't need to do this otherwise as we arent reading the source.
|
||||
if (UnpkNoOfIterations == 0)
|
||||
ShiftDisplacementWindow(srcIndirect, arg2reg); //Don't need to do this otherwise as we arent reading the source.
|
||||
|
||||
|
||||
if (vCL < cycleSize) {
|
||||
if (vCL < cycleSize)
|
||||
{
|
||||
ModUnpack(upkNum, false);
|
||||
xUnpack(upkNum);
|
||||
xMovDest();
|
||||
|
@ -238,9 +295,11 @@ void VifUnpackSSE_Dynarec::CompileRoutine() {
|
|||
srcIndirect += vift;
|
||||
|
||||
vNum--;
|
||||
if (++vCL == blockSize) vCL = 0;
|
||||
if (++vCL == blockSize)
|
||||
vCL = 0;
|
||||
}
|
||||
else if (isFill) {
|
||||
else if (isFill)
|
||||
{
|
||||
//Filling doesn't need anything fancy, it's pretty much a normal write, just doesnt increment the source.
|
||||
//DevCon.WriteLn("filling mode!");
|
||||
xUnpack(upkNum);
|
||||
|
@ -249,38 +308,44 @@ void VifUnpackSSE_Dynarec::CompileRoutine() {
|
|||
dstIndirect += 16;
|
||||
|
||||
vNum--;
|
||||
if (++vCL == blockSize) vCL = 0;
|
||||
if (++vCL == blockSize)
|
||||
vCL = 0;
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
dstIndirect += (16 * skipSize);
|
||||
vCL = 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (doMode>=2) writeBackRow();
|
||||
if (doMode >= 2)
|
||||
writeBackRow();
|
||||
xRET();
|
||||
}
|
||||
|
||||
static u16 dVifComputeLength(uint cl, uint wl, u8 num, bool isFill) {
|
||||
uint length = (num > 0) ? (num * 16) : 4096; // 0 = 256
|
||||
static u16 dVifComputeLength(uint cl, uint wl, u8 num, bool isFill)
|
||||
{
|
||||
uint length = (num > 0) ? (num * 16) : 4096; // 0 = 256
|
||||
|
||||
if (!isFill) {
|
||||
uint skipSize = (cl - wl) * 16;
|
||||
uint blocks = (num + (wl-1)) / wl; //Need to round up num's to calculate skip size correctly.
|
||||
length += (blocks-1) * skipSize;
|
||||
if (!isFill)
|
||||
{
|
||||
uint skipSize = (cl - wl) * 16;
|
||||
uint blocks = (num + (wl - 1)) / wl; //Need to round up num's to calculate skip size correctly.
|
||||
length += (blocks - 1) * skipSize;
|
||||
}
|
||||
|
||||
return std::min(length, 0xFFFFu);
|
||||
}
|
||||
|
||||
_vifT __fi nVifBlock* dVifCompile(nVifBlock& block, bool isFill) {
|
||||
_vifT __fi nVifBlock* dVifCompile(nVifBlock& block, bool isFill)
|
||||
{
|
||||
nVifStruct& v = nVif[idx];
|
||||
|
||||
// Check size before the compilation
|
||||
if (v.recWritePtr > (v.recReserve->GetPtrEnd() - _256kb)) {
|
||||
if (v.recWritePtr > (v.recReserve->GetPtrEnd() - _256kb))
|
||||
{
|
||||
DevCon.WriteLn(L"nVif Recompiler Cache Reset! [%ls > %ls]",
|
||||
pxsPtr(v.recWritePtr), pxsPtr(v.recReserve->GetPtrEnd())
|
||||
);
|
||||
pxsPtr(v.recWritePtr), pxsPtr(v.recReserve->GetPtrEnd()));
|
||||
recReset(idx);
|
||||
}
|
||||
|
||||
|
@ -299,16 +364,17 @@ _vifT __fi nVifBlock* dVifCompile(nVifBlock& block, bool isFill) {
|
|||
return █
|
||||
}
|
||||
|
||||
_vifT __fi void dVifUnpack(const u8* data, bool isFill) {
|
||||
_vifT __fi void dVifUnpack(const u8* data, bool isFill)
|
||||
{
|
||||
|
||||
nVifStruct& v = nVif[idx];
|
||||
vifStruct& vif = MTVU_VifX;
|
||||
vifStruct& vif = MTVU_VifX;
|
||||
VIFregisters& vifRegs = MTVU_VifXRegs;
|
||||
|
||||
const u8 upkType = (vif.cmd & 0x1f) | (vif.usn << 5);
|
||||
const int doMask = isFill? 1 : (vif.cmd & 0x10);
|
||||
const u8 upkType = (vif.cmd & 0x1f) | (vif.usn << 5);
|
||||
const int doMask = isFill ? 1 : (vif.cmd & 0x10);
|
||||
|
||||
nVifBlock block;
|
||||
nVifBlock block;
|
||||
|
||||
// Performance note: initial code was using u8/u16 field of the struct
|
||||
// directly. However reading back the data (as u32) in HashBucket.find
|
||||
|
@ -337,24 +403,28 @@ _vifT __fi void dVifUnpack(const u8* data, bool isFill) {
|
|||
//);
|
||||
|
||||
// Seach in cache before trying to compile the block
|
||||
nVifBlock* b = v.vifBlocks.find(block);
|
||||
if (unlikely(b == nullptr)) {
|
||||
nVifBlock* b = v.vifBlocks.find(block);
|
||||
if (unlikely(b == nullptr))
|
||||
{
|
||||
b = dVifCompile<idx>(block, isFill);
|
||||
}
|
||||
|
||||
{ // Execute the block
|
||||
const VURegs& VU = vuRegs[idx];
|
||||
const uint vuMemLimit = idx ? 0x4000 : 0x1000;
|
||||
const VURegs& VU = vuRegs[idx];
|
||||
const uint vuMemLimit = idx ? 0x4000 : 0x1000;
|
||||
|
||||
u8* startmem = VU.Mem + (vif.tag.addr & (vuMemLimit-0x10));
|
||||
u8* endmem = VU.Mem + vuMemLimit;
|
||||
u8* startmem = VU.Mem + (vif.tag.addr & (vuMemLimit - 0x10));
|
||||
u8* endmem = VU.Mem + vuMemLimit;
|
||||
|
||||
if (likely((startmem + b->length) <= endmem)) {
|
||||
if (likely((startmem + b->length) <= endmem))
|
||||
{
|
||||
// No wrapping, you can run the fast dynarec
|
||||
((nVifrecCall)b->startPtr)((uptr)startmem, (uptr)data);
|
||||
} else {
|
||||
}
|
||||
else
|
||||
{
|
||||
VIF_LOG("Running Interpreter Block: nVif%x - VU Mem Ptr Overflow; falling back to interpreter. Start = %x End = %x num = %x, wl = %x, cl = %x",
|
||||
v.idx, vif.tag.addr, vif.tag.addr + (block.num * 16), block.num, block.wl, block.cl);
|
||||
v.idx, vif.tag.addr, vif.tag.addr + (block.num * 16), block.num, block.wl, block.cl);
|
||||
_nVifUnpack(idx, data, vifRegs.mode, isFill);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -19,21 +19,24 @@
|
|||
|
||||
// nVifBlock - Ordered for Hashing; the 'num' and 'upkType' fields are
|
||||
// used as the hash bucket selector.
|
||||
union nVifBlock {
|
||||
union nVifBlock
|
||||
{
|
||||
// Warning: order depends on the newVifDynaRec code
|
||||
struct {
|
||||
u8 num; // [00] Num Field
|
||||
u8 upkType; // [01] Unpack Type [usn1:mask1:upk*4]
|
||||
u16 length; // [02] Extra: pre computed Length
|
||||
u32 mask; // [04] Mask Field
|
||||
u8 mode; // [08] Mode Field
|
||||
u8 aligned; // [09] Packet Alignment
|
||||
u8 cl; // [10] CL Field
|
||||
u8 wl; // [11] WL Field
|
||||
uptr startPtr; // [12] Start Ptr of RecGen Code
|
||||
struct
|
||||
{
|
||||
u8 num; // [00] Num Field
|
||||
u8 upkType; // [01] Unpack Type [usn1:mask1:upk*4]
|
||||
u16 length; // [02] Extra: pre computed Length
|
||||
u32 mask; // [04] Mask Field
|
||||
u8 mode; // [08] Mode Field
|
||||
u8 aligned; // [09] Packet Alignment
|
||||
u8 cl; // [10] CL Field
|
||||
u8 wl; // [11] WL Field
|
||||
uptr startPtr; // [12] Start Ptr of RecGen Code
|
||||
};
|
||||
|
||||
struct {
|
||||
struct
|
||||
{
|
||||
u16 hash_key;
|
||||
u16 _pad0;
|
||||
u32 key0;
|
||||
|
@ -54,21 +57,25 @@ union nVifBlock {
|
|||
// The hash function is determined by taking the first bytes of data and
|
||||
// performing a modulus the size of hSize. So the most diverse-data should
|
||||
// be in the first bytes of the struct. (hence why nVifBlock is specifically sorted)
|
||||
class HashBucket {
|
||||
class HashBucket
|
||||
{
|
||||
protected:
|
||||
std::array<nVifBlock*, hSize> m_bucket;
|
||||
|
||||
public:
|
||||
HashBucket() {
|
||||
HashBucket()
|
||||
{
|
||||
m_bucket.fill(nullptr);
|
||||
}
|
||||
|
||||
~HashBucket() { clear(); }
|
||||
|
||||
__fi nVifBlock* find(const nVifBlock& dataPtr) {
|
||||
__fi nVifBlock* find(const nVifBlock& dataPtr)
|
||||
{
|
||||
nVifBlock* chainpos = m_bucket[dataPtr.hash_key];
|
||||
|
||||
while (true) {
|
||||
while (true)
|
||||
{
|
||||
if (chainpos->key0 == dataPtr.key0 && chainpos->key1 == dataPtr.key1)
|
||||
return chainpos;
|
||||
|
||||
|
@ -79,32 +86,36 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
void add(const nVifBlock& dataPtr) {
|
||||
void add(const nVifBlock& dataPtr)
|
||||
{
|
||||
u32 b = dataPtr.hash_key;
|
||||
|
||||
u32 size = bucket_size( dataPtr );
|
||||
u32 size = bucket_size(dataPtr);
|
||||
|
||||
// Warning there is an extra +1 due to the empty cell
|
||||
// Performance note: 64B align to reduce cache miss penalty in `find`
|
||||
if( (m_bucket[b] = (nVifBlock*)pcsx2_aligned_realloc( m_bucket[b], sizeof(nVifBlock)*(size+2), 64, sizeof(nVifBlock)*(size+1) )) == NULL ) {
|
||||
if ((m_bucket[b] = (nVifBlock*)pcsx2_aligned_realloc(m_bucket[b], sizeof(nVifBlock) * (size + 2), 64, sizeof(nVifBlock) * (size + 1))) == NULL)
|
||||
{
|
||||
throw Exception::OutOfMemory(
|
||||
wxsFormat(L"HashBucket Chain (bucket size=%d)", size+2)
|
||||
);
|
||||
wxsFormat(L"HashBucket Chain (bucket size=%d)", size + 2));
|
||||
}
|
||||
|
||||
// Replace the empty cell by the new block and create a new empty cell
|
||||
memcpy(&m_bucket[b][size++], &dataPtr, sizeof(nVifBlock));
|
||||
memset(&m_bucket[b][size], 0, sizeof(nVifBlock));
|
||||
|
||||
if( size > 3 ) DevCon.Warning( "recVifUnpk: Bucket 0x%04x has %d micro-programs", b, size );
|
||||
if (size > 3)
|
||||
DevCon.Warning("recVifUnpk: Bucket 0x%04x has %d micro-programs", b, size);
|
||||
}
|
||||
|
||||
u32 bucket_size(const nVifBlock& dataPtr) {
|
||||
u32 bucket_size(const nVifBlock& dataPtr)
|
||||
{
|
||||
nVifBlock* chainpos = m_bucket[dataPtr.hash_key];
|
||||
|
||||
u32 size = 0;
|
||||
|
||||
while (chainpos->startPtr != 0) {
|
||||
while (chainpos->startPtr != 0)
|
||||
{
|
||||
size++;
|
||||
chainpos++;
|
||||
}
|
||||
|
@ -112,20 +123,22 @@ public:
|
|||
return size;
|
||||
}
|
||||
|
||||
void clear() {
|
||||
void clear()
|
||||
{
|
||||
for (auto& bucket : m_bucket)
|
||||
safe_aligned_free(bucket);
|
||||
}
|
||||
|
||||
void reset() {
|
||||
void reset()
|
||||
{
|
||||
clear();
|
||||
|
||||
// Allocate an empty cell for all buckets
|
||||
for (auto& bucket : m_bucket) {
|
||||
if( (bucket = (nVifBlock*)_aligned_malloc( sizeof(nVifBlock), 64 )) == nullptr ) {
|
||||
throw Exception::OutOfMemory(
|
||||
wxsFormat(L"HashBucket Chain (bucket size=%d)", 1)
|
||||
);
|
||||
for (auto& bucket : m_bucket)
|
||||
{
|
||||
if ((bucket = (nVifBlock*)_aligned_malloc(sizeof(nVifBlock), 64)) == nullptr)
|
||||
{
|
||||
throw Exception::OutOfMemory(wxsFormat(L"HashBucket Chain (bucket size=%d)", 1));
|
||||
}
|
||||
|
||||
memset(bucket, 0, sizeof(nVifBlock));
|
||||
|
|
|
@ -23,16 +23,16 @@
|
|||
#include "newVif.h"
|
||||
#include "MTVU.h"
|
||||
|
||||
__aligned16 nVifStruct nVif[2];
|
||||
__aligned16 nVifStruct nVif[2];
|
||||
|
||||
// Interpreter-style SSE unpacks. Array layout matches the interpreter C unpacks.
|
||||
// ([USN][Masking][Unpack Type]) [curCycle]
|
||||
__aligned16 nVifCall nVifUpk[(2*2*16) *4];
|
||||
__aligned16 nVifCall nVifUpk[(2 * 2 * 16) * 4];
|
||||
|
||||
// This is used by the interpreted SSE unpacks only. Recompiled SSE unpacks
|
||||
// and the interpreted C unpacks use the vif.MaskRow/MaskCol members directly.
|
||||
// [MaskNumber][CycleNumber][Vector]
|
||||
__aligned16 u32 nVifMask[3][4][4] = {0};
|
||||
__aligned16 u32 nVifMask[3][4][4] = {0};
|
||||
|
||||
// Number of bytes of data in the source stream needed for each vector.
|
||||
// [equivalent to ((32 >> VL) * (VN+1)) / 8]
|
||||
|
@ -56,7 +56,7 @@ __aligned16 const u8 nVifT[16] = {
|
|||
};
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
template< int idx, bool doMode, bool isFill >
|
||||
template <int idx, bool doMode, bool isFill>
|
||||
__ri void __fastcall _nVifUnpackLoop(const u8* data);
|
||||
|
||||
typedef void __fastcall FnType_VifUnpackLoop(const u8* data);
|
||||
|
@ -64,10 +64,14 @@ typedef FnType_VifUnpackLoop* Fnptr_VifUnpackLoop;
|
|||
|
||||
// Unpacks Until 'Num' is 0
|
||||
static const __aligned16 Fnptr_VifUnpackLoop UnpackLoopTable[2][2][2] = {
|
||||
{{ _nVifUnpackLoop<0,0,0>, _nVifUnpackLoop<0,0,1> },
|
||||
{ _nVifUnpackLoop<0,1,0>, _nVifUnpackLoop<0,1,1> },},
|
||||
{{ _nVifUnpackLoop<1,0,0>, _nVifUnpackLoop<1,0,1> },
|
||||
{ _nVifUnpackLoop<1,1,0>, _nVifUnpackLoop<1,1,1> },},
|
||||
{
|
||||
{_nVifUnpackLoop<0, 0, 0>, _nVifUnpackLoop<0, 0, 1>},
|
||||
{_nVifUnpackLoop<0, 1, 0>, _nVifUnpackLoop<0, 1, 1>},
|
||||
},
|
||||
{
|
||||
{_nVifUnpackLoop<1, 0, 0>, _nVifUnpackLoop<1, 0, 1>},
|
||||
{_nVifUnpackLoop<1, 1, 0>, _nVifUnpackLoop<1, 1, 1>},
|
||||
},
|
||||
};
|
||||
// ----------------------------------------------------------------------------
|
||||
|
||||
|
@ -80,21 +84,26 @@ void resetNewVif(int idx)
|
|||
nVif[idx].bSize = 0;
|
||||
memzero(nVif[idx].buffer);
|
||||
|
||||
if (newVifDynaRec) dVifReset(idx);
|
||||
if (newVifDynaRec)
|
||||
dVifReset(idx);
|
||||
}
|
||||
|
||||
void closeNewVif(int idx) {
|
||||
void closeNewVif(int idx)
|
||||
{
|
||||
}
|
||||
|
||||
void releaseNewVif(int idx) {
|
||||
void releaseNewVif(int idx)
|
||||
{
|
||||
}
|
||||
|
||||
static __fi u8* getVUptr(uint idx, int offset) {
|
||||
return (u8*)(vuRegs[idx].Mem + ( offset & (idx ? 0x3ff0 : 0xff0) ));
|
||||
static __fi u8* getVUptr(uint idx, int offset)
|
||||
{
|
||||
return (u8*)(vuRegs[idx].Mem + (offset & (idx ? 0x3ff0 : 0xff0)));
|
||||
}
|
||||
|
||||
|
||||
_vifT int nVifUnpack(const u8* data) {
|
||||
_vifT int nVifUnpack(const u8* data)
|
||||
{
|
||||
nVifStruct& v = nVif[idx];
|
||||
vifStruct& vif = GetVifX;
|
||||
VIFregisters& vifRegs = vifXRegs;
|
||||
|
@ -102,47 +111,57 @@ _vifT int nVifUnpack(const u8* data) {
|
|||
const uint wl = vifRegs.cycle.wl ? vifRegs.cycle.wl : 256;
|
||||
const uint ret = std::min(vif.vifpacketsize, vif.tag.size);
|
||||
const bool isFill = (vifRegs.cycle.cl < wl);
|
||||
s32 size = ret << 2;
|
||||
|
||||
if (ret == vif.tag.size) { // Full Transfer
|
||||
if (v.bSize) { // Last transfer was partial
|
||||
s32 size = ret << 2;
|
||||
|
||||
if (ret == vif.tag.size) // Full Transfer
|
||||
{
|
||||
if (v.bSize) // Last transfer was partial
|
||||
{
|
||||
memcpy(&v.buffer[v.bSize], data, size);
|
||||
v.bSize += size;
|
||||
size = v.bSize;
|
||||
data = v.buffer;
|
||||
v.bSize += size;
|
||||
size = v.bSize;
|
||||
data = v.buffer;
|
||||
|
||||
vif.cl = 0;
|
||||
vifRegs.num = (vifXRegs.code >> 16) & 0xff; // grab NUM form the original VIFcode input.
|
||||
if (!vifRegs.num) vifRegs.num = 256;
|
||||
vif.cl = 0;
|
||||
vifRegs.num = (vifXRegs.code >> 16) & 0xff; // grab NUM form the original VIFcode input.
|
||||
if (!vifRegs.num)
|
||||
vifRegs.num = 256;
|
||||
}
|
||||
|
||||
if (!idx || !THREAD_VU1) {
|
||||
if (newVifDynaRec) dVifUnpack<idx>(data, isFill);
|
||||
else _nVifUnpack(idx, data, vifRegs.mode, isFill);
|
||||
if (!idx || !THREAD_VU1)
|
||||
{
|
||||
if (newVifDynaRec)
|
||||
dVifUnpack<idx>(data, isFill);
|
||||
else
|
||||
_nVifUnpack(idx, data, vifRegs.mode, isFill);
|
||||
}
|
||||
else vu1Thread.VifUnpack(vif, vifRegs, (u8*)data, (size + 4) & ~0x3);
|
||||
else
|
||||
vu1Thread.VifUnpack(vif, vifRegs, (u8*)data, (size + 4) & ~0x3);
|
||||
|
||||
vif.pass = 0;
|
||||
vif.tag.size = 0;
|
||||
vif.cmd = 0;
|
||||
vifRegs.num = 0;
|
||||
v.bSize = 0;
|
||||
vif.pass = 0;
|
||||
vif.tag.size = 0;
|
||||
vif.cmd = 0;
|
||||
vifRegs.num = 0;
|
||||
v.bSize = 0;
|
||||
}
|
||||
else { // Partial Transfer
|
||||
else // Partial Transfer
|
||||
{
|
||||
memcpy(&v.buffer[v.bSize], data, size);
|
||||
v.bSize += size;
|
||||
v.bSize += size;
|
||||
vif.tag.size -= ret;
|
||||
|
||||
const u8& vSize = nVifT[vif.cmd & 0x0f];
|
||||
const u8& vSize = nVifT[vif.cmd & 0x0f];
|
||||
|
||||
// We need to provide accurate accounting of the NUM register, in case games decided
|
||||
// to read back from it mid-transfer. Since so few games actually use partial transfers
|
||||
// of VIF unpacks, this code should not be any bottleneck.
|
||||
|
||||
if (!isFill) {
|
||||
if (!isFill)
|
||||
{
|
||||
vifRegs.num -= (size / vSize);
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
int dataSize = (size / vSize);
|
||||
vifRegs.num = vifRegs.num - (((dataSize / vifRegs.cycle.cl) * (vifRegs.cycle.wl - vifRegs.cycle.cl)) + dataSize);
|
||||
}
|
||||
|
@ -156,29 +175,32 @@ template int nVifUnpack<1>(const u8* data);
|
|||
|
||||
// This is used by the interpreted SSE unpacks only. Recompiled SSE unpacks
|
||||
// and the interpreted C unpacks use the vif.MaskRow/MaskCol members directly.
|
||||
static void setMasks(const vifStruct& vif, const VIFregisters& v) {
|
||||
for (int i = 0; i < 16; i++) {
|
||||
int m = (v.mask >> (i*2)) & 3;
|
||||
switch (m) {
|
||||
static void setMasks(const vifStruct& vif, const VIFregisters& v)
|
||||
{
|
||||
for (int i = 0; i < 16; i++)
|
||||
{
|
||||
int m = (v.mask >> (i * 2)) & 3;
|
||||
switch (m)
|
||||
{
|
||||
case 0: // Data
|
||||
nVifMask[0][i/4][i%4] = 0xffffffff;
|
||||
nVifMask[1][i/4][i%4] = 0;
|
||||
nVifMask[2][i/4][i%4] = 0;
|
||||
nVifMask[0][i / 4][i % 4] = 0xffffffff;
|
||||
nVifMask[1][i / 4][i % 4] = 0;
|
||||
nVifMask[2][i / 4][i % 4] = 0;
|
||||
break;
|
||||
case 1: // MaskRow
|
||||
nVifMask[0][i/4][i%4] = 0;
|
||||
nVifMask[1][i/4][i%4] = 0;
|
||||
nVifMask[2][i/4][i%4] = vif.MaskRow._u32[i%4];
|
||||
nVifMask[0][i / 4][i % 4] = 0;
|
||||
nVifMask[1][i / 4][i % 4] = 0;
|
||||
nVifMask[2][i / 4][i % 4] = vif.MaskRow._u32[i % 4];
|
||||
break;
|
||||
case 2: // MaskCol
|
||||
nVifMask[0][i/4][i%4] = 0;
|
||||
nVifMask[1][i/4][i%4] = 0;
|
||||
nVifMask[2][i/4][i%4] = vif.MaskCol._u32[i/4];
|
||||
nVifMask[0][i / 4][i % 4] = 0;
|
||||
nVifMask[1][i / 4][i % 4] = 0;
|
||||
nVifMask[2][i / 4][i % 4] = vif.MaskCol._u32[i / 4];
|
||||
break;
|
||||
case 3: // Write Protect
|
||||
nVifMask[0][i/4][i%4] = 0;
|
||||
nVifMask[1][i/4][i%4] = 0xffffffff;
|
||||
nVifMask[2][i/4][i%4] = 0;
|
||||
nVifMask[0][i / 4][i % 4] = 0;
|
||||
nVifMask[1][i / 4][i % 4] = 0xffffffff;
|
||||
nVifMask[2][i / 4][i % 4] = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -205,40 +227,45 @@ static void setMasks(const vifStruct& vif, const VIFregisters& v) {
|
|||
//
|
||||
|
||||
// size - size of the packet fragment incoming from DMAC.
|
||||
template< int idx, bool doMode, bool isFill >
|
||||
__ri void __fastcall _nVifUnpackLoop(const u8* data) {
|
||||
template <int idx, bool doMode, bool isFill>
|
||||
__ri void __fastcall _nVifUnpackLoop(const u8* data)
|
||||
{
|
||||
|
||||
vifStruct& vif = MTVU_VifX;
|
||||
vifStruct& vif = MTVU_VifX;
|
||||
VIFregisters& vifRegs = MTVU_VifXRegs;
|
||||
|
||||
// skipSize used for skipping writes only
|
||||
const int skipSize = (vifRegs.cycle.cl - vifRegs.cycle.wl) * 16;
|
||||
const int skipSize = (vifRegs.cycle.cl - vifRegs.cycle.wl) * 16;
|
||||
|
||||
//DevCon.WriteLn("[%d][%d][%d][num=%d][upk=%d][cl=%d][bl=%d][skip=%d]", isFill, doMask, doMode, vifRegs.num, upkNum, vif.cl, blockSize, skipSize);
|
||||
|
||||
if (!doMode && (vif.cmd & 0x10)) setMasks(vif, vifRegs);
|
||||
if (!doMode && (vif.cmd & 0x10))
|
||||
setMasks(vif, vifRegs);
|
||||
|
||||
const int usn = !!vif.usn;
|
||||
const int upkNum = vif.cmd & 0x1f;
|
||||
const u8& vSize = nVifT[upkNum & 0x0f];
|
||||
const int usn = !!vif.usn;
|
||||
const int upkNum = vif.cmd & 0x1f;
|
||||
const u8& vSize = nVifT[upkNum & 0x0f];
|
||||
//uint vl = vif.cmd & 0x03;
|
||||
//uint vn = (vif.cmd >> 2) & 0x3;
|
||||
//uint vSize = ((32 >> vl) * (vn+1)) / 8; // size of data (in bytes) used for each write cycle
|
||||
|
||||
const nVifCall* fnbase = &nVifUpk[ ((usn*2*16) + upkNum) * (4*1) ];
|
||||
const UNPACKFUNCTYPE ft = VIFfuncTable[idx][doMode ? vifRegs.mode : 0][ ((usn*2*16) + upkNum) ];
|
||||
const nVifCall* fnbase = &nVifUpk[((usn * 2 * 16) + upkNum) * (4 * 1)];
|
||||
const UNPACKFUNCTYPE ft = VIFfuncTable[idx][doMode ? vifRegs.mode : 0][((usn * 2 * 16) + upkNum)];
|
||||
|
||||
pxAssume (vif.cl == 0);
|
||||
pxAssume(vif.cl == 0);
|
||||
//pxAssume (vifRegs.cycle.wl > 0);
|
||||
|
||||
do {
|
||||
do
|
||||
{
|
||||
u8* dest = getVUptr(idx, vif.tag.addr);
|
||||
|
||||
if (doMode) {
|
||||
//if (1) {
|
||||
if (doMode)
|
||||
{
|
||||
//if (1) {
|
||||
ft(dest, data);
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
//DevCon.WriteLn("SSE Unpack!");
|
||||
uint cl3 = std::min(vif.cl, 3);
|
||||
fnbase[cl3](dest, data);
|
||||
|
@ -248,16 +275,20 @@ __ri void __fastcall _nVifUnpackLoop(const u8* data) {
|
|||
--vifRegs.num;
|
||||
++vif.cl;
|
||||
|
||||
if (isFill) {
|
||||
if (isFill)
|
||||
{
|
||||
//DevCon.WriteLn("isFill!");
|
||||
if (vif.cl <= vifRegs.cycle.cl) data += vSize;
|
||||
else if (vif.cl == vifRegs.cycle.wl) vif.cl = 0;
|
||||
if (vif.cl <= vifRegs.cycle.cl)
|
||||
data += vSize;
|
||||
else if (vif.cl == vifRegs.cycle.wl)
|
||||
vif.cl = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
data += vSize;
|
||||
|
||||
if (vif.cl >= vifRegs.cycle.wl) {
|
||||
if (vif.cl >= vifRegs.cycle.wl)
|
||||
{
|
||||
vif.tag.addr += skipSize;
|
||||
vif.cl = 0;
|
||||
}
|
||||
|
@ -265,8 +296,8 @@ __ri void __fastcall _nVifUnpackLoop(const u8* data) {
|
|||
} while (vifRegs.num);
|
||||
}
|
||||
|
||||
__fi void _nVifUnpack(int idx, const u8* data, uint mode, bool isFill) {
|
||||
__fi void _nVifUnpack(int idx, const u8* data, uint mode, bool isFill)
|
||||
{
|
||||
|
||||
UnpackLoopTable[idx][!!mode][isFill]( data );
|
||||
UnpackLoopTable[idx][!!mode][isFill](data);
|
||||
}
|
||||
|
||||
|
|
|
@ -16,11 +16,11 @@
|
|||
#include "PrecompiledHeader.h"
|
||||
#include "newVif_UnpackSSE.h"
|
||||
|
||||
#define xMOV8(regX, loc) xMOVSSZX(regX, loc)
|
||||
#define xMOV16(regX, loc) xMOVSSZX(regX, loc)
|
||||
#define xMOV32(regX, loc) xMOVSSZX(regX, loc)
|
||||
#define xMOV64(regX, loc) xMOVUPS(regX, loc)
|
||||
#define xMOV128(regX, loc) xMOVUPS(regX, loc)
|
||||
#define xMOV8(regX, loc) xMOVSSZX(regX, loc)
|
||||
#define xMOV16(regX, loc) xMOVSSZX(regX, loc)
|
||||
#define xMOV32(regX, loc) xMOVSSZX(regX, loc)
|
||||
#define xMOV64(regX, loc) xMOVUPS (regX, loc)
|
||||
#define xMOV128(regX, loc) xMOVUPS (regX, loc)
|
||||
|
||||
static const __aligned16 u32 SSEXYZWMask[4][4] =
|
||||
{
|
||||
|
@ -34,7 +34,8 @@ static const __aligned16 u32 SSEXYZWMask[4][4] =
|
|||
static RecompiledCodeReserve* nVifUpkExec = NULL;
|
||||
|
||||
// Merges xmm vectors without modifying source reg
|
||||
void mergeVectors(xRegisterSSE dest, xRegisterSSE src, xRegisterSSE temp, int xyzw) {
|
||||
void mergeVectors(xRegisterSSE dest, xRegisterSSE src, xRegisterSSE temp, int xyzw)
|
||||
{
|
||||
mVUmergeRegs(dest, src, xyzw);
|
||||
}
|
||||
|
||||
|
@ -49,92 +50,96 @@ VifUnpackSSE_Base::VifUnpackSSE_Base()
|
|||
, IsAligned(0)
|
||||
, dstIndirect(arg1reg)
|
||||
, srcIndirect(arg2reg)
|
||||
, workReg( xmm1 )
|
||||
, destReg( xmm0 )
|
||||
, workReg(xmm1)
|
||||
, destReg(xmm0)
|
||||
{
|
||||
}
|
||||
|
||||
void VifUnpackSSE_Base::xMovDest() const {
|
||||
if (IsUnmaskedOp()) { xMOVAPS (ptr[dstIndirect], destReg); }
|
||||
else { doMaskWrite(destReg); }
|
||||
void VifUnpackSSE_Base::xMovDest() const
|
||||
{
|
||||
if (IsUnmaskedOp()) { xMOVAPS (ptr[dstIndirect], destReg); }
|
||||
else { doMaskWrite(destReg); }
|
||||
}
|
||||
|
||||
void VifUnpackSSE_Base::xShiftR(const xRegisterSSE& regX, int n) const {
|
||||
if (usn) { xPSRL.D(regX, n); }
|
||||
else { xPSRA.D(regX, n); }
|
||||
void VifUnpackSSE_Base::xShiftR(const xRegisterSSE& regX, int n) const
|
||||
{
|
||||
if (usn) { xPSRL.D(regX, n); }
|
||||
else { xPSRA.D(regX, n); }
|
||||
}
|
||||
|
||||
void VifUnpackSSE_Base::xPMOVXX8(const xRegisterSSE& regX) const {
|
||||
if (usn) xPMOVZX.BD(regX, ptr32[srcIndirect]);
|
||||
else xPMOVSX.BD(regX, ptr32[srcIndirect]);
|
||||
void VifUnpackSSE_Base::xPMOVXX8(const xRegisterSSE& regX) const
|
||||
{
|
||||
if (usn) xPMOVZX.BD(regX, ptr32[srcIndirect]);
|
||||
else xPMOVSX.BD(regX, ptr32[srcIndirect]);
|
||||
}
|
||||
|
||||
void VifUnpackSSE_Base::xPMOVXX16(const xRegisterSSE& regX) const {
|
||||
if (usn) xPMOVZX.WD(regX, ptr64[srcIndirect]);
|
||||
else xPMOVSX.WD(regX, ptr64[srcIndirect]);
|
||||
void VifUnpackSSE_Base::xPMOVXX16(const xRegisterSSE& regX) const
|
||||
{
|
||||
if (usn) xPMOVZX.WD(regX, ptr64[srcIndirect]);
|
||||
else xPMOVSX.WD(regX, ptr64[srcIndirect]);
|
||||
}
|
||||
|
||||
void VifUnpackSSE_Base::xUPK_S_32() const {
|
||||
void VifUnpackSSE_Base::xUPK_S_32() const
|
||||
{
|
||||
|
||||
switch(UnpkLoopIteration)
|
||||
switch (UnpkLoopIteration)
|
||||
{
|
||||
case 0:
|
||||
xMOV128 (workReg, ptr32[srcIndirect]);
|
||||
xPSHUF.D (destReg, workReg, _v0);
|
||||
xMOV128(workReg, ptr32[srcIndirect]);
|
||||
xPSHUF.D(destReg, workReg, _v0);
|
||||
break;
|
||||
case 1:
|
||||
xPSHUF.D (destReg, workReg, _v1);
|
||||
xPSHUF.D(destReg, workReg, _v1);
|
||||
break;
|
||||
case 2:
|
||||
xPSHUF.D (destReg, workReg, _v2);
|
||||
xPSHUF.D(destReg, workReg, _v2);
|
||||
break;
|
||||
case 3:
|
||||
xPSHUF.D (destReg, workReg, _v3);
|
||||
xPSHUF.D(destReg, workReg, _v3);
|
||||
break;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void VifUnpackSSE_Base::xUPK_S_16() const {
|
||||
void VifUnpackSSE_Base::xUPK_S_16() const
|
||||
{
|
||||
|
||||
switch(UnpkLoopIteration)
|
||||
switch (UnpkLoopIteration)
|
||||
{
|
||||
case 0:
|
||||
xPMOVXX16 (workReg);
|
||||
xPSHUF.D (destReg, workReg, _v0);
|
||||
xPMOVXX16(workReg);
|
||||
xPSHUF.D(destReg, workReg, _v0);
|
||||
break;
|
||||
case 1:
|
||||
xPSHUF.D (destReg, workReg, _v1);
|
||||
xPSHUF.D(destReg, workReg, _v1);
|
||||
break;
|
||||
case 2:
|
||||
xPSHUF.D (destReg, workReg, _v2);
|
||||
xPSHUF.D(destReg, workReg, _v2);
|
||||
break;
|
||||
case 3:
|
||||
xPSHUF.D (destReg, workReg, _v3);
|
||||
xPSHUF.D(destReg, workReg, _v3);
|
||||
break;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void VifUnpackSSE_Base::xUPK_S_8() const {
|
||||
void VifUnpackSSE_Base::xUPK_S_8() const
|
||||
{
|
||||
|
||||
switch(UnpkLoopIteration)
|
||||
switch (UnpkLoopIteration)
|
||||
{
|
||||
case 0:
|
||||
xPMOVXX8 (workReg);
|
||||
xPSHUF.D (destReg, workReg, _v0);
|
||||
xPMOVXX8(workReg);
|
||||
xPSHUF.D(destReg, workReg, _v0);
|
||||
break;
|
||||
case 1:
|
||||
xPSHUF.D (destReg, workReg, _v1);
|
||||
xPSHUF.D(destReg, workReg, _v1);
|
||||
break;
|
||||
case 2:
|
||||
xPSHUF.D (destReg, workReg, _v2);
|
||||
xPSHUF.D(destReg, workReg, _v2);
|
||||
break;
|
||||
case 3:
|
||||
xPSHUF.D (destReg, workReg, _v3);
|
||||
xPSHUF.D(destReg, workReg, _v3);
|
||||
break;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// The V2 + V3 unpacks have freaky behaviour, the manual claims "indeterminate".
|
||||
|
@ -142,141 +147,147 @@ void VifUnpackSSE_Base::xUPK_S_8() const {
|
|||
// and games like Lemmings, And1 Streetball rely on this data to be like this!
|
||||
// I have commented after each shuffle to show what data is going where - Ref
|
||||
|
||||
void VifUnpackSSE_Base::xUPK_V2_32() const {
|
||||
void VifUnpackSSE_Base::xUPK_V2_32() const
|
||||
{
|
||||
|
||||
if(UnpkLoopIteration == 0)
|
||||
if (UnpkLoopIteration == 0)
|
||||
{
|
||||
xMOV128 (workReg, ptr32[srcIndirect]);
|
||||
xPSHUF.D (destReg, workReg, 0x44); //v1v0v1v0
|
||||
if(IsAligned)xAND.PS( destReg, ptr128[SSEXYZWMask[0]]); //zero last word - tested on ps2
|
||||
xMOV128(workReg, ptr32[srcIndirect]);
|
||||
xPSHUF.D(destReg, workReg, 0x44); //v1v0v1v0
|
||||
if (IsAligned)
|
||||
xAND.PS(destReg, ptr128[SSEXYZWMask[0]]); //zero last word - tested on ps2
|
||||
}
|
||||
else
|
||||
{
|
||||
xPSHUF.D (destReg, workReg, 0xEE); //v3v2v3v2
|
||||
if(IsAligned)xAND.PS( destReg, ptr128[SSEXYZWMask[0]]); //zero last word - tested on ps2
|
||||
|
||||
xPSHUF.D(destReg, workReg, 0xEE); //v3v2v3v2
|
||||
if (IsAligned)
|
||||
xAND.PS(destReg, ptr128[SSEXYZWMask[0]]); //zero last word - tested on ps2
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void VifUnpackSSE_Base::xUPK_V2_16() const {
|
||||
void VifUnpackSSE_Base::xUPK_V2_16() const
|
||||
{
|
||||
|
||||
if(UnpkLoopIteration == 0)
|
||||
{
|
||||
xPMOVXX16 (workReg);
|
||||
xPSHUF.D (destReg, workReg, 0x44); //v1v0v1v0
|
||||
}
|
||||
else
|
||||
{
|
||||
xPSHUF.D (destReg, workReg, 0xEE); //v3v2v3v2
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
void VifUnpackSSE_Base::xUPK_V2_8() const {
|
||||
|
||||
if(UnpkLoopIteration == 0)
|
||||
if (UnpkLoopIteration == 0)
|
||||
{
|
||||
xPMOVXX8 (workReg);
|
||||
xPSHUF.D (destReg, workReg, 0x44); //v1v0v1v0
|
||||
xPMOVXX16(workReg);
|
||||
xPSHUF.D(destReg, workReg, 0x44); //v1v0v1v0
|
||||
}
|
||||
else
|
||||
{
|
||||
xPSHUF.D (destReg, workReg, 0xEE); //v3v2v3v2
|
||||
xPSHUF.D(destReg, workReg, 0xEE); //v3v2v3v2
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void VifUnpackSSE_Base::xUPK_V3_32() const {
|
||||
void VifUnpackSSE_Base::xUPK_V2_8() const
|
||||
{
|
||||
|
||||
xMOV128 (destReg, ptr128[srcIndirect]);
|
||||
if(UnpkLoopIteration != IsAligned)
|
||||
xAND.PS( destReg, ptr128[SSEXYZWMask[0]]);
|
||||
if (UnpkLoopIteration == 0)
|
||||
{
|
||||
xPMOVXX8(workReg);
|
||||
xPSHUF.D(destReg, workReg, 0x44); //v1v0v1v0
|
||||
}
|
||||
else
|
||||
{
|
||||
xPSHUF.D(destReg, workReg, 0xEE); //v3v2v3v2
|
||||
}
|
||||
}
|
||||
|
||||
void VifUnpackSSE_Base::xUPK_V3_16() const {
|
||||
void VifUnpackSSE_Base::xUPK_V3_32() const
|
||||
{
|
||||
|
||||
xPMOVXX16 (destReg);
|
||||
xMOV128(destReg, ptr128[srcIndirect]);
|
||||
if (UnpkLoopIteration != IsAligned)
|
||||
xAND.PS(destReg, ptr128[SSEXYZWMask[0]]);
|
||||
}
|
||||
|
||||
void VifUnpackSSE_Base::xUPK_V3_16() const
|
||||
{
|
||||
|
||||
xPMOVXX16(destReg);
|
||||
|
||||
//With V3-16, it takes the first vector from the next position as the W vector
|
||||
//However - IF the end of this iteration of the unpack falls on a quadword boundary, W becomes 0
|
||||
//IsAligned is the position through the current QW in the vif packet
|
||||
//Iteration counts where we are in the packet.
|
||||
int result = (((UnpkLoopIteration/4) + 1 + (4-IsAligned)) & 0x3);
|
||||
int result = (((UnpkLoopIteration / 4) + 1 + (4 - IsAligned)) & 0x3);
|
||||
|
||||
if ((UnpkLoopIteration & 0x1) == 0 && result == 0){
|
||||
if ((UnpkLoopIteration & 0x1) == 0 && result == 0)
|
||||
{
|
||||
xAND.PS(destReg, ptr128[SSEXYZWMask[0]]); //zero last word on QW boundary if whole 32bit word is used - tested on ps2
|
||||
}
|
||||
}
|
||||
|
||||
void VifUnpackSSE_Base::xUPK_V3_8() const {
|
||||
void VifUnpackSSE_Base::xUPK_V3_8() const
|
||||
{
|
||||
|
||||
xPMOVXX8 (destReg);
|
||||
xPMOVXX8(destReg);
|
||||
if (UnpkLoopIteration != IsAligned)
|
||||
xAND.PS(destReg, ptr128[SSEXYZWMask[0]]);
|
||||
}
|
||||
|
||||
void VifUnpackSSE_Base::xUPK_V4_32() const {
|
||||
|
||||
xMOV128 (destReg, ptr32[srcIndirect]);
|
||||
}
|
||||
|
||||
void VifUnpackSSE_Base::xUPK_V4_16() const {
|
||||
|
||||
xPMOVXX16 (destReg);
|
||||
}
|
||||
|
||||
void VifUnpackSSE_Base::xUPK_V4_8() const {
|
||||
|
||||
xPMOVXX8 (destReg);
|
||||
}
|
||||
|
||||
void VifUnpackSSE_Base::xUPK_V4_5() const {
|
||||
|
||||
xMOV16 (workReg, ptr32[srcIndirect]);
|
||||
xPSHUF.D (workReg, workReg, _v0);
|
||||
xPSLL.D (workReg, 3); // ABG|R5.000
|
||||
xMOVAPS (destReg, workReg); // x|x|x|R
|
||||
xPSRL.D (workReg, 8); // ABG
|
||||
xPSLL.D (workReg, 3); // AB|G5.000
|
||||
mVUmergeRegs(destReg, workReg, 0x4);// x|x|G|R
|
||||
xPSRL.D (workReg, 8); // AB
|
||||
xPSLL.D (workReg, 3); // A|B5.000
|
||||
mVUmergeRegs(destReg, workReg, 0x2);// x|B|G|R
|
||||
xPSRL.D (workReg, 8); // A
|
||||
xPSLL.D (workReg, 7); // A.0000000
|
||||
mVUmergeRegs(destReg, workReg, 0x1);// A|B|G|R
|
||||
xPSLL.D (destReg, 24); // can optimize to
|
||||
xPSRL.D (destReg, 24); // single AND...
|
||||
}
|
||||
|
||||
void VifUnpackSSE_Base::xUnpack( int upknum ) const
|
||||
void VifUnpackSSE_Base::xUPK_V4_32() const
|
||||
{
|
||||
switch( upknum )
|
||||
xMOV128(destReg, ptr32[srcIndirect]);
|
||||
}
|
||||
|
||||
void VifUnpackSSE_Base::xUPK_V4_16() const
|
||||
{
|
||||
xPMOVXX16(destReg);
|
||||
}
|
||||
|
||||
void VifUnpackSSE_Base::xUPK_V4_8() const
|
||||
{
|
||||
xPMOVXX8(destReg);
|
||||
}
|
||||
|
||||
void VifUnpackSSE_Base::xUPK_V4_5() const
|
||||
{
|
||||
|
||||
xMOV16 (workReg, ptr32[srcIndirect]);
|
||||
xPSHUF.D (workReg, workReg, _v0);
|
||||
xPSLL.D (workReg, 3); // ABG|R5.000
|
||||
xMOVAPS (destReg, workReg); // x|x|x|R
|
||||
xPSRL.D (workReg, 8); // ABG
|
||||
xPSLL.D (workReg, 3); // AB|G5.000
|
||||
mVUmergeRegs(destReg, workReg, 0x4);// x|x|G|R
|
||||
xPSRL.D (workReg, 8); // AB
|
||||
xPSLL.D (workReg, 3); // A|B5.000
|
||||
mVUmergeRegs(destReg, workReg, 0x2);// x|B|G|R
|
||||
xPSRL.D (workReg, 8); // A
|
||||
xPSLL.D (workReg, 7); // A.0000000
|
||||
mVUmergeRegs(destReg, workReg, 0x1);// A|B|G|R
|
||||
xPSLL.D (destReg, 24); // can optimize to
|
||||
xPSRL.D (destReg, 24); // single AND...
|
||||
}
|
||||
|
||||
void VifUnpackSSE_Base::xUnpack(int upknum) const
|
||||
{
|
||||
switch (upknum)
|
||||
{
|
||||
case 0: xUPK_S_32(); break;
|
||||
case 1: xUPK_S_16(); break;
|
||||
case 2: xUPK_S_8(); break;
|
||||
case 0: xUPK_S_32(); break;
|
||||
case 1: xUPK_S_16(); break;
|
||||
case 2: xUPK_S_8(); break;
|
||||
|
||||
case 4: xUPK_V2_32(); break;
|
||||
case 5: xUPK_V2_16(); break;
|
||||
case 6: xUPK_V2_8(); break;
|
||||
case 4: xUPK_V2_32(); break;
|
||||
case 5: xUPK_V2_16(); break;
|
||||
case 6: xUPK_V2_8(); break;
|
||||
|
||||
case 8: xUPK_V3_32(); break;
|
||||
case 9: xUPK_V3_16(); break;
|
||||
case 10: xUPK_V3_8(); break;
|
||||
case 8: xUPK_V3_32(); break;
|
||||
case 9: xUPK_V3_16(); break;
|
||||
case 10: xUPK_V3_8(); break;
|
||||
|
||||
case 12: xUPK_V4_32(); break;
|
||||
case 13: xUPK_V4_16(); break;
|
||||
case 14: xUPK_V4_8(); break;
|
||||
case 15: xUPK_V4_5(); break;
|
||||
|
||||
case 12: xUPK_V4_32(); break;
|
||||
case 13: xUPK_V4_16(); break;
|
||||
case 14: xUPK_V4_8(); break;
|
||||
case 15: xUPK_V4_5(); break;
|
||||
|
||||
case 3:
|
||||
case 7:
|
||||
case 11:
|
||||
pxFailRel( wxsFormat( L"Vpu/Vif - Invalid Unpack! [%d]", upknum ) );
|
||||
break;
|
||||
pxFailRel(wxsFormat(L"Vpu/Vif - Invalid Unpack! [%d]", upknum));
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -286,13 +297,14 @@ void VifUnpackSSE_Base::xUnpack( int upknum ) const
|
|||
|
||||
VifUnpackSSE_Simple::VifUnpackSSE_Simple(bool usn_, bool domask_, int curCycle_)
|
||||
{
|
||||
curCycle = curCycle_;
|
||||
usn = usn_;
|
||||
doMask = domask_;
|
||||
IsAligned = true;
|
||||
curCycle = curCycle_;
|
||||
usn = usn_;
|
||||
doMask = domask_;
|
||||
IsAligned = true;
|
||||
}
|
||||
|
||||
void VifUnpackSSE_Simple::doMaskWrite(const xRegisterSSE& regX) const {
|
||||
void VifUnpackSSE_Simple::doMaskWrite(const xRegisterSSE& regX) const
|
||||
{
|
||||
xMOVAPS(xmm7, ptr[dstIndirect]);
|
||||
int offX = std::min(curCycle, 3);
|
||||
xPAND(regX, ptr32[nVifMask[0][offX]]);
|
||||
|
@ -303,18 +315,20 @@ void VifUnpackSSE_Simple::doMaskWrite(const xRegisterSSE& regX) const {
|
|||
}
|
||||
|
||||
// ecx = dest, edx = src
|
||||
static void nVifGen(int usn, int mask, int curCycle) {
|
||||
static void nVifGen(int usn, int mask, int curCycle)
|
||||
{
|
||||
|
||||
int usnpart = usn*2*16;
|
||||
int maskpart = mask*16;
|
||||
int usnpart = usn * 2 * 16;
|
||||
int maskpart = mask * 16;
|
||||
|
||||
VifUnpackSSE_Simple vpugen( !!usn, !!mask, curCycle );
|
||||
VifUnpackSSE_Simple vpugen(!!usn, !!mask, curCycle);
|
||||
|
||||
for( int i=0; i<16; ++i )
|
||||
for (int i = 0; i < 16; ++i)
|
||||
{
|
||||
nVifCall& ucall( nVifUpk[((usnpart+maskpart+i) * 4) + curCycle] );
|
||||
nVifCall& ucall(nVifUpk[((usnpart + maskpart + i) * 4) + curCycle]);
|
||||
ucall = NULL;
|
||||
if( nVifT[i] == 0 ) continue;
|
||||
if (nVifT[i] == 0)
|
||||
continue;
|
||||
|
||||
ucall = (nVifCall)xGetAlignedCallTarget();
|
||||
vpugen.xUnpack(i);
|
||||
|
@ -325,9 +339,10 @@ static void nVifGen(int usn, int mask, int curCycle) {
|
|||
|
||||
void VifUnpackSSE_Init()
|
||||
{
|
||||
if (nVifUpkExec) return;
|
||||
if (nVifUpkExec)
|
||||
return;
|
||||
|
||||
DevCon.WriteLn( "Generating SSE-optimized unpacking functions for VIF interpreters..." );
|
||||
DevCon.WriteLn("Generating SSE-optimized unpacking functions for VIF interpreters...");
|
||||
|
||||
nVifUpkExec = new RecompiledCodeReserve(L"VIF SSE-optimized Unpacking Functions", _64kb);
|
||||
nVifUpkExec->SetProfilerName("iVIF-SSE");
|
||||
|
@ -335,17 +350,16 @@ void VifUnpackSSE_Init()
|
|||
|
||||
nVifUpkExec->ThrowIfNotOk();
|
||||
|
||||
xSetPtr( *nVifUpkExec );
|
||||
xSetPtr(*nVifUpkExec);
|
||||
|
||||
for (int a = 0; a < 2; a++) {
|
||||
for (int b = 0; b < 2; b++) {
|
||||
for (int c = 0; c < 4; c++) {
|
||||
for (int a = 0; a < 2; a++)
|
||||
for (int b = 0; b < 2; b++)
|
||||
for (int c = 0; c < 4; c++)
|
||||
nVifGen(a, b, c);
|
||||
}}}
|
||||
|
||||
nVifUpkExec->ForbidModification();
|
||||
|
||||
DevCon.WriteLn( "Unpack function generation complete. Generated function statistics:" );
|
||||
DevCon.WriteLn("Unpack function generation complete. Generated function statistics:");
|
||||
DevCon.Indent().WriteLn(
|
||||
L"Reserved buffer : %u bytes @ %ls\n"
|
||||
L"x86 code generated : %u bytes\n",
|
||||
|
@ -357,5 +371,5 @@ void VifUnpackSSE_Init()
|
|||
|
||||
void VifUnpackSSE_Destroy()
|
||||
{
|
||||
safe_delete( nVifUpkExec );
|
||||
safe_delete(nVifUpkExec);
|
||||
}
|
||||
|
|
|
@ -31,29 +31,29 @@ extern void mergeVectors(xRegisterSSE dest, xRegisterSSE src, xRegisterSSE temp,
|
|||
class VifUnpackSSE_Base
|
||||
{
|
||||
public:
|
||||
bool usn; // unsigned flag
|
||||
bool doMask; // masking write enable flag
|
||||
int UnpkLoopIteration;
|
||||
int UnpkNoOfIterations;
|
||||
int IsAligned;
|
||||
bool usn; // unsigned flag
|
||||
bool doMask; // masking write enable flag
|
||||
int UnpkLoopIteration;
|
||||
int UnpkNoOfIterations;
|
||||
int IsAligned;
|
||||
|
||||
|
||||
protected:
|
||||
xAddressVoid dstIndirect;
|
||||
xAddressVoid srcIndirect;
|
||||
xRegisterSSE workReg;
|
||||
xRegisterSSE destReg;
|
||||
xAddressVoid dstIndirect;
|
||||
xAddressVoid srcIndirect;
|
||||
xRegisterSSE workReg;
|
||||
xRegisterSSE destReg;
|
||||
|
||||
public:
|
||||
VifUnpackSSE_Base();
|
||||
virtual ~VifUnpackSSE_Base() = default;
|
||||
|
||||
virtual void xUnpack( int upktype ) const;
|
||||
virtual bool IsUnmaskedOp() const=0;
|
||||
virtual void xUnpack(int upktype) const;
|
||||
virtual bool IsUnmaskedOp() const = 0;
|
||||
virtual void xMovDest() const;
|
||||
|
||||
protected:
|
||||
virtual void doMaskWrite(const xRegisterSSE& regX ) const=0;
|
||||
virtual void doMaskWrite(const xRegisterSSE& regX) const = 0;
|
||||
|
||||
virtual void xShiftR(const xRegisterSSE& regX, int n) const;
|
||||
virtual void xPMOVXX8(const xRegisterSSE& regX) const;
|
||||
|
@ -75,7 +75,6 @@ protected:
|
|||
virtual void xUPK_V4_16() const;
|
||||
virtual void xUPK_V4_8() const;
|
||||
virtual void xUPK_V4_5() const;
|
||||
|
||||
};
|
||||
|
||||
// --------------------------------------------------------------------------------------
|
||||
|
@ -86,16 +85,16 @@ class VifUnpackSSE_Simple : public VifUnpackSSE_Base
|
|||
typedef VifUnpackSSE_Base _parent;
|
||||
|
||||
public:
|
||||
int curCycle;
|
||||
int curCycle;
|
||||
|
||||
public:
|
||||
VifUnpackSSE_Simple(bool usn_, bool domask_, int curCycle_);
|
||||
virtual ~VifUnpackSSE_Simple() = default;
|
||||
|
||||
virtual bool IsUnmaskedOp() const{ return !doMask; }
|
||||
virtual bool IsUnmaskedOp() const { return !doMask; }
|
||||
|
||||
protected:
|
||||
virtual void doMaskWrite(const xRegisterSSE& regX ) const;
|
||||
virtual void doMaskWrite(const xRegisterSSE& regX) const;
|
||||
};
|
||||
|
||||
// --------------------------------------------------------------------------------------
|
||||
|
@ -106,44 +105,43 @@ class VifUnpackSSE_Dynarec : public VifUnpackSSE_Base
|
|||
typedef VifUnpackSSE_Base _parent;
|
||||
|
||||
public:
|
||||
bool isFill;
|
||||
int doMode; // two bit value representing... something!
|
||||
|
||||
bool isFill;
|
||||
int doMode; // two bit value representing... something!
|
||||
|
||||
protected:
|
||||
const nVifStruct& v; // vif0 or vif1
|
||||
const nVifBlock& vB; // some pre-collected data from VifStruct
|
||||
int vCL; // internal copy of vif->cl
|
||||
const nVifStruct& v; // vif0 or vif1
|
||||
const nVifBlock& vB; // some pre-collected data from VifStruct
|
||||
int vCL; // internal copy of vif->cl
|
||||
|
||||
public:
|
||||
VifUnpackSSE_Dynarec(const nVifStruct& vif_, const nVifBlock& vifBlock_);
|
||||
VifUnpackSSE_Dynarec(const VifUnpackSSE_Dynarec& src) // copy constructor
|
||||
VifUnpackSSE_Dynarec(const VifUnpackSSE_Dynarec& src) // copy constructor
|
||||
: _parent(src)
|
||||
, v(src.v)
|
||||
, vB(src.vB)
|
||||
{
|
||||
isFill = src.isFill;
|
||||
vCL = src.vCL;
|
||||
isFill = src.isFill;
|
||||
vCL = src.vCL;
|
||||
}
|
||||
|
||||
virtual ~VifUnpackSSE_Dynarec() = default;
|
||||
|
||||
virtual bool IsUnmaskedOp() const{ return !doMode && !doMask; }
|
||||
virtual bool IsUnmaskedOp() const { return !doMode && !doMask; }
|
||||
|
||||
void ModUnpack( int upknum, bool PostOp );
|
||||
void ModUnpack(int upknum, bool PostOp);
|
||||
void CompileRoutine();
|
||||
|
||||
|
||||
|
||||
protected:
|
||||
virtual void doMaskWrite(const xRegisterSSE& regX) const;
|
||||
void SetMasks(int cS) const;
|
||||
void writeBackRow() const;
|
||||
|
||||
static VifUnpackSSE_Dynarec FillingWrite( const VifUnpackSSE_Dynarec& src )
|
||||
static VifUnpackSSE_Dynarec FillingWrite(const VifUnpackSSE_Dynarec& src)
|
||||
{
|
||||
VifUnpackSSE_Dynarec fillingWrite( src );
|
||||
VifUnpackSSE_Dynarec fillingWrite(src);
|
||||
fillingWrite.doMask = true;
|
||||
fillingWrite.doMode = 0;
|
||||
return fillingWrite;
|
||||
}
|
||||
};
|
||||
|
||||
|
|
Loading…
Reference in New Issue