GSdx-d3d11: Make TFX shader more similar to OGL's.

Denormalize FOG and COLOR to match as well.
This commit is contained in:
KrossX 2019-08-25 15:14:50 -03:00 committed by lightningterror
parent ee05d55a51
commit 4db6b287cd
3 changed files with 75 additions and 91 deletions

View File

@ -988,9 +988,9 @@ void GSRendererDX11::DrawPrims(GSTexture* rt, GSTexture* ds, GSTextureCache::Sou
GSVector4 fc = GSVector4::rgba32(m_env.FOGCOL.u32[0]); GSVector4 fc = GSVector4::rgba32(m_env.FOGCOL.u32[0]);
#if _M_SSE >= 0x401 #if _M_SSE >= 0x401
// Blend AREF to avoid to load a random value for alpha (dirty cache) // Blend AREF to avoid to load a random value for alpha (dirty cache)
ps_cb.FogColor_AREF = fc.blend32<8>(ps_cb.FogColor_AREF) / 255; ps_cb.FogColor_AREF = fc.blend32<8>(ps_cb.FogColor_AREF);
#else #else
ps_cb.FogColor_AREF = fc / 255; ps_cb.FogColor_AREF = fc;
#endif #endif
} }

View File

@ -112,7 +112,7 @@ void GSDevice11::SetupVS(VSSelector sel, const VSConstantBuffer* cb)
D3D11_INPUT_ELEMENT_DESC layout[] = D3D11_INPUT_ELEMENT_DESC layout[] =
{ {
{"TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0}, {"TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0},
{"COLOR", 0, DXGI_FORMAT_R8G8B8A8_UNORM, 0, 8, D3D11_INPUT_PER_VERTEX_DATA, 0}, {"COLOR", 0, DXGI_FORMAT_R8G8B8A8_UINT, 0, 8, D3D11_INPUT_PER_VERTEX_DATA, 0},
{"TEXCOORD", 1, DXGI_FORMAT_R32_FLOAT, 0, 12, D3D11_INPUT_PER_VERTEX_DATA, 0}, {"TEXCOORD", 1, DXGI_FORMAT_R32_FLOAT, 0, 12, D3D11_INPUT_PER_VERTEX_DATA, 0},
{"POSITION", 0, DXGI_FORMAT_R16G16_UINT, 0, 16, D3D11_INPUT_PER_VERTEX_DATA, 0}, {"POSITION", 0, DXGI_FORMAT_R16G16_UINT, 0, 16, D3D11_INPUT_PER_VERTEX_DATA, 0},
{"POSITION", 1, DXGI_FORMAT_R32_UINT, 0, 20, D3D11_INPUT_PER_VERTEX_DATA, 0}, {"POSITION", 1, DXGI_FORMAT_R32_UINT, 0, 20, D3D11_INPUT_PER_VERTEX_DATA, 0},

View File

@ -57,7 +57,7 @@
struct VS_INPUT struct VS_INPUT
{ {
float2 st : TEXCOORD0; float2 st : TEXCOORD0;
float4 c : COLOR0; uint4 c : COLOR0;
float q : TEXCOORD1; float q : TEXCOORD1;
uint2 p : POSITION0; uint2 p : POSITION0;
uint z : POSITION1; uint z : POSITION1;
@ -318,7 +318,7 @@ float4 sample_depth(float2 st, float2 pos)
int depth = fetch_raw_depth(pos); int depth = fetch_raw_depth(pos);
// Convert msb based on the palette // Convert msb based on the palette
t = Palette.Load(int3((depth >> 8) & 0xFF, 0, 0)); t = Palette.Load(int3((depth >> 8) & 0xFF, 0, 0)) * 255.0f;
} }
else if (PS_URBAN_CHAOS_HLE == 1) else if (PS_URBAN_CHAOS_HLE == 1)
{ {
@ -332,12 +332,12 @@ float4 sample_depth(float2 st, float2 pos)
int depth = fetch_raw_depth(pos); int depth = fetch_raw_depth(pos);
// Convert lsb based on the palette // Convert lsb based on the palette
t = Palette.Load(int3(depth & 0xFF, 0, 0)); t = Palette.Load(int3(depth & 0xFF, 0, 0)) * 255.0f;
// Msb is easier // Msb is easier
float green = (float)((depth >> 8) & 0xFF) * 36.0f; float green = (float)((depth >> 8) & 0xFF) * 36.0f;
green = min(green, 255.0f); green = min(green, 255.0f);
t.g += green / 255.0f; t.g += green;
} }
else if (PS_DEPTH_FMT == 1) else if (PS_DEPTH_FMT == 1)
{ {
@ -349,7 +349,7 @@ float4 sample_depth(float2 st, float2 pos)
float4 res = frac((float4)fetch_c(uv).r * bitSh); float4 res = frac((float4)fetch_c(uv).r * bitSh);
t = (res - res.xxyz * bitMsk) * 256.0f / 255.0f; t = (res - res.xxyz * bitMsk) * 256.0f;
} }
else if (PS_DEPTH_FMT == 2) else if (PS_DEPTH_FMT == 2)
{ {
@ -365,7 +365,7 @@ float4 sample_depth(float2 st, float2 pos)
else if (PS_DEPTH_FMT == 3) else if (PS_DEPTH_FMT == 3)
{ {
// Convert a RGBA/RGB5A1 color texture into a RGBA/RGB5A1 color texture // Convert a RGBA/RGB5A1 color texture into a RGBA/RGB5A1 color texture
t = fetch_c(uv); t = fetch_c(uv) * 255.0f;
} }
if (PS_AEM_FMT == FMT_24) if (PS_AEM_FMT == FMT_24)
@ -398,7 +398,7 @@ float4 fetch_red(int2 xy)
rt = fetch_raw_color(xy); rt = fetch_raw_color(xy);
} }
return sample_p(rt.r); return sample_p(rt.r) * 255.0f;
} }
float4 fetch_blue(int2 xy) float4 fetch_blue(int2 xy)
@ -415,26 +415,26 @@ float4 fetch_blue(int2 xy)
rt = fetch_raw_color(xy); rt = fetch_raw_color(xy);
} }
return sample_p(rt.b); return sample_p(rt.b) * 255.0f;
} }
float4 fetch_green(int2 xy) float4 fetch_green(int2 xy)
{ {
float4 rt = fetch_raw_color(xy); float4 rt = fetch_raw_color(xy);
return sample_p(rt.g); return sample_p(rt.g) * 255.0f;
} }
float4 fetch_alpha(int2 xy) float4 fetch_alpha(int2 xy)
{ {
float4 rt = fetch_raw_color(xy); float4 rt = fetch_raw_color(xy);
return sample_p(rt.a); return sample_p(rt.a) * 255.0f;
} }
float4 fetch_rgb(int2 xy) float4 fetch_rgb(int2 xy)
{ {
float4 rt = fetch_raw_color(xy); float4 rt = fetch_raw_color(xy);
float4 c = float4(sample_p(rt.r).r, sample_p(rt.g).g, sample_p(rt.b).b, 1.0); float4 c = float4(sample_p(rt.r).r, sample_p(rt.g).g, sample_p(rt.b).b, 1.0);
return c; return c * 255.0f;
} }
float4 fetch_gXbY(int2 xy) float4 fetch_gXbY(int2 xy)
@ -450,7 +450,7 @@ float4 fetch_gXbY(int2 xy)
int4 rt = (int4)(fetch_raw_color(xy) * 255.0); int4 rt = (int4)(fetch_raw_color(xy) * 255.0);
int green = (rt.g >> ChannelShuffle.w) & ChannelShuffle.z; int green = (rt.g >> ChannelShuffle.w) & ChannelShuffle.z;
int blue = (rt.b << ChannelShuffle.y) & ChannelShuffle.x; int blue = (rt.b << ChannelShuffle.y) & ChannelShuffle.x;
return (float4)(green | blue) / 255.0; return (float4)(green | blue);
} }
} }
@ -476,9 +476,10 @@ float4 sample_color(float2 st)
{ {
uv = st.xyxy + HalfTexel; uv = st.xyxy + HalfTexel;
dd = frac(uv.xy * WH.zw); dd = frac(uv.xy * WH.zw);
if(PS_FST == 0) if(PS_FST == 0)
{ {
dd = clamp(dd, (float2)0.0, (float2)0.9999999); dd = clamp(dd, (float2)0.0f, (float2)0.9999999f);
} }
} }
else else
@ -517,58 +518,43 @@ float4 sample_color(float2 st)
t = c[0]; t = c[0];
} }
return t; return trunc(t * 255.0f + 0.05f);
} }
float4 tfx(float4 t, float4 c) float4 tfx(float4 T, float4 C)
{ {
if(PS_TFX == 0) float4 C_out;
{ float4 FxT = trunc(trunc(C) * T / 128.0f);
if(PS_TCC)
{
c = c * t * 255.0f / 128;
}
else
{
c.rgb = c.rgb * t.rgb * 255.0f / 128;
}
}
else if(PS_TFX == 1)
{
if(PS_TCC)
{
c = t;
}
else
{
c.rgb = t.rgb;
}
}
else if(PS_TFX == 2)
{
c.rgb = c.rgb * t.rgb * 255.0f / 128 + c.a;
if(PS_TCC) #if (PS_TFX == 0)
{ C_out = FxT;
c.a += t.a; #elif (PS_TFX == 1)
} C_out = T;
} #elif (PS_TFX == 2)
else if(PS_TFX == 3) C_out.rgb = FxT.rgb + C.a;
{ C_out.a = T.a + C.a;
c.rgb = c.rgb * t.rgb * 255.0f / 128 + c.a; #elif (PS_TFX == 3)
C_out.rgb = FxT.rgb + C.a;
C_out.a = T.a;
#else
C_out = C;
#endif
if(PS_TCC) #if (PS_TCC == 0)
{ C_out.a = C.a;
c.a = t.a; #endif
}
}
return saturate(c); #if (PS_TFX == 0) || (PS_TFX == 2) || (PS_TFX == 3)
// Clamp only when it is useful
C_out = min(C_out, 255.0f);
#endif
return C_out;
} }
void atst(float4 c) void atst(float4 C)
{ {
float a = trunc(c.a * 255 + 0.01); float a = C.a;
#if 0 #if 0
switch(Uber_ATST) { switch(Uber_ATST) {
@ -639,45 +625,43 @@ float4 ps_color(PS_INPUT input)
#endif #endif
#if PS_CHANNEL_FETCH == 1 #if PS_CHANNEL_FETCH == 1
float4 t = fetch_red(int2(input.p.xy)); float4 T = fetch_red(int2(input.p.xy));
#elif PS_CHANNEL_FETCH == 2 #elif PS_CHANNEL_FETCH == 2
float4 t = fetch_green(int2(input.p.xy)); float4 T = fetch_green(int2(input.p.xy));
#elif PS_CHANNEL_FETCH == 3 #elif PS_CHANNEL_FETCH == 3
float4 t = fetch_blue(int2(input.p.xy)); float4 T = fetch_blue(int2(input.p.xy));
#elif PS_CHANNEL_FETCH == 4 #elif PS_CHANNEL_FETCH == 4
float4 t = fetch_alpha(int2(input.p.xy)); float4 T = fetch_alpha(int2(input.p.xy));
#elif PS_CHANNEL_FETCH == 5 #elif PS_CHANNEL_FETCH == 5
float4 t = fetch_rgb(int2(input.p.xy)); float4 T = fetch_rgb(int2(input.p.xy));
#elif PS_CHANNEL_FETCH == 6 #elif PS_CHANNEL_FETCH == 6
float4 t = fetch_gXbY(int2(input.p.xy)); float4 T = fetch_gXbY(int2(input.p.xy));
#elif PS_DEPTH_FMT > 0 #elif PS_DEPTH_FMT > 0
float4 t = sample_depth(st_int, input.p.xy); float4 T = sample_depth(st_int, input.p.xy);
#else #else
float4 t = sample_color(st); float4 T = sample_color(st);
#endif #endif
float4 c = tfx(t, input.c); float4 C = tfx(T, input.c);
atst(c); atst(C);
c = fog(c, input.t.z); C = fog(C, input.t.z);
if(PS_CLR1) // needed for Cd * (As/Ad/F + 1) blending modes if(PS_CLR1) // needed for Cd * (As/Ad/F + 1) blending modes
{ {
c.rgb = 1; C.rgb = (float3)255.0f;
} }
return c; return C;
} }
void ps_fbmask(inout float4 C, float2 pos_xy) void ps_fbmask(inout float4 C, float2 pos_xy)
{ {
if (PS_FBMASK) if (PS_FBMASK)
{ {
float4 rt = RtSampler.Load(int3(pos_xy, 0)); float4 RT = trunc(RtSampler.Load(int3(pos_xy, 0)) * 255.0f + 0.1f);
uint4 denorm_rt = uint4(rt * 255.0f + 0.5f); C = (float4)(((uint4)C & ~FbMask) | ((uint4)RT & FbMask));
uint4 denorm_c = uint4(C * 255.0f + 0.5f);
C = float4((denorm_c & ~FbMask) | (denorm_rt & FbMask)) / 255.0f;
} }
} }
@ -685,14 +669,14 @@ void ps_blend(inout float4 Color, float As, float2 pos_xy)
{ {
if (SW_BLEND) if (SW_BLEND)
{ {
float4 RT = RtSampler.Load(int3(pos_xy, 0)); float4 RT = trunc(RtSampler.Load(int3(pos_xy, 0)) * 255.0f + 0.1f);
float3 Cs = trunc(Color.rgb * 255.0f + 0.1f); float Ad = (PS_DFMT == FMT_24) ? 1.0f : RT.a / 128.0f;
float3 Cd = trunc(RT.rgb * 255.0f + 0.1f);
float3 Cd = RT.rgb;
float3 Cs = Color.rgb;
float3 Cv; float3 Cv;
float Ad = (PS_DFMT == FMT_24) ? 1.0f : (RT.a * 255.0f / 128.0f);
float3 A = (PS_BLEND_A == 0) ? Cs : ((PS_BLEND_A == 1) ? Cd : (float3)0.0f); float3 A = (PS_BLEND_A == 0) ? Cs : ((PS_BLEND_A == 1) ? Cd : (float3)0.0f);
float3 B = (PS_BLEND_B == 0) ? Cs : ((PS_BLEND_B == 1) ? Cd : (float3)0.0f); float3 B = (PS_BLEND_B == 0) ? Cs : ((PS_BLEND_B == 1) ? Cd : (float3)0.0f);
float3 C = (PS_BLEND_C == 0) ? As : ((PS_BLEND_C == 1) ? Ad : Af); float3 C = (PS_BLEND_C == 0) ? As : ((PS_BLEND_C == 1) ? Ad : Af);
@ -710,7 +694,7 @@ void ps_blend(inout float4 Color, float As, float2 pos_xy)
else if (PS_COLCLIP == 1 && PS_HDR == 0) else if (PS_COLCLIP == 1 && PS_HDR == 0)
Cv = (float3)((int3)Cv & (int3)0xFF); Cv = (float3)((int3)Cv & (int3)0xFF);
Color.rgb = Cv / 255.0f; Color.rgb = Cv;
} }
} }
@ -722,7 +706,7 @@ PS_OUTPUT ps_main(PS_INPUT input)
if (PS_SHUFFLE) if (PS_SHUFFLE)
{ {
uint4 denorm_c = uint4(C * 255.0f + 0.5f); uint4 denorm_c = uint4(C);
uint2 denorm_TA = uint2(float2(TA.xy) * 255.0f + 0.5f); uint2 denorm_TA = uint2(float2(TA.xy) * 255.0f + 0.5f);
// Mask will take care of the correct destination // Mask will take care of the correct destination
@ -734,31 +718,31 @@ PS_OUTPUT ps_main(PS_INPUT input)
if (PS_READ_BA) if (PS_READ_BA)
{ {
if (denorm_c.a & 0x80u) if (denorm_c.a & 0x80u)
C.ga = (float2)(float((denorm_c.a & 0x7Fu) | (denorm_TA.y & 0x80u)) / 255.0f); C.ga = (float2)(float((denorm_c.a & 0x7Fu) | (denorm_TA.y & 0x80u)));
else else
C.ga = (float2)(float((denorm_c.a & 0x7Fu) | (denorm_TA.x & 0x80u)) / 255.0f); C.ga = (float2)(float((denorm_c.a & 0x7Fu) | (denorm_TA.x & 0x80u)));
} }
else else
{ {
if (denorm_c.g & 0x80u) if (denorm_c.g & 0x80u)
C.ga = (float2)(float((denorm_c.g & 0x7Fu) | (denorm_TA.y & 0x80u)) / 255.0f); C.ga = (float2)(float((denorm_c.g & 0x7Fu) | (denorm_TA.y & 0x80u)));
else else
C.ga = (float2)(float((denorm_c.g & 0x7Fu) | (denorm_TA.x & 0x80u)) / 255.0f); C.ga = (float2)(float((denorm_c.g & 0x7Fu) | (denorm_TA.x & 0x80u)));
} }
} }
// Must be done before alpha correction // Must be done before alpha correction
float alpha_blend = trunc(C.a * 255.0f + 0.05f) / 128.0f; float alpha_blend = C.a / 128.0f;
// Alpha correction // Alpha correction
if (PS_DFMT == FMT_16) if (PS_DFMT == FMT_16)
{ {
float A_one = 128.0f / 255.0f; // alpha output will be 0x80 float A_one = 128.0f; // alpha output will be 0x80
C.a = PS_FBA ? A_one : step(A_one, C.a) * A_one; C.a = PS_FBA ? A_one : step(A_one, C.a) * A_one;
} }
else if ((PS_DFMT == FMT_32) && PS_FBA) else if ((PS_DFMT == FMT_32) && PS_FBA)
{ {
float A_one = 128.0f / 255.0f; float A_one = 128.0f;
if (C.a < A_one) C.a += A_one; if (C.a < A_one) C.a += A_one;
} }
@ -766,7 +750,7 @@ PS_OUTPUT ps_main(PS_INPUT input)
ps_fbmask(C, input.p.xy); ps_fbmask(C, input.p.xy);
output.c0 = C; output.c0 = C / 255.0f;
output.c1 = (float4)(alpha_blend); output.c1 = (float4)(alpha_blend);
return output; return output;