diff --git a/bin/resources/shaders/common/ffx_a.h b/bin/resources/shaders/common/ffx_a.h new file mode 100644 index 0000000000..b92546ebbc --- /dev/null +++ b/bin/resources/shaders/common/ffx_a.h @@ -0,0 +1,1907 @@ +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// +// [A] SHADER PORTABILITY 1.20190530 +// +//============================================================================================================================== +// LICENSE +// ======= +// Copyright (c) 2017-2019 Advanced Micro Devices, Inc. All rights reserved. +// Copyright (c) <2014> +// ------- +// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation +// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, +// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the +// Software is furnished to do so, subject to the following conditions: +// ------- +// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the +// Software. +// ------- +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE +// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, +// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. +//------------------------------------------------------------------------------------------------------------------------------ +// ABOUT +// ===== +// Common central point for high-level shading language and C portability for various shader headers. +//------------------------------------------------------------------------------------------------------------------------------ +// DEFINES +// ======= +// A_CPU ..... Include the CPU related code. +// A_GPU ..... Include the GPU related code. +// A_GLSL .... Using GLSL. +// A_HLSL .... Using HLSL. +// A_GCC ..... Using a GCC compatible compiler (else assume MSVC compatible compiler by default). +// ======= +// A_BYTE .... Support 8-bit integer. +// A_HALF .... Support 16-bit integer and floating point. +// A_LONG .... Support 64-bit integer. +// A_DUBL .... Support 64-bit floating point. +// ======= +// A_WAVE .... Support wave-wide operations. +//------------------------------------------------------------------------------------------------------------------------------ +// To get #include "ffx_a.h" working in GLSL use '#extension GL_GOOGLE_include_directive:require'. +//------------------------------------------------------------------------------------------------------------------------------ +// SIMPLIFIED TYPE SYSTEM +// ====================== +// - All ints will be unsigned with exception of when signed is required. +// - Type naming simplified and shortened "A<#components>", +// - H = 16-bit float (half) +// - F = 32-bit float (float) +// - D = 64-bit float (double) +// - P = 1-bit integer (predicate, not using bool because 'B' is used for byte) +// - B = 8-bit integer (byte) +// - W = 16-bit integer (word) +// - U = 32-bit integer (unsigned) +// - L = 64-bit integer (long) +// - Using "AS<#components>" for signed when required. +//------------------------------------------------------------------------------------------------------------------------------ +// TODO +// ==== +// - Make sure 'ALerp*(a,b,m)' does 'b*m+(-a*m+a)' (2 ops). +// - Add subgroup ops. +//------------------------------------------------------------------------------------------------------------------------------ +// CHANGE LOG +// ========== +// 20190531 - Fixed changed to llabs() because long is int on Windows. +// 20190530 - Updated for new CPU/GPU portability. +// 20190528 - Fix AU1_AH2_x() on HLSL (had incorrectly swapped x and y), fixed asuint() cases. +// 20190527 - Added min3/max3 for low precision for HLSL. +// 20190526 - Updated with half approximations, added ARsq*(), and ASat*() for CPU. +// 20190519 - Added more approximations. +// 20190514 - Added long conversions. +// 20190513 - Added the real BFI moved the other one to ABfiM(). +// 20190507 - Added extra remap useful for 2D reductions. +// 20190507 - Started adding wave ops, add parabolic sin/cos. +// 20190505 - Added ASigned*() and friends, setup more auto-typecast, GLSL extensions, etc. +// 20190504 - Added min3/max3 for 32-bit integers. +// 20190503 - Added type reinterpretation for half. +// 20190416 - Added min3/max3 for half. +// 20190405 - Misc bug fixing. +// 20190404 - Cleaned up color conversion code. Switched "splat" to shorter naming "type_". Misc bug fixing. +//============================================================================================================================== +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// COMMON +//============================================================================================================================== +#define A_2PI 6.28318530718 +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// +// +// CPU +// +// +//============================================================================================================================== +// Requires standard C types: stdint.h +// Requires a collection of standard math intrinsics. +// - Requires VS2013 when not using GCC to get exp2() and log2(). +// - https://blogs.msdn.microsoft.com/vcblog/2013/07/19/c99-library-support-in-visual-studio-2013/ +//------------------------------------------------------------------------------------------------------------------------------ +// This provides a minimum subset of functionality compared to the GPU parts. +//============================================================================================================================== +#ifdef A_CPU + // Supporting user defined overrides. + #ifndef A_RESTRICT + #define A_RESTRICT __restrict + #endif +//------------------------------------------------------------------------------------------------------------------------------ + #ifndef A_STATIC + #define A_STATIC static + #endif +//------------------------------------------------------------------------------------------------------------------------------ + // Same types across CPU and GPU. + // Predicate uses 32-bit integer (C friendly bool). + typedef uint32_t AP1; + typedef float AF1; + typedef double AD1; + typedef uint8_t AB1; + typedef uint16_t AW1; + typedef uint32_t AU1; + typedef uint64_t AL1; + typedef int8_t ASB1; + typedef int16_t ASW1; + typedef int32_t ASU1; + typedef int64_t ASL1; +//------------------------------------------------------------------------------------------------------------------------------ + #define AD1_(a) ((AD1)(a)) + #define AF1_(a) ((AF1)(a)) + #define AL1_(a) ((AL1)(a)) + #define AU1_(a) ((AU1)(a)) +//------------------------------------------------------------------------------------------------------------------------------ + #define ASL1_(a) ((ASL1)(a)) + #define ASU1_(a) ((ASU1)(a)) +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC AU1 AU1_AF1(AF1 a){union{AF1 f;AU1 u;}bits;bits.f=a;return bits.u;} +//------------------------------------------------------------------------------------------------------------------------------ + #define A_TRUE 1 + #define A_FALSE 0 +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// +// CPU/GPU PORTING +// +//------------------------------------------------------------------------------------------------------------------------------ +// Hackary to get CPU and GPU to share all setup code, without duplicate code paths. +// Unfortunately this is the level of "ugly" that is required since the languages are very different. +// This uses a lower-case prefix for special vector constructs. +// - In C restrict pointers are used. +// - In the shading language, in/inout/out arguments are used. +// This depends on the ability to access a vector value in both languages via array syntax (aka color[2]). +//============================================================================================================================== +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// VECTOR ARGUMENT/RETURN/INITIALIZATION PORTABILITY +//============================================================================================================================== + #define retAD2 AD1 *A_RESTRICT + #define retAD3 AD1 *A_RESTRICT + #define retAD4 AD1 *A_RESTRICT + #define retAF2 AF1 *A_RESTRICT + #define retAF3 AF1 *A_RESTRICT + #define retAF4 AF1 *A_RESTRICT + #define retAL2 AL1 *A_RESTRICT + #define retAL3 AL1 *A_RESTRICT + #define retAL4 AL1 *A_RESTRICT + #define retAU2 AU1 *A_RESTRICT + #define retAU3 AU1 *A_RESTRICT + #define retAU4 AU1 *A_RESTRICT +//------------------------------------------------------------------------------------------------------------------------------ + #define inAD2 AD1 *A_RESTRICT + #define inAD3 AD1 *A_RESTRICT + #define inAD4 AD1 *A_RESTRICT + #define inAF2 AF1 *A_RESTRICT + #define inAF3 AF1 *A_RESTRICT + #define inAF4 AF1 *A_RESTRICT + #define inAL2 AL1 *A_RESTRICT + #define inAL3 AL1 *A_RESTRICT + #define inAL4 AL1 *A_RESTRICT + #define inAU2 AU1 *A_RESTRICT + #define inAU3 AU1 *A_RESTRICT + #define inAU4 AU1 *A_RESTRICT +//------------------------------------------------------------------------------------------------------------------------------ + #define inoutAD2 AD1 *A_RESTRICT + #define inoutAD3 AD1 *A_RESTRICT + #define inoutAD4 AD1 *A_RESTRICT + #define inoutAF2 AF1 *A_RESTRICT + #define inoutAF3 AF1 *A_RESTRICT + #define inoutAF4 AF1 *A_RESTRICT + #define inoutAL2 AL1 *A_RESTRICT + #define inoutAL3 AL1 *A_RESTRICT + #define inoutAL4 AL1 *A_RESTRICT + #define inoutAU2 AU1 *A_RESTRICT + #define inoutAU3 AU1 *A_RESTRICT + #define inoutAU4 AU1 *A_RESTRICT +//------------------------------------------------------------------------------------------------------------------------------ + #define outAD2 AD1 *A_RESTRICT + #define outAD3 AD1 *A_RESTRICT + #define outAD4 AD1 *A_RESTRICT + #define outAF2 AF1 *A_RESTRICT + #define outAF3 AF1 *A_RESTRICT + #define outAF4 AF1 *A_RESTRICT + #define outAL2 AL1 *A_RESTRICT + #define outAL3 AL1 *A_RESTRICT + #define outAL4 AL1 *A_RESTRICT + #define outAU2 AU1 *A_RESTRICT + #define outAU3 AU1 *A_RESTRICT + #define outAU4 AU1 *A_RESTRICT +//------------------------------------------------------------------------------------------------------------------------------ + #define varAD2(x) AD1 x[2] + #define varAD3(x) AD1 x[3] + #define varAD4(x) AD1 x[4] + #define varAF2(x) AF1 x[2] + #define varAF3(x) AF1 x[3] + #define varAF4(x) AF1 x[4] + #define varAL2(x) AL1 x[2] + #define varAL3(x) AL1 x[3] + #define varAL4(x) AL1 x[4] + #define varAU2(x) AU1 x[2] + #define varAU3(x) AU1 x[3] + #define varAU4(x) AU1 x[4] +//------------------------------------------------------------------------------------------------------------------------------ + #define initAD2(x,y) {x,y} + #define initAD3(x,y,z) {x,y,z} + #define initAD4(x,y,z,w) {x,y,z,w} + #define initAF2(x,y) {x,y} + #define initAF3(x,y,z) {x,y,z} + #define initAF4(x,y,z,w) {x,y,z,w} + #define initAL2(x,y) {x,y} + #define initAL3(x,y,z) {x,y,z} + #define initAL4(x,y,z,w) {x,y,z,w} + #define initAU2(x,y) {x,y} + #define initAU3(x,y,z) {x,y,z} + #define initAU4(x,y,z,w) {x,y,z,w} +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// SCALAR RETURN OPS +//------------------------------------------------------------------------------------------------------------------------------ +// TODO +// ==== +// - Replace transcendentals with manual versions. +//============================================================================================================================== + #ifdef A_GCC + A_STATIC AD1 AAbsD1(AD1 a){return __builtin_fabs(a);} + A_STATIC AF1 AAbsF1(AF1 a){return __builtin_fabsf(a);} + A_STATIC AU1 AAbsSU1(AU1 a){return AU1_(__builtin_abs(ASU1_(a)));} + A_STATIC AL1 AAbsSL1(AL1 a){return AL1_(__builtin_labs(ASL1_(a)));} + #else + A_STATIC AD1 AAbsD1(AD1 a){return fabs(a);} + A_STATIC AF1 AAbsF1(AF1 a){return fabsf(a);} + A_STATIC AU1 AAbsSU1(AU1 a){return AU1_(abs(ASU1_(a)));} + A_STATIC AL1 AAbsSL1(AL1 a){return AL1_(llabs(ASL1_(a)));} + #endif +//------------------------------------------------------------------------------------------------------------------------------ + #ifdef A_GCC + A_STATIC AD1 ACosD1(AD1 a){return __builtin_cos(a);} + A_STATIC AF1 ACosF1(AF1 a){return __builtin_cosf(a);} + #else + A_STATIC AD1 ACosD1(AD1 a){return cos(a);} + A_STATIC AF1 ACosF1(AF1 a){return cosf(a);} + #endif +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC AD1 ADotD2(inAD2 a,inAD2 b){return a[0]*b[0]+a[1]*b[1];} + A_STATIC AD1 ADotD3(inAD3 a,inAD3 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2];} + A_STATIC AD1 ADotD4(inAD4 a,inAD4 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2]+a[3]*b[3];} + A_STATIC AF1 ADotF2(inAF2 a,inAF2 b){return a[0]*b[0]+a[1]*b[1];} + A_STATIC AF1 ADotF3(inAF3 a,inAF3 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2];} + A_STATIC AF1 ADotF4(inAF4 a,inAF4 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2]+a[3]*b[3];} +//------------------------------------------------------------------------------------------------------------------------------ + #ifdef A_GCC + A_STATIC AD1 AExp2D1(AD1 a){return __builtin_exp2(a);} + A_STATIC AF1 AExp2F1(AF1 a){return __builtin_exp2f(a);} + #else + A_STATIC AD1 AExp2D1(AD1 a){return exp2(a);} + A_STATIC AF1 AExp2F1(AF1 a){return exp2f(a);} + #endif +//------------------------------------------------------------------------------------------------------------------------------ + #ifdef A_GCC + A_STATIC AD1 AFloorD1(AD1 a){return __builtin_floor(a);} + A_STATIC AF1 AFloorF1(AF1 a){return __builtin_floorf(a);} + #else + A_STATIC AD1 AFloorD1(AD1 a){return floor(a);} + A_STATIC AF1 AFloorF1(AF1 a){return floorf(a);} + #endif +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC AD1 ALerpD1(AD1 a,AD1 b,AD1 c){return b*c+(-a*c+a);} + A_STATIC AF1 ALerpF1(AF1 a,AF1 b,AF1 c){return b*c+(-a*c+a);} +//------------------------------------------------------------------------------------------------------------------------------ + #ifdef A_GCC + A_STATIC AD1 ALog2D1(AD1 a){return __builtin_log2(a);} + A_STATIC AF1 ALog2F1(AF1 a){return __builtin_log2f(a);} + #else + A_STATIC AD1 ALog2D1(AD1 a){return log2(a);} + A_STATIC AF1 ALog2F1(AF1 a){return log2f(a);} + #endif +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC AD1 AMaxD1(AD1 a,AD1 b){return a>b?a:b;} + A_STATIC AF1 AMaxF1(AF1 a,AF1 b){return a>b?a:b;} + A_STATIC AL1 AMaxL1(AL1 a,AL1 b){return a>b?a:b;} + A_STATIC AU1 AMaxU1(AU1 a,AU1 b){return a>b?a:b;} +//------------------------------------------------------------------------------------------------------------------------------ + // These follow the convention that A integer types don't have signage, until they are operated on. + A_STATIC AL1 AMaxSL1(AL1 a,AL1 b){return (ASL1_(a)>ASL1_(b))?a:b;} + A_STATIC AU1 AMaxSU1(AU1 a,AU1 b){return (ASU1_(a)>ASU1_(b))?a:b;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC AD1 AMinD1(AD1 a,AD1 b){return a>ASL1_(b));} + A_STATIC AU1 AShrSU1(AU1 a,AU1 b){return AU1_(ASU1_(a)>>ASU1_(b));} +//------------------------------------------------------------------------------------------------------------------------------ + #ifdef A_GCC + A_STATIC AD1 ASinD1(AD1 a){return __builtin_sin(a);} + A_STATIC AF1 ASinF1(AF1 a){return __builtin_sinf(a);} + #else + A_STATIC AD1 ASinD1(AD1 a){return sin(a);} + A_STATIC AF1 ASinF1(AF1 a){return sinf(a);} + #endif +//------------------------------------------------------------------------------------------------------------------------------ + #ifdef A_GCC + A_STATIC AD1 ASqrtD1(AD1 a){return __builtin_sqrt(a);} + A_STATIC AF1 ASqrtF1(AF1 a){return __builtin_sqrtf(a);} + #else + A_STATIC AD1 ASqrtD1(AD1 a){return sqrt(a);} + A_STATIC AF1 ASqrtF1(AF1 a){return sqrtf(a);} + #endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// SCALAR RETURN OPS - DEPENDENT +//============================================================================================================================== + A_STATIC AD1 AFractD1(AD1 a){return a-AFloorD1(a);} + A_STATIC AF1 AFractF1(AF1 a){return a-AFloorF1(a);} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC AD1 APowD1(AD1 a,AD1 b){return AExp2D1(b*ALog2D1(a));} + A_STATIC AF1 APowF1(AF1 a,AF1 b){return AExp2F1(b*ALog2F1(a));} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC AD1 ARsqD1(AD1 a){return ARcpD1(ASqrtD1(a));} + A_STATIC AF1 ARsqF1(AF1 a){return ARcpF1(ASqrtF1(a));} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC AD1 ASatD1(AD1 a){return AMinD1(1.0,AMaxD1(0.0,a));} + A_STATIC AF1 ASatF1(AF1 a){return AMinF1(1.0f,AMaxF1(0.0f,a));} +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// VECTOR OPS +//------------------------------------------------------------------------------------------------------------------------------ +// These are added as needed for production or prototyping, so not necessarily a complete set. +// They follow a convention of taking in a destination and also returning the destination value to increase utility. +//============================================================================================================================== + A_STATIC retAD2 opAAbsD2(outAD2 d,inAD2 a){d[0]=AAbsD1(a[0]);d[1]=AAbsD1(a[1]);return d;} + A_STATIC retAD3 opAAbsD3(outAD3 d,inAD3 a){d[0]=AAbsD1(a[0]);d[1]=AAbsD1(a[1]);d[2]=AAbsD1(a[2]);return d;} + A_STATIC retAD4 opAAbsD4(outAD4 d,inAD4 a){d[0]=AAbsD1(a[0]);d[1]=AAbsD1(a[1]);d[2]=AAbsD1(a[2]);d[3]=AAbsD1(a[3]);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC retAF2 opAAbsF2(outAF2 d,inAF2 a){d[0]=AAbsF1(a[0]);d[1]=AAbsF1(a[1]);return d;} + A_STATIC retAF3 opAAbsF3(outAF3 d,inAF3 a){d[0]=AAbsF1(a[0]);d[1]=AAbsF1(a[1]);d[2]=AAbsF1(a[2]);return d;} + A_STATIC retAF4 opAAbsF4(outAF4 d,inAF4 a){d[0]=AAbsF1(a[0]);d[1]=AAbsF1(a[1]);d[2]=AAbsF1(a[2]);d[3]=AAbsF1(a[3]);return d;} +//============================================================================================================================== + A_STATIC retAD2 opAAddD2(outAD2 d,inAD2 a,inAD2 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];return d;} + A_STATIC retAD3 opAAddD3(outAD3 d,inAD3 a,inAD3 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];return d;} + A_STATIC retAD4 opAAddD4(outAD4 d,inAD4 a,inAD4 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];d[3]=a[3]+b[3];return d;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC retAF2 opAAddF2(outAF2 d,inAF2 a,inAF2 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];return d;} + A_STATIC retAF3 opAAddF3(outAF3 d,inAF3 a,inAF3 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];return d;} + A_STATIC retAF4 opAAddF4(outAF4 d,inAF4 a,inAF4 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];d[3]=a[3]+b[3];return d;} +//============================================================================================================================== + A_STATIC retAD2 opACpyD2(outAD2 d,inAD2 a){d[0]=a[0];d[1]=a[1];return d;} + A_STATIC retAD3 opACpyD3(outAD3 d,inAD3 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];return d;} + A_STATIC retAD4 opACpyD4(outAD4 d,inAD4 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];d[3]=a[3];return d;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC retAF2 opACpyF2(outAF2 d,inAF2 a){d[0]=a[0];d[1]=a[1];return d;} + A_STATIC retAF3 opACpyF3(outAF3 d,inAF3 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];return d;} + A_STATIC retAF4 opACpyF4(outAF4 d,inAF4 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];d[3]=a[3];return d;} +//============================================================================================================================== + A_STATIC retAD2 opALerpD2(outAD2 d,inAD2 a,inAD2 b,inAD2 c){d[0]=ALerpD1(a[0],b[0],c[0]);d[1]=ALerpD1(a[1],b[1],c[1]);return d;} + A_STATIC retAD3 opALerpD3(outAD3 d,inAD3 a,inAD3 b,inAD3 c){d[0]=ALerpD1(a[0],b[0],c[0]);d[1]=ALerpD1(a[1],b[1],c[1]);d[2]=ALerpD1(a[2],b[2],c[2]);return d;} + A_STATIC retAD4 opALerpD4(outAD4 d,inAD4 a,inAD4 b,inAD4 c){d[0]=ALerpD1(a[0],b[0],c[0]);d[1]=ALerpD1(a[1],b[1],c[1]);d[2]=ALerpD1(a[2],b[2],c[2]);d[3]=ALerpD1(a[3],b[3],c[3]);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC retAF2 opALerpF2(outAF2 d,inAF2 a,inAF2 b,inAF2 c){d[0]=ALerpF1(a[0],b[0],c[0]);d[1]=ALerpF1(a[1],b[1],c[1]);return d;} + A_STATIC retAF3 opALerpF3(outAF3 d,inAF3 a,inAF3 b,inAF3 c){d[0]=ALerpF1(a[0],b[0],c[0]);d[1]=ALerpF1(a[1],b[1],c[1]);d[2]=ALerpF1(a[2],b[2],c[2]);return d;} + A_STATIC retAF4 opALerpF4(outAF4 d,inAF4 a,inAF4 b,inAF4 c){d[0]=ALerpF1(a[0],b[0],c[0]);d[1]=ALerpF1(a[1],b[1],c[1]);d[2]=ALerpF1(a[2],b[2],c[2]);d[3]=ALerpF1(a[3],b[3],c[3]);return d;} +//============================================================================================================================== + A_STATIC retAD2 opALerpOneD2(outAD2 d,inAD2 a,inAD2 b,AD1 c){d[0]=ALerpD1(a[0],b[0],c);d[1]=ALerpD1(a[1],b[1],c);return d;} + A_STATIC retAD3 opALerpOneD3(outAD3 d,inAD3 a,inAD3 b,AD1 c){d[0]=ALerpD1(a[0],b[0],c);d[1]=ALerpD1(a[1],b[1],c);d[2]=ALerpD1(a[2],b[2],c);return d;} + A_STATIC retAD4 opALerpOneD4(outAD4 d,inAD4 a,inAD4 b,AD1 c){d[0]=ALerpD1(a[0],b[0],c);d[1]=ALerpD1(a[1],b[1],c);d[2]=ALerpD1(a[2],b[2],c);d[3]=ALerpD1(a[3],b[3],c);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC retAF2 opALerpOneF2(outAF2 d,inAF2 a,inAF2 b,AF1 c){d[0]=ALerpF1(a[0],b[0],c);d[1]=ALerpF1(a[1],b[1],c);return d;} + A_STATIC retAF3 opALerpOneF3(outAF3 d,inAF3 a,inAF3 b,AF1 c){d[0]=ALerpF1(a[0],b[0],c);d[1]=ALerpF1(a[1],b[1],c);d[2]=ALerpF1(a[2],b[2],c);return d;} + A_STATIC retAF4 opALerpOneF4(outAF4 d,inAF4 a,inAF4 b,AF1 c){d[0]=ALerpF1(a[0],b[0],c);d[1]=ALerpF1(a[1],b[1],c);d[2]=ALerpF1(a[2],b[2],c);d[3]=ALerpF1(a[3],b[3],c);return d;} +//============================================================================================================================== + A_STATIC retAD2 opAMaxD2(outAD2 d,inAD2 a,inAD2 b){d[0]=AMaxD1(a[0],b[0]);d[1]=AMaxD1(a[1],b[1]);return d;} + A_STATIC retAD3 opAMaxD3(outAD3 d,inAD3 a,inAD3 b){d[0]=AMaxD1(a[0],b[0]);d[1]=AMaxD1(a[1],b[1]);d[2]=AMaxD1(a[2],b[2]);return d;} + A_STATIC retAD4 opAMaxD4(outAD4 d,inAD4 a,inAD4 b){d[0]=AMaxD1(a[0],b[0]);d[1]=AMaxD1(a[1],b[1]);d[2]=AMaxD1(a[2],b[2]);d[3]=AMaxD1(a[3],b[3]);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC retAF2 opAMaxF2(outAF2 d,inAF2 a,inAF2 b){d[0]=AMaxF1(a[0],b[0]);d[1]=AMaxF1(a[1],b[1]);return d;} + A_STATIC retAF3 opAMaxF3(outAF3 d,inAF3 a,inAF3 b){d[0]=AMaxF1(a[0],b[0]);d[1]=AMaxF1(a[1],b[1]);d[2]=AMaxF1(a[2],b[2]);return d;} + A_STATIC retAF4 opAMaxF4(outAF4 d,inAF4 a,inAF4 b){d[0]=AMaxF1(a[0],b[0]);d[1]=AMaxF1(a[1],b[1]);d[2]=AMaxF1(a[2],b[2]);d[3]=AMaxF1(a[3],b[3]);return d;} +//============================================================================================================================== + A_STATIC retAD2 opAMinD2(outAD2 d,inAD2 a,inAD2 b){d[0]=AMinD1(a[0],b[0]);d[1]=AMinD1(a[1],b[1]);return d;} + A_STATIC retAD3 opAMinD3(outAD3 d,inAD3 a,inAD3 b){d[0]=AMinD1(a[0],b[0]);d[1]=AMinD1(a[1],b[1]);d[2]=AMinD1(a[2],b[2]);return d;} + A_STATIC retAD4 opAMinD4(outAD4 d,inAD4 a,inAD4 b){d[0]=AMinD1(a[0],b[0]);d[1]=AMinD1(a[1],b[1]);d[2]=AMinD1(a[2],b[2]);d[3]=AMinD1(a[3],b[3]);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC retAF2 opAMinF2(outAF2 d,inAF2 a,inAF2 b){d[0]=AMinF1(a[0],b[0]);d[1]=AMinF1(a[1],b[1]);return d;} + A_STATIC retAF3 opAMinF3(outAF3 d,inAF3 a,inAF3 b){d[0]=AMinF1(a[0],b[0]);d[1]=AMinF1(a[1],b[1]);d[2]=AMinF1(a[2],b[2]);return d;} + A_STATIC retAF4 opAMinF4(outAF4 d,inAF4 a,inAF4 b){d[0]=AMinF1(a[0],b[0]);d[1]=AMinF1(a[1],b[1]);d[2]=AMinF1(a[2],b[2]);d[3]=AMinF1(a[3],b[3]);return d;} +//============================================================================================================================== + A_STATIC retAD2 opAMulD2(outAD2 d,inAD2 a,inAD2 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];return d;} + A_STATIC retAD3 opAMulD3(outAD3 d,inAD3 a,inAD3 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];return d;} + A_STATIC retAD4 opAMulD4(outAD4 d,inAD4 a,inAD4 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];d[3]=a[3]*b[3];return d;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC retAF2 opAMulF2(outAF2 d,inAF2 a,inAF2 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];return d;} + A_STATIC retAF3 opAMulF3(outAF3 d,inAF3 a,inAF3 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];return d;} + A_STATIC retAF4 opAMulF4(outAF4 d,inAF4 a,inAF4 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];d[3]=a[3]*b[3];return d;} +//============================================================================================================================== + A_STATIC retAD2 opAMulOneD2(outAD2 d,inAD2 a,AD1 b){d[0]=a[0]*b;d[1]=a[1]*b;return d;} + A_STATIC retAD3 opAMulOneD3(outAD3 d,inAD3 a,AD1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;return d;} + A_STATIC retAD4 opAMulOneD4(outAD4 d,inAD4 a,AD1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;d[3]=a[3]*b;return d;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC retAF2 opAMulOneF2(outAF2 d,inAF2 a,AF1 b){d[0]=a[0]*b;d[1]=a[1]*b;return d;} + A_STATIC retAF3 opAMulOneF3(outAF3 d,inAF3 a,AF1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;return d;} + A_STATIC retAF4 opAMulOneF4(outAF4 d,inAF4 a,AF1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;d[3]=a[3]*b;return d;} +//============================================================================================================================== + A_STATIC retAD2 opANegD2(outAD2 d,inAD2 a){d[0]=-a[0];d[1]=-a[1];return d;} + A_STATIC retAD3 opANegD3(outAD3 d,inAD3 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];return d;} + A_STATIC retAD4 opANegD4(outAD4 d,inAD4 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];d[3]=-a[3];return d;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC retAF2 opANegF2(outAF2 d,inAF2 a){d[0]=-a[0];d[1]=-a[1];return d;} + A_STATIC retAF3 opANegF3(outAF3 d,inAF3 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];return d;} + A_STATIC retAF4 opANegF4(outAF4 d,inAF4 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];d[3]=-a[3];return d;} +//============================================================================================================================== + A_STATIC retAD2 opARcpD2(outAD2 d,inAD2 a){d[0]=ARcpD1(a[0]);d[1]=ARcpD1(a[1]);return d;} + A_STATIC retAD3 opARcpD3(outAD3 d,inAD3 a){d[0]=ARcpD1(a[0]);d[1]=ARcpD1(a[1]);d[2]=ARcpD1(a[2]);return d;} + A_STATIC retAD4 opARcpD4(outAD4 d,inAD4 a){d[0]=ARcpD1(a[0]);d[1]=ARcpD1(a[1]);d[2]=ARcpD1(a[2]);d[3]=ARcpD1(a[3]);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC retAF2 opARcpF2(outAF2 d,inAF2 a){d[0]=ARcpF1(a[0]);d[1]=ARcpF1(a[1]);return d;} + A_STATIC retAF3 opARcpF3(outAF3 d,inAF3 a){d[0]=ARcpF1(a[0]);d[1]=ARcpF1(a[1]);d[2]=ARcpF1(a[2]);return d;} + A_STATIC retAF4 opARcpF4(outAF4 d,inAF4 a){d[0]=ARcpF1(a[0]);d[1]=ARcpF1(a[1]);d[2]=ARcpF1(a[2]);d[3]=ARcpF1(a[3]);return d;} +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// HALF FLOAT PACKING +//============================================================================================================================== + // Convert float to half (in lower 16-bits of output). + // Same fast technique as documented here: ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf + // Supports denormals. + // Conversion rules are to make computations possibly "safer" on the GPU, + // -INF & -NaN -> -65504 + // +INF & +NaN -> +65504 + A_STATIC AU1 AU1_AH1_AF1(AF1 f){ + static AW1 base[512]={ + 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, + 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, + 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, + 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, + 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, + 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, + 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0001,0x0002,0x0004,0x0008,0x0010,0x0020,0x0040,0x0080,0x0100, + 0x0200,0x0400,0x0800,0x0c00,0x1000,0x1400,0x1800,0x1c00,0x2000,0x2400,0x2800,0x2c00,0x3000,0x3400,0x3800,0x3c00, + 0x4000,0x4400,0x4800,0x4c00,0x5000,0x5400,0x5800,0x5c00,0x6000,0x6400,0x6800,0x6c00,0x7000,0x7400,0x7800,0x7bff, + 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, + 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, + 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, + 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, + 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, + 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, + 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, + 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, + 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, + 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, + 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, + 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, + 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, + 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8001,0x8002,0x8004,0x8008,0x8010,0x8020,0x8040,0x8080,0x8100, + 0x8200,0x8400,0x8800,0x8c00,0x9000,0x9400,0x9800,0x9c00,0xa000,0xa400,0xa800,0xac00,0xb000,0xb400,0xb800,0xbc00, + 0xc000,0xc400,0xc800,0xcc00,0xd000,0xd400,0xd800,0xdc00,0xe000,0xe400,0xe800,0xec00,0xf000,0xf400,0xf800,0xfbff, + 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, + 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, + 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, + 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, + 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, + 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, + 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff}; + static AB1 shift[512]={ + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x17,0x16,0x15,0x14,0x13,0x12,0x11,0x10,0x0f, + 0x0e,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d, + 0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x17,0x16,0x15,0x14,0x13,0x12,0x11,0x10,0x0f, + 0x0e,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d, + 0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18}; + union{AF1 f;AU1 u;}bits;bits.f=f;AU1 u=bits.u;AU1 i=u>>23;return (AU1)(base[i])+((u&0x7fffff)>>shift[i]);} +//------------------------------------------------------------------------------------------------------------------------------ + // Used to output packed constant. + A_STATIC AU1 AU1_AH2_AF2(inAF2 a){return AU1_AH1_AF1(a[0])+(AU1_AH1_AF1(a[1])<<16);} +#endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// +// +// GLSL +// +// +//============================================================================================================================== +#if defined(A_GLSL) && defined(A_GPU) + #ifndef A_SKIP_EXT + #ifdef A_HALF + #extension GL_EXT_shader_16bit_storage:require + #extension GL_EXT_shader_explicit_arithmetic_types:require + #endif +//------------------------------------------------------------------------------------------------------------------------------ + #ifdef A_LONG + #extension GL_ARB_gpu_shader_int64:require + // TODO: Fixme to more portable extension!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + #extension GL_NV_shader_atomic_int64:require + #endif +//------------------------------------------------------------------------------------------------------------------------------ + #ifdef A_WAVE + #extension GL_KHR_shader_subgroup_arithmetic:require + #extension GL_KHR_shader_subgroup_ballot:require + #extension GL_KHR_shader_subgroup_quad:require + #extension GL_KHR_shader_subgroup_shuffle:require + #endif + #endif +//============================================================================================================================== + #define AP1 bool + #define AP2 bvec2 + #define AP3 bvec3 + #define AP4 bvec4 +//------------------------------------------------------------------------------------------------------------------------------ + #define AF1 float + #define AF2 vec2 + #define AF3 vec3 + #define AF4 vec4 +//------------------------------------------------------------------------------------------------------------------------------ + #define AU1 uint + #define AU2 uvec2 + #define AU3 uvec3 + #define AU4 uvec4 +//------------------------------------------------------------------------------------------------------------------------------ + #define ASU1 int + #define ASU2 ivec2 + #define ASU3 ivec3 + #define ASU4 ivec4 +//============================================================================================================================== + #define AF1_AU1(x) uintBitsToFloat(AU1(x)) + #define AF2_AU2(x) uintBitsToFloat(AU2(x)) + #define AF3_AU3(x) uintBitsToFloat(AU3(x)) + #define AF4_AU4(x) uintBitsToFloat(AU4(x)) +//------------------------------------------------------------------------------------------------------------------------------ + #define AU1_AF1(x) floatBitsToUint(AF1(x)) + #define AU2_AF2(x) floatBitsToUint(AF2(x)) + #define AU3_AF3(x) floatBitsToUint(AF3(x)) + #define AU4_AF4(x) floatBitsToUint(AF4(x)) +//------------------------------------------------------------------------------------------------------------------------------ + #define AU1_AH2_AF2 packHalf2x16 + #define AU1_AW2Unorm_AF2 packUnorm2x16 + #define AU1_AB4Unorm_AF4 packUnorm4x8 +//------------------------------------------------------------------------------------------------------------------------------ + #define AF2_AH2_AU1 unpackHalf2x16 + #define AF2_AW2Unorm_AU1 unpackUnorm2x16 + #define AF4_AB4Unorm_AU1 unpackUnorm4x8 +//============================================================================================================================== + AF1 AF1_x(AF1 a){return AF1(a);} + AF2 AF2_x(AF1 a){return AF2(a,a);} + AF3 AF3_x(AF1 a){return AF3(a,a,a);} + AF4 AF4_x(AF1 a){return AF4(a,a,a,a);} + #define AF1_(a) AF1_x(AF1(a)) + #define AF2_(a) AF2_x(AF1(a)) + #define AF3_(a) AF3_x(AF1(a)) + #define AF4_(a) AF4_x(AF1(a)) +//------------------------------------------------------------------------------------------------------------------------------ + AU1 AU1_x(AU1 a){return AU1(a);} + AU2 AU2_x(AU1 a){return AU2(a,a);} + AU3 AU3_x(AU1 a){return AU3(a,a,a);} + AU4 AU4_x(AU1 a){return AU4(a,a,a,a);} + #define AU1_(a) AU1_x(AU1(a)) + #define AU2_(a) AU2_x(AU1(a)) + #define AU3_(a) AU3_x(AU1(a)) + #define AU4_(a) AU4_x(AU1(a)) +//============================================================================================================================== + AU1 AAbsSU1(AU1 a){return AU1(abs(ASU1(a)));} + AU2 AAbsSU2(AU2 a){return AU2(abs(ASU2(a)));} + AU3 AAbsSU3(AU3 a){return AU3(abs(ASU3(a)));} + AU4 AAbsSU4(AU4 a){return AU4(abs(ASU4(a)));} +//------------------------------------------------------------------------------------------------------------------------------ + AU1 ABfe(AU1 src,AU1 off,AU1 bits){return bitfieldExtract(src,ASU1(off),ASU1(bits));} + AU1 ABfi(AU1 src,AU1 ins,AU1 mask){return (ins&mask)|(src&(~mask));} + // Proxy for V_BFI_B32 where the 'mask' is set as 'bits', 'mask=(1<>ASU1(b));} + AU2 AShrSU2(AU2 a,AU2 b){return AU2(ASU2(a)>>ASU2(b));} + AU3 AShrSU3(AU3 a,AU3 b){return AU3(ASU3(a)>>ASU3(b));} + AU4 AShrSU4(AU4 a,AU4 b){return AU4(ASU4(a)>>ASU4(b));} +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// GLSL BYTE +//============================================================================================================================== + #ifdef A_BYTE + #define AB1 uint8_t + #define AB2 u8vec2 + #define AB3 u8vec3 + #define AB4 u8vec4 +//------------------------------------------------------------------------------------------------------------------------------ + #define ASB1 int8_t + #define ASB2 i8vec2 + #define ASB3 i8vec3 + #define ASB4 i8vec4 +//------------------------------------------------------------------------------------------------------------------------------ + AB1 AB1_x(AB1 a){return AB1(a);} + AB2 AB2_x(AB1 a){return AB2(a,a);} + AB3 AB3_x(AB1 a){return AB3(a,a,a);} + AB4 AB4_x(AB1 a){return AB4(a,a,a,a);} + #define AB1_(a) AB1_x(AB1(a)) + #define AB2_(a) AB2_x(AB1(a)) + #define AB3_(a) AB3_x(AB1(a)) + #define AB4_(a) AB4_x(AB1(a)) + #endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// GLSL HALF +//============================================================================================================================== + #ifdef A_HALF + #define AH1 float16_t + #define AH2 f16vec2 + #define AH3 f16vec3 + #define AH4 f16vec4 +//------------------------------------------------------------------------------------------------------------------------------ + #define AW1 uint16_t + #define AW2 u16vec2 + #define AW3 u16vec3 + #define AW4 u16vec4 +//------------------------------------------------------------------------------------------------------------------------------ + #define ASW1 int16_t + #define ASW2 i16vec2 + #define ASW3 i16vec3 + #define ASW4 i16vec4 +//============================================================================================================================== + #define AH2_AU1(x) unpackFloat2x16(AU1(x)) + AH4 AH4_AU2_x(AU2 x){return AH4(unpackFloat2x16(x.x),unpackFloat2x16(x.y));} + #define AH4_AU2(x) AH4_AU2_x(AU2(x)) + #define AW2_AU1(x) unpackUint2x16(AU1(x)) + #define AW4_AU2(x) unpackUint4x16(pack64(AU2(x))) +//------------------------------------------------------------------------------------------------------------------------------ + #define AU1_AH2(x) packFloat2x16(AH2(x)) + AU2 AU2_AH4_x(AH4 x){return AU2(packFloat2x16(x.xy),packFloat2x16(x.zw));} + #define AU2_AH4(x) AU2_AH4_x(AH4(x)) + #define AU1_AW2(x) packUint2x16(AW2(x)) + #define AU2_AW4(x) unpack32(packUint4x16(AW4(x))) +//============================================================================================================================== + #define AW1_AH1(x) halfBitsToUint16(AH1(x)) + #define AW2_AH2(x) halfBitsToUint16(AH2(x)) + #define AW3_AH3(x) halfBitsToUint16(AH3(x)) + #define AW4_AH4(x) halfBitsToUint16(AH4(x)) +//------------------------------------------------------------------------------------------------------------------------------ + #define AH1_AW1(x) uint16BitsToHalf(AW1(x)) + #define AH2_AW2(x) uint16BitsToHalf(AW2(x)) + #define AH3_AW3(x) uint16BitsToHalf(AW3(x)) + #define AH4_AW4(x) uint16BitsToHalf(AW4(x)) +//============================================================================================================================== + AH1 AH1_x(AH1 a){return AH1(a);} + AH2 AH2_x(AH1 a){return AH2(a,a);} + AH3 AH3_x(AH1 a){return AH3(a,a,a);} + AH4 AH4_x(AH1 a){return AH4(a,a,a,a);} + #define AH1_(a) AH1_x(AH1(a)) + #define AH2_(a) AH2_x(AH1(a)) + #define AH3_(a) AH3_x(AH1(a)) + #define AH4_(a) AH4_x(AH1(a)) +//------------------------------------------------------------------------------------------------------------------------------ + AW1 AW1_x(AW1 a){return AW1(a);} + AW2 AW2_x(AW1 a){return AW2(a,a);} + AW3 AW3_x(AW1 a){return AW3(a,a,a);} + AW4 AW4_x(AW1 a){return AW4(a,a,a,a);} + #define AW1_(a) AW1_x(AW1(a)) + #define AW2_(a) AW2_x(AW1(a)) + #define AW3_(a) AW3_x(AW1(a)) + #define AW4_(a) AW4_x(AW1(a)) +//============================================================================================================================== + AW1 AAbsSW1(AW1 a){return AW1(abs(ASW1(a)));} + AW2 AAbsSW2(AW2 a){return AW2(abs(ASW2(a)));} + AW3 AAbsSW3(AW3 a){return AW3(abs(ASW3(a)));} + AW4 AAbsSW4(AW4 a){return AW4(abs(ASW4(a)));} +//------------------------------------------------------------------------------------------------------------------------------ + AH1 AFractH1(AH1 x){return fract(x);} + AH2 AFractH2(AH2 x){return fract(x);} + AH3 AFractH3(AH3 x){return fract(x);} + AH4 AFractH4(AH4 x){return fract(x);} +//------------------------------------------------------------------------------------------------------------------------------ + AH1 ALerpH1(AH1 x,AH1 y,AH1 a){return mix(x,y,a);} + AH2 ALerpH2(AH2 x,AH2 y,AH2 a){return mix(x,y,a);} + AH3 ALerpH3(AH3 x,AH3 y,AH3 a){return mix(x,y,a);} + AH4 ALerpH4(AH4 x,AH4 y,AH4 a){return mix(x,y,a);} +//------------------------------------------------------------------------------------------------------------------------------ + // No packed version of max3. + AH1 AMax3H1(AH1 x,AH1 y,AH1 z){return max(x,max(y,z));} + AH2 AMax3H2(AH2 x,AH2 y,AH2 z){return max(x,max(y,z));} + AH3 AMax3H3(AH3 x,AH3 y,AH3 z){return max(x,max(y,z));} + AH4 AMax3H4(AH4 x,AH4 y,AH4 z){return max(x,max(y,z));} +//------------------------------------------------------------------------------------------------------------------------------ + AW1 AMaxSW1(AW1 a,AW1 b){return AW1(max(ASU1(a),ASU1(b)));} + AW2 AMaxSW2(AW2 a,AW2 b){return AW2(max(ASU2(a),ASU2(b)));} + AW3 AMaxSW3(AW3 a,AW3 b){return AW3(max(ASU3(a),ASU3(b)));} + AW4 AMaxSW4(AW4 a,AW4 b){return AW4(max(ASU4(a),ASU4(b)));} +//------------------------------------------------------------------------------------------------------------------------------ + // No packed version of min3. + AH1 AMin3H1(AH1 x,AH1 y,AH1 z){return min(x,min(y,z));} + AH2 AMin3H2(AH2 x,AH2 y,AH2 z){return min(x,min(y,z));} + AH3 AMin3H3(AH3 x,AH3 y,AH3 z){return min(x,min(y,z));} + AH4 AMin3H4(AH4 x,AH4 y,AH4 z){return min(x,min(y,z));} +//------------------------------------------------------------------------------------------------------------------------------ + AW1 AMinSW1(AW1 a,AW1 b){return AW1(min(ASU1(a),ASU1(b)));} + AW2 AMinSW2(AW2 a,AW2 b){return AW2(min(ASU2(a),ASU2(b)));} + AW3 AMinSW3(AW3 a,AW3 b){return AW3(min(ASU3(a),ASU3(b)));} + AW4 AMinSW4(AW4 a,AW4 b){return AW4(min(ASU4(a),ASU4(b)));} +//------------------------------------------------------------------------------------------------------------------------------ + AH1 ARcpH1(AH1 x){return AH1_(1.0)/x;} + AH2 ARcpH2(AH2 x){return AH2_(1.0)/x;} + AH3 ARcpH3(AH3 x){return AH3_(1.0)/x;} + AH4 ARcpH4(AH4 x){return AH4_(1.0)/x;} +//------------------------------------------------------------------------------------------------------------------------------ + AH1 ARsqH1(AH1 x){return AH1_(1.0)/sqrt(x);} + AH2 ARsqH2(AH2 x){return AH2_(1.0)/sqrt(x);} + AH3 ARsqH3(AH3 x){return AH3_(1.0)/sqrt(x);} + AH4 ARsqH4(AH4 x){return AH4_(1.0)/sqrt(x);} +//------------------------------------------------------------------------------------------------------------------------------ + AH1 ASatH1(AH1 x){return clamp(x,AH1_(0.0),AH1_(1.0));} + AH2 ASatH2(AH2 x){return clamp(x,AH2_(0.0),AH2_(1.0));} + AH3 ASatH3(AH3 x){return clamp(x,AH3_(0.0),AH3_(1.0));} + AH4 ASatH4(AH4 x){return clamp(x,AH4_(0.0),AH4_(1.0));} +//------------------------------------------------------------------------------------------------------------------------------ + AW1 AShrSW1(AW1 a,AW1 b){return AW1(ASW1(a)>>ASW1(b));} + AW2 AShrSW2(AW2 a,AW2 b){return AW2(ASW2(a)>>ASW2(b));} + AW3 AShrSW3(AW3 a,AW3 b){return AW3(ASW3(a)>>ASW3(b));} + AW4 AShrSW4(AW4 a,AW4 b){return AW4(ASW4(a)>>ASW4(b));} + #endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// GLSL DOUBLE +//============================================================================================================================== + #ifdef A_DUBL + #define AD1 double + #define AD2 dvec2 + #define AD3 dvec3 + #define AD4 dvec4 +//------------------------------------------------------------------------------------------------------------------------------ + AD1 AD1_x(AD1 a){return AD1(a);} + AD2 AD2_x(AD1 a){return AD2(a,a);} + AD3 AD3_x(AD1 a){return AD3(a,a,a);} + AD4 AD4_x(AD1 a){return AD4(a,a,a,a);} + #define AD1_(a) AD1_x(AD1(a)) + #define AD2_(a) AD2_x(AD1(a)) + #define AD3_(a) AD3_x(AD1(a)) + #define AD4_(a) AD4_x(AD1(a)) +//============================================================================================================================== + AD1 AFractD1(AD1 x){return fract(x);} + AD2 AFractD2(AD2 x){return fract(x);} + AD3 AFractD3(AD3 x){return fract(x);} + AD4 AFractD4(AD4 x){return fract(x);} +//------------------------------------------------------------------------------------------------------------------------------ + AD1 ALerpD1(AD1 x,AD1 y,AD1 a){return mix(x,y,a);} + AD2 ALerpD2(AD2 x,AD2 y,AD2 a){return mix(x,y,a);} + AD3 ALerpD3(AD3 x,AD3 y,AD3 a){return mix(x,y,a);} + AD4 ALerpD4(AD4 x,AD4 y,AD4 a){return mix(x,y,a);} +//------------------------------------------------------------------------------------------------------------------------------ + AD1 ARcpD1(AD1 x){return AD1_(1.0)/x;} + AD2 ARcpD2(AD2 x){return AD2_(1.0)/x;} + AD3 ARcpD3(AD3 x){return AD3_(1.0)/x;} + AD4 ARcpD4(AD4 x){return AD4_(1.0)/x;} +//------------------------------------------------------------------------------------------------------------------------------ + AD1 ARsqD1(AD1 x){return AD1_(1.0)/sqrt(x);} + AD2 ARsqD2(AD2 x){return AD2_(1.0)/sqrt(x);} + AD3 ARsqD3(AD3 x){return AD3_(1.0)/sqrt(x);} + AD4 ARsqD4(AD4 x){return AD4_(1.0)/sqrt(x);} +//------------------------------------------------------------------------------------------------------------------------------ + AD1 ASatD1(AD1 x){return clamp(x,AD1_(0.0),AD1_(1.0));} + AD2 ASatD2(AD2 x){return clamp(x,AD2_(0.0),AD2_(1.0));} + AD3 ASatD3(AD3 x){return clamp(x,AD3_(0.0),AD3_(1.0));} + AD4 ASatD4(AD4 x){return clamp(x,AD4_(0.0),AD4_(1.0));} + #endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// GLSL LONG +//============================================================================================================================== + #ifdef A_LONG + #define AL1 uint64_t + #define AL2 u64vec2 + #define AL3 u64vec3 + #define AL4 u64vec4 +//------------------------------------------------------------------------------------------------------------------------------ + #define ASL1 int64_t + #define ASL2 i64vec2 + #define ASL3 i64vec3 + #define ASL4 i64vec4 +//------------------------------------------------------------------------------------------------------------------------------ + #define AL1_AU2(x) packUint2x32(AU2(x)) + #define AU2_AL1(x) unpackUint2x32(AL1(x)) +//------------------------------------------------------------------------------------------------------------------------------ + AL1 AL1_x(AL1 a){return AL1(a);} + AL2 AL2_x(AL1 a){return AL2(a,a);} + AL3 AL3_x(AL1 a){return AL3(a,a,a);} + AL4 AL4_x(AL1 a){return AL4(a,a,a,a);} + #define AL1_(a) AL1_x(AL1(a)) + #define AL2_(a) AL2_x(AL1(a)) + #define AL3_(a) AL3_x(AL1(a)) + #define AL4_(a) AL4_x(AL1(a)) +//============================================================================================================================== + AL1 AAbsSL1(AL1 a){return AL1(abs(ASL1(a)));} + AL2 AAbsSL2(AL2 a){return AL2(abs(ASL2(a)));} + AL3 AAbsSL3(AL3 a){return AL3(abs(ASL3(a)));} + AL4 AAbsSL4(AL4 a){return AL4(abs(ASL4(a)));} +//------------------------------------------------------------------------------------------------------------------------------ + AL1 AMaxSL1(AL1 a,AL1 b){return AL1(max(ASU1(a),ASU1(b)));} + AL2 AMaxSL2(AL2 a,AL2 b){return AL2(max(ASU2(a),ASU2(b)));} + AL3 AMaxSL3(AL3 a,AL3 b){return AL3(max(ASU3(a),ASU3(b)));} + AL4 AMaxSL4(AL4 a,AL4 b){return AL4(max(ASU4(a),ASU4(b)));} +//------------------------------------------------------------------------------------------------------------------------------ + AL1 AMinSL1(AL1 a,AL1 b){return AL1(min(ASU1(a),ASU1(b)));} + AL2 AMinSL2(AL2 a,AL2 b){return AL2(min(ASU2(a),ASU2(b)));} + AL3 AMinSL3(AL3 a,AL3 b){return AL3(min(ASU3(a),ASU3(b)));} + AL4 AMinSL4(AL4 a,AL4 b){return AL4(min(ASU4(a),ASU4(b)));} + #endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// WAVE OPERATIONS +//============================================================================================================================== + #ifdef A_WAVE + AF1 AWaveAdd(AF1 v){return subgroupAdd(v);} + AF2 AWaveAdd(AF2 v){return subgroupAdd(v);} + AF3 AWaveAdd(AF3 v){return subgroupAdd(v);} + AF4 AWaveAdd(AF4 v){return subgroupAdd(v);} + #endif +//============================================================================================================================== +#endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// +// +// HLSL +// +// +//============================================================================================================================== +#if defined(A_HLSL) && defined(A_GPU) + #define AP1 bool + #define AP2 bool2 + #define AP3 bool3 + #define AP4 bool4 +//------------------------------------------------------------------------------------------------------------------------------ + #define AF1 float + #define AF2 float2 + #define AF3 float3 + #define AF4 float4 +//------------------------------------------------------------------------------------------------------------------------------ + #define AU1 uint + #define AU2 uint2 + #define AU3 uint3 + #define AU4 uint4 +//------------------------------------------------------------------------------------------------------------------------------ + #define ASU1 int + #define ASU2 int2 + #define ASU3 int3 + #define ASU4 int4 +//============================================================================================================================== + #define AF1_AU1(x) asfloat(AU1(x)) + #define AF2_AU2(x) asfloat(AU2(x)) + #define AF3_AU3(x) asfloat(AU3(x)) + #define AF4_AU4(x) asfloat(AU4(x)) +//------------------------------------------------------------------------------------------------------------------------------ + #define AU1_AF1(x) asuint(AF1(x)) + #define AU2_AF2(x) asuint(AF2(x)) + #define AU3_AF3(x) asuint(AF3(x)) + #define AU4_AF4(x) asuint(AF4(x)) +//------------------------------------------------------------------------------------------------------------------------------ + AU1 AU1_AH2_AF2_x(AF2 a){return f32tof16(a.x)|(f32tof16(a.y)<<16);} + #define AU1_AH2_AF2(a) AU1_AH2_AF2_x(AF2(a)) + #define AU1_AB4Unorm_AF4(x) D3DCOLORtoUBYTE4(AF4(x)) +//------------------------------------------------------------------------------------------------------------------------------ + AF2 AF2_AH2_AU1_x(AU1 x){return AF2(f16tof32(x&0xFFFF),f16tof32(x>>16));} + #define AF2_AH2_AU1(x) AF2_AH2_AU1_x(AU1(x)) +//============================================================================================================================== + AF1 AF1_x(AF1 a){return AF1(a);} + AF2 AF2_x(AF1 a){return AF2(a,a);} + AF3 AF3_x(AF1 a){return AF3(a,a,a);} + AF4 AF4_x(AF1 a){return AF4(a,a,a,a);} + #define AF1_(a) AF1_x(AF1(a)) + #define AF2_(a) AF2_x(AF1(a)) + #define AF3_(a) AF3_x(AF1(a)) + #define AF4_(a) AF4_x(AF1(a)) +//------------------------------------------------------------------------------------------------------------------------------ + AU1 AU1_x(AU1 a){return AU1(a);} + AU2 AU2_x(AU1 a){return AU2(a,a);} + AU3 AU3_x(AU1 a){return AU3(a,a,a);} + AU4 AU4_x(AU1 a){return AU4(a,a,a,a);} + #define AU1_(a) AU1_x(AU1(a)) + #define AU2_(a) AU2_x(AU1(a)) + #define AU3_(a) AU3_x(AU1(a)) + #define AU4_(a) AU4_x(AU1(a)) +//============================================================================================================================== + AU1 AAbsSU1(AU1 a){return AU1(abs(ASU1(a)));} + AU2 AAbsSU2(AU2 a){return AU2(abs(ASU2(a)));} + AU3 AAbsSU3(AU3 a){return AU3(abs(ASU3(a)));} + AU4 AAbsSU4(AU4 a){return AU4(abs(ASU4(a)));} +//------------------------------------------------------------------------------------------------------------------------------ + AU1 ABfe(AU1 src,AU1 off,AU1 bits){AU1 mask=(1<>off)&mask;} + AU1 ABfi(AU1 src,AU1 ins,AU1 mask){return (ins&mask)|(src&(~mask));} + AU1 ABfiM(AU1 src,AU1 ins,AU1 bits){AU1 mask=(1<>ASU1(b));} + AU2 AShrSU2(AU2 a,AU2 b){return AU2(ASU2(a)>>ASU2(b));} + AU3 AShrSU3(AU3 a,AU3 b){return AU3(ASU3(a)>>ASU3(b));} + AU4 AShrSU4(AU4 a,AU4 b){return AU4(ASU4(a)>>ASU4(b));} +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// HLSL BYTE +//============================================================================================================================== + #ifdef A_BYTE + #endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// HLSL HALF +//============================================================================================================================== + #ifdef A_HALF + #define AH1 min16float + #define AH2 min16float2 + #define AH3 min16float3 + #define AH4 min16float4 +//------------------------------------------------------------------------------------------------------------------------------ + #define AW1 min16uint + #define AW2 min16uint2 + #define AW3 min16uint3 + #define AW4 min16uint4 +//------------------------------------------------------------------------------------------------------------------------------ + #define ASW1 min16int + #define ASW2 min16int2 + #define ASW3 min16int3 + #define ASW4 min16int4 +//============================================================================================================================== + // Need to use manual unpack to get optimal execution (don't use packed types in buffers directly). + // Unpack requires this pattern: https://gpuopen.com/first-steps-implementing-fp16/ + AH2 AH2_AU1_x(AU1 x){AF2 t=f16tof32(AU2(x&0xFFFF,x>>16));return AH2(t);} + AH4 AH4_AU2_x(AU2 x){return AH4(AH2_AU1_x(x.x),AH2_AU1_x(x.y));} + AW2 AW2_AU1_x(AU1 x){AU2 t=AU2(x&0xFFFF,x>>16);return AW2(t);} + AW4 AW4_AU2_x(AU2 x){return AW4(AW2_AU1_x(x.x),AW2_AU1_x(x.y));} + #define AH2_AU1(x) AH2_AU1_x(AU1(x)) + #define AH4_AU2(x) AH4_AU2_x(AU2(x)) + #define AW2_AU1(x) AW2_AU1_x(AU1(x)) + #define AW4_AU2(x) AW4_AU2_x(AU2(x)) +//------------------------------------------------------------------------------------------------------------------------------ + AU1 AU1_AH2_x(AH2 x){return f32tof16(x.x)+(f32tof16(x.y)<<16);} + AU2 AU2_AH4_x(AH4 x){return AU2(AU1_AH2_x(x.xy),AU1_AH2_x(x.zw));} + AU1 AU1_AW2_x(AW2 x){return AU1(x.x)+(AU1(x.y)<<16);} + AU2 AU2_AW4_x(AW4 x){return AU2(AU1_AW2_x(x.xy),AU1_AW2_x(x.zw));} + #define AU1_AH2(x) AU1_AH2_x(AH2(x)) + #define AU2_AH4(x) AU2_AH4_x(AH4(x)) + #define AU1_AW2(x) AU1_AW2_x(AW2(x)) + #define AU2_AW4(x) AU2_AW4_x(AW4(x)) +//============================================================================================================================== + // TODO: These are broken!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + #define AW1_AH1(x) AW1(asuint(AF1(x))) + #define AW2_AH2(x) AW2(asuint(AF2(x))) + #define AW3_AH3(x) AW3(asuint(AF3(x))) + #define AW4_AH4(x) AW4(asuint(AF4(x))) +//------------------------------------------------------------------------------------------------------------------------------ + // TODO: These are broken!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + #define AH1_AW1(x) AH1(asfloat(AU1(x))) + #define AH2_AW2(x) AH2(asfloat(AU2(x))) + #define AH3_AW3(x) AH3(asfloat(AU3(x))) + #define AH4_AW4(x) AH4(asfloat(AU4(x))) +//============================================================================================================================== + AH1 AH1_x(AH1 a){return AH1(a);} + AH2 AH2_x(AH1 a){return AH2(a,a);} + AH3 AH3_x(AH1 a){return AH3(a,a,a);} + AH4 AH4_x(AH1 a){return AH4(a,a,a,a);} + #define AH1_(a) AH1_x(AH1(a)) + #define AH2_(a) AH2_x(AH1(a)) + #define AH3_(a) AH3_x(AH1(a)) + #define AH4_(a) AH4_x(AH1(a)) +//------------------------------------------------------------------------------------------------------------------------------ + AW1 AW1_x(AW1 a){return AW1(a);} + AW2 AW2_x(AW1 a){return AW2(a,a);} + AW3 AW3_x(AW1 a){return AW3(a,a,a);} + AW4 AW4_x(AW1 a){return AW4(a,a,a,a);} + #define AW1_(a) AW1_x(AW1(a)) + #define AW2_(a) AW2_x(AW1(a)) + #define AW3_(a) AW3_x(AW1(a)) + #define AW4_(a) AW4_x(AW1(a)) +//============================================================================================================================== + AW1 AAbsSW1(AW1 a){return AW1(abs(ASW1(a)));} + AW2 AAbsSW2(AW2 a){return AW2(abs(ASW2(a)));} + AW3 AAbsSW3(AW3 a){return AW3(abs(ASW3(a)));} + AW4 AAbsSW4(AW4 a){return AW4(abs(ASW4(a)));} +//------------------------------------------------------------------------------------------------------------------------------ + // V_FRACT_F16 (note DX frac() is different). + AH1 AFractH1(AH1 x){return x-floor(x);} + AH2 AFractH2(AH2 x){return x-floor(x);} + AH3 AFractH3(AH3 x){return x-floor(x);} + AH4 AFractH4(AH4 x){return x-floor(x);} +//------------------------------------------------------------------------------------------------------------------------------ + AH1 ALerpH1(AH1 x,AH1 y,AH1 a){return lerp(x,y,a);} + AH2 ALerpH2(AH2 x,AH2 y,AH2 a){return lerp(x,y,a);} + AH3 ALerpH3(AH3 x,AH3 y,AH3 a){return lerp(x,y,a);} + AH4 ALerpH4(AH4 x,AH4 y,AH4 a){return lerp(x,y,a);} +//------------------------------------------------------------------------------------------------------------------------------ + AH1 AMax3H1(AH1 x,AH1 y,AH1 z){return max(x,max(y,z));} + AH2 AMax3H2(AH2 x,AH2 y,AH2 z){return max(x,max(y,z));} + AH3 AMax3H3(AH3 x,AH3 y,AH3 z){return max(x,max(y,z));} + AH4 AMax3H4(AH4 x,AH4 y,AH4 z){return max(x,max(y,z));} +//------------------------------------------------------------------------------------------------------------------------------ + AW1 AMaxSW1(AW1 a,AW1 b){return AW1(max(ASU1(a),ASU1(b)));} + AW2 AMaxSW2(AW2 a,AW2 b){return AW2(max(ASU2(a),ASU2(b)));} + AW3 AMaxSW3(AW3 a,AW3 b){return AW3(max(ASU3(a),ASU3(b)));} + AW4 AMaxSW4(AW4 a,AW4 b){return AW4(max(ASU4(a),ASU4(b)));} +//------------------------------------------------------------------------------------------------------------------------------ + AH1 AMin3H1(AH1 x,AH1 y,AH1 z){return min(x,min(y,z));} + AH2 AMin3H2(AH2 x,AH2 y,AH2 z){return min(x,min(y,z));} + AH3 AMin3H3(AH3 x,AH3 y,AH3 z){return min(x,min(y,z));} + AH4 AMin3H4(AH4 x,AH4 y,AH4 z){return min(x,min(y,z));} +//------------------------------------------------------------------------------------------------------------------------------ + AW1 AMinSW1(AW1 a,AW1 b){return AW1(min(ASU1(a),ASU1(b)));} + AW2 AMinSW2(AW2 a,AW2 b){return AW2(min(ASU2(a),ASU2(b)));} + AW3 AMinSW3(AW3 a,AW3 b){return AW3(min(ASU3(a),ASU3(b)));} + AW4 AMinSW4(AW4 a,AW4 b){return AW4(min(ASU4(a),ASU4(b)));} +//------------------------------------------------------------------------------------------------------------------------------ + AH1 ARcpH1(AH1 x){return rcp(x);} + AH2 ARcpH2(AH2 x){return rcp(x);} + AH3 ARcpH3(AH3 x){return rcp(x);} + AH4 ARcpH4(AH4 x){return rcp(x);} +//------------------------------------------------------------------------------------------------------------------------------ + AH1 ARsqH1(AH1 x){return rsqrt(x);} + AH2 ARsqH2(AH2 x){return rsqrt(x);} + AH3 ARsqH3(AH3 x){return rsqrt(x);} + AH4 ARsqH4(AH4 x){return rsqrt(x);} +//------------------------------------------------------------------------------------------------------------------------------ + AH1 ASatH1(AH1 x){return saturate(x);} + AH2 ASatH2(AH2 x){return saturate(x);} + AH3 ASatH3(AH3 x){return saturate(x);} + AH4 ASatH4(AH4 x){return saturate(x);} +//------------------------------------------------------------------------------------------------------------------------------ + AW1 AShrSW1(AW1 a,AW1 b){return AW1(ASW1(a)>>ASW1(b));} + AW2 AShrSW2(AW2 a,AW2 b){return AW2(ASW2(a)>>ASW2(b));} + AW3 AShrSW3(AW3 a,AW3 b){return AW3(ASW3(a)>>ASW3(b));} + AW4 AShrSW4(AW4 a,AW4 b){return AW4(ASW4(a)>>ASW4(b));} + #endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// HLSL DOUBLE +//============================================================================================================================== + #ifdef A_DUBL + #define AD1 double + #define AD2 double2 + #define AD3 double3 + #define AD4 double4 +//------------------------------------------------------------------------------------------------------------------------------ + AD1 AD1_x(AD1 a){return AD1(a);} + AD2 AD2_x(AD1 a){return AD2(a,a);} + AD3 AD3_x(AD1 a){return AD3(a,a,a);} + AD4 AD4_x(AD1 a){return AD4(a,a,a,a);} + #define AD1_(a) AD1_x(AD1(a)) + #define AD2_(a) AD2_x(AD1(a)) + #define AD3_(a) AD3_x(AD1(a)) + #define AD4_(a) AD4_x(AD1(a)) +//============================================================================================================================== + AD1 AFractD1(AD1 a){return a-floor(a);} + AD2 AFractD2(AD2 a){return a-floor(a);} + AD3 AFractD3(AD3 a){return a-floor(a);} + AD4 AFractD4(AD4 a){return a-floor(a);} +//------------------------------------------------------------------------------------------------------------------------------ + AD1 ALerpD1(AD1 x,AD1 y,AD1 a){return lerp(x,y,a);} + AD2 ALerpD2(AD2 x,AD2 y,AD2 a){return lerp(x,y,a);} + AD3 ALerpD3(AD3 x,AD3 y,AD3 a){return lerp(x,y,a);} + AD4 ALerpD4(AD4 x,AD4 y,AD4 a){return lerp(x,y,a);} +//------------------------------------------------------------------------------------------------------------------------------ + AD1 ARcpD1(AD1 x){return rcp(x);} + AD2 ARcpD2(AD2 x){return rcp(x);} + AD3 ARcpD3(AD3 x){return rcp(x);} + AD4 ARcpD4(AD4 x){return rcp(x);} +//------------------------------------------------------------------------------------------------------------------------------ + AD1 ARsqD1(AD1 x){return rsqrt(x);} + AD2 ARsqD2(AD2 x){return rsqrt(x);} + AD3 ARsqD3(AD3 x){return rsqrt(x);} + AD4 ARsqD4(AD4 x){return rsqrt(x);} +//------------------------------------------------------------------------------------------------------------------------------ + AD1 ASatD1(AD1 x){return saturate(x);} + AD2 ASatD2(AD2 x){return saturate(x);} + AD3 ASatD3(AD3 x){return saturate(x);} + AD4 ASatD4(AD4 x){return saturate(x);} + #endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// HLSL LONG +//============================================================================================================================== + #ifdef A_LONG + #endif +//============================================================================================================================== +#endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// +// +// GPU COMMON +// +// +//============================================================================================================================== +#ifdef A_GPU + // Negative and positive infinity. + #define A_INFN_F AF1_AU1(0x7f800000u) + #define A_INFP_F AF1_AU1(0xff800000u) +//------------------------------------------------------------------------------------------------------------------------------ + // Copy sign from 's' to positive 'd'. + AF1 ACpySgnF1(AF1 d,AF1 s){return AF1_AU1(AU1_AF1(d)|(AU1_AF1(s)&AU1_(0x80000000u)));} + AF2 ACpySgnF2(AF2 d,AF2 s){return AF2_AU2(AU2_AF2(d)|(AU2_AF2(s)&AU2_(0x80000000u)));} + AF3 ACpySgnF3(AF3 d,AF3 s){return AF3_AU3(AU3_AF3(d)|(AU3_AF3(s)&AU3_(0x80000000u)));} + AF4 ACpySgnF4(AF4 d,AF4 s){return AF4_AU4(AU4_AF4(d)|(AU4_AF4(s)&AU4_(0x80000000u)));} +//------------------------------------------------------------------------------------------------------------------------------ + // Single operation to return (useful to create a mask to use in lerp for branch free logic), + // m=NaN := 0 + // m>=0 := 0 + // m<0 := 1 + // Uses the following useful floating point logic, + // saturate(+a*(-INF)==-INF) := 0 + // saturate( 0*(-INF)== NaN) := 0 + // saturate(-a*(-INF)==+INF) := 1 + AF1 ASignedF1(AF1 m){return ASatF1(m*AF1_(A_INFN_F));} + AF2 ASignedF2(AF2 m){return ASatF2(m*AF2_(A_INFN_F));} + AF3 ASignedF3(AF3 m){return ASatF3(m*AF3_(A_INFN_F));} + AF4 ASignedF4(AF4 m){return ASatF4(m*AF4_(A_INFN_F));} +//============================================================================================================================== + #ifdef A_HALF + #define A_INFN_H AH1_AW1(0x7c00u) + #define A_INFP_H AH1_AW1(0xfc00u) +//------------------------------------------------------------------------------------------------------------------------------ + AH1 ACpySgnH1(AH1 d,AH1 s){return AH1_AW1(AW1_AH1(d)|(AW1_AH1(s)&AW1_(0x8000u)));} + AH2 ACpySgnH2(AH2 d,AH2 s){return AH2_AW2(AW2_AH2(d)|(AW2_AH2(s)&AW2_(0x8000u)));} + AH3 ACpySgnH3(AH3 d,AH3 s){return AH3_AW3(AW3_AH3(d)|(AW3_AH3(s)&AW3_(0x8000u)));} + AH4 ACpySgnH4(AH4 d,AH4 s){return AH4_AW4(AW4_AH4(d)|(AW4_AH4(s)&AW4_(0x8000u)));} +//------------------------------------------------------------------------------------------------------------------------------ + AH1 ASignedH1(AH1 m){return ASatH1(m*AH1_(A_INFN_H));} + AH2 ASignedH2(AH2 m){return ASatH2(m*AH2_(A_INFN_H));} + AH3 ASignedH3(AH3 m){return ASatH3(m*AH3_(A_INFN_H));} + AH4 ASignedH4(AH4 m){return ASatH4(m*AH4_(A_INFN_H));} + #endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// HALF APPROXIMATIONS +//------------------------------------------------------------------------------------------------------------------------------ +// These support only positive inputs. +// Did not see value yet in specialization for range. +// Using quick testing, ended up mostly getting the same "best" approximation for various ranges. +// With hardware that can co-execute transcendentals, the value in approximations could be less than expected. +// However from a latency perspective, if execution of a transcendental is 4 clk, with no packed support, -> 8 clk total. +// And co-execution would require a compiler interleaving a lot of independent work for packed usage. +//------------------------------------------------------------------------------------------------------------------------------ +// The one Newton Raphson iteration form of rsq() was skipped (requires 6 ops total). +// Same with sqrt(), as this could be x*rsq() (7 ops). +//------------------------------------------------------------------------------------------------------------------------------ +// IDEAS +// ===== +// - Polaris hardware has 16-bit support, but non-double rate. +// Could be possible still get part double rate for some of this logic, +// by clearing out the lower half's sign when necessary and using 32-bit ops... +//============================================================================================================================== + #ifdef A_HALF + // Minimize squared error across full positive range, 2 ops. + // The 0x1de2 based approximation maps {0 to 1} input maps to < 1 output. + AH1 APrxLoSqrtH1(AH1 a){return AH1_AW1((AW1_AH1(a)>>AW1_(1))+AW1_(0x1de2));} + AH2 APrxLoSqrtH2(AH2 a){return AH2_AW2((AW2_AH2(a)>>AW2_(1))+AW2_(0x1de2));} +//------------------------------------------------------------------------------------------------------------------------------ + // Lower precision estimation, 1 op. + // Minimize squared error across {smallest normal to 16384.0}. + AH1 APrxLoRcpH1(AH1 a){return AH1_AW1(AW1_(0x7784)-AW1_AH1(a));} + AH2 APrxLoRcpH2(AH2 a){return AH2_AW2(AW2_(0x7784)-AW2_AH2(a));} +//------------------------------------------------------------------------------------------------------------------------------ + // Medium precision estimation, one Newton Raphson iteration, 3 ops. + AH1 APrxMedRcpH1(AH1 a){AH1 b=AH1_AW1(AW1_(0x778d)-AW1_AH1(a));return b*(-b*a+AH1_(2.0));} + AH2 APrxMedRcpH2(AH2 a){AH2 b=AH2_AW2(AW2_(0x778d)-AW2_AH2(a));return b*(-b*a+AH2_(2.0));} +//------------------------------------------------------------------------------------------------------------------------------ + // Minimize squared error across {smallest normal to 16384.0}, 2 ops. + AH1 APrxLoRsqH1(AH1 a){return AH1_AW1(AW1_(0x59a3)-(AW1_AH1(a)>>AW1_(1)));} + AH2 APrxLoRsqH2(AH2 a){return AH2_AW2(AW2_(0x59a3)-(AW2_AH2(a)>>AW2_(1)));} + #endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// FLOAT APPROXIMATIONS +//------------------------------------------------------------------------------------------------------------------------------ +// Michal Drobot has an excellent presentation on these: "Low Level Optimizations For GCN", +// - Idea dates back to SGI, then to Quake 3, etc. +// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf +// - sqrt(x)=rsqrt(x)*x +// - rcp(x)=rsqrt(x)*rsqrt(x) for positive x +// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h +//------------------------------------------------------------------------------------------------------------------------------ +// These below are from perhaps less complete searching for optimal. +// Used FP16 normal range for testing with +4096 32-bit step size for sampling error. +// So these match up well with the half approximations. +//============================================================================================================================== + AF1 APrxLoSqrtF1(AF1 a){return AF1_AU1((AU1_AF1(a)>>AU1_(1))+AU1_(0x1fbc4639));} + AF1 APrxLoRcpF1(AF1 a){return AF1_AU1(AU1_(0x7ef07ebb)-AU1_AF1(a));} + AF1 APrxMedRcpF1(AF1 a){AF1 b=AF1_AU1(AU1_(0x7ef19fff)-AU1_AF1(a));return b*(-b*a+AF1_(2.0));} + AF1 APrxLoRsqF1(AF1 a){return AF1_AU1(AU1_(0x5f347d74)-(AU1_AF1(a)>>AU1_(1)));} +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// PARABOLIC SIN & COS +//------------------------------------------------------------------------------------------------------------------------------ +// Approximate answers to transcendental questions. +//------------------------------------------------------------------------------------------------------------------------------ +// TODO +// ==== +// - Verify packed math ABS is correctly doing an AND. +//============================================================================================================================== + // Valid input range is {-1 to 1} representing {0 to 2 pi}. + // Output range is {-1/4 to -1/4} representing {-1 to 1}. + AF1 APSinF1(AF1 x){return x*abs(x)-x;} // MAD. + AF1 APCosF1(AF1 x){x=AFractF1(x*AF1_(0.5)+AF1_(0.75));x=x*AF1_(2.0)-AF1_(1.0);return APSinF1(x);} // 3x MAD, FRACT +//------------------------------------------------------------------------------------------------------------------------------ + #ifdef A_HALF + // For a packed {sin,cos} pair, + // - Native takes 16 clocks and 4 issue slots (no packed transcendentals). + // - Parabolic takes 8 clocks and 8 issue slots (only fract is non-packed). + AH2 APSinH2(AH2 x){return x*abs(x)-x;} // AND,FMA + AH2 APCosH2(AH2 x){x=AFractH2(x*AH2_(0.5)+AH2_(0.75));x=x*AH2_(2.0)-AH2_(1.0);return APSinH2(x);} // 3x FMA, 2xFRACT, AND + #endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// COLOR CONVERSIONS +//------------------------------------------------------------------------------------------------------------------------------ +// These are all linear to/from some other space (where 'linear' has been shortened out of the function name). +// So 'ToGamma' is 'LinearToGamma', and 'FromGamma' is 'LinearFromGamma'. +// These are branch free implementations. +// The AToSrgbF1() function is useful for stores for compute shaders for GPUs without hardware linear->sRGB store conversion. +//------------------------------------------------------------------------------------------------------------------------------ +// TRANSFER FUNCTIONS +// ================== +// 709 ..... Rec709 used for some HDTVs +// Gamma ... Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native +// Pq ...... PQ native for HDR10 +// Srgb .... The sRGB output, typical of PC displays, useful for 10-bit output, or storing to 8-bit UNORM without SRGB type +// Two ..... Gamma 2.0, fastest conversion (useful for intermediate pass approximations) +//------------------------------------------------------------------------------------------------------------------------------ +// FOR PQ +// ====== +// Both input and output is {0.0-1.0}, and where output 1.0 represents 10000.0 cd/m^2. +// All constants are only specified to FP32 precision. +// External PQ source reference, +// - https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESlib.Utilities_Color.a1.0.1.ctl +//------------------------------------------------------------------------------------------------------------------------------ +// PACKED VERSIONS +// =============== +// These are the A*H2() functions. +// There is no PQ functions as FP16 seemed to not have enough precision for the conversion. +// The remaining functions are "good enough" for 8-bit, and maybe 10-bit if not concerned about a few 1-bit errors. +// Precision is lowest in the 709 conversion, higher in sRGB, higher still in Two and Gamma (when using 2.2 at least). +//------------------------------------------------------------------------------------------------------------------------------ +// NOTES +// ===== +// Could be faster for PQ conversions to be in ALU or a texture lookup depending on usage case. +//============================================================================================================================== + AF1 ATo709F1(AF1 c){return max(min(c*AF1_(4.5),AF1_(0.018)),AF1_(1.099)*pow(c,AF1_(0.45))-AF1_(0.099));} +//------------------------------------------------------------------------------------------------------------------------------ + // Note 'rcpX' is '1/x', where the 'x' is what would be used in AFromGamma(). + AF1 AToGammaF1(AF1 c,AF1 rcpX){return pow(c,rcpX);} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AToPqF1(AF1 x){AF1 p=pow(x,AF1_(0.159302)); + return pow((AF1_(0.835938)+AF1_(18.8516)*p)/(AF1_(1.0)+AF1_(18.6875)*p),AF1_(78.8438));} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AToSrgbF1(AF1 c){return max(min(c*AF1_(12.92),AF1_(0.0031308)),AF1_(1.055)*pow(c,AF1_(0.41666))-AF1_(0.055));} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AToTwoF1(AF1 c){return sqrt(c);} +//============================================================================================================================== + AF1 AFrom709F1(AF1 c){return max(min(c*AF1_(1.0/4.5),AF1_(0.081)), + pow((c+AF1_(0.099))*(AF1_(1.0)/(AF1_(1.099))),AF1_(1.0/0.45)));} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AFromGammaF1(AF1 c,AF1 x){return pow(c,x);} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AFromPqF1(AF1 x){AF1 p=pow(x,AF1_(0.0126833)); + return pow(ASatF1(p-AF1_(0.835938))/(AF1_(18.8516)-AF1_(18.6875)*p),AF1_(6.27739));} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AFromSrgbF1(AF1 c){return max(min(c*AF1_(1.0/12.92),AF1_(0.04045)), + pow((c+AF1_(0.055))*(AF1_(1.0)/AF1_(1.055)),AF1_(2.4)));} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AFromTwoF1(AF1 c){return c*c;} +//============================================================================================================================== + #ifdef A_HALF + AH2 ATo709H2(AH2 c){return max(min(c*AH2_(4.5),AH2_(0.018)),AH2_(1.099)*pow(c,AH2_(0.45))-AH2_(0.099));} +//------------------------------------------------------------------------------------------------------------------------------ + AH2 AToGammaH2(AH2 c,AH1 rcpX){return pow(c,AH2_(rcpX));} +//------------------------------------------------------------------------------------------------------------------------------ + AH2 AToSrgbH2(AH2 c){return max(min(c*AH2_(12.92),AH2_(0.0031308)),AH2_(1.055)*pow(c,AH2_(0.41666))-AH2_(0.055));} +//------------------------------------------------------------------------------------------------------------------------------ + AH2 AToTwoH2(AH2 c){return sqrt(c);} + #endif +//============================================================================================================================== + #ifdef A_HALF + AH2 AFrom709H2(AH2 c){return max(min(c*AH2_(1.0/4.5),AH2_(0.081)), + pow((c+AH2_(0.099))*(AH2_(1.0)/(AH2_(1.099))),AH2_(1.0/0.45)));} +//------------------------------------------------------------------------------------------------------------------------------ + AH2 AFromGammaH2(AH2 c,AH1 x){return pow(c,AH2_(x));} +//------------------------------------------------------------------------------------------------------------------------------ + AH2 AFromSrgbH2(AH2 c){return max(min(c*AH2_(1.0/12.92),AH2_(0.04045)), + pow((c+AH2_(0.055))*(AH2_(1.0)/AH2_(1.055)),AH2_(2.4)));} +//------------------------------------------------------------------------------------------------------------------------------ + AH2 AFromTwoH2(AH2 c){return c*c;} + #endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// CS REMAP +//============================================================================================================================== + // Simple remap 64x1 to 8x8 with rotated 2x2 pixel quads in quad linear. + // 543210 + // ====== + // ..xxx. + // yy...y + AU2 ARmp8x8(AU1 a){return AU2(ABfe(a,1u,3u),ABfiM(ABfe(a,3u,3u),a,1u));} +//============================================================================================================================== + // More complex remap 64x1 to 8x8 which is necessary for 2D wave reductions. + // 543210 + // ====== + // .xx..x + // y..yy. + // Details, + // LANE TO 8x8 MAPPING + // =================== + // 00 01 08 09 10 11 18 19 + // 02 03 0a 0b 12 13 1a 1b + // 04 05 0c 0d 14 15 1c 1d + // 06 07 0e 0f 16 17 1e 1f + // 20 21 28 29 30 31 38 39 + // 22 23 2a 2b 32 33 3a 3b + // 24 25 2c 2d 34 35 3c 3d + // 26 27 2e 2f 36 37 3e 3f + AU2 ARmpRed8x8(AU1 a){return AU2(ABfiM(ABfe(a,2u,3u),a,1u),ABfiM(ABfe(a,3u,3u),ABfe(a,1u,2u),2u));} +#endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// +// REFERENCE +// +//------------------------------------------------------------------------------------------------------------------------------ +// IEEE FLOAT RULES +// ================ +// - saturate(NaN)=0, saturate(-INF)=0, saturate(+INF)=1 +// - {+/-}0 * {+/-}INF = NaN +// - -INF + (+INF) = NaN +// - {+/-}0 / {+/-}0 = NaN +// - {+/-}INF / {+/-}INF = NaN +// - a<(-0) := sqrt(a) = NaN (a=-0.0 won't NaN) +// - 0 == -0 +// - 4/0 = +INF +// - 4/-0 = -INF +// - 4+INF = +INF +// - 4-INF = -INF +// - 4*(+INF) = +INF +// - 4*(-INF) = -INF +// - -4*(+INF) = -INF +// - sqrt(+INF) = +INF +//------------------------------------------------------------------------------------------------------------------------------ +// FP16 ENCODING +// ============= +// fedcba9876543210 +// ---------------- +// ......mmmmmmmmmm 10-bit mantissa (encodes 11-bit 0.5 to 1.0 except for denormals) +// .eeeee.......... 5-bit exponent +// .00000.......... denormals +// .00001.......... -14 exponent +// .11110.......... 15 exponent +// .111110000000000 infinity +// .11111nnnnnnnnnn NaN with n!=0 +// s............... sign +//------------------------------------------------------------------------------------------------------------------------------ +// FP16/INT16 ALIASING DENORMAL +// ============================ +// 11-bit unsigned integers alias with half float denormal/normal values, +// 1 = 2^(-24) = 1/16777216 ....................... first denormal value +// 2 = 2^(-23) +// ... +// 1023 = 2^(-14)*(1-2^(-10)) = 2^(-14)*(1-1/1024) ... last denormal value +// 1024 = 2^(-14) = 1/16384 .......................... first normal value that still maps to integers +// 2047 .............................................. last normal value that still maps to integers +// Scaling limits, +// 2^15 = 32768 ...................................... largest power of 2 scaling +// Largest pow2 conversion mapping is at *32768, +// 1 : 2^(-9) = 1/128 +// 1024 : 8 +// 2047 : a little less than 16 +//============================================================================================================================== +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// +// +// GPU/CPU PORTABILITY +// +// +//------------------------------------------------------------------------------------------------------------------------------ +// This is the GPU implementation. +// See the CPU implementation for docs. +//============================================================================================================================== +#ifdef A_GPU + #define A_TRUE true + #define A_FALSE false + #define A_STATIC +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// VECTOR ARGUMENT/RETURN/INITIALIZATION PORTABILITY +//============================================================================================================================== + #define retAD2 AD2 + #define retAD3 AD3 + #define retAD4 AD4 + #define retAF2 AF2 + #define retAF3 AF3 + #define retAF4 AF4 + #define retAL2 AL2 + #define retAL3 AL3 + #define retAL4 AL4 + #define retAU2 AU2 + #define retAU3 AU3 + #define retAU4 AU4 +//------------------------------------------------------------------------------------------------------------------------------ + #define inAD2 in AD2 + #define inAD3 in AD3 + #define inAD4 in AD4 + #define inAF2 in AF2 + #define inAF3 in AF3 + #define inAF4 in AF4 + #define inAL2 in AL2 + #define inAL3 in AL3 + #define inAL4 in AL4 + #define inAU2 in AU2 + #define inAU3 in AU3 + #define inAU4 in AU4 +//------------------------------------------------------------------------------------------------------------------------------ + #define inoutAD2 inout AD2 + #define inoutAD3 inout AD3 + #define inoutAD4 inout AD4 + #define inoutAF2 inout AF2 + #define inoutAF3 inout AF3 + #define inoutAF4 inout AF4 + #define inoutAL2 inout AL2 + #define inoutAL3 inout AL3 + #define inoutAL4 inout AL4 + #define inoutAU2 inout AU2 + #define inoutAU3 inout AU3 + #define inoutAU4 inout AU4 +//------------------------------------------------------------------------------------------------------------------------------ + #define outAD2 out AD2 + #define outAD3 out AD3 + #define outAD4 out AD4 + #define outAF2 out AF2 + #define outAF3 out AF3 + #define outAF4 out AF4 + #define outAL2 out AL2 + #define outAL3 out AL3 + #define outAL4 out AL4 + #define outAU2 out AU2 + #define outAU3 out AU3 + #define outAU4 out AU4 +//------------------------------------------------------------------------------------------------------------------------------ + #define varAD2(x) AD2 x + #define varAD3(x) AD3 x + #define varAD4(x) AD4 x + #define varAF2(x) AF2 x + #define varAF3(x) AF3 x + #define varAF4(x) AF4 x + #define varAL2(x) AL2 x + #define varAL3(x) AL3 x + #define varAL4(x) AL4 x + #define varAU2(x) AU2 x + #define varAU3(x) AU3 x + #define varAU4(x) AU4 x +//------------------------------------------------------------------------------------------------------------------------------ + #define initAD2(x,y) AD2(x,y) + #define initAD3(x,y,z) AD3(x,y,z) + #define initAD4(x,y,z,w) AD4(x,y,z,w) + #define initAF2(x,y) AF2(x,y) + #define initAF3(x,y,z) AF3(x,y,z) + #define initAF4(x,y,z,w) AF4(x,y,z,w) + #define initAL2(x,y) AL2(x,y) + #define initAL3(x,y,z) AL3(x,y,z) + #define initAL4(x,y,z,w) AL4(x,y,z,w) + #define initAU2(x,y) AU2(x,y) + #define initAU3(x,y,z) AU3(x,y,z) + #define initAU4(x,y,z,w) AU4(x,y,z,w) +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// SCALAR RETURN OPS +//============================================================================================================================== + #define AAbsD1(a) abs(AD1(a)) + #define AAbsF1(a) abs(AF1(a)) +//------------------------------------------------------------------------------------------------------------------------------ + #define ACosD1(a) cos(AD1(a)) + #define ACosF1(a) cos(AF1(a)) +//------------------------------------------------------------------------------------------------------------------------------ + #define ADotD2(a,b) dot(AD2(a),AD2(b)) + #define ADotD3(a,b) dot(AD3(a),AD3(b)) + #define ADotD4(a,b) dot(AD4(a),AD4(b)) + #define ADotF2(a,b) dot(AF2(a),AF2(b)) + #define ADotF3(a,b) dot(AF3(a),AF3(b)) + #define ADotF4(a,b) dot(AF4(a),AF4(b)) +//------------------------------------------------------------------------------------------------------------------------------ + #define AExp2D1(a) exp2(AD1(a)) + #define AExp2F1(a) exp2(AF1(a)) +//------------------------------------------------------------------------------------------------------------------------------ + #define AFloorD1(a) floor(AD1(a)) + #define AFloorF1(a) floor(AF1(a)) +//------------------------------------------------------------------------------------------------------------------------------ + #define ALog2D1(a) log2(AD1(a)) + #define ALog2F1(a) log2(AF1(a)) +//------------------------------------------------------------------------------------------------------------------------------ + #define AMaxD1(a,b) min(a,b) + #define AMaxF1(a,b) min(a,b) + #define AMaxL1(a,b) min(a,b) + #define AMaxU1(a,b) min(a,b) +//------------------------------------------------------------------------------------------------------------------------------ + #define AMinD1(a,b) min(a,b) + #define AMinF1(a,b) min(a,b) + #define AMinL1(a,b) min(a,b) + #define AMinU1(a,b) min(a,b) +//------------------------------------------------------------------------------------------------------------------------------ + #define ASinD1(a) sin(AD1(a)) + #define ASinF1(a) sin(AF1(a)) +//------------------------------------------------------------------------------------------------------------------------------ + #define ASqrtD1(a) sqrt(AD1(a)) + #define ASqrtF1(a) sqrt(AF1(a)) +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// SCALAR RETURN OPS - DEPENDENT +//============================================================================================================================== + #define APowD1(a,b) pow(AD1(a),AF1(b)) + #define APowF1(a,b) pow(AF1(a),AF1(b)) +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// VECTOR OPS +//------------------------------------------------------------------------------------------------------------------------------ +// These are added as needed for production or prototyping, so not necessarily a complete set. +// They follow a convention of taking in a destination and also returning the destination value to increase utility. +//============================================================================================================================== + #ifdef A_DUBL + AD2 opAAbsD2(outAD2 d,inAD2 a){d=abs(a);return d;} + AD3 opAAbsD3(outAD3 d,inAD3 a){d=abs(a);return d;} + AD4 opAAbsD4(outAD4 d,inAD4 a){d=abs(a);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AD2 opAAddD2(outAD2 d,inAD2 a,inAD2 b){d=a+b;return d;} + AD3 opAAddD3(outAD3 d,inAD3 a,inAD3 b){d=a+b;return d;} + AD4 opAAddD4(outAD4 d,inAD4 a,inAD4 b){d=a+b;return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AD2 opACpyD2(outAD2 d,inAD2 a){d=a;return d;} + AD3 opACpyD3(outAD3 d,inAD3 a){d=a;return d;} + AD4 opACpyD4(outAD4 d,inAD4 a){d=a;return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AD2 opALerpD2(outAD2 d,inAD2 a,inAD2 b,inAD2 c){d=ALerpD2(a,b,c);return d;} + AD3 opALerpD3(outAD3 d,inAD3 a,inAD3 b,inAD3 c){d=ALerpD3(a,b,c);return d;} + AD4 opALerpD4(outAD4 d,inAD4 a,inAD4 b,inAD4 c){d=ALerpD4(a,b,c);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AD2 opALerpOneD2(outAD2 d,inAD2 a,inAD2 b,AD1 c){d=ALerpD2(a,b,AD2_(c));return d;} + AD3 opALerpOneD3(outAD3 d,inAD3 a,inAD3 b,AD1 c){d=ALerpD3(a,b,AD3_(c));return d;} + AD4 opALerpOneD4(outAD4 d,inAD4 a,inAD4 b,AD1 c){d=ALerpD4(a,b,AD4_(c));return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AD2 opAMaxD2(outAD2 d,inAD2 a,inAD2 b){d=max(a,b);return d;} + AD3 opAMaxD3(outAD3 d,inAD3 a,inAD3 b){d=max(a,b);return d;} + AD4 opAMaxD4(outAD4 d,inAD4 a,inAD4 b){d=max(a,b);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AD2 opAMinD2(outAD2 d,inAD2 a,inAD2 b){d=min(a,b);return d;} + AD3 opAMinD3(outAD3 d,inAD3 a,inAD3 b){d=min(a,b);return d;} + AD4 opAMinD4(outAD4 d,inAD4 a,inAD4 b){d=min(a,b);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AD2 opAMulD2(outAD2 d,inAD2 a,inAD2 b){d=a*b;return d;} + AD3 opAMulD3(outAD3 d,inAD3 a,inAD3 b){d=a*b;return d;} + AD4 opAMulD4(outAD4 d,inAD4 a,inAD4 b){d=a*b;return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AD2 opAMulOneD2(outAD2 d,inAD2 a,AD1 b){d=a*AD2_(b);return d;} + AD3 opAMulOneD3(outAD3 d,inAD3 a,AD1 b){d=a*AD3_(b);return d;} + AD4 opAMulOneD4(outAD4 d,inAD4 a,AD1 b){d=a*AD4_(b);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AD2 opANegD2(outAD2 d,inAD2 a){d=-a;return d;} + AD3 opANegD3(outAD3 d,inAD3 a){d=-a;return d;} + AD4 opANegD4(outAD4 d,inAD4 a){d=-a;return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AD2 opARcpD2(outAD2 d,inAD2 a){d=ARcpD2(a);return d;} + AD3 opARcpD3(outAD3 d,inAD3 a){d=ARcpD3(a);return d;} + AD4 opARcpD4(outAD4 d,inAD4 a){d=ARcpD4(a);return d;} + #endif +//============================================================================================================================== + AF2 opAAbsF2(outAF2 d,inAF2 a){d=abs(a);return d;} + AF3 opAAbsF3(outAF3 d,inAF3 a){d=abs(a);return d;} + AF4 opAAbsF4(outAF4 d,inAF4 a){d=abs(a);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AF2 opAAddF2(outAF2 d,inAF2 a,inAF2 b){d=a+b;return d;} + AF3 opAAddF3(outAF3 d,inAF3 a,inAF3 b){d=a+b;return d;} + AF4 opAAddF4(outAF4 d,inAF4 a,inAF4 b){d=a+b;return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AF2 opACpyF2(outAF2 d,inAF2 a){d=a;return d;} + AF3 opACpyF3(outAF3 d,inAF3 a){d=a;return d;} + AF4 opACpyF4(outAF4 d,inAF4 a){d=a;return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AF2 opALerpF2(outAF2 d,inAF2 a,inAF2 b,inAF2 c){d=ALerpF2(a,b,c);return d;} + AF3 opALerpF3(outAF3 d,inAF3 a,inAF3 b,inAF3 c){d=ALerpF3(a,b,c);return d;} + AF4 opALerpF4(outAF4 d,inAF4 a,inAF4 b,inAF4 c){d=ALerpF4(a,b,c);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AF2 opALerpOneF2(outAF2 d,inAF2 a,inAF2 b,AF1 c){d=ALerpF2(a,b,AF2_(c));return d;} + AF3 opALerpOneF3(outAF3 d,inAF3 a,inAF3 b,AF1 c){d=ALerpF3(a,b,AF3_(c));return d;} + AF4 opALerpOneF4(outAF4 d,inAF4 a,inAF4 b,AF1 c){d=ALerpF4(a,b,AF4_(c));return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AF2 opAMaxF2(outAF2 d,inAF2 a,inAF2 b){d=max(a,b);return d;} + AF3 opAMaxF3(outAF3 d,inAF3 a,inAF3 b){d=max(a,b);return d;} + AF4 opAMaxF4(outAF4 d,inAF4 a,inAF4 b){d=max(a,b);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AF2 opAMinF2(outAF2 d,inAF2 a,inAF2 b){d=min(a,b);return d;} + AF3 opAMinF3(outAF3 d,inAF3 a,inAF3 b){d=min(a,b);return d;} + AF4 opAMinF4(outAF4 d,inAF4 a,inAF4 b){d=min(a,b);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AF2 opAMulF2(outAF2 d,inAF2 a,inAF2 b){d=a*b;return d;} + AF3 opAMulF3(outAF3 d,inAF3 a,inAF3 b){d=a*b;return d;} + AF4 opAMulF4(outAF4 d,inAF4 a,inAF4 b){d=a*b;return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AF2 opAMulOneF2(outAF2 d,inAF2 a,AF1 b){d=a*AF2_(b);return d;} + AF3 opAMulOneF3(outAF3 d,inAF3 a,AF1 b){d=a*AF3_(b);return d;} + AF4 opAMulOneF4(outAF4 d,inAF4 a,AF1 b){d=a*AF4_(b);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AF2 opANegF2(outAF2 d,inAF2 a){d=-a;return d;} + AF3 opANegF3(outAF3 d,inAF3 a){d=-a;return d;} + AF4 opANegF4(outAF4 d,inAF4 a){d=-a;return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AF2 opARcpF2(outAF2 d,inAF2 a){d=ARcpF2(a);return d;} + AF3 opARcpF3(outAF3 d,inAF3 a){d=ARcpF3(a);return d;} + AF4 opARcpF4(outAF4 d,inAF4 a){d=ARcpF4(a);return d;} +#endif diff --git a/bin/resources/shaders/common/ffx_cas.h b/bin/resources/shaders/common/ffx_cas.h new file mode 100644 index 0000000000..34b99bf859 --- /dev/null +++ b/bin/resources/shaders/common/ffx_cas.h @@ -0,0 +1,1445 @@ +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// +// [CAS] FIDELITY FX - CONSTRAST ADAPTIVE SHARPENING 1.20190610 +// +//============================================================================================================================== +// LICENSE +// ======= +// Copyright (c) 2017-2019 Advanced Micro Devices, Inc. All rights reserved. +// ------- +// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation +// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, +// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the +// Software is furnished to do so, subject to the following conditions: +// ------- +// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the +// Software. +// ------- +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE +// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, +// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. +//------------------------------------------------------------------------------------------------------------------------------ +// ABOUT +// ===== +// CAS is a spatial only filter. +// CAS takes RGB color input. +// CAS enchances sharpness and local high-frequency contrast, and with or without added upsampling. +// CAS outputs RGB color. +//------------------------------------------------------------------------------------------------------------------------------ +// SUGGESTIONS FOR INTEGRATION +// =========================== +// Best for performance, run CAS in sharpen-only mode, choose a video mode to have scan-out or the display scale. +// - Sharpen-only mode is faster, and provides a better quality sharpening. +// The scaling support in CAS was designed for when the application wants to do Dynamic Resolution Scaling (DRS). +// - With DRS, the render resolution can change per frame. +// - Use CAS to sharpen and upsample to the fixed output resolution, then composite the full resolution UI over CAS output. +// - This can all happen in one compute dispatch. +// It is likely better to reduce the amount of film grain which happens before CAS (as CAS will amplify grain). +// - An alternative would be to add grain after CAS. +// It is best to run CAS after tonemapping. +// - CAS needs to have input value 1.0 at the peak of the display output. +// It is ok to run CAS after compositing UI (it won't harm the UI). +//------------------------------------------------------------------------------------------------------------------------------ +// EXECUTION +// ========= +// CAS runs as a compute shader. +// CAS is designed to be run either in a 32-bit, CasFilter(), or packed 16-bit, CasFilterH(), form. +// The 32-bit form works on 8x8 tiles via one {64,1,1} workgroup. +// The 16-bit form works on a pair of 8x8 tiles in a 16x8 configuration via one {64,1,1} workgroup. +// CAS is designed to work best in semi-persistent form if running not async with graphics. +// For 32-bit this means looping across a collection of 4 8x8 tiles in a 2x2 tile foot-print. +// For 16-bit this means looping 2 times, once for the top 16x8 region and once for the bottom 16x8 region. +//------------------------------------------------------------------------------------------------------------------------------ +// INTEGRATION SUMMARY FOR CPU +// =========================== +// // Make sure has already been included. +// // Setup pre-portability-header defines. +// #define A_CPU 1 +// // Include the portability header (requires version 1.20190530 or later which is backwards compatible). +// #include "ffx_a.h" +// // Include the CAS header. +// #include "ffx_cas.h" +// ... +// // Call the setup function to build out the constants for the shader, pass these to the shader. +// // The 'varAU4(const0);' expands into 'uint32_t const0[4];' on the CPU. +// varAU4(const0); +// varAU4(const1); +// CasSetup(const0,const1, +// 0.0f, // Sharpness tuning knob (0.0 to 1.0). +// 1920.0f,1080.0f, // Example input size. +// 2560.0f,1440.0f); // Example output size. +// ... +// // Later dispatch the shader based on the amount of semi-persistent loop unrolling. +// // Here is an example for running with the 16x16 (4-way unroll for 32-bit or 2-way unroll for 16-bit) +// vkCmdDispatch(cmdBuf,(widthInPixels+15)>>4,(heightInPixels+15)>>4,1); +//------------------------------------------------------------------------------------------------------------------------------ +// INTEGRATION SUMMARY FOR GPU +// =========================== +// // Setup layout. Example below for VK_FORMAT_R16G16B16A16_SFLOAT. +// layout(set=0,binding=0,rgba16f)uniform image2D imgSrc; +// layout(set=0,binding=1,rgba16f)uniform image2D imgDst; +// ... +// // Setup pre-portability-header defines (sets up GLSL/HLSL path, packed math support, etc) +// #define A_GPU 1 +// #define A_GLSL 1 +// #define A_HALF 1 +// ... +// // Include the portability header (or copy it in without an include). +// #include "ffx_a.h" +// ... +// // Define the fetch function(s). +// // CasLoad() takes a 32-bit unsigned integer 2D coordinate and loads color. +// AF3 CasLoad(ASU2 p){return imageLoad(imgSrc,p).rgb;} +// // CasLoadH() is the 16-bit version taking 16-bit unsigned integer 2D coordinate and loading 16-bit float color. +// // The ASU2() typecast back to 32-bit is a NO-OP, the compiler pattern matches and uses A16 opcode support instead. +// // The AH3() typecast to 16-bit float is a NO-OP, the compiler pattern matches and uses D16 opcode support instead. +// AH3 CasLoadH(ASW2 p){return AH3(imageLoad(imgSrc,ASU2(p)).rgb);} +// ... +// // Define the input modifiers as nop's initially. +// // See "INPUT FORMAT SPECIFIC CASES" below for specifics on what to place in these functions. +// void CasInput(inout AF1 r,inout AF1 g,inout AF1 b){} +// void CasInputH(inout AH2 r,inout AH2 g,inout AH2 b){} +// ... +// // Include this CAS header file (or copy it in without an include). +// #include "ffx_cas.h" +// ... +// // Example in shader integration for loop-unrolled 16x16 case for 32-bit. +// layout(local_size_x=64)in; +// void main(){ +// // Fetch constants from CasSetup(). +// AU4 const0=cb.const0; +// AU4 const1=cb.const1; +// // Do remapping of local xy in workgroup for a more PS-like swizzle pattern. +// AU2 gxy=ARmp8x8(gl_LocalInvocationID.x)+AU2(gl_WorkGroupID.x<<4u,gl_WorkGroupID.y<<4u); +// // Filter. +// AF4 c; +// CasFilter(c.r,c.g,c.b,gxy,const0,const1,false);imageStore(imgDst,ASU2(gxy),c); +// gxy.x+=8u; +// CasFilter(c.r,c.g,c.b,gxy,const0,const1,false);imageStore(imgDst,ASU2(gxy),c); +// gxy.y+=8u; +// CasFilter(c.r,c.g,c.b,gxy,const0,const1,false);imageStore(imgDst,ASU2(gxy),c); +// gxy.x-=8u; +// CasFilter(c.r,c.g,c.b,gxy,const0,const1,false);imageStore(imgDst,ASU2(gxy),c);} +// ... +// // Example for semi-persistent 16x16 but this time for packed math. +// // Use this before including 'cas.h' if not using the non-packed filter function. +// #define CAS_PACKED_ONLY 1 +// ... +// layout(local_size_x=64)in; +// void main(){ +// // Fetch constants from CasSetup(). +// AU4 const0=cb.const0; +// AU4 const1=cb.const1; +// // Do remapping of local xy in workgroup for a more PS-like swizzle pattern. +// AU2 gxy=ARmp8x8(gl_LocalInvocationID.x)+AU2(gl_WorkGroupID.x<<4u,gl_WorkGroupID.y<<4u); +// // Filter. +// AH4 c0,c1;AH2 cR,cG,cB; +// CasFilterH(cR,cG,cB,gxy,const0,const1,false); +// // Extra work integrated after CAS would go here. +// ... +// // Suggest only running CasDepack() right before stores, to maintain packed math for any work after CasFilterH(). +// CasDepack(c0,c1,cR,cG,cB); +// imageStore(imgDst,ASU2(gxy),AF4(c0)); +// imageStore(imgDst,ASU2(gxy)+ASU2(8,0),AF4(c1)); +// gxy.y+=8u; +// CasFilterH(cR,cG,cB,gxy,const0,const1,false); +// ... +// CasDepack(c0,c1,cR,cG,cB); +// imageStore(imgDst,ASU2(gxy),AF4(c0)); +// imageStore(imgDst,ASU2(gxy)+ASU2(8,0),AF4(c1));} +//------------------------------------------------------------------------------------------------------------------------------ +// CAS FILTERING LOGIC +// =================== +// CAS uses the minimal nearest 3x3 source texel window for filtering. +// The filter coefficients are radially symmetric (phase adaptive, computed per pixel based on output pixel center). +// The filter kernel adapts to local contrast (adjusting the negative lobe strength of the filter kernel). +//------------------------------------------------------------------------------------------------------------------------------ +// CAS INPUT REQUIREMENTS +// ====================== +// This is designed to be a linear filter. +// Running CAS on perceptual inputs will yield over-sharpening. +// Input must range between {0 to 1} for each color channel. +// CAS output will be {0 to 1} ranged as well. +// CAS does 5 loads, so any conversion applied during CasLoad() or CasInput() has a 5 load * 3 channel = 15x cost amplifier. +// - So input conversions need to be factored into the prior pass's output. +// - But if necessary use CasInput() instead of CasLoad(), as CasInput() works with packed color. +// - For CAS with scaling the amplifier is 12 load * 3 channel = 36x cost amplifier. +// Any conversion applied to output has a 3x cost amplifier (3 color channels). +// - Output conversions are substantially less expensive. +// Added VALU ops due to conversions will have visible cost as this shader is already quite VALU heavy. +// This filter does not function well on sRGB or gamma 2.2 non-linear data. +// This filter does not function on PQ non-linear data. +// - Due to the shape of PQ, the positive side of the ring created by the negative lobe tends to become over-bright. +//------------------------------------------------------------------------------------------------------------------------------ +// INPUT FORMAT SPECIFIC CASES +// =========================== +// - FP16 with all non-negative values ranging {0 to 1}. +// - Use as is, filter is designed for linear input and output ranging {0 to 1}. +// --------------------------- +// - UNORM with linear conversion approximation. +// - This could be used for both sRGB or FreeSync2 native (gamma 2.2) cases. +// - Load/store with either 10:10:10:2 UNORM or 8:8:8:8 UNORM (aka VK_FORMAT_R8G8B8A8_UNORM). +// - Use gamma 2.0 conversion in CasInput(), as an approximation. +// - Modifications: +// // Change the CasInput*() function to square the inputs. +// void CasInput(inout AF1 r,inout AF1 g,inout AF1 b){r*=r;g*=g;b*=b;} +// void CasInputH(inout AH2 r,inout AH2 g,inout AH2 b){r*=r;g*=g;b*=b;} +// ... +// // Do linear to gamma 2.0 before store. +// // Since it will be common to do processing after CAS, the filter function returns linear. +// c.r=sqrt(c.r);c.g=sqrt(c.g);c.b=sqrt(c.b); +// imageStore(imgDst,ASU2(gxy),c); +// ... +// // And for packed. +// CasFilterH(cR,cG,cB,gxy,const0,const1,true); +// cR=sqrt(cR);cG=sqrt(cG);cB=sqrt(cB); +// CasDepack(c0,c1,cR,cG,cB); +// imageStore(img[0],ASU2(gxy),AF4(c0)); +// imageStore(img[0],ASU2(gxy+AU2(8,0)),AF4(c1)); +// --------------------------- +// - sRGB with slightly better quality and higher cost. +// - Use texelFetch() with sRGB format (VK_FORMAT_R8G8B8A8_SRGB) for loads (gets linear into shader). +// - Store to destination using UNORM (not sRGB) stores and do the linear to sRGB conversion in the shader. +// - Modifications: +// // Use texel fetch instead of image load (on GCN this will translate into an image load in the driver). +// // Hardware has sRGB to linear on loads (but in API only for read-only, aka texture instead of UAV/image). +// AF3 CasLoad(ASU2 p){return texelFetch(texSrc,p,0).rgb;} +// ... +// // Do linear to sRGB before store (GPU lacking hardware conversion support for linear to sRGB on store). +// c.r=AToSrgbF1(c.r);c.g=AToSrgbF1(c.g);c.b=AToSrgbF1(c.b); +// imageStore(imgDst,ASU2(gxy),c); +// ... +// // And for packed. +// CasFilterH(cR,cG,cB,gxy,const0,const1,true); +// cR=AToSrgbH2(cR);cG=AToSrgbH2(cG);cB=AToSrgbH2(cB); +// CasDepack(c0,c1,cR,cG,cB); +// imageStore(img[0],ASU2(gxy),AF4(c0)); +// imageStore(img[0],ASU2(gxy+AU2(8,0)),AF4(c1)); +// --------------------------- +// - HDR10 output via scRGB. +// - Pass before CAS needs to write out linear Rec.2020 colorspace output (all positive values). +// - Write to FP16 with {0 to 1} mapped to {0 to maxNits} nits. +// - Where 'maxNits' is typically not 10000. +// - Instead set 'maxNits' to the nits level that the HDR TV starts to clip white. +// - This can be even as low as 1000 nits on some HDR TVs. +// - After CAS do matrix multiply to take Rec.2020 back to sRGB and multiply by 'maxNits/80.0'. +// - Showing GPU code below to generate constants, likely most need to use CPU code instead. +// - Keeping the GPU code here because it is easier to read in these docs. +// - Can use 'lpm.h' source to generate the conversion matrix for Rec.2020 to sRGB: +// // Output conversion matrix from sRGB to Rec.2020. +// AF3 conR,conG,conB; +// // Working space temporaries (Rec.2020). +// AF3 rgbToXyzXW;AF3 rgbToXyzYW;AF3 rgbToXyzZW; +// LpmColRgbToXyz(rgbToXyzXW,rgbToXyzYW,rgbToXyzZW,lpmCol2020R,lpmCol2020G,lpmCol2020B,lpmColD65); +// // Output space temporaries (Rec.709, same as sRGB primaries). +// AF3 rgbToXyzXO;AF3 rgbToXyzYO;AF3 rgbToXyzZO; +// LpmColRgbToXyz(rgbToXyzXO,rgbToXyzYO,rgbToXyzZO,lpmCol709R,lpmCol709G,lpmCol709B,lpmColD65); +// AF3 xyzToRgbRO;AF3 xyzToRgbGO;AF3 xyzToRgbBO; +// LpmMatInv3x3(xyzToRgbRO,xyzToRgbGO,xyzToRgbBO,rgbToXyzXO,rgbToXyzYO,rgbToXyzZO); +// // Generate the matrix. +// LpmMatMul3x3(conR,conG,conB,xyzToRgbRO,xyzToRgbGO,xyzToRgbBO,rgbToXyzXW,rgbToXyzYW,rgbToXyzZW); +// - Adjust the conversion matrix for the multiply by 'maxNits/80.0'. +// // After this the constants can be stored into a constant buffer. +// AF1 conScale=maxNits*ARcpF1(80.0); +// conR*=conScale;conG*=conScale;conB*=conScale; +// - After CAS do the matrix multiply (passing the fetched constants into the shader). +// outputR=dot(AF3(colorR,colorG,colorB),conR); +// outputG=dot(AF3(colorR,colorG,colorB),conG); +// outputB=dot(AF3(colorR,colorG,colorB),conB); +// - Hopefully no developer is taking scRGB as input to CAS. +// - If that was the case, the conversion matrix from sRGB to Rec.2020 can be built changing the above code. +// - Swap the 'lpmCol709*' and 'lpmCol2020*' inputs to LpmColRgbToXyz(). +// - Then scale by '80.0/maxNits' instead of 'maxNits/80.0'. +// --------------------------- +// - HDR10 output via native 10:10:10:2. +// - Pass before CAS needs to write out linear Rec.2020 colorspace output (all positive values). +// - Write to FP16 with {0 to 1} mapped to {0 to maxNits} nits. +// - Where 'maxNits' is typically not 10000. +// - Instead set 'maxNits' to the nits level that the HDR TV starts to clip white. +// - This can be even as low as 1000 nits on some HDR TVs. +// - Hopefully no developer needs to take PQ as input here, but if so can use A to convert PQ to linear: +// // Where 'k0' is a constant of 'maxNits/10000.0'. +// colorR=AFromPqF1(colorR*k0); +// colorG=AFromPqF1(colorG*k0); +// colorB=AFromPqF1(colorB*k0); +// - After CAS convert from linear to PQ. +// // Where 'k1' is a constant of '10000.0/maxNits'. +// colorR=AToPqF1(colorR*k1); +// colorG=AToPqF1(colorG*k1); +// colorB=AToPqF1(colorB*k1); +// --------------------------- +// - Example of a bad idea for CAS input design. +// - Have the pass before CAS store out in 10:10:10:2 UNORM with gamma 2.0. +// - Store the output of CAS with sRGB to linear conversion, or with a gamma 2.2 conversion for FreeSync2 native. +// - This will drop precision because the inputs had been quantized to 10-bit, +// and the output is using a different tonal transform, +// so inputs and outputs won't align for similar values. +// - It might be "ok" for 8-bit/channel CAS output, but definately not a good idea for 10-bit/channel output. +//------------------------------------------------------------------------------------------------------------------------------ +// ALGORITHM DESCRIPTION +// ===================== +// This describes the algorithm with CAS_BETTER_DIAGONALS defined. +// The default is with CAS_BETTER_DIAGONALS not defined (which is faster). +// Starting with no scaling. +// CAS fetches a 3x3 neighborhood around the pixel 'e', +// a b c +// d(e)f +// g h i +// It then computes a 'soft' minimum and maximum, +// a b c b +// d e f * 0.5 + d e f * 0.5 +// g h i h +// The minimum and maximums give an idea of local contrast. +// --- 1.0 ^ +// | | <-- This minimum distance to the signal limit is divided by MAX to get a base sharpening amount 'A'. +// --- MAX v +// | +// | +// --- MIN ^ +// | | <-- The MIN side is more distant in this example so it is not used, but for dark colors it would be used. +// | | +// --- 0.0 v +// The base sharpening amount 'A' from above is shaped with a sqrt(). +// This 'A' ranges from 0 := no sharpening, to 1 := full sharpening. +// Then 'A' is scaled by the sharpness knob while being transformed to a negative lobe (values from -1/5 to -1/8 for A=1). +// The final filter kernel looks like this, +// 0 A 0 +// A 1 A <-- Center is always 1.0, followed by the negative lobe 'A' in a ring, and windowed into a circle with the 0.0s. +// 0 A 0 +// The local neighborhood is then multiplied by the kernel weights, summed and divided by the sum of the kernel weights. +// The high quality path computes filter weights per channel. +// The low quality path uses the green channel's filter weights to compute the 'A' factor for all channels. +// --------------------- +// The scaling path is a little more complex. +// It starts by fetching the 4x4 neighborhood around the pixel centered between centers of pixels {f,g,j,k}, +// a b c d +// e(f g)h +// i(j k)l +// m n o p +// The algorithm then computes the no-scaling result for {f,g,j,k}. +// It then interpolates between those no-scaling results. +// The interpolation is adaptive. +// To hide bilinear interpolation and restore diagonals, it weights bilinear weights by 1/(const+contrast). +// Where 'contrast' is the soft 'max-min'. +// This makes edges thin out a little. +// --------------------- +// Without CAS_BETTER_DIAGONALS defined, the algorithm is a little faster. +// Instead of using the 3x3 "box" with the 5-tap "circle" this uses just the "circle". +// Drops to 5 texture fetches for no-scaling. +// Drops to 12 texture fetches for scaling. +// Drops a bunch of math. +//------------------------------------------------------------------------------------------------------------------------------ +// IDEAS FOR FUTURE +// ================ +// - Avoid V_CVT's by using denormals. +// - Manually pack FP16 literals. +//------------------------------------------------------------------------------------------------------------------------------ +// CHANGE LOG +// ========== +// 20190610 - Misc documentation cleanup. +// 20190609 - Removed lowQuality bool, improved scaling logic. +// 20190530 - Unified CPU/GPU setup code, using new ffx_a.h, faster, define CAS_BETTER_DIAGONALS to get older slower one. +// 20190529 - Missing a good way to re-interpret packed in HLSL, so disabling approximation optimizations for now. +// 20190528 - Fixed so GPU CasSetup() generates half data all the time. +// 20190527 - Implemented approximations for rcp() and sqrt(). +// 20190524 - New algorithm, adjustable sharpness, scaling to 4x area. Fixed checker debug for no-scaling only. +// 20190521 - Updated file naming. +// 20190516 - Updated docs, fixed workaround, fixed no-scaling quality issue, removed gamma2 and generalized as CasInput*(). +// 20190510 - Made the dispatch example safely round up for images that are not a multiple of 16x16. +// 20190507 - Fixed typo bug in CAS_DEBUG_CHECKER, fixed sign typo in the docs. +// 20190503 - Setup temporary workaround for compiler bug. +// 20190502 - Added argument for 'gamma2' path so input transform in that case runs packed. +// 20190426 - Improved documentation on format specific cases, etc. +// 20190425 - Updated/corrected documentation. +// 20190405 - Added CAS_PACKED_ONLY, misc bug fixes. +// 20190404 - Updated for the new a.h header. +//============================================================================================================================== +// This is the practical limit for the algorithm's scaling ability (quality is limited by 3x3 taps). Example resolutions, +// 1280x720 -> 1080p = 2.25x area +// 1536x864 -> 1080p = 1.56x area +// 1792x1008 -> 1440p = 2.04x area +// 1920x1080 -> 1440p = 1.78x area +// 1920x1080 -> 4K = 4.0x area +// 2048x1152 -> 1440p = 1.56x area +// 2560x1440 -> 4K = 2.25x area +// 3072x1728 -> 4K = 1.56x area +#define CAS_AREA_LIMIT 4.0 +//------------------------------------------------------------------------------------------------------------------------------ +// Pass in output and input resolution in pixels. +// This returns true if CAS supports scaling in the given configuration. +AP1 CasSupportScaling(AF1 outX,AF1 outY,AF1 inX,AF1 inY){return ((outX*outY)*ARcpF1(inX*inY))<=CAS_AREA_LIMIT;} +//============================================================================================================================== +// Call to setup required constant values (works on CPU or GPU). +A_STATIC void CasSetup( + outAU4 const0, + outAU4 const1, + AF1 sharpness, // 0 := default (lower ringing), 1 := maximum (higest ringing) + AF1 inputSizeInPixelsX, + AF1 inputSizeInPixelsY, + AF1 outputSizeInPixelsX, + AF1 outputSizeInPixelsY){ + // Scaling terms. + const0[0]=AU1_AF1(inputSizeInPixelsX*ARcpF1(outputSizeInPixelsX)); + const0[1]=AU1_AF1(inputSizeInPixelsY*ARcpF1(outputSizeInPixelsY)); + const0[2]=AU1_AF1(AF1_(0.5)*inputSizeInPixelsX*ARcpF1(outputSizeInPixelsX)-AF1_(0.5)); + const0[3]=AU1_AF1(AF1_(0.5)*inputSizeInPixelsY*ARcpF1(outputSizeInPixelsY)-AF1_(0.5)); + // Sharpness value. + AF1 sharp=-ARcpF1(ALerpF1(8.0,5.0,ASatF1(sharpness))); + varAF2(hSharp)=initAF2(sharp,0.0); + const1[0]=AU1_AF1(sharp); + const1[1]=AU1_AH2_AF2(hSharp); + const1[2]=AU1_AF1(AF1_(8.0)*inputSizeInPixelsX*ARcpF1(outputSizeInPixelsX)); + const1[3]=0;} +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// NON-PACKED VERSION +//============================================================================================================================== +#ifdef A_GPU + #ifdef CAS_PACKED_ONLY + // Avoid compiler error. + AF3 CasLoad(ASU2 p){return AF3(0.0,0.0,0.0);} + void CasInput(inout AF1 r,inout AF1 g,inout AF1 b){} + #endif +//------------------------------------------------------------------------------------------------------------------------------ + void CasFilter( + out AF1 pixR, // Output values, non-vector so port between CasFilter() and CasFilterH() is easy. + out AF1 pixG, + out AF1 pixB, + AU2 ip, // Integer pixel position in output. + AU4 const0, // Constants generated by CasSetup(). + AU4 const1, + AP1 noScaling){ // Must be a compile-time literal value, true = sharpen only (no resize). +//------------------------------------------------------------------------------------------------------------------------------ + // Debug a checker pattern of on/off tiles for visual inspection. + #ifdef CAS_DEBUG_CHECKER + if((((ip.x^ip.y)>>8u)&1u)==0u){AF3 pix0=CasLoad(ASU2(ip)); + pixR=pix0.r;pixG=pix0.g;pixB=pix0.b;CasInput(pixR,pixG,pixB);return;} + #endif +//------------------------------------------------------------------------------------------------------------------------------ + // No scaling algorithm uses minimal 3x3 pixel neighborhood. + if(noScaling){ + // a b c + // d e f + // g h i + ASU2 sp=ASU2(ip); + AF3 a=CasLoad(sp+ASU2(-1,-1)); + AF3 b=CasLoad(sp+ASU2( 0,-1)); + AF3 c=CasLoad(sp+ASU2( 1,-1)); + AF3 d=CasLoad(sp+ASU2(-1, 0)); + AF3 e=CasLoad(sp); + AF3 f=CasLoad(sp+ASU2( 1, 0)); + AF3 g=CasLoad(sp+ASU2(-1, 1)); + AF3 h=CasLoad(sp+ASU2( 0, 1)); + AF3 i=CasLoad(sp+ASU2( 1, 1)); + // Run optional input transform. + CasInput(a.r,a.g,a.b); + CasInput(b.r,b.g,b.b); + CasInput(c.r,c.g,c.b); + CasInput(d.r,d.g,d.b); + CasInput(e.r,e.g,e.b); + CasInput(f.r,f.g,f.b); + CasInput(g.r,g.g,g.b); + CasInput(h.r,h.g,h.b); + CasInput(i.r,i.g,i.b); + // Soft min and max. + // a b c b + // d e f * 0.5 + d e f * 0.5 + // g h i h + // These are 2.0x bigger (factored out the extra multiply). + AF1 mnR=AMin3F1(AMin3F1(d.r,e.r,f.r),b.r,h.r); + AF1 mnG=AMin3F1(AMin3F1(d.g,e.g,f.g),b.g,h.g); + AF1 mnB=AMin3F1(AMin3F1(d.b,e.b,f.b),b.b,h.b); + #ifdef CAS_BETTER_DIAGONALS + AF1 mnR2=AMin3F1(AMin3F1(mnR,a.r,c.r),g.r,i.r); + AF1 mnG2=AMin3F1(AMin3F1(mnG,a.g,c.g),g.g,i.g); + AF1 mnB2=AMin3F1(AMin3F1(mnB,a.b,c.b),g.b,i.b); + mnR=mnR+mnR2; + mnG=mnG+mnG2; + mnB=mnB+mnB2; + #endif + AF1 mxR=AMax3F1(AMax3F1(d.r,e.r,f.r),b.r,h.r); + AF1 mxG=AMax3F1(AMax3F1(d.g,e.g,f.g),b.g,h.g); + AF1 mxB=AMax3F1(AMax3F1(d.b,e.b,f.b),b.b,h.b); + #ifdef CAS_BETTER_DIAGONALS + AF1 mxR2=AMax3F1(AMax3F1(mxR,a.r,c.r),g.r,i.r); + AF1 mxG2=AMax3F1(AMax3F1(mxG,a.g,c.g),g.g,i.g); + AF1 mxB2=AMax3F1(AMax3F1(mxB,a.b,c.b),g.b,i.b); + mxR=mxR+mxR2; + mxG=mxG+mxG2; + mxB=mxB+mxB2; + #endif + // Smooth minimum distance to signal limit divided by smooth max. + #ifdef CAS_GO_SLOWER + AF1 rcpMR=ARcpF1(mxR); + AF1 rcpMG=ARcpF1(mxG); + AF1 rcpMB=ARcpF1(mxB); + #else + AF1 rcpMR=APrxLoRcpF1(mxR); + AF1 rcpMG=APrxLoRcpF1(mxG); + AF1 rcpMB=APrxLoRcpF1(mxB); + #endif + #ifdef CAS_BETTER_DIAGONALS + AF1 ampR=ASatF1(min(mnR,AF1_(2.0)-mxR)*rcpMR); + AF1 ampG=ASatF1(min(mnG,AF1_(2.0)-mxG)*rcpMG); + AF1 ampB=ASatF1(min(mnB,AF1_(2.0)-mxB)*rcpMB); + #else + AF1 ampR=ASatF1(min(mnR,AF1_(1.0)-mxR)*rcpMR); + AF1 ampG=ASatF1(min(mnG,AF1_(1.0)-mxG)*rcpMG); + AF1 ampB=ASatF1(min(mnB,AF1_(1.0)-mxB)*rcpMB); + #endif + // Shaping amount of sharpening. + #ifdef CAS_GO_SLOWER + ampR=sqrt(ampR); + ampG=sqrt(ampG); + ampB=sqrt(ampB); + #else + ampR=APrxLoSqrtF1(ampR); + ampG=APrxLoSqrtF1(ampG); + ampB=APrxLoSqrtF1(ampB); + #endif + // Filter shape. + // 0 w 0 + // w 1 w + // 0 w 0 + AF1 peak=AF1_AU1(const1.x); + AF1 wR=ampR*peak; + AF1 wG=ampG*peak; + AF1 wB=ampB*peak; + // Filter. + #ifndef CAS_SLOW + // Using green coef only, depending on dead code removal to strip out the extra overhead. + #ifdef CAS_GO_SLOWER + AF1 rcpWeight=ARcpF1(AF1_(1.0)+AF1_(4.0)*wG); + #else + AF1 rcpWeight=APrxMedRcpF1(AF1_(1.0)+AF1_(4.0)*wG); + #endif + pixR=ASatF1((b.r*wG+d.r*wG+f.r*wG+h.r*wG+e.r)*rcpWeight); + pixG=ASatF1((b.g*wG+d.g*wG+f.g*wG+h.g*wG+e.g)*rcpWeight); + pixB=ASatF1((b.b*wG+d.b*wG+f.b*wG+h.b*wG+e.b)*rcpWeight); + #else + #ifdef CAS_GO_SLOWER + AF1 rcpWeightR=ARcpF1(AF1_(1.0)+AF1_(4.0)*wR); + AF1 rcpWeightG=ARcpF1(AF1_(1.0)+AF1_(4.0)*wG); + AF1 rcpWeightB=ARcpF1(AF1_(1.0)+AF1_(4.0)*wB); + #else + AF1 rcpWeightR=APrxMedRcpF1(AF1_(1.0)+AF1_(4.0)*wR); + AF1 rcpWeightG=APrxMedRcpF1(AF1_(1.0)+AF1_(4.0)*wG); + AF1 rcpWeightB=APrxMedRcpF1(AF1_(1.0)+AF1_(4.0)*wB); + #endif + pixR=ASatF1((b.r*wR+d.r*wR+f.r*wR+h.r*wR+e.r)*rcpWeightR); + pixG=ASatF1((b.g*wG+d.g*wG+f.g*wG+h.g*wG+e.g)*rcpWeightG); + pixB=ASatF1((b.b*wB+d.b*wB+f.b*wB+h.b*wB+e.b)*rcpWeightB); + #endif + return;} +//------------------------------------------------------------------------------------------------------------------------------ + // Scaling algorithm adaptively interpolates between nearest 4 results of the non-scaling algorithm. + // a b c d + // e f g h + // i j k l + // m n o p + // Working these 4 results. + // +-----+-----+ + // | | | + // | f..|..g | + // | . | . | + // +-----+-----+ + // | . | . | + // | j..|..k | + // | | | + // +-----+-----+ + AF2 pp=AF2(ip)*AF2_AU2(const0.xy)+AF2_AU2(const0.zw); + AF2 fp=floor(pp); + pp-=fp; + ASU2 sp=ASU2(fp); + AF3 a=CasLoad(sp+ASU2(-1,-1)); + AF3 b=CasLoad(sp+ASU2( 0,-1)); + AF3 e=CasLoad(sp+ASU2(-1, 0)); + AF3 f=CasLoad(sp); + AF3 c=CasLoad(sp+ASU2( 1,-1)); + AF3 d=CasLoad(sp+ASU2( 2,-1)); + AF3 g=CasLoad(sp+ASU2( 1, 0)); + AF3 h=CasLoad(sp+ASU2( 2, 0)); + AF3 i=CasLoad(sp+ASU2(-1, 1)); + AF3 j=CasLoad(sp+ASU2( 0, 1)); + AF3 m=CasLoad(sp+ASU2(-1, 2)); + AF3 n=CasLoad(sp+ASU2( 0, 2)); + AF3 k=CasLoad(sp+ASU2( 1, 1)); + AF3 l=CasLoad(sp+ASU2( 2, 1)); + AF3 o=CasLoad(sp+ASU2( 1, 2)); + AF3 p=CasLoad(sp+ASU2( 2, 2)); + // Run optional input transform. + CasInput(a.r,a.g,a.b); + CasInput(b.r,b.g,b.b); + CasInput(c.r,c.g,c.b); + CasInput(d.r,d.g,d.b); + CasInput(e.r,e.g,e.b); + CasInput(f.r,f.g,f.b); + CasInput(g.r,g.g,g.b); + CasInput(h.r,h.g,h.b); + CasInput(i.r,i.g,i.b); + CasInput(j.r,j.g,j.b); + CasInput(k.r,k.g,k.b); + CasInput(l.r,l.g,l.b); + CasInput(m.r,m.g,m.b); + CasInput(n.r,n.g,n.b); + CasInput(o.r,o.g,o.b); + CasInput(p.r,p.g,p.b); + // Soft min and max. + // These are 2.0x bigger (factored out the extra multiply). + // a b c b + // e f g * 0.5 + e f g * 0.5 [F] + // i j k j + AF1 mnfR=AMin3F1(AMin3F1(b.r,e.r,f.r),g.r,j.r); + AF1 mnfG=AMin3F1(AMin3F1(b.g,e.g,f.g),g.g,j.g); + AF1 mnfB=AMin3F1(AMin3F1(b.b,e.b,f.b),g.b,j.b); + #ifdef CAS_BETTER_DIAGONALS + AF1 mnfR2=AMin3F1(AMin3F1(mnfR,a.r,c.r),i.r,k.r); + AF1 mnfG2=AMin3F1(AMin3F1(mnfG,a.g,c.g),i.g,k.g); + AF1 mnfB2=AMin3F1(AMin3F1(mnfB,a.b,c.b),i.b,k.b); + mnfR=mnfR+mnfR2; + mnfG=mnfG+mnfG2; + mnfB=mnfB+mnfB2; + #endif + AF1 mxfR=AMax3F1(AMax3F1(b.r,e.r,f.r),g.r,j.r); + AF1 mxfG=AMax3F1(AMax3F1(b.g,e.g,f.g),g.g,j.g); + AF1 mxfB=AMax3F1(AMax3F1(b.b,e.b,f.b),g.b,j.b); + #ifdef CAS_BETTER_DIAGONALS + AF1 mxfR2=AMax3F1(AMax3F1(mxfR,a.r,c.r),i.r,k.r); + AF1 mxfG2=AMax3F1(AMax3F1(mxfG,a.g,c.g),i.g,k.g); + AF1 mxfB2=AMax3F1(AMax3F1(mxfB,a.b,c.b),i.b,k.b); + mxfR=mxfR+mxfR2; + mxfG=mxfG+mxfG2; + mxfB=mxfB+mxfB2; + #endif + // b c d c + // f g h * 0.5 + f g h * 0.5 [G] + // j k l k + AF1 mngR=AMin3F1(AMin3F1(c.r,f.r,g.r),h.r,k.r); + AF1 mngG=AMin3F1(AMin3F1(c.g,f.g,g.g),h.g,k.g); + AF1 mngB=AMin3F1(AMin3F1(c.b,f.b,g.b),h.b,k.b); + #ifdef CAS_BETTER_DIAGONALS + AF1 mngR2=AMin3F1(AMin3F1(mngR,b.r,d.r),j.r,l.r); + AF1 mngG2=AMin3F1(AMin3F1(mngG,b.g,d.g),j.g,l.g); + AF1 mngB2=AMin3F1(AMin3F1(mngB,b.b,d.b),j.b,l.b); + mngR=mngR+mngR2; + mngG=mngG+mngG2; + mngB=mngB+mngB2; + #endif + AF1 mxgR=AMax3F1(AMax3F1(c.r,f.r,g.r),h.r,k.r); + AF1 mxgG=AMax3F1(AMax3F1(c.g,f.g,g.g),h.g,k.g); + AF1 mxgB=AMax3F1(AMax3F1(c.b,f.b,g.b),h.b,k.b); + #ifdef CAS_BETTER_DIAGONALS + AF1 mxgR2=AMax3F1(AMax3F1(mxgR,b.r,d.r),j.r,l.r); + AF1 mxgG2=AMax3F1(AMax3F1(mxgG,b.g,d.g),j.g,l.g); + AF1 mxgB2=AMax3F1(AMax3F1(mxgB,b.b,d.b),j.b,l.b); + mxgR=mxgR+mxgR2; + mxgG=mxgG+mxgG2; + mxgB=mxgB+mxgB2; + #endif + // e f g f + // i j k * 0.5 + i j k * 0.5 [J] + // m n o n + AF1 mnjR=AMin3F1(AMin3F1(f.r,i.r,j.r),k.r,n.r); + AF1 mnjG=AMin3F1(AMin3F1(f.g,i.g,j.g),k.g,n.g); + AF1 mnjB=AMin3F1(AMin3F1(f.b,i.b,j.b),k.b,n.b); + #ifdef CAS_BETTER_DIAGONALS + AF1 mnjR2=AMin3F1(AMin3F1(mnjR,e.r,g.r),m.r,o.r); + AF1 mnjG2=AMin3F1(AMin3F1(mnjG,e.g,g.g),m.g,o.g); + AF1 mnjB2=AMin3F1(AMin3F1(mnjB,e.b,g.b),m.b,o.b); + mnjR=mnjR+mnjR2; + mnjG=mnjG+mnjG2; + mnjB=mnjB+mnjB2; + #endif + AF1 mxjR=AMax3F1(AMax3F1(f.r,i.r,j.r),k.r,n.r); + AF1 mxjG=AMax3F1(AMax3F1(f.g,i.g,j.g),k.g,n.g); + AF1 mxjB=AMax3F1(AMax3F1(f.b,i.b,j.b),k.b,n.b); + #ifdef CAS_BETTER_DIAGONALS + AF1 mxjR2=AMax3F1(AMax3F1(mxjR,e.r,g.r),m.r,o.r); + AF1 mxjG2=AMax3F1(AMax3F1(mxjG,e.g,g.g),m.g,o.g); + AF1 mxjB2=AMax3F1(AMax3F1(mxjB,e.b,g.b),m.b,o.b); + mxjR=mxjR+mxjR2; + mxjG=mxjG+mxjG2; + mxjB=mxjB+mxjB2; + #endif + // f g h g + // j k l * 0.5 + j k l * 0.5 [K] + // n o p o + AF1 mnkR=AMin3F1(AMin3F1(g.r,j.r,k.r),l.r,o.r); + AF1 mnkG=AMin3F1(AMin3F1(g.g,j.g,k.g),l.g,o.g); + AF1 mnkB=AMin3F1(AMin3F1(g.b,j.b,k.b),l.b,o.b); + #ifdef CAS_BETTER_DIAGONALS + AF1 mnkR2=AMin3F1(AMin3F1(mnkR,f.r,h.r),n.r,p.r); + AF1 mnkG2=AMin3F1(AMin3F1(mnkG,f.g,h.g),n.g,p.g); + AF1 mnkB2=AMin3F1(AMin3F1(mnkB,f.b,h.b),n.b,p.b); + mnkR=mnkR+mnkR2; + mnkG=mnkG+mnkG2; + mnkB=mnkB+mnkB2; + #endif + AF1 mxkR=AMax3F1(AMax3F1(g.r,j.r,k.r),l.r,o.r); + AF1 mxkG=AMax3F1(AMax3F1(g.g,j.g,k.g),l.g,o.g); + AF1 mxkB=AMax3F1(AMax3F1(g.b,j.b,k.b),l.b,o.b); + #ifdef CAS_BETTER_DIAGONALS + AF1 mxkR2=AMax3F1(AMax3F1(mxkR,f.r,h.r),n.r,p.r); + AF1 mxkG2=AMax3F1(AMax3F1(mxkG,f.g,h.g),n.g,p.g); + AF1 mxkB2=AMax3F1(AMax3F1(mxkB,f.b,h.b),n.b,p.b); + mxkR=mxkR+mxkR2; + mxkG=mxkG+mxkG2; + mxkB=mxkB+mxkB2; + #endif + // Smooth minimum distance to signal limit divided by smooth max. + #ifdef CAS_GO_SLOWER + AF1 rcpMfR=ARcpF1(mxfR); + AF1 rcpMfG=ARcpF1(mxfG); + AF1 rcpMfB=ARcpF1(mxfB); + AF1 rcpMgR=ARcpF1(mxgR); + AF1 rcpMgG=ARcpF1(mxgG); + AF1 rcpMgB=ARcpF1(mxgB); + AF1 rcpMjR=ARcpF1(mxjR); + AF1 rcpMjG=ARcpF1(mxjG); + AF1 rcpMjB=ARcpF1(mxjB); + AF1 rcpMkR=ARcpF1(mxkR); + AF1 rcpMkG=ARcpF1(mxkG); + AF1 rcpMkB=ARcpF1(mxkB); + #else + AF1 rcpMfR=APrxLoRcpF1(mxfR); + AF1 rcpMfG=APrxLoRcpF1(mxfG); + AF1 rcpMfB=APrxLoRcpF1(mxfB); + AF1 rcpMgR=APrxLoRcpF1(mxgR); + AF1 rcpMgG=APrxLoRcpF1(mxgG); + AF1 rcpMgB=APrxLoRcpF1(mxgB); + AF1 rcpMjR=APrxLoRcpF1(mxjR); + AF1 rcpMjG=APrxLoRcpF1(mxjG); + AF1 rcpMjB=APrxLoRcpF1(mxjB); + AF1 rcpMkR=APrxLoRcpF1(mxkR); + AF1 rcpMkG=APrxLoRcpF1(mxkG); + AF1 rcpMkB=APrxLoRcpF1(mxkB); + #endif + #ifdef CAS_BETTER_DIAGONALS + AF1 ampfR=ASatF1(min(mnfR,AF1_(2.0)-mxfR)*rcpMfR); + AF1 ampfG=ASatF1(min(mnfG,AF1_(2.0)-mxfG)*rcpMfG); + AF1 ampfB=ASatF1(min(mnfB,AF1_(2.0)-mxfB)*rcpMfB); + AF1 ampgR=ASatF1(min(mngR,AF1_(2.0)-mxgR)*rcpMgR); + AF1 ampgG=ASatF1(min(mngG,AF1_(2.0)-mxgG)*rcpMgG); + AF1 ampgB=ASatF1(min(mngB,AF1_(2.0)-mxgB)*rcpMgB); + AF1 ampjR=ASatF1(min(mnjR,AF1_(2.0)-mxjR)*rcpMjR); + AF1 ampjG=ASatF1(min(mnjG,AF1_(2.0)-mxjG)*rcpMjG); + AF1 ampjB=ASatF1(min(mnjB,AF1_(2.0)-mxjB)*rcpMjB); + AF1 ampkR=ASatF1(min(mnkR,AF1_(2.0)-mxkR)*rcpMkR); + AF1 ampkG=ASatF1(min(mnkG,AF1_(2.0)-mxkG)*rcpMkG); + AF1 ampkB=ASatF1(min(mnkB,AF1_(2.0)-mxkB)*rcpMkB); + #else + AF1 ampfR=ASatF1(min(mnfR,AF1_(1.0)-mxfR)*rcpMfR); + AF1 ampfG=ASatF1(min(mnfG,AF1_(1.0)-mxfG)*rcpMfG); + AF1 ampfB=ASatF1(min(mnfB,AF1_(1.0)-mxfB)*rcpMfB); + AF1 ampgR=ASatF1(min(mngR,AF1_(1.0)-mxgR)*rcpMgR); + AF1 ampgG=ASatF1(min(mngG,AF1_(1.0)-mxgG)*rcpMgG); + AF1 ampgB=ASatF1(min(mngB,AF1_(1.0)-mxgB)*rcpMgB); + AF1 ampjR=ASatF1(min(mnjR,AF1_(1.0)-mxjR)*rcpMjR); + AF1 ampjG=ASatF1(min(mnjG,AF1_(1.0)-mxjG)*rcpMjG); + AF1 ampjB=ASatF1(min(mnjB,AF1_(1.0)-mxjB)*rcpMjB); + AF1 ampkR=ASatF1(min(mnkR,AF1_(1.0)-mxkR)*rcpMkR); + AF1 ampkG=ASatF1(min(mnkG,AF1_(1.0)-mxkG)*rcpMkG); + AF1 ampkB=ASatF1(min(mnkB,AF1_(1.0)-mxkB)*rcpMkB); + #endif + // Shaping amount of sharpening. + #ifdef CAS_GO_SLOWER + ampfR=sqrt(ampfR); + ampfG=sqrt(ampfG); + ampfB=sqrt(ampfB); + ampgR=sqrt(ampgR); + ampgG=sqrt(ampgG); + ampgB=sqrt(ampgB); + ampjR=sqrt(ampjR); + ampjG=sqrt(ampjG); + ampjB=sqrt(ampjB); + ampkR=sqrt(ampkR); + ampkG=sqrt(ampkG); + ampkB=sqrt(ampkB); + #else + ampfR=APrxLoSqrtF1(ampfR); + ampfG=APrxLoSqrtF1(ampfG); + ampfB=APrxLoSqrtF1(ampfB); + ampgR=APrxLoSqrtF1(ampgR); + ampgG=APrxLoSqrtF1(ampgG); + ampgB=APrxLoSqrtF1(ampgB); + ampjR=APrxLoSqrtF1(ampjR); + ampjG=APrxLoSqrtF1(ampjG); + ampjB=APrxLoSqrtF1(ampjB); + ampkR=APrxLoSqrtF1(ampkR); + ampkG=APrxLoSqrtF1(ampkG); + ampkB=APrxLoSqrtF1(ampkB); + #endif + // Filter shape. + // 0 w 0 + // w 1 w + // 0 w 0 + AF1 peak=AF1_AU1(const1.x); + AF1 wfR=ampfR*peak; + AF1 wfG=ampfG*peak; + AF1 wfB=ampfB*peak; + AF1 wgR=ampgR*peak; + AF1 wgG=ampgG*peak; + AF1 wgB=ampgB*peak; + AF1 wjR=ampjR*peak; + AF1 wjG=ampjG*peak; + AF1 wjB=ampjB*peak; + AF1 wkR=ampkR*peak; + AF1 wkG=ampkG*peak; + AF1 wkB=ampkB*peak; + // Blend between 4 results. + // s t + // u v + AF1 s=(AF1_(1.0)-pp.x)*(AF1_(1.0)-pp.y); + AF1 t= pp.x *(AF1_(1.0)-pp.y); + AF1 u=(AF1_(1.0)-pp.x)* pp.y ; + AF1 v= pp.x * pp.y ; + // Thin edges to hide bilinear interpolation (helps diagonals). + AF1 thinB=1.0/32.0; + #ifdef CAS_GO_SLOWER + s*=ARcpF1(thinB+(mxfG-mnfG)); + t*=ARcpF1(thinB+(mxgG-mngG)); + u*=ARcpF1(thinB+(mxjG-mnjG)); + v*=ARcpF1(thinB+(mxkG-mnkG)); + #else + s*=APrxLoRcpF1(thinB+(mxfG-mnfG)); + t*=APrxLoRcpF1(thinB+(mxgG-mngG)); + u*=APrxLoRcpF1(thinB+(mxjG-mnjG)); + v*=APrxLoRcpF1(thinB+(mxkG-mnkG)); + #endif + // Final weighting. + // b c + // e f g h + // i j k l + // n o + // _____ _____ _____ _____ + // fs gt + // + // _____ _____ _____ _____ + // fs s gt fs t gt + // ju kv + // _____ _____ _____ _____ + // fs gt + // ju u kv ju v kv + // _____ _____ _____ _____ + // + // ju kv + AF1 qbeR=wfR*s; + AF1 qbeG=wfG*s; + AF1 qbeB=wfB*s; + AF1 qchR=wgR*t; + AF1 qchG=wgG*t; + AF1 qchB=wgB*t; + AF1 qfR=wgR*t+wjR*u+s; + AF1 qfG=wgG*t+wjG*u+s; + AF1 qfB=wgB*t+wjB*u+s; + AF1 qgR=wfR*s+wkR*v+t; + AF1 qgG=wfG*s+wkG*v+t; + AF1 qgB=wfB*s+wkB*v+t; + AF1 qjR=wfR*s+wkR*v+u; + AF1 qjG=wfG*s+wkG*v+u; + AF1 qjB=wfB*s+wkB*v+u; + AF1 qkR=wgR*t+wjR*u+v; + AF1 qkG=wgG*t+wjG*u+v; + AF1 qkB=wgB*t+wjB*u+v; + AF1 qinR=wjR*u; + AF1 qinG=wjG*u; + AF1 qinB=wjB*u; + AF1 qloR=wkR*v; + AF1 qloG=wkG*v; + AF1 qloB=wkB*v; + // Filter. + #ifndef CAS_SLOW + // Using green coef only, depending on dead code removal to strip out the extra overhead. + #ifdef CAS_GO_SLOWER + AF1 rcpWG=ARcpF1(AF1_(2.0)*qbeG+AF1_(2.0)*qchG+AF1_(2.0)*qinG+AF1_(2.0)*qloG+qfG+qgG+qjG+qkG); + #else + AF1 rcpWG=APrxMedRcpF1(AF1_(2.0)*qbeG+AF1_(2.0)*qchG+AF1_(2.0)*qinG+AF1_(2.0)*qloG+qfG+qgG+qjG+qkG); + #endif + pixR=ASatF1((b.r*qbeG+e.r*qbeG+c.r*qchG+h.r*qchG+i.r*qinG+n.r*qinG+l.r*qloG+o.r*qloG+f.r*qfG+g.r*qgG+j.r*qjG+k.r*qkG)*rcpWG); + pixG=ASatF1((b.g*qbeG+e.g*qbeG+c.g*qchG+h.g*qchG+i.g*qinG+n.g*qinG+l.g*qloG+o.g*qloG+f.g*qfG+g.g*qgG+j.g*qjG+k.g*qkG)*rcpWG); + pixB=ASatF1((b.b*qbeG+e.b*qbeG+c.b*qchG+h.b*qchG+i.b*qinG+n.b*qinG+l.b*qloG+o.b*qloG+f.b*qfG+g.b*qgG+j.b*qjG+k.b*qkG)*rcpWG); + #else + #ifdef CAS_GO_SLOWER + AF1 rcpWR=ARcpF1(AF1_(2.0)*qbeR+AF1_(2.0)*qchR+AF1_(2.0)*qinR+AF1_(2.0)*qloR+qfR+qgR+qjR+qkR); + AF1 rcpWG=ARcpF1(AF1_(2.0)*qbeG+AF1_(2.0)*qchG+AF1_(2.0)*qinG+AF1_(2.0)*qloG+qfG+qgG+qjG+qkG); + AF1 rcpWB=ARcpF1(AF1_(2.0)*qbeB+AF1_(2.0)*qchB+AF1_(2.0)*qinB+AF1_(2.0)*qloB+qfB+qgB+qjB+qkB); + #else + AF1 rcpWR=APrxMedRcpF1(AF1_(2.0)*qbeR+AF1_(2.0)*qchR+AF1_(2.0)*qinR+AF1_(2.0)*qloR+qfR+qgR+qjR+qkR); + AF1 rcpWG=APrxMedRcpF1(AF1_(2.0)*qbeG+AF1_(2.0)*qchG+AF1_(2.0)*qinG+AF1_(2.0)*qloG+qfG+qgG+qjG+qkG); + AF1 rcpWB=APrxMedRcpF1(AF1_(2.0)*qbeB+AF1_(2.0)*qchB+AF1_(2.0)*qinB+AF1_(2.0)*qloB+qfB+qgB+qjB+qkB); + #endif + pixR=ASatF1((b.r*qbeR+e.r*qbeR+c.r*qchR+h.r*qchR+i.r*qinR+n.r*qinR+l.r*qloR+o.r*qloR+f.r*qfR+g.r*qgR+j.r*qjR+k.r*qkR)*rcpWR); + pixG=ASatF1((b.g*qbeG+e.g*qbeG+c.g*qchG+h.g*qchG+i.g*qinG+n.g*qinG+l.g*qloG+o.g*qloG+f.g*qfG+g.g*qgG+j.g*qjG+k.g*qkG)*rcpWG); + pixB=ASatF1((b.b*qbeB+e.b*qbeB+c.b*qchB+h.b*qchB+i.b*qinB+n.b*qinB+l.b*qloB+o.b*qloB+f.b*qfB+g.b*qgB+j.b*qjB+k.b*qkB)*rcpWB); + #endif + } +#endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// PACKED VERSION +//============================================================================================================================== +#if defined(A_GPU) && defined(A_HALF) + // Missing a way to do packed re-interpetation, so must disable approximation optimizations. + #ifdef A_HLSL + #ifndef CAS_GO_SLOWER + #define CAS_GO_SLOWER 1 + #endif + #endif +//============================================================================================================================== + // Can be used to convert from packed SOA to AOS for store. + void CasDepack(out AH4 pix0,out AH4 pix1,AH2 pixR,AH2 pixG,AH2 pixB){ + #ifdef A_HLSL + // Invoke a slower path for DX only, since it won't allow uninitialized values. + pix0.a=pix1.a=0.0; + #endif + pix0.rgb=AH3(pixR.x,pixG.x,pixB.x); + pix1.rgb=AH3(pixR.y,pixG.y,pixB.y);} +//============================================================================================================================== + void CasFilterH( + // Output values are for 2 8x8 tiles in a 16x8 region. + // pix.x = right 8x8 tile + // pix.y = left 8x8 tile + // This enables later processing to easily be packed as well. + out AH2 pixR, + out AH2 pixG, + out AH2 pixB, + AU2 ip, // Integer pixel position in output. + AU4 const0, // Constants generated by CasSetup(). + AU4 const1, + AP1 noScaling){ // Must be a compile-time literal value, true = sharpen only (no resize). +//------------------------------------------------------------------------------------------------------------------------------ + // Debug a checker pattern of on/off tiles for visual inspection. + #ifdef CAS_DEBUG_CHECKER + if((((ip.x^ip.y)>>8u)&1u)==0u){AH3 pix0=CasLoadH(ASW2(ip));AH3 pix1=CasLoadH(ASW2(ip)+ASW2(8,0)); + pixR=AH2(pix0.r,pix1.r);pixG=AH2(pix0.g,pix1.g);pixB=AH2(pix0.b,pix1.b);CasInputH(pixR,pixG,pixB);return;} + #endif +//------------------------------------------------------------------------------------------------------------------------------ + // No scaling algorithm uses minimal 3x3 pixel neighborhood. + if(noScaling){ + ASW2 sp0=ASW2(ip); + AH3 a0=CasLoadH(sp0+ASW2(-1,-1)); + AH3 b0=CasLoadH(sp0+ASW2( 0,-1)); + AH3 c0=CasLoadH(sp0+ASW2( 1,-1)); + AH3 d0=CasLoadH(sp0+ASW2(-1, 0)); + AH3 e0=CasLoadH(sp0); + AH3 f0=CasLoadH(sp0+ASW2( 1, 0)); + AH3 g0=CasLoadH(sp0+ASW2(-1, 1)); + AH3 h0=CasLoadH(sp0+ASW2( 0, 1)); + AH3 i0=CasLoadH(sp0+ASW2( 1, 1)); + ASW2 sp1=sp0+ASW2(8,0); + AH3 a1=CasLoadH(sp1+ASW2(-1,-1)); + AH3 b1=CasLoadH(sp1+ASW2( 0,-1)); + AH3 c1=CasLoadH(sp1+ASW2( 1,-1)); + AH3 d1=CasLoadH(sp1+ASW2(-1, 0)); + AH3 e1=CasLoadH(sp1); + AH3 f1=CasLoadH(sp1+ASW2( 1, 0)); + AH3 g1=CasLoadH(sp1+ASW2(-1, 1)); + AH3 h1=CasLoadH(sp1+ASW2( 0, 1)); + AH3 i1=CasLoadH(sp1+ASW2( 1, 1)); + // AOS to SOA conversion. + AH2 aR=AH2(a0.r,a1.r); + AH2 aG=AH2(a0.g,a1.g); + AH2 aB=AH2(a0.b,a1.b); + AH2 bR=AH2(b0.r,b1.r); + AH2 bG=AH2(b0.g,b1.g); + AH2 bB=AH2(b0.b,b1.b); + AH2 cR=AH2(c0.r,c1.r); + AH2 cG=AH2(c0.g,c1.g); + AH2 cB=AH2(c0.b,c1.b); + AH2 dR=AH2(d0.r,d1.r); + AH2 dG=AH2(d0.g,d1.g); + AH2 dB=AH2(d0.b,d1.b); + AH2 eR=AH2(e0.r,e1.r); + AH2 eG=AH2(e0.g,e1.g); + AH2 eB=AH2(e0.b,e1.b); + AH2 fR=AH2(f0.r,f1.r); + AH2 fG=AH2(f0.g,f1.g); + AH2 fB=AH2(f0.b,f1.b); + AH2 gR=AH2(g0.r,g1.r); + AH2 gG=AH2(g0.g,g1.g); + AH2 gB=AH2(g0.b,g1.b); + AH2 hR=AH2(h0.r,h1.r); + AH2 hG=AH2(h0.g,h1.g); + AH2 hB=AH2(h0.b,h1.b); + AH2 iR=AH2(i0.r,i1.r); + AH2 iG=AH2(i0.g,i1.g); + AH2 iB=AH2(i0.b,i1.b); + // Run optional input transform. + CasInputH(aR,aG,aB); + CasInputH(bR,bG,bB); + CasInputH(cR,cG,cB); + CasInputH(dR,dG,dB); + CasInputH(eR,eG,eB); + CasInputH(fR,fG,fB); + CasInputH(gR,gG,gB); + CasInputH(hR,hG,hB); + CasInputH(iR,iG,iB); + // Soft min and max. + AH2 mnR=min(min(fR,hR),min(min(bR,dR),eR)); + AH2 mnG=min(min(fG,hG),min(min(bG,dG),eG)); + AH2 mnB=min(min(fB,hB),min(min(bB,dB),eB)); + #ifdef CAS_BETTER_DIAGONALS + AH2 mnR2=min(min(gR,iR),min(min(aR,cR),mnR)); + AH2 mnG2=min(min(gG,iG),min(min(aG,cG),mnG)); + AH2 mnB2=min(min(gB,iB),min(min(aB,cB),mnB)); + mnR=mnR+mnR2; + mnG=mnG+mnG2; + mnB=mnB+mnB2; + #endif + AH2 mxR=max(max(fR,hR),max(max(bR,dR),eR)); + AH2 mxG=max(max(fG,hG),max(max(bG,dG),eG)); + AH2 mxB=max(max(fB,hB),max(max(bB,dB),eB)); + #ifdef CAS_BETTER_DIAGONALS + AH2 mxR2=max(max(gR,iR),max(max(aR,cR),mxR)); + AH2 mxG2=max(max(gG,iG),max(max(aG,cG),mxG)); + AH2 mxB2=max(max(gB,iB),max(max(aB,cB),mxB)); + mxR=mxR+mxR2; + mxG=mxG+mxG2; + mxB=mxB+mxB2; + #endif + // Smooth minimum distance to signal limit divided by smooth max. + #ifdef CAS_GO_SLOWER + AH2 rcpMR=ARcpH2(mxR); + AH2 rcpMG=ARcpH2(mxG); + AH2 rcpMB=ARcpH2(mxB); + #else + AH2 rcpMR=APrxLoRcpH2(mxR); + AH2 rcpMG=APrxLoRcpH2(mxG); + AH2 rcpMB=APrxLoRcpH2(mxB); + #endif + #ifdef CAS_BETTER_DIAGONALS + AH2 ampR=ASatH2(min(mnR,AH2_(2.0)-mxR)*rcpMR); + AH2 ampG=ASatH2(min(mnG,AH2_(2.0)-mxG)*rcpMG); + AH2 ampB=ASatH2(min(mnB,AH2_(2.0)-mxB)*rcpMB); + #else + AH2 ampR=ASatH2(min(mnR,AH2_(1.0)-mxR)*rcpMR); + AH2 ampG=ASatH2(min(mnG,AH2_(1.0)-mxG)*rcpMG); + AH2 ampB=ASatH2(min(mnB,AH2_(1.0)-mxB)*rcpMB); + #endif + // Shaping amount of sharpening. + #ifdef CAS_GO_SLOWER + ampR=sqrt(ampR); + ampG=sqrt(ampG); + ampB=sqrt(ampB); + #else + ampR=APrxLoSqrtH2(ampR); + ampG=APrxLoSqrtH2(ampG); + ampB=APrxLoSqrtH2(ampB); + #endif + // Filter shape. + AH1 peak=AH2_AU1(const1.y).x; + AH2 wR=ampR*AH2_(peak); + AH2 wG=ampG*AH2_(peak); + AH2 wB=ampB*AH2_(peak); + // Filter. + #ifndef CAS_SLOW + #ifdef CAS_GO_SLOWER + AH2 rcpWeight=ARcpH2(AH2_(1.0)+AH2_(4.0)*wG); + #else + AH2 rcpWeight=APrxMedRcpH2(AH2_(1.0)+AH2_(4.0)*wG); + #endif + pixR=ASatH2((bR*wG+dR*wG+fR*wG+hR*wG+eR)*rcpWeight); + pixG=ASatH2((bG*wG+dG*wG+fG*wG+hG*wG+eG)*rcpWeight); + pixB=ASatH2((bB*wG+dB*wG+fB*wG+hB*wG+eB)*rcpWeight); + #else + #ifdef CAS_GO_SLOWER + AH2 rcpWeightR=ARcpH2(AH2_(1.0)+AH2_(4.0)*wR); + AH2 rcpWeightG=ARcpH2(AH2_(1.0)+AH2_(4.0)*wG); + AH2 rcpWeightB=ARcpH2(AH2_(1.0)+AH2_(4.0)*wB); + #else + AH2 rcpWeightR=APrxMedRcpH2(AH2_(1.0)+AH2_(4.0)*wR); + AH2 rcpWeightG=APrxMedRcpH2(AH2_(1.0)+AH2_(4.0)*wG); + AH2 rcpWeightB=APrxMedRcpH2(AH2_(1.0)+AH2_(4.0)*wB); + #endif + pixR=ASatH2((bR*wR+dR*wR+fR*wR+hR*wR+eR)*rcpWeightR); + pixG=ASatH2((bG*wG+dG*wG+fG*wG+hG*wG+eG)*rcpWeightG); + pixB=ASatH2((bB*wB+dB*wB+fB*wB+hB*wB+eB)*rcpWeightB); + #endif + return;} +//------------------------------------------------------------------------------------------------------------------------------ + // Scaling algorithm adaptively interpolates between nearest 4 results of the non-scaling algorithm. + AF2 pp=AF2(ip)*AF2_AU2(const0.xy)+AF2_AU2(const0.zw); + // Tile 0. + // Fractional position is needed in high precision here. + AF2 fp0=floor(pp); + AH2 ppX; + ppX.x=AH1(pp.x-fp0.x); + AH1 ppY=AH1(pp.y-fp0.y); + ASW2 sp0=ASW2(fp0); + AH3 a0=CasLoadH(sp0+ASW2(-1,-1)); + AH3 b0=CasLoadH(sp0+ASW2( 0,-1)); + AH3 e0=CasLoadH(sp0+ASW2(-1, 0)); + AH3 f0=CasLoadH(sp0); + AH3 c0=CasLoadH(sp0+ASW2( 1,-1)); + AH3 d0=CasLoadH(sp0+ASW2( 2,-1)); + AH3 g0=CasLoadH(sp0+ASW2( 1, 0)); + AH3 h0=CasLoadH(sp0+ASW2( 2, 0)); + AH3 i0=CasLoadH(sp0+ASW2(-1, 1)); + AH3 j0=CasLoadH(sp0+ASW2( 0, 1)); + AH3 m0=CasLoadH(sp0+ASW2(-1, 2)); + AH3 n0=CasLoadH(sp0+ASW2( 0, 2)); + AH3 k0=CasLoadH(sp0+ASW2( 1, 1)); + AH3 l0=CasLoadH(sp0+ASW2( 2, 1)); + AH3 o0=CasLoadH(sp0+ASW2( 1, 2)); + AH3 p0=CasLoadH(sp0+ASW2( 2, 2)); + // Tile 1 (offset only in x). + AF1 pp1=pp.x+AF1_AU1(const1.z); + AF1 fp1=floor(pp1); + ppX.y=AH1(pp1-fp1); + ASW2 sp1=ASW2(fp1,sp0.y); + AH3 a1=CasLoadH(sp1+ASW2(-1,-1)); + AH3 b1=CasLoadH(sp1+ASW2( 0,-1)); + AH3 e1=CasLoadH(sp1+ASW2(-1, 0)); + AH3 f1=CasLoadH(sp1); + AH3 c1=CasLoadH(sp1+ASW2( 1,-1)); + AH3 d1=CasLoadH(sp1+ASW2( 2,-1)); + AH3 g1=CasLoadH(sp1+ASW2( 1, 0)); + AH3 h1=CasLoadH(sp1+ASW2( 2, 0)); + AH3 i1=CasLoadH(sp1+ASW2(-1, 1)); + AH3 j1=CasLoadH(sp1+ASW2( 0, 1)); + AH3 m1=CasLoadH(sp1+ASW2(-1, 2)); + AH3 n1=CasLoadH(sp1+ASW2( 0, 2)); + AH3 k1=CasLoadH(sp1+ASW2( 1, 1)); + AH3 l1=CasLoadH(sp1+ASW2( 2, 1)); + AH3 o1=CasLoadH(sp1+ASW2( 1, 2)); + AH3 p1=CasLoadH(sp1+ASW2( 2, 2)); + // AOS to SOA conversion. + AH2 aR=AH2(a0.r,a1.r); + AH2 aG=AH2(a0.g,a1.g); + AH2 aB=AH2(a0.b,a1.b); + AH2 bR=AH2(b0.r,b1.r); + AH2 bG=AH2(b0.g,b1.g); + AH2 bB=AH2(b0.b,b1.b); + AH2 cR=AH2(c0.r,c1.r); + AH2 cG=AH2(c0.g,c1.g); + AH2 cB=AH2(c0.b,c1.b); + AH2 dR=AH2(d0.r,d1.r); + AH2 dG=AH2(d0.g,d1.g); + AH2 dB=AH2(d0.b,d1.b); + AH2 eR=AH2(e0.r,e1.r); + AH2 eG=AH2(e0.g,e1.g); + AH2 eB=AH2(e0.b,e1.b); + AH2 fR=AH2(f0.r,f1.r); + AH2 fG=AH2(f0.g,f1.g); + AH2 fB=AH2(f0.b,f1.b); + AH2 gR=AH2(g0.r,g1.r); + AH2 gG=AH2(g0.g,g1.g); + AH2 gB=AH2(g0.b,g1.b); + AH2 hR=AH2(h0.r,h1.r); + AH2 hG=AH2(h0.g,h1.g); + AH2 hB=AH2(h0.b,h1.b); + AH2 iR=AH2(i0.r,i1.r); + AH2 iG=AH2(i0.g,i1.g); + AH2 iB=AH2(i0.b,i1.b); + AH2 jR=AH2(j0.r,j1.r); + AH2 jG=AH2(j0.g,j1.g); + AH2 jB=AH2(j0.b,j1.b); + AH2 kR=AH2(k0.r,k1.r); + AH2 kG=AH2(k0.g,k1.g); + AH2 kB=AH2(k0.b,k1.b); + AH2 lR=AH2(l0.r,l1.r); + AH2 lG=AH2(l0.g,l1.g); + AH2 lB=AH2(l0.b,l1.b); + AH2 mR=AH2(m0.r,m1.r); + AH2 mG=AH2(m0.g,m1.g); + AH2 mB=AH2(m0.b,m1.b); + AH2 nR=AH2(n0.r,n1.r); + AH2 nG=AH2(n0.g,n1.g); + AH2 nB=AH2(n0.b,n1.b); + AH2 oR=AH2(o0.r,o1.r); + AH2 oG=AH2(o0.g,o1.g); + AH2 oB=AH2(o0.b,o1.b); + AH2 pR=AH2(p0.r,p1.r); + AH2 pG=AH2(p0.g,p1.g); + AH2 pB=AH2(p0.b,p1.b); + // Run optional input transform. + CasInputH(aR,aG,aB); + CasInputH(bR,bG,bB); + CasInputH(cR,cG,cB); + CasInputH(dR,dG,dB); + CasInputH(eR,eG,eB); + CasInputH(fR,fG,fB); + CasInputH(gR,gG,gB); + CasInputH(hR,hG,hB); + CasInputH(iR,iG,iB); + CasInputH(jR,jG,jB); + CasInputH(kR,kG,kB); + CasInputH(lR,lG,lB); + CasInputH(mR,mG,mB); + CasInputH(nR,nG,nB); + CasInputH(oR,oG,oB); + CasInputH(pR,pG,pB); + // Soft min and max. + // These are 2.0x bigger (factored out the extra multiply). + // a b c b + // e f g * 0.5 + e f g * 0.5 [F] + // i j k j + AH2 mnfR=AMin3H2(AMin3H2(bR,eR,fR),gR,jR); + AH2 mnfG=AMin3H2(AMin3H2(bG,eG,fG),gG,jG); + AH2 mnfB=AMin3H2(AMin3H2(bB,eB,fB),gB,jB); + #ifdef CAS_BETTER_DIAGONALS + AH2 mnfR2=AMin3H2(AMin3H2(mnfR,aR,cR),iR,kR); + AH2 mnfG2=AMin3H2(AMin3H2(mnfG,aG,cG),iG,kG); + AH2 mnfB2=AMin3H2(AMin3H2(mnfB,aB,cB),iB,kB); + mnfR=mnfR+mnfR2; + mnfG=mnfG+mnfG2; + mnfB=mnfB+mnfB2; + #endif + AH2 mxfR=AMax3H2(AMax3H2(bR,eR,fR),gR,jR); + AH2 mxfG=AMax3H2(AMax3H2(bG,eG,fG),gG,jG); + AH2 mxfB=AMax3H2(AMax3H2(bB,eB,fB),gB,jB); + #ifdef CAS_BETTER_DIAGONALS + AH2 mxfR2=AMax3H2(AMax3H2(mxfR,aR,cR),iR,kR); + AH2 mxfG2=AMax3H2(AMax3H2(mxfG,aG,cG),iG,kG); + AH2 mxfB2=AMax3H2(AMax3H2(mxfB,aB,cB),iB,kB); + mxfR=mxfR+mxfR2; + mxfG=mxfG+mxfG2; + mxfB=mxfB+mxfB2; + #endif + // b c d c + // f g h * 0.5 + f g h * 0.5 [G] + // j k l k + AH2 mngR=AMin3H2(AMin3H2(cR,fR,gR),hR,kR); + AH2 mngG=AMin3H2(AMin3H2(cG,fG,gG),hG,kG); + AH2 mngB=AMin3H2(AMin3H2(cB,fB,gB),hB,kB); + #ifdef CAS_BETTER_DIAGONALS + AH2 mngR2=AMin3H2(AMin3H2(mngR,bR,dR),jR,lR); + AH2 mngG2=AMin3H2(AMin3H2(mngG,bG,dG),jG,lG); + AH2 mngB2=AMin3H2(AMin3H2(mngB,bB,dB),jB,lB); + mngR=mngR+mngR2; + mngG=mngG+mngG2; + mngB=mngB+mngB2; + #endif + AH2 mxgR=AMax3H2(AMax3H2(cR,fR,gR),hR,kR); + AH2 mxgG=AMax3H2(AMax3H2(cG,fG,gG),hG,kG); + AH2 mxgB=AMax3H2(AMax3H2(cB,fB,gB),hB,kB); + #ifdef CAS_BETTER_DIAGONALS + AH2 mxgR2=AMax3H2(AMax3H2(mxgR,bR,dR),jR,lR); + AH2 mxgG2=AMax3H2(AMax3H2(mxgG,bG,dG),jG,lG); + AH2 mxgB2=AMax3H2(AMax3H2(mxgB,bB,dB),jB,lB); + mxgR=mxgR+mxgR2; + mxgG=mxgG+mxgG2; + mxgB=mxgB+mxgB2; + #endif + // e f g f + // i j k * 0.5 + i j k * 0.5 [J] + // m n o n + AH2 mnjR=AMin3H2(AMin3H2(fR,iR,jR),kR,nR); + AH2 mnjG=AMin3H2(AMin3H2(fG,iG,jG),kG,nG); + AH2 mnjB=AMin3H2(AMin3H2(fB,iB,jB),kB,nB); + #ifdef CAS_BETTER_DIAGONALS + AH2 mnjR2=AMin3H2(AMin3H2(mnjR,eR,gR),mR,oR); + AH2 mnjG2=AMin3H2(AMin3H2(mnjG,eG,gG),mG,oG); + AH2 mnjB2=AMin3H2(AMin3H2(mnjB,eB,gB),mB,oB); + mnjR=mnjR+mnjR2; + mnjG=mnjG+mnjG2; + mnjB=mnjB+mnjB2; + #endif + AH2 mxjR=AMax3H2(AMax3H2(fR,iR,jR),kR,nR); + AH2 mxjG=AMax3H2(AMax3H2(fG,iG,jG),kG,nG); + AH2 mxjB=AMax3H2(AMax3H2(fB,iB,jB),kB,nB); + #ifdef CAS_BETTER_DIAGONALS + AH2 mxjR2=AMax3H2(AMax3H2(mxjR,eR,gR),mR,oR); + AH2 mxjG2=AMax3H2(AMax3H2(mxjG,eG,gG),mG,oG); + AH2 mxjB2=AMax3H2(AMax3H2(mxjB,eB,gB),mB,oB); + mxjR=mxjR+mxjR2; + mxjG=mxjG+mxjG2; + mxjB=mxjB+mxjB2; + #endif + // f g h g + // j k l * 0.5 + j k l * 0.5 [K] + // n o p o + AH2 mnkR=AMin3H2(AMin3H2(gR,jR,kR),lR,oR); + AH2 mnkG=AMin3H2(AMin3H2(gG,jG,kG),lG,oG); + AH2 mnkB=AMin3H2(AMin3H2(gB,jB,kB),lB,oB); + #ifdef CAS_BETTER_DIAGONALS + AH2 mnkR2=AMin3H2(AMin3H2(mnkR,fR,hR),nR,pR); + AH2 mnkG2=AMin3H2(AMin3H2(mnkG,fG,hG),nG,pG); + AH2 mnkB2=AMin3H2(AMin3H2(mnkB,fB,hB),nB,pB); + mnkR=mnkR+mnkR2; + mnkG=mnkG+mnkG2; + mnkB=mnkB+mnkB2; + #endif + AH2 mxkR=AMax3H2(AMax3H2(gR,jR,kR),lR,oR); + AH2 mxkG=AMax3H2(AMax3H2(gG,jG,kG),lG,oG); + AH2 mxkB=AMax3H2(AMax3H2(gB,jB,kB),lB,oB); + #ifdef CAS_BETTER_DIAGONALS + AH2 mxkR2=AMax3H2(AMax3H2(mxkR,fR,hR),nR,pR); + AH2 mxkG2=AMax3H2(AMax3H2(mxkG,fG,hG),nG,pG); + AH2 mxkB2=AMax3H2(AMax3H2(mxkB,fB,hB),nB,pB); + mxkR=mxkR+mxkR2; + mxkG=mxkG+mxkG2; + mxkB=mxkB+mxkB2; + #endif + // Smooth minimum distance to signal limit divided by smooth max. + #ifdef CAS_GO_SLOWER + AH2 rcpMfR=ARcpH2(mxfR); + AH2 rcpMfG=ARcpH2(mxfG); + AH2 rcpMfB=ARcpH2(mxfB); + AH2 rcpMgR=ARcpH2(mxgR); + AH2 rcpMgG=ARcpH2(mxgG); + AH2 rcpMgB=ARcpH2(mxgB); + AH2 rcpMjR=ARcpH2(mxjR); + AH2 rcpMjG=ARcpH2(mxjG); + AH2 rcpMjB=ARcpH2(mxjB); + AH2 rcpMkR=ARcpH2(mxkR); + AH2 rcpMkG=ARcpH2(mxkG); + AH2 rcpMkB=ARcpH2(mxkB); + #else + AH2 rcpMfR=APrxLoRcpH2(mxfR); + AH2 rcpMfG=APrxLoRcpH2(mxfG); + AH2 rcpMfB=APrxLoRcpH2(mxfB); + AH2 rcpMgR=APrxLoRcpH2(mxgR); + AH2 rcpMgG=APrxLoRcpH2(mxgG); + AH2 rcpMgB=APrxLoRcpH2(mxgB); + AH2 rcpMjR=APrxLoRcpH2(mxjR); + AH2 rcpMjG=APrxLoRcpH2(mxjG); + AH2 rcpMjB=APrxLoRcpH2(mxjB); + AH2 rcpMkR=APrxLoRcpH2(mxkR); + AH2 rcpMkG=APrxLoRcpH2(mxkG); + AH2 rcpMkB=APrxLoRcpH2(mxkB); + #endif + #ifdef CAS_BETTER_DIAGONALS + AH2 ampfR=ASatH2(min(mnfR,AH2_(2.0)-mxfR)*rcpMfR); + AH2 ampfG=ASatH2(min(mnfG,AH2_(2.0)-mxfG)*rcpMfG); + AH2 ampfB=ASatH2(min(mnfB,AH2_(2.0)-mxfB)*rcpMfB); + AH2 ampgR=ASatH2(min(mngR,AH2_(2.0)-mxgR)*rcpMgR); + AH2 ampgG=ASatH2(min(mngG,AH2_(2.0)-mxgG)*rcpMgG); + AH2 ampgB=ASatH2(min(mngB,AH2_(2.0)-mxgB)*rcpMgB); + AH2 ampjR=ASatH2(min(mnjR,AH2_(2.0)-mxjR)*rcpMjR); + AH2 ampjG=ASatH2(min(mnjG,AH2_(2.0)-mxjG)*rcpMjG); + AH2 ampjB=ASatH2(min(mnjB,AH2_(2.0)-mxjB)*rcpMjB); + AH2 ampkR=ASatH2(min(mnkR,AH2_(2.0)-mxkR)*rcpMkR); + AH2 ampkG=ASatH2(min(mnkG,AH2_(2.0)-mxkG)*rcpMkG); + AH2 ampkB=ASatH2(min(mnkB,AH2_(2.0)-mxkB)*rcpMkB); + #else + AH2 ampfR=ASatH2(min(mnfR,AH2_(1.0)-mxfR)*rcpMfR); + AH2 ampfG=ASatH2(min(mnfG,AH2_(1.0)-mxfG)*rcpMfG); + AH2 ampfB=ASatH2(min(mnfB,AH2_(1.0)-mxfB)*rcpMfB); + AH2 ampgR=ASatH2(min(mngR,AH2_(1.0)-mxgR)*rcpMgR); + AH2 ampgG=ASatH2(min(mngG,AH2_(1.0)-mxgG)*rcpMgG); + AH2 ampgB=ASatH2(min(mngB,AH2_(1.0)-mxgB)*rcpMgB); + AH2 ampjR=ASatH2(min(mnjR,AH2_(1.0)-mxjR)*rcpMjR); + AH2 ampjG=ASatH2(min(mnjG,AH2_(1.0)-mxjG)*rcpMjG); + AH2 ampjB=ASatH2(min(mnjB,AH2_(1.0)-mxjB)*rcpMjB); + AH2 ampkR=ASatH2(min(mnkR,AH2_(1.0)-mxkR)*rcpMkR); + AH2 ampkG=ASatH2(min(mnkG,AH2_(1.0)-mxkG)*rcpMkG); + AH2 ampkB=ASatH2(min(mnkB,AH2_(1.0)-mxkB)*rcpMkB); + #endif + // Shaping amount of sharpening. + #ifdef CAS_GO_SLOWER + ampfR=sqrt(ampfR); + ampfG=sqrt(ampfG); + ampfB=sqrt(ampfB); + ampgR=sqrt(ampgR); + ampgG=sqrt(ampgG); + ampgB=sqrt(ampgB); + ampjR=sqrt(ampjR); + ampjG=sqrt(ampjG); + ampjB=sqrt(ampjB); + ampkR=sqrt(ampkR); + ampkG=sqrt(ampkG); + ampkB=sqrt(ampkB); + #else + ampfR=APrxLoSqrtH2(ampfR); + ampfG=APrxLoSqrtH2(ampfG); + ampfB=APrxLoSqrtH2(ampfB); + ampgR=APrxLoSqrtH2(ampgR); + ampgG=APrxLoSqrtH2(ampgG); + ampgB=APrxLoSqrtH2(ampgB); + ampjR=APrxLoSqrtH2(ampjR); + ampjG=APrxLoSqrtH2(ampjG); + ampjB=APrxLoSqrtH2(ampjB); + ampkR=APrxLoSqrtH2(ampkR); + ampkG=APrxLoSqrtH2(ampkG); + ampkB=APrxLoSqrtH2(ampkB); + #endif + // Filter shape. + AH1 peak=AH2_AU1(const1.y).x; + AH2 wfR=ampfR*AH2_(peak); + AH2 wfG=ampfG*AH2_(peak); + AH2 wfB=ampfB*AH2_(peak); + AH2 wgR=ampgR*AH2_(peak); + AH2 wgG=ampgG*AH2_(peak); + AH2 wgB=ampgB*AH2_(peak); + AH2 wjR=ampjR*AH2_(peak); + AH2 wjG=ampjG*AH2_(peak); + AH2 wjB=ampjB*AH2_(peak); + AH2 wkR=ampkR*AH2_(peak); + AH2 wkG=ampkG*AH2_(peak); + AH2 wkB=ampkB*AH2_(peak); + // Blend between 4 results. + AH2 s=(AH2_(1.0)-ppX)*(AH2_(1.0)-AH2_(ppY)); + AH2 t= ppX *(AH2_(1.0)-AH2_(ppY)); + AH2 u=(AH2_(1.0)-ppX)* AH2_(ppY) ; + AH2 v= ppX * AH2_(ppY) ; + // Thin edges to hide bilinear interpolation (helps diagonals). + AH2 thinB=AH2_(1.0/32.0); + #ifdef CAS_GO_SLOWER + s*=ARcpH2(thinB+(mxfG-mnfG)); + t*=ARcpH2(thinB+(mxgG-mngG)); + u*=ARcpH2(thinB+(mxjG-mnjG)); + v*=ARcpH2(thinB+(mxkG-mnkG)); + #else + s*=APrxLoRcpH2(thinB+(mxfG-mnfG)); + t*=APrxLoRcpH2(thinB+(mxgG-mngG)); + u*=APrxLoRcpH2(thinB+(mxjG-mnjG)); + v*=APrxLoRcpH2(thinB+(mxkG-mnkG)); + #endif + // Final weighting. + AH2 qbeR=wfR*s; + AH2 qbeG=wfG*s; + AH2 qbeB=wfB*s; + AH2 qchR=wgR*t; + AH2 qchG=wgG*t; + AH2 qchB=wgB*t; + AH2 qfR=wgR*t+wjR*u+s; + AH2 qfG=wgG*t+wjG*u+s; + AH2 qfB=wgB*t+wjB*u+s; + AH2 qgR=wfR*s+wkR*v+t; + AH2 qgG=wfG*s+wkG*v+t; + AH2 qgB=wfB*s+wkB*v+t; + AH2 qjR=wfR*s+wkR*v+u; + AH2 qjG=wfG*s+wkG*v+u; + AH2 qjB=wfB*s+wkB*v+u; + AH2 qkR=wgR*t+wjR*u+v; + AH2 qkG=wgG*t+wjG*u+v; + AH2 qkB=wgB*t+wjB*u+v; + AH2 qinR=wjR*u; + AH2 qinG=wjG*u; + AH2 qinB=wjB*u; + AH2 qloR=wkR*v; + AH2 qloG=wkG*v; + AH2 qloB=wkB*v; + // Filter. + #ifndef CAS_SLOW + #ifdef CAS_GO_SLOWER + AH2 rcpWG=ARcpH2(AH2_(2.0)*qbeG+AH2_(2.0)*qchG+AH2_(2.0)*qinG+AH2_(2.0)*qloG+qfG+qgG+qjG+qkG); + #else + AH2 rcpWG=APrxMedRcpH2(AH2_(2.0)*qbeG+AH2_(2.0)*qchG+AH2_(2.0)*qinG+AH2_(2.0)*qloG+qfG+qgG+qjG+qkG); + #endif + pixR=ASatH2((bR*qbeG+eR*qbeG+cR*qchG+hR*qchG+iR*qinG+nR*qinG+lR*qloG+oR*qloG+fR*qfG+gR*qgG+jR*qjG+kR*qkG)*rcpWG); + pixG=ASatH2((bG*qbeG+eG*qbeG+cG*qchG+hG*qchG+iG*qinG+nG*qinG+lG*qloG+oG*qloG+fG*qfG+gG*qgG+jG*qjG+kG*qkG)*rcpWG); + pixB=ASatH2((bB*qbeG+eB*qbeG+cB*qchG+hB*qchG+iB*qinG+nB*qinG+lB*qloG+oB*qloG+fB*qfG+gB*qgG+jB*qjG+kB*qkG)*rcpWG); + #else + #ifdef CAS_GO_SLOWER + AH2 rcpWR=ARcpH2(AH2_(2.0)*qbeR+AH2_(2.0)*qchR+AH2_(2.0)*qinR+AH2_(2.0)*qloR+qfR+qgR+qjR+qkR); + AH2 rcpWG=ARcpH2(AH2_(2.0)*qbeG+AH2_(2.0)*qchG+AH2_(2.0)*qinG+AH2_(2.0)*qloG+qfG+qgG+qjG+qkG); + AH2 rcpWB=ARcpH2(AH2_(2.0)*qbeB+AH2_(2.0)*qchB+AH2_(2.0)*qinB+AH2_(2.0)*qloB+qfB+qgB+qjB+qkB); + #else + AH2 rcpWR=APrxMedRcpH2(AH2_(2.0)*qbeR+AH2_(2.0)*qchR+AH2_(2.0)*qinR+AH2_(2.0)*qloR+qfR+qgR+qjR+qkR); + AH2 rcpWG=APrxMedRcpH2(AH2_(2.0)*qbeG+AH2_(2.0)*qchG+AH2_(2.0)*qinG+AH2_(2.0)*qloG+qfG+qgG+qjG+qkG); + AH2 rcpWB=APrxMedRcpH2(AH2_(2.0)*qbeB+AH2_(2.0)*qchB+AH2_(2.0)*qinB+AH2_(2.0)*qloB+qfB+qgB+qjB+qkB); + #endif + pixR=ASatH2((bR*qbeR+eR*qbeR+cR*qchR+hR*qchR+iR*qinR+nR*qinR+lR*qloR+oR*qloR+fR*qfR+gR*qgR+jR*qjR+kR*qkR)*rcpWR); + pixG=ASatH2((bG*qbeG+eG*qbeG+cG*qchG+hG*qchG+iG*qinG+nG*qinG+lG*qloG+oG*qloG+fG*qfG+gG*qgG+jG*qjG+kG*qkG)*rcpWG); + pixB=ASatH2((bB*qbeB+eB*qbeB+cB*qchB+hB*qchB+iB*qinB+nB*qinB+lB*qloB+oB*qloB+fB*qfB+gB*qgB+jB*qjB+kB*qkB)*rcpWB); + #endif + } +#endif