Linux: Fix bugs in _aligned_realloc and newVif's inlined SSE HashBucket finder.

git-svn-id: http://pcsx2.googlecode.com/svn/trunk@2395 96395faa-99c1-11dd-bbfe-3dabce05a288
This commit is contained in:
Jake.Stine 2009-12-24 10:04:03 +00:00
parent 4b0b270776
commit 3d9bb25505
3 changed files with 390 additions and 375 deletions

View File

@ -28,7 +28,7 @@ static const uint headsize = sizeof(AlignedMallocHeader);
void* __fastcall pcsx2_aligned_malloc(size_t size, size_t align) void* __fastcall pcsx2_aligned_malloc(size_t size, size_t align)
{ {
jASSUME( align < 0x10000 ); pxAssume( align < 0x10000 );
u8* p = (u8*)malloc(size+align+headsize); u8* p = (u8*)malloc(size+align+headsize);
@ -47,15 +47,16 @@ void* __fastcall pcsx2_aligned_malloc(size_t size, size_t align)
void* __fastcall pcsx2_aligned_realloc(void* handle, size_t size, size_t align) void* __fastcall pcsx2_aligned_realloc(void* handle, size_t size, size_t align)
{ {
if( handle == NULL ) return NULL; pxAssume( align < 0x10000 );
jASSUME( align < 0x10000 );
AlignedMallocHeader* header = (AlignedMallocHeader*)((uptr)handle - headsize);
void* newbuf = pcsx2_aligned_malloc( size, align ); void* newbuf = pcsx2_aligned_malloc( size, align );
memcpy_fast( newbuf, handle, std::min( size, header->size ) );
free( header->baseptr ); if( handle != NULL )
{
AlignedMallocHeader* header = (AlignedMallocHeader*)((uptr)handle - headsize);
memcpy_fast( newbuf, handle, std::min( size, header->size ) );
free( header->baseptr );
}
return newbuf; return newbuf;
} }
@ -74,7 +75,7 @@ __forceinline void pcsx2_aligned_free(void* pmem)
// memzero_obj and stuff). // memzero_obj and stuff).
__forceinline void _memset16_unaligned( void* dest, u16 data, size_t size ) __forceinline void _memset16_unaligned( void* dest, u16 data, size_t size )
{ {
jASSUME( (size & 0x1) == 0 ); pxAssume( (size & 0x1) == 0 );
u16* dst = (u16*)dest; u16* dst = (u16*)dest;
for(int i=size; i; --i, ++dst ) for(int i=size; i; --i, ++dst )

View File

@ -1,282 +1,282 @@
/* PCSX2 - PS2 Emulator for PCs /* PCSX2 - PS2 Emulator for PCs
* Copyright (C) 2002-2009 PCSX2 Dev Team * Copyright (C) 2002-2009 PCSX2 Dev Team
* *
* PCSX2 is free software: you can redistribute it and/or modify it under the terms * PCSX2 is free software: you can redistribute it and/or modify it under the terms
* of the GNU Lesser General Public License as published by the Free Software Found- * of the GNU Lesser General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version. * ation, either version 3 of the License, or (at your option) any later version.
* *
* PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details. * PURPOSE. See the GNU General Public License for more details.
* *
* You should have received a copy of the GNU General Public License along with PCSX2. * You should have received a copy of the GNU General Public License along with PCSX2.
* If not, see <http://www.gnu.org/licenses/>. * If not, see <http://www.gnu.org/licenses/>.
*/ */
// newVif Dynarec - Dynamically Recompiles Vif 'unpack' Packets // newVif Dynarec - Dynamically Recompiles Vif 'unpack' Packets
// authors: cottonvibes(@gmail.com) // authors: cottonvibes(@gmail.com)
// Jake.Stine (@gmail.com) // Jake.Stine (@gmail.com)
#include "PrecompiledHeader.h" #include "PrecompiledHeader.h"
#include "VifUnpackSSE.h" #include "VifUnpackSSE.h"
#if newVif #if newVif
static __aligned16 nVifBlock _vBlock = {0}; static __aligned16 nVifBlock _vBlock = {0};
static __pagealigned u8 nVifMemCmp[__pagesize]; static __pagealigned u8 nVifMemCmp[__pagesize];
static void emitCustomCompare() { static void emitCustomCompare() {
HostSys::MemProtectStatic(nVifMemCmp, Protect_ReadWrite, false); HostSys::MemProtectStatic(nVifMemCmp, Protect_ReadWrite, false);
memset8<0xcc>(nVifMemCmp); memset8<0xcc>(nVifMemCmp);
xSetPtr(nVifMemCmp); xSetPtr(nVifMemCmp);
xMOVAPS (xmm0, ptr32[ecx]); xMOVAPS (xmm0, ptr32[ecx]);
xPCMP.EQD(xmm0, ptr32[edx]); xPCMP.EQD(xmm0, ptr32[edx]);
xMOVMSKPS(eax, xmm0); xMOVMSKPS(eax, xmm0);
xAND (eax, 0x7); // ignore top 4 bytes (recBlock pointer) xAND (eax, 0x7); // ignore top 4 bytes (recBlock pointer)
xRET(); xRET();
HostSys::MemProtectStatic(nVifMemCmp, Protect_ReadOnly, true); HostSys::MemProtectStatic(nVifMemCmp, Protect_ReadOnly, true);
} }
void dVifInit(int idx) { void dVifInit(int idx) {
nVif[idx].idx = idx; nVif[idx].idx = idx;
nVif[idx].VU = idx ? &VU1 : &VU0; nVif[idx].VU = idx ? &VU1 : &VU0;
nVif[idx].vif = idx ? &vif1 : &vif0; nVif[idx].vif = idx ? &vif1 : &vif0;
nVif[idx].vifRegs = idx ? vif1Regs : vif0Regs; nVif[idx].vifRegs = idx ? vif1Regs : vif0Regs;
nVif[idx].vuMemEnd = idx ? ((u8*)(VU1.Mem + 0x4000)) : ((u8*)(VU0.Mem + 0x1000)); nVif[idx].vuMemEnd = idx ? ((u8*)(VU1.Mem + 0x4000)) : ((u8*)(VU0.Mem + 0x1000));
nVif[idx].vuMemLimit= idx ? 0x3ff0 : 0xff0; nVif[idx].vuMemLimit= idx ? 0x3ff0 : 0xff0;
nVif[idx].vifCache = new BlockBuffer(_1mb*4); // 4mb Rec Cache nVif[idx].vifCache = new BlockBuffer(_1mb*4); // 4mb Rec Cache
nVif[idx].vifBlocks = new HashBucket<_tParams>(); nVif[idx].vifBlocks = new HashBucket<_tParams>();
nVif[idx].recPtr = nVif[idx].vifCache->getBlock(); nVif[idx].recPtr = nVif[idx].vifCache->getBlock();
nVif[idx].recEnd = &nVif[idx].recPtr[nVif[idx].vifCache->getSize()-(_1mb/4)]; // .25mb Safe Zone nVif[idx].recEnd = &nVif[idx].recPtr[nVif[idx].vifCache->getSize()-(_1mb/4)]; // .25mb Safe Zone
//emitCustomCompare(); //emitCustomCompare();
} }
// Loads Row/Col Data from vifRegs instead of g_vifmask // Loads Row/Col Data from vifRegs instead of g_vifmask
// Useful for testing vifReg and g_vifmask inconsistency. // Useful for testing vifReg and g_vifmask inconsistency.
static void loadRowCol(nVifStruct& v) { static void loadRowCol(nVifStruct& v) {
xMOVAPS(xmm0, ptr32[&v.vifRegs->r0]); xMOVAPS(xmm0, ptr32[&v.vifRegs->r0]);
xMOVAPS(xmm1, ptr32[&v.vifRegs->r1]); xMOVAPS(xmm1, ptr32[&v.vifRegs->r1]);
xMOVAPS(xmm2, ptr32[&v.vifRegs->r2]); xMOVAPS(xmm2, ptr32[&v.vifRegs->r2]);
xMOVAPS(xmm6, ptr32[&v.vifRegs->r3]); xMOVAPS(xmm6, ptr32[&v.vifRegs->r3]);
xPSHUF.D(xmm0, xmm0, _v0); xPSHUF.D(xmm0, xmm0, _v0);
xPSHUF.D(xmm1, xmm1, _v0); xPSHUF.D(xmm1, xmm1, _v0);
xPSHUF.D(xmm2, xmm2, _v0); xPSHUF.D(xmm2, xmm2, _v0);
xPSHUF.D(xmm6, xmm6, _v0); xPSHUF.D(xmm6, xmm6, _v0);
mVUmergeRegs(XMM6, XMM0, 8); mVUmergeRegs(XMM6, XMM0, 8);
mVUmergeRegs(XMM6, XMM1, 4); mVUmergeRegs(XMM6, XMM1, 4);
mVUmergeRegs(XMM6, XMM2, 2); mVUmergeRegs(XMM6, XMM2, 2);
xMOVAPS(xmm2, ptr32[&v.vifRegs->c0]); xMOVAPS(xmm2, ptr32[&v.vifRegs->c0]);
xMOVAPS(xmm3, ptr32[&v.vifRegs->c1]); xMOVAPS(xmm3, ptr32[&v.vifRegs->c1]);
xMOVAPS(xmm4, ptr32[&v.vifRegs->c2]); xMOVAPS(xmm4, ptr32[&v.vifRegs->c2]);
xMOVAPS(xmm5, ptr32[&v.vifRegs->c3]); xMOVAPS(xmm5, ptr32[&v.vifRegs->c3]);
xPSHUF.D(xmm2, xmm2, _v0); xPSHUF.D(xmm2, xmm2, _v0);
xPSHUF.D(xmm3, xmm3, _v0); xPSHUF.D(xmm3, xmm3, _v0);
xPSHUF.D(xmm4, xmm4, _v0); xPSHUF.D(xmm4, xmm4, _v0);
xPSHUF.D(xmm5, xmm5, _v0); xPSHUF.D(xmm5, xmm5, _v0);
} }
VifUnpackSSE_Dynarec::VifUnpackSSE_Dynarec(const nVifStruct& vif_, const nVifBlock& vifBlock_) VifUnpackSSE_Dynarec::VifUnpackSSE_Dynarec(const nVifStruct& vif_, const nVifBlock& vifBlock_)
: v(vif_) : v(vif_)
, vB(vifBlock_) , vB(vifBlock_)
{ {
isFill = (vB.cl < vB.wl); isFill = (vB.cl < vB.wl);
usn = (vB.upkType>>5) & 1; usn = (vB.upkType>>5) & 1;
doMask = (vB.upkType>>4) & 1; doMask = (vB.upkType>>4) & 1;
doMode = vB.mode & 3; doMode = vB.mode & 3;
} }
#define makeMergeMask(x) { \ #define makeMergeMask(x) { \
x = ((x&0x40)>>6) | ((x&0x10)>>3) | (x&4) | ((x&1)<<3); \ x = ((x&0x40)>>6) | ((x&0x10)>>3) | (x&4) | ((x&1)<<3); \
} }
_f void VifUnpackSSE_Dynarec::SetMasks(int cS) const { _f void VifUnpackSSE_Dynarec::SetMasks(int cS) const {
u32 m0 = vB.mask; u32 m0 = vB.mask;
u32 m1 = m0 & 0xaaaaaaaa; u32 m1 = m0 & 0xaaaaaaaa;
u32 m2 =(~m1>>1) & m0; u32 m2 =(~m1>>1) & m0;
u32 m3 = (m1>>1) & ~m0; u32 m3 = (m1>>1) & ~m0;
u32* row = (v.idx) ? g_vifmask.Row1 : g_vifmask.Row0; u32* row = (v.idx) ? g_vifmask.Row1 : g_vifmask.Row0;
u32* col = (v.idx) ? g_vifmask.Col1 : g_vifmask.Col0; u32* col = (v.idx) ? g_vifmask.Col1 : g_vifmask.Col0;
if((m2&&doMask) || doMode) { xMOVAPS(xmmRow, ptr32[row]); } if((m2&&doMask) || doMode) { xMOVAPS(xmmRow, ptr32[row]); }
if (m3&&doMask) { if (m3&&doMask) {
xMOVAPS(xmmCol0, ptr32[col]); xMOVAPS(xmmCol0, ptr32[col]);
if ((cS>=2) && (m3&0x0000ff00)) xPSHUF.D(xmmCol1, xmmCol0, _v1); if ((cS>=2) && (m3&0x0000ff00)) xPSHUF.D(xmmCol1, xmmCol0, _v1);
if ((cS>=3) && (m3&0x00ff0000)) xPSHUF.D(xmmCol2, xmmCol0, _v2); if ((cS>=3) && (m3&0x00ff0000)) xPSHUF.D(xmmCol2, xmmCol0, _v2);
if ((cS>=4) && (m3&0xff000000)) xPSHUF.D(xmmCol3, xmmCol0, _v3); if ((cS>=4) && (m3&0xff000000)) xPSHUF.D(xmmCol3, xmmCol0, _v3);
if ((cS>=1) && (m3&0x000000ff)) xPSHUF.D(xmmCol0, xmmCol0, _v0); if ((cS>=1) && (m3&0x000000ff)) xPSHUF.D(xmmCol0, xmmCol0, _v0);
} }
//if (mask||mode) loadRowCol(v); //if (mask||mode) loadRowCol(v);
} }
void VifUnpackSSE_Dynarec::doMaskWrite(const xRegisterSSE& regX) const { void VifUnpackSSE_Dynarec::doMaskWrite(const xRegisterSSE& regX) const {
pxAssumeDev(regX.Id <= 1, "Reg Overflow! XMM2 thru XMM6 are reserved for masking."); pxAssumeDev(regX.Id <= 1, "Reg Overflow! XMM2 thru XMM6 are reserved for masking.");
int cc = aMin(vCL, 3); int cc = aMin(vCL, 3);
u32 m0 = (vB.mask >> (cc * 8)) & 0xff; u32 m0 = (vB.mask >> (cc * 8)) & 0xff;
u32 m1 = m0 & 0xaaaa; u32 m1 = m0 & 0xaaaa;
u32 m2 =(~m1>>1) & m0; u32 m2 =(~m1>>1) & m0;
u32 m3 = (m1>>1) & ~m0; u32 m3 = (m1>>1) & ~m0;
u32 m4 = (m1>>1) & m0; u32 m4 = (m1>>1) & m0;
makeMergeMask(m2); makeMergeMask(m2);
makeMergeMask(m3); makeMergeMask(m3);
makeMergeMask(m4); makeMergeMask(m4);
if (doMask&&m4) { xMOVAPS(xmmTemp, ptr[dstIndirect]); } // Load Write Protect if (doMask&&m4) { xMOVAPS(xmmTemp, ptr[dstIndirect]); } // Load Write Protect
if (doMask&&m2) { mVUmergeRegs(regX.Id, xmmRow.Id, m2); } // Merge Row if (doMask&&m2) { mVUmergeRegs(regX.Id, xmmRow.Id, m2); } // Merge Row
if (doMask&&m3) { mVUmergeRegs(regX.Id, xmmCol0.Id+cc, m3); } // Merge Col if (doMask&&m3) { mVUmergeRegs(regX.Id, xmmCol0.Id+cc, m3); } // Merge Col
if (doMask&&m4) { mVUmergeRegs(regX.Id, xmmTemp.Id, m4); } // Merge Write Protect if (doMask&&m4) { mVUmergeRegs(regX.Id, xmmTemp.Id, m4); } // Merge Write Protect
if (doMode) { if (doMode) {
u32 m5 = (~m1>>1) & ~m0; u32 m5 = (~m1>>1) & ~m0;
if (!doMask) m5 = 0xf; if (!doMask) m5 = 0xf;
else makeMergeMask(m5); else makeMergeMask(m5);
if (m5 < 0xf) { if (m5 < 0xf) {
xPXOR(xmmTemp, xmmTemp); xPXOR(xmmTemp, xmmTemp);
mVUmergeRegs(xmmTemp.Id, xmmRow.Id, m5); mVUmergeRegs(xmmTemp.Id, xmmRow.Id, m5);
xPADD.D(regX, xmmTemp); xPADD.D(regX, xmmTemp);
if (doMode==2) mVUmergeRegs(xmmRow.Id, regX.Id, m5); if (doMode==2) mVUmergeRegs(xmmRow.Id, regX.Id, m5);
} }
else if (m5 == 0xf) { else if (m5 == 0xf) {
xPADD.D(regX, xmmRow); xPADD.D(regX, xmmRow);
if (doMode==2) xMOVAPS(xmmRow, regX); if (doMode==2) xMOVAPS(xmmRow, regX);
} }
} }
xMOVAPS(ptr32[dstIndirect], regX); xMOVAPS(ptr32[dstIndirect], regX);
} }
void VifUnpackSSE_Dynarec::writeBackRow() const { void VifUnpackSSE_Dynarec::writeBackRow() const {
u32* row = (v.idx) ? g_vifmask.Row1 : g_vifmask.Row0; u32* row = (v.idx) ? g_vifmask.Row1 : g_vifmask.Row0;
xMOVAPS(ptr32[row], xmmRow); xMOVAPS(ptr32[row], xmmRow);
DevCon.WriteLn("nVif: writing back row reg! [doMode = 2]"); DevCon.WriteLn("nVif: writing back row reg! [doMode = 2]");
// ToDo: Do we need to write back to vifregs.rX too!? :/ // ToDo: Do we need to write back to vifregs.rX too!? :/
} }
static void ShiftDisplacementWindow( xAddressInfo& addr, const xRegister32& modReg ) static void ShiftDisplacementWindow( xAddressInfo& addr, const xRegister32& modReg )
{ {
// Shifts the displacement factor of a given indirect address, so that the address // Shifts the displacement factor of a given indirect address, so that the address
// remains in the optimal 0xf0 range (which allows for byte-form displacements when // remains in the optimal 0xf0 range (which allows for byte-form displacements when
// generating instructions). // generating instructions).
int addImm = 0; int addImm = 0;
while( addr.Displacement >= 0x80 ) while( addr.Displacement >= 0x80 )
{ {
addImm += 0xf0; addImm += 0xf0;
addr -= 0xf0; addr -= 0xf0;
} }
if(addImm) xADD(modReg, addImm); if(addImm) xADD(modReg, addImm);
} }
void VifUnpackSSE_Dynarec::CompileRoutine() { void VifUnpackSSE_Dynarec::CompileRoutine() {
const int upkNum = vB.upkType & 0xf; const int upkNum = vB.upkType & 0xf;
const u8& vift = nVifT[upkNum]; const u8& vift = nVifT[upkNum];
const int cycleSize = isFill ? vB.cl : vB.wl; const int cycleSize = isFill ? vB.cl : vB.wl;
const int blockSize = isFill ? vB.wl : vB.cl; const int blockSize = isFill ? vB.wl : vB.cl;
const int skipSize = blockSize - cycleSize; const int skipSize = blockSize - cycleSize;
int vNum = vifRegs->num; int vNum = vifRegs->num;
vCL = vif->cl; vCL = vif->cl;
SetMasks(cycleSize); SetMasks(cycleSize);
while (vNum) { while (vNum) {
ShiftDisplacementWindow( srcIndirect, edx ); ShiftDisplacementWindow( srcIndirect, edx );
ShiftDisplacementWindow( dstIndirect, ecx ); ShiftDisplacementWindow( dstIndirect, ecx );
if (vCL < cycleSize) { if (vCL < cycleSize) {
xUnpack(upkNum); xUnpack(upkNum);
srcIndirect += vift; srcIndirect += vift;
dstIndirect += 16; dstIndirect += 16;
vNum--; vNum--;
if (++vCL == blockSize) vCL = 0; if (++vCL == blockSize) vCL = 0;
} }
else if (isFill) { else if (isFill) {
DevCon.WriteLn("filling mode!"); DevCon.WriteLn("filling mode!");
VifUnpackSSE_Dynarec::FillingWrite( *this ).xUnpack(upkNum); VifUnpackSSE_Dynarec::FillingWrite( *this ).xUnpack(upkNum);
dstIndirect += 16; dstIndirect += 16;
vNum--; vNum--;
if (++vCL == blockSize) vCL = 0; if (++vCL == blockSize) vCL = 0;
} }
else { else {
dstIndirect += (16 * skipSize); dstIndirect += (16 * skipSize);
vCL = 0; vCL = 0;
} }
} }
if (doMode==2) writeBackRow(); if (doMode==2) writeBackRow();
xMOV(ptr32[&vif->cl], vCL); xMOV(ptr32[&vif->cl], vCL);
xMOV(ptr32[&vifRegs->num], vNum); xMOV(ptr32[&vifRegs->num], vNum);
xRET(); xRET();
} }
static _f u8* dVifsetVUptr(const nVifStruct& v, int offset) { static _f u8* dVifsetVUptr(const nVifStruct& v, int offset) {
u8* ptr = (u8*)(v.VU->Mem + (offset & v.vuMemLimit)); u8* ptr = (u8*)(v.VU->Mem + (offset & v.vuMemLimit));
u8* endPtr = ptr + _vBlock.num * 16; u8* endPtr = ptr + _vBlock.num * 16;
if (endPtr > v.vuMemEnd) { if (endPtr > v.vuMemEnd) {
DevCon.WriteLn("nVif - VU Mem Ptr Overflow; falling back to interpreter."); DevCon.WriteLn("nVif - VU Mem Ptr Overflow; falling back to interpreter.");
ptr = NULL; // Fall Back to Interpreters which have wrap-around logic ptr = NULL; // Fall Back to Interpreters which have wrap-around logic
} }
return ptr; return ptr;
} }
static _f void dVifRecLimit(int idx) { static _f void dVifRecLimit(int idx) {
if (nVif[idx].recPtr > nVif[idx].recEnd) { if (nVif[idx].recPtr > nVif[idx].recEnd) {
DevCon.WriteLn("nVif Rec - Out of Rec Cache! [%x > %x]", nVif[idx].recPtr, nVif[idx].recEnd); DevCon.WriteLn("nVif Rec - Out of Rec Cache! [%x > %x]", nVif[idx].recPtr, nVif[idx].recEnd);
nVif[idx].vifBlocks->clear(); nVif[idx].vifBlocks->clear();
nVif[idx].recPtr = nVif[idx].vifCache->getBlock(); nVif[idx].recPtr = nVif[idx].vifCache->getBlock();
} }
} }
_f void dVifUnpack(int idx, u8 *data, u32 size, bool isFill) { _f void dVifUnpack(int idx, u8 *data, u32 size, bool isFill) {
const nVifStruct& v = nVif[idx]; const nVifStruct& v = nVif[idx];
const u8 upkType = vif->cmd & 0x1f | ((!!vif->usn) << 5); const u8 upkType = vif->cmd & 0x1f | ((!!vif->usn) << 5);
const int doMask = (upkType>>4) & 1; const int doMask = (upkType>>4) & 1;
const int cycle_cl = vifRegs->cycle.cl; const int cycle_cl = vifRegs->cycle.cl;
const int cycle_wl = vifRegs->cycle.wl; const int cycle_wl = vifRegs->cycle.wl;
const int cycleSize = isFill ? cycle_cl : cycle_wl; const int cycleSize = isFill ? cycle_cl : cycle_wl;
const int blockSize = isFill ? cycle_wl : cycle_cl; const int blockSize = isFill ? cycle_wl : cycle_cl;
if (vif->cl >= blockSize) vif->cl = 0; if (vif->cl >= blockSize) vif->cl = 0;
_vBlock.upkType = upkType; _vBlock.upkType = upkType;
_vBlock.num = *(u8*)&vifRegs->num; _vBlock.num = *(u8*)&vifRegs->num;
_vBlock.mode = *(u8*)&vifRegs->mode; _vBlock.mode = *(u8*)&vifRegs->mode;
_vBlock.scl = vif->cl; _vBlock.scl = vif->cl;
_vBlock.cl = cycle_cl; _vBlock.cl = cycle_cl;
_vBlock.wl = cycle_wl; _vBlock.wl = cycle_wl;
// Zero out the mask parameter if it's unused -- games leave random junk // Zero out the mask parameter if it's unused -- games leave random junk
// values here which cause false recblock cache misses. // values here which cause false recblock cache misses.
_vBlock.mask = doMask ? vifRegs->mask : 0x00; _vBlock.mask = doMask ? vifRegs->mask : 0x00;
if (nVifBlock* b = v.vifBlocks->find(&_vBlock)) { if (nVifBlock* b = v.vifBlocks->find(&_vBlock)) {
if( u8* dest = dVifsetVUptr(v, vif->tag.addr) ) { if( u8* dest = dVifsetVUptr(v, vif->tag.addr) ) {
//DevCon.WriteLn("Running Recompiled Block!"); //DevCon.WriteLn("Running Recompiled Block!");
((nVifrecCall)b->startPtr)((uptr)dest, (uptr)data); ((nVifrecCall)b->startPtr)((uptr)dest, (uptr)data);
} }
else { else {
//DevCon.WriteLn("Running Interpreter Block"); //DevCon.WriteLn("Running Interpreter Block");
_nVifUnpack(idx, data, size, isFill); _nVifUnpack(idx, data, size, isFill);
} }
return; return;
} }
static int recBlockNum = 0; static int recBlockNum = 0;
DevCon.WriteLn("nVif: Recompiled Block! [%d]", recBlockNum++); DevCon.WriteLn("nVif: Recompiled Block! [%d]", recBlockNum++);
DevCon.WriteLn(L"\t(num=0x%02x, upkType=0x%02x, mode=0x%02x, scl=0x%02x, cl/wl=0x%x/0x%x, mask=%s)", DevCon.WriteLn(L"\t(num=0x%02x, upkType=0x%02x, mode=0x%02x, scl=0x%02x, cl/wl=0x%x/0x%x, mask=%s)",
_vBlock.num, _vBlock.upkType, _vBlock.mode, _vBlock.scl, _vBlock.cl, _vBlock.wl, _vBlock.num, _vBlock.upkType, _vBlock.mode, _vBlock.scl, _vBlock.cl, _vBlock.wl,
doMask ? wxsFormat( L"0x%08x", _vBlock.mask ).c_str() : L"ignored" doMask ? wxsFormat( L"0x%08x", _vBlock.mask ).c_str() : L"ignored"
); );
xSetPtr(v.recPtr); xSetPtr(v.recPtr);
_vBlock.startPtr = (uptr)xGetAlignedCallTarget(); _vBlock.startPtr = (uptr)xGetAlignedCallTarget();
v.vifBlocks->add(_vBlock); v.vifBlocks->add(_vBlock);
VifUnpackSSE_Dynarec( v, _vBlock ).CompileRoutine(); VifUnpackSSE_Dynarec( v, _vBlock ).CompileRoutine();
nVif[idx].recPtr = xGetPtr(); nVif[idx].recPtr = xGetPtr();
dVifRecLimit(idx); dVifRecLimit(idx);
// Run the block we just compiled. Various conditions may force us to still use // Run the block we just compiled. Various conditions may force us to still use
// the interpreter unpacker though, so a recursive call is the safest way here... // the interpreter unpacker though, so a recursive call is the safest way here...
dVifUnpack(idx, data, size, isFill); dVifUnpack(idx, data, size, isFill);
} }
#endif #endif

View File

@ -1,86 +1,100 @@
/* PCSX2 - PS2 Emulator for PCs /* PCSX2 - PS2 Emulator for PCs
* Copyright (C) 2002-2009 PCSX2 Dev Team * Copyright (C) 2002-2009 PCSX2 Dev Team
* *
* PCSX2 is free software: you can redistribute it and/or modify it under the terms * PCSX2 is free software: you can redistribute it and/or modify it under the terms
* of the GNU Lesser General Public License as published by the Free Software Found- * of the GNU Lesser General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version. * ation, either version 3 of the License, or (at your option) any later version.
* *
* PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details. * PURPOSE. See the GNU General Public License for more details.
* *
* You should have received a copy of the GNU General Public License along with PCSX2. * You should have received a copy of the GNU General Public License along with PCSX2.
* If not, see <http://www.gnu.org/licenses/>. * If not, see <http://www.gnu.org/licenses/>.
*/ */
#include "xmmintrin.h" #include "xmmintrin.h"
#pragma once #pragma once
template< typename T > // Create some typecast operators for SIMD operations. For some reason MSVC needs a
struct SizeChain // handle/reference typecast to avoid error. GCC (and presumably other compilers)
{ // generate an error if the handle/ref is used. Honestly neither makes sense, since
int Size; // both typecasts should be perfectly valid >_<. --air
T* Chain; #ifdef _MSC_VER
}; # define cast_m128 __m128&
# define cast_m128i __m128i&
// HashBucket is a container which uses a built-in hash function # define cast_m128d __m128d&
// to perform quick searches. #else // defined(__GNUC__)
// T is a struct data type (note: size must be in multiples of 16 bytes!) # define cast_m128 __m128
// hSize determines the number of buckets HashBucket will use for sorting. # define cast_m128i __m128i
// cmpSize is the size of data to consider 2 structs equal (see find()) # define cast_m128d __m128d
// The hash function is determined by taking the first bytes of data and #endif
// performing a modulus the size of hSize. So the most diverse-data should
// be in the first bytes of the struct. (hence why nVifBlock is specifically sorted) template< typename T >
template<typename T, int hSize, int cmpSize> struct SizeChain
class HashBucket { {
protected: int Size;
SizeChain<T> mBucket[hSize]; T* Chain;
};
public:
HashBucket() { // HashBucket is a container which uses a built-in hash function
for (int i = 0; i < hSize; i++) { // to perform quick searches.
mBucket[i].Chain = NULL; // T is a struct data type (note: size must be in multiples of 16 bytes!)
mBucket[i].Size = 0; // hSize determines the number of buckets HashBucket will use for sorting.
} // cmpSize is the size of data to consider 2 structs equal (see find())
} // The hash function is determined by taking the first bytes of data and
~HashBucket() { clear(); } // performing a modulus the size of hSize. So the most diverse-data should
int quickFind(u32 data) { // be in the first bytes of the struct. (hence why nVifBlock is specifically sorted)
return mBucket[data % hSize].Size; template<typename T, int hSize, int cmpSize>
} class HashBucket {
__forceinline T* find(T* dataPtr) { protected:
u32 d = *((u32*)dataPtr); SizeChain<T> mBucket[hSize];
const SizeChain<T>& bucket( mBucket[d % hSize] );
public:
for (int i=bucket.Size; i; --i) { HashBucket() {
// This inline version seems about 1-2% faster in tests of games that average 1 for (int i = 0; i < hSize; i++) {
// program per bucket. Games that average more should see a bigger improvement --air mBucket[i].Chain = NULL;
int result = _mm_movemask_ps( (__m128&) _mm_cmpeq_epi32( _mm_load_si128((__m128i*)&bucket.Chain[i]), _mm_load_si128((__m128i*)dataPtr) ) ) & 0x7; mBucket[i].Size = 0;
if( result == 0x7 ) return &bucket.Chain[i]; }
}
// Dynamically generated function version, can't be inlined. :( ~HashBucket() { clear(); }
//if ((((nVifCall)((void*)nVifMemCmp))(&bucket.Chain[i], dataPtr))==7) return &bucket.Chain[i]; int quickFind(u32 data) {
return mBucket[data % hSize].Size;
//if (!memcmp(&bucket.Chain[i], dataPtr, sizeof(T)-4)) return &c[i]; // old school version! >_< }
} __forceinline T* find(T* dataPtr) {
if( bucket.Size > 3 ) DevCon.Warning( "recVifUnpk: Bucket 0x%04x has %d micro-programs", d % hSize, bucket.Size ); u32 d = *((u32*)dataPtr);
return NULL; const SizeChain<T>& bucket( mBucket[d % hSize] );
}
__forceinline void add(const T& dataPtr) { for (int i=bucket.Size; i; --i) {
u32 d = (u32&)dataPtr; // This inline version seems about 1-2% faster in tests of games that average 1
SizeChain<T>& bucket( mBucket[d % hSize] ); // program per bucket. Games that average more should see a bigger improvement --air
int result = _mm_movemask_ps( (cast_m128) _mm_cmpeq_epi32( _mm_load_si128((__m128i*)&bucket.Chain[i]), _mm_load_si128((__m128i*)dataPtr) ) ) & 0x7;
if( bucket.Chain = (T*)_aligned_realloc( bucket.Chain, sizeof(T)*(bucket.Size+1), 16), bucket.Chain==NULL ) { if( result == 0x7 ) return &bucket.Chain[i];
throw Exception::OutOfMemory(
wxsFormat(L"Out of memory re-allocating hash bucket (bucket size=%d)", bucket.Size+1), // Dynamically generated function version, can't be inlined. :(
wxEmptyString //if ((((nVifCall)((void*)nVifMemCmp))(&bucket.Chain[i], dataPtr))==7) return &bucket.Chain[i];
);
} //if (!memcmp(&bucket.Chain[i], dataPtr, sizeof(T)-4)) return &c[i]; // old school version! >_<
memcpy_fast(&bucket.Chain[bucket.Size++], &dataPtr, sizeof(T)); }
} if( bucket.Size > 3 ) DevCon.Warning( "recVifUnpk: Bucket 0x%04x has %d micro-programs", d % hSize, bucket.Size );
void clear() { return NULL;
for (int i = 0; i < hSize; i++) { }
safe_aligned_free(mBucket[i].Chain); __forceinline void add(const T& dataPtr) {
mBucket[i].Size = 0; u32 d = (u32&)dataPtr;
} SizeChain<T>& bucket( mBucket[d % hSize] );
}
}; if( bucket.Chain = (T*)_aligned_realloc( bucket.Chain, sizeof(T)*(bucket.Size+1), 16), bucket.Chain==NULL ) {
throw Exception::OutOfMemory(
wxsFormat(L"Out of memory re-allocating hash bucket (bucket size=%d)", bucket.Size+1),
wxEmptyString
);
}
memcpy_fast(&bucket.Chain[bucket.Size++], &dataPtr, sizeof(T));
}
void clear() {
for (int i = 0; i < hSize; i++) {
safe_aligned_free(mBucket[i].Chain);
mBucket[i].Size = 0;
}
}
};