wxGui branch: Merged with trunk up to r903, and resolved some Win32 compilation/link errors.

git-svn-id: http://pcsx2.googlecode.com/svn/branches/wxgui@908 96395faa-99c1-11dd-bbfe-3dabce05a288
This commit is contained in:
Jake.Stine 2009-04-04 16:05:14 +00:00
commit 25185c75c1
50 changed files with 1184 additions and 1244 deletions

View File

@ -103,8 +103,6 @@ struct SyncCounter
#define SCANLINES_VBLANK1_NTSC 19 // scanlines used for vblank1 (even interlace)
#define SCANLINES_VBLANK2_NTSC 20 // scanlines used for vblank2 (odd interlace)
#define HSYNC_ERROR_NTSC ((s32)VSYNC_NTSC - (s32)(((HRENDER_TIME_NTSC+HBLANK_TIME_NTSC) * SCANLINES_TOTAL_NTSC)/2) )
//------------------------------------------------------------------
// PAL Timing Information!!! (some scanline info is guessed)
//------------------------------------------------------------------

View File

@ -72,6 +72,7 @@ namespace R3000A
}
#ifdef PCSX2_DEVBUILD
extern bool enableLogging;
struct LogSources
{

View File

@ -130,21 +130,17 @@ int hwMFIFOWrite(u32 addr, u8 *data, u32 size) {
/* it does, so first copy 's1' bytes from 'data' to 'addr' */
dst = (u8*)PSM(addr);
if (dst == NULL) return -1;
//Cpu->Clear(addr, s1/4);
memcpy_fast(dst, data, s1);
/* and second copy 's2' bytes from '&data[s1]' to 'maddr' */
dst = (u8*)PSM(psHu32(DMAC_RBOR));
if (dst == NULL) return -1;
//Cpu->Clear(psHu32(DMAC_RBOR), s2/4);
memcpy_fast(dst, &data[s1], s2);
} else {
//u32 * tempptr, * tempptr2;
}
else {
/* it doesn't, so just copy 'size' bytes from 'data' to 'addr' */
dst = (u8*)PSM(addr);
if (dst == NULL) return -1;
//Cpu->Clear(addr, size/4);
memcpy_fast(dst, data, size);
}
@ -157,7 +153,6 @@ int hwDmacSrcChainWithStack(DMACh *dma, int id) {
switch (id) {
case 0: // Refe - Transfer Packet According to ADDR field
//dma->tadr += 16;
return 1; //End Transfer
case 1: // CNT - Transfer QWC following the tag.
@ -184,7 +179,8 @@ int hwDmacSrcChainWithStack(DMACh *dma, int id) {
if ((dma->chcr & 0x30) == 0x0) { //Check if ASR0 is empty
dma->asr0 = dma->madr + (dma->qwc << 4); //If yes store Succeeding tag
dma->chcr = (dma->chcr & 0xffffffcf) | 0x10; //1 Address in call stack
}else if((dma->chcr & 0x30) == 0x10){
}
else if((dma->chcr & 0x30) == 0x10){
dma->chcr = (dma->chcr & 0xffffffcf) | 0x20; //2 Addresses in call stack
dma->asr1 = dma->madr + (dma->qwc << 4); //If no store Succeeding tag in ASR1
}else {
@ -202,7 +198,8 @@ int hwDmacSrcChainWithStack(DMACh *dma, int id) {
dma->chcr = (dma->chcr & 0xffffffcf) | 0x10; //1 Address left in call stack
dma->tadr = dma->asr1; //Read ASR1 as next tag
dma->asr1 = 0; //Clear ASR1
} else { //If ASR1 is empty (No address held)
}
else { //If ASR1 is empty (No address held)
if((dma->chcr & 0x30) == 0x10) { //Check if ASR0 is NOT equal to 0 (Contains address)
dma->chcr = (dma->chcr & 0xffffffcf); //No addresses left in call stack
dma->tadr = dma->asr0; //Read ASR0 as next tag
@ -216,8 +213,7 @@ int hwDmacSrcChainWithStack(DMACh *dma, int id) {
case 7: // End - Transfer QWC following the tag
dma->madr = dma->tadr + 16; //Set MADR to data following the tag
//comment out tadr fixes lemans
//dma->tadr = dma->madr + (dma->qwc << 4); //Dont Increment tag, breaks Soul Calibur II and III
//Dont Increment tadr, breaks Soul Calibur II and III
return 1; //End Transfer
}
@ -229,7 +225,6 @@ int hwDmacSrcChain(DMACh *dma, int id) {
switch (id) {
case 0: // Refe - Transfer Packet According to ADDR field
//dma->tadr += 16;
return 1; //End Transfer
case 1: // CNT - Transfer QWC following the tag.
@ -250,7 +245,7 @@ int hwDmacSrcChain(DMACh *dma, int id) {
case 7: // End - Transfer QWC following the tag
dma->madr = dma->tadr + 16; //Set MADR to data following the tag
//dma->tadr = dma->madr + (dma->qwc << 4); //Dont Increment tag, breaks Soul Calibur II and III
//Dont Increment tadr, breaks Soul Calibur II and III
return 1; //End Transfer
}
@ -467,18 +462,30 @@ __forceinline void __fastcall hwWrite32(u32 mem, u32 value)
case GIF_CTRL:
//Console::WriteLn("GIF_CTRL write %x", params value);
psHu32(mem) = value & 0x8;
if (value & 0x1) gsGIFReset();
else if( value & 8 ) psHu32(GIF_STAT) |= 8;
else psHu32(GIF_STAT) &= ~8;
if (value & 0x1)
gsGIFReset();
else if( value & 8 )
psHu32(GIF_STAT) |= 8;
else
psHu32(GIF_STAT) &= ~8;
return;
case GIF_MODE:
// need to set GIF_MODE (hamster ball)
psHu32(GIF_MODE) = value;
if (value & 0x1) psHu32(GIF_STAT)|= 0x1;
else psHu32(GIF_STAT)&= ~0x1;
if (value & 0x4) psHu32(GIF_STAT)|= 0x4;
else psHu32(GIF_STAT)&= ~0x4;
if (value & 0x1)
psHu32(GIF_STAT)|= 0x1;
else
psHu32(GIF_STAT)&= ~0x1;
if (value & 0x4)
psHu32(GIF_STAT)|= 0x4;
else
psHu32(GIF_STAT)&= ~0x4;
break;
case GIF_STAT: // stat is readonly
@ -489,153 +496,170 @@ __forceinline void __fastcall hwWrite32(u32 mem, u32 value)
DMA_LOG("VIF0dma %lx", value);
DmaExec(dmaVIF0, mem, value);
break;
//------------------------------------------------------------------
case 0x10009000: // dma1 - vif1 - chcr
DMA_LOG("VIF1dma CHCR %lx", value);
DmaExec(dmaVIF1, mem, value);
break;
#ifdef PCSX2_DEVBUILD
case 0x10009010: // dma1 - vif1 - madr
HW_LOG("VIF1dma Madr %lx", value);
psHu32(mem) = value;//dma1 madr
break;
case 0x10009020: // dma1 - vif1 - qwc
HW_LOG("VIF1dma QWC %lx", value);
psHu32(mem) = value;//dma1 qwc
break;
case 0x10009030: // dma1 - vif1 - tadr
HW_LOG("VIF1dma TADR %lx", value);
psHu32(mem) = value;//dma1 tadr
break;
case 0x10009040: // dma1 - vif1 - asr0
HW_LOG("VIF1dma ASR0 %lx", value);
psHu32(mem) = value;//dma1 asr0
break;
case 0x10009050: // dma1 - vif1 - asr1
HW_LOG("VIF1dma ASR1 %lx", value);
psHu32(mem) = value;//dma1 asr1
break;
case 0x10009080: // dma1 - vif1 - sadr
HW_LOG("VIF1dma SADR %lx", value);
psHu32(mem) = value;//dma1 sadr
break;
#endif
//------------------------------------------------------------------
case 0x1000a000: // dma2 - gif
DMA_LOG("0x%8.8x hwWrite32: GSdma %lx", cpuRegs.cycle, value);
DmaExec(dmaGIF, mem, value);
break;
#ifdef PCSX2_DEVBUILD
case 0x1000a010:
psHu32(mem) = value;//dma2 madr
case 0x1000a010:
psHu32(mem) = value;//dma2 madr
HW_LOG("Hardware write DMA2_MADR 32bit at %x with value %x",mem,value);
break;
case 0x1000a020:
psHu32(mem) = value;//dma2 qwc
HW_LOG("Hardware write DMA2_QWC 32bit at %x with value %x",mem,value);
break;
case 0x1000a030:
psHu32(mem) = value;//dma2 taddr
HW_LOG("Hardware write DMA2_TADDR 32bit at %x with value %x",mem,value);
break;
case 0x1000a040:
psHu32(mem) = value;//dma2 asr0
HW_LOG("Hardware write DMA2_ASR0 32bit at %x with value %x",mem,value);
break;
case 0x1000a050:
psHu32(mem) = value;//dma2 asr1
HW_LOG("Hardware write DMA2_ASR1 32bit at %x with value %x",mem,value);
break;
case 0x1000a080:
psHu32(mem) = value;//dma2 saddr
HW_LOG("Hardware write DMA2_SADDR 32bit at %x with value %x",mem,value);
break;
break;
case 0x1000a020:
psHu32(mem) = value;//dma2 qwc
HW_LOG("Hardware write DMA2_QWC 32bit at %x with value %x",mem,value);
break;
case 0x1000a030:
psHu32(mem) = value;//dma2 taddr
HW_LOG("Hardware write DMA2_TADDR 32bit at %x with value %x",mem,value);
break;
case 0x1000a040:
psHu32(mem) = value;//dma2 asr0
HW_LOG("Hardware write DMA2_ASR0 32bit at %x with value %x",mem,value);
break;
case 0x1000a050:
psHu32(mem) = value;//dma2 asr1
HW_LOG("Hardware write DMA2_ASR1 32bit at %x with value %x",mem,value);
break;
case 0x1000a080:
psHu32(mem) = value;//dma2 saddr
HW_LOG("Hardware write DMA2_SADDR 32bit at %x with value %x",mem,value);
break;
#endif
//------------------------------------------------------------------
case 0x1000b000: // dma3 - fromIPU
DMA_LOG("IPU0dma %lx", value);
DmaExec(dmaIPU0, mem, value);
break;
//------------------------------------------------------------------
#ifdef PCSX2_DEVBUILD
case 0x1000b010:
psHu32(mem) = value;//dma2 madr
HW_LOG("Hardware write IPU0DMA_MADR 32bit at %x with value %x",mem,value);
break;
case 0x1000b020:
psHu32(mem) = value;//dma2 madr
psHu32(mem) = value;//dma2 madr
HW_LOG("Hardware write IPU0DMA_QWC 32bit at %x with value %x",mem,value);
break;
break;
case 0x1000b030:
psHu32(mem) = value;//dma2 tadr
HW_LOG("Hardware write IPU0DMA_TADR 32bit at %x with value %x",mem,value);
break;
case 0x1000b080:
psHu32(mem) = value;//dma2 saddr
HW_LOG("Hardware write IPU0DMA_SADDR 32bit at %x with value %x",mem,value);
break;
#endif
//------------------------------------------------------------------
case 0x1000b400: // dma4 - toIPU
DMA_LOG("IPU1dma %lx", value);
DmaExec(dmaIPU1, mem, value);
break;
//------------------------------------------------------------------
#ifdef PCSX2_DEVBUILD
case 0x1000b410:
psHu32(mem) = value;//dma2 madr
psHu32(mem) = value;//dma2 madr
HW_LOG("Hardware write IPU1DMA_MADR 32bit at %x with value %x",mem,value);
break;
break;
case 0x1000b420:
psHu32(mem) = value;//dma2 madr
psHu32(mem) = value;//dma2 madr
HW_LOG("Hardware write IPU1DMA_QWC 32bit at %x with value %x",mem,value);
break;
break;
case 0x1000b430:
psHu32(mem) = value;//dma2 tadr
HW_LOG("Hardware write IPU1DMA_TADR 32bit at %x with value %x",mem,value);
break;
case 0x1000b480:
psHu32(mem) = value;//dma2 saddr
HW_LOG("Hardware write IPU1DMA_SADDR 32bit at %x with value %x",mem,value);
break;
#endif
//------------------------------------------------------------------
case 0x1000c000: // dma5 - sif0
DMA_LOG("SIF0dma %lx", value);
//if (value == 0) psxSu32(0x30) = 0x40000;
DmaExec(dmaSIF0, mem, value);
break;
//------------------------------------------------------------------
case 0x1000c400: // dma6 - sif1
DMA_LOG("SIF1dma %lx", value);
DmaExec(dmaSIF1, mem, value);
break;
#ifdef PCSX2_DEVBUILD
case 0x1000c420: // dma6 - sif1 - qwc
HW_LOG("SIF1dma QWC = %lx", value);
psHu32(mem) = value;
break;
case 0x1000c430: // dma6 - sif1 - tadr
HW_LOG("SIF1dma TADR = %lx", value);
psHu32(mem) = value;
break;
#endif
//------------------------------------------------------------------
case 0x1000c800: // dma7 - sif2
DMA_LOG("SIF2dma %lx", value);
DmaExec(dmaSIF2, mem, value);
break;
//------------------------------------------------------------------
case 0x1000d000: // dma8 - fromSPR
DMA_LOG("fromSPRdma %lx", value);
DmaExec(dmaSPR0, mem, value);
break;
//------------------------------------------------------------------
case 0x1000d400: // dma9 - toSPR
DMA_LOG("toSPRdma %lx", value);
DmaExec(dmaSPR1, mem, value);
break;
//------------------------------------------------------------------
case 0x1000e000: // DMAC_CTRL
HW_LOG("DMAC_CTRL Write 32bit %x", value);
psHu32(0xe000) = value;
@ -648,11 +672,10 @@ __forceinline void __fastcall hwWrite32(u32 mem, u32 value)
cpuTestDMACInts();
break;
//------------------------------------------------------------------
case 0x1000f000: // INTC_STAT
HW_LOG("INTC_STAT Write 32bit %x", value);
psHu32(0xf000)&=~value;
//cpuTestINTCInts();
break;
case 0x1000f010: // INTC_MASK
@ -660,7 +683,7 @@ __forceinline void __fastcall hwWrite32(u32 mem, u32 value)
psHu32(0xf010) ^= (u16)value;
cpuTestINTCInts();
break;
//------------------------------------------------------------------
case 0x1000f430://MCH_RICM: x:4|SA:12|x:5|SDEV:1|SOP:4|SBC:1|SDEV:5
if ((((value >> 16) & 0xFFF) == 0x21) && (((value >> 6) & 0xF) == 1) && (((psHu32(0xf440) >> 7) & 1) == 0))//INIT & SRP=0
rdram_sdevid = 0; // if SIO repeater is cleared, reset sdevid
@ -670,37 +693,41 @@ __forceinline void __fastcall hwWrite32(u32 mem, u32 value)
case 0x1000f440://MCH_DRD:
psHu32(mem) = value;
break;
//------------------------------------------------------------------
case 0x1000f590: // DMAC_ENABLEW
HW_LOG("DMAC_ENABLEW Write 32bit %lx", value);
psHu32(0xf590) = value;
psHu32(0xf520) = value;
return;
//------------------------------------------------------------------
case 0x1000f200:
psHu32(mem) = value;
break;
case 0x1000f220:
psHu32(mem) |= value;
break;
case 0x1000f230:
psHu32(mem) &= ~value;
break;
case 0x1000f240:
if(!(value & 0x100))
psHu32(mem) &= ~0x100;
else
psHu32(mem) |= 0x100;
break;
case 0x1000f260:
psHu32(mem) = 0;
break;
//------------------------------------------------------------------
case 0x1000f130:
case 0x1000f410:
HW_LOG("Unknown Hardware write 32 at %x with value %x (%x)", mem, value, cpuRegs.CP0.n.Status.val);
break;
//------------------------------------------------------------------
default:
psHu32(mem) = value;
HW_LOG("Unknown Hardware write 32 at %x with value %x (%x)", mem, value, cpuRegs.CP0.n.Status.val);
@ -710,7 +737,7 @@ __forceinline void __fastcall hwWrite32(u32 mem, u32 value)
#endif
#if 0
/*
__forceinline void hwWrite64(u32 mem, u64 value)
{
u32 val32;
@ -846,4 +873,4 @@ __forceinline void hwWrite128(u32 mem, const u64 *value)
break;
}
}
#endif
*/

View File

@ -328,7 +328,7 @@ static __forceinline u8* dmaGetAddr(u32 mem)
#ifdef _WIN32
// do manual LUT since IPU/SPR seems to use addrs 0x3000xxxx quite often
// linux doesn't suffer from this because it has better vm support
// linux doesn't suffer from this because it has better vm support
if( memLUT[ (p-PS2MEM_BASE)>>12 ].aPFNs == NULL ) {
Console::WriteLn("dmaGetAddr: memLUT PFN warning");
return NULL;//p;

View File

@ -212,14 +212,20 @@ static __forceinline mem32_t __hwRead32_page_0F( u32 mem, bool intchack )
mem &= 0xffff;
// INTC_STAT shortcut for heavy spinning.
// Performance Note: Visual Studio handles this best if we just manually check for it here,
// outside the context of the switch statement below. This is likely fixed by PGO also,
// but it's an easy enough conditional to account for anyways.
static const uint ics = INTC_STAT & 0xffff;
if( mem == ics ) // INTC_STAT
{
if( intchack ) IntCHackCheck();
return *((u32*)&PS2MEM_HW[ics]);
}
switch( mem )
{
case 0xf000:
if( intchack ) IntCHackCheck();
// This one is checked alot, so leave it commented out unless you love 600 meg logfiles.
//HW_LOG("INTC_STAT Read 32bit %x", psHu32(0xf010));
break;
case 0xf010:
HW_LOG("INTC_MASK Read32, value=0x%x", psHu32(INTC_MASK));
break;

View File

@ -291,12 +291,6 @@ void OnStates_SaveOther(GtkMenuItem *menuitem, gpointer user_data)
gdk_window_raise(FileSel->window);
}
/* Quick macros for checking shift, control, alt, and caps lock. */
#define SHIFT_EVT(evt) ((evt == XK_Shift_L) || (evt == XK_Shift_R))
#define CTRL_EVT(evt) ((evt == XK_Control_L) || (evt == XK_Control_L))
#define ALT_EVT(evt) ((evt == XK_Alt_L) || (evt == XK_Alt_R))
#define CAPS_LOCK_EVT(evt) (evt == XK_Caps_Lock)
bool SysInit()
{
if (sinit) return true;
@ -450,98 +444,100 @@ namespace HostGui
SysExecute();
}
void __fastcall KeyEvent(keyEvent* ev)
/* Quick macros for checking shift, control, alt, and caps lock. */
#define SHIFT_EVT(evt) ((evt == XK_Shift_L) || (evt == XK_Shift_R))
#define CTRL_EVT(evt) ((evt == XK_Control_L) || (evt == XK_Control_R))
#define ALT_EVT(evt) ((evt == XK_Alt_L) || (evt == XK_Alt_R))
#define CAPS_LOCK_EVT(evt) (evt == XK_Caps_Lock)
void __fastcall KeyEvent(keyEvent* ev)
{
struct KeyModifiers *keymod = &keymodifiers;
if (ev == NULL) return;
if (ev->evt == KEYRELEASE)
{
static int shift = 0;
if (ev == NULL) return;
if (GSkeyEvent != NULL) GSkeyEvent(ev);
if (ev->evt == KEYPRESS)
{
if (SHIFT_EVT(ev->key))
shift = 1;
if (CAPS_LOCK_EVT(ev->key))
{
//Set up anything we want to happen while caps lock is down.
}
switch (ev->key)
{
case XK_F1:
case XK_F2:
case XK_F3:
case XK_F4:
case XK_F5:
case XK_F6:
case XK_F7:
case XK_F8:
case XK_F9:
case XK_F10:
case XK_F11:
case XK_F12:
try
{
ProcessFKeys(ev->key - XK_F1 + 1, shift);
}
catch (Exception::CpuStateShutdown&)
{
// Woops! Something was unrecoverable. Bummer.
// Let's give the user a RunGui!
g_EmulationInProgress = false;
SysEndExecution();
}
break;
case XK_Tab:
CycleFrameLimit(0);
break;
case XK_Escape:
signal(SIGINT, SIG_DFL);
signal(SIGPIPE, SIG_DFL);
#ifdef PCSX2_DEVBUILD
if (g_SaveGSStream >= 3)
{
g_SaveGSStream = 4;// gs state
break;
}
#endif
SysEndExecution();
if (g_Startup.NoGui) exit(0);
// fixme: The GUI is now capable of receiving control back from the
// emulator. Which means that when we call SysEscapeExecute() here, the
// emulation loop in ExecuteCpu() will exit. You should be able to set it
// up so that it returns control to the existing GTK event loop, instead of
// always starting a new one via RunGui(). (but could take some trial and
// error) -- (air)
// Easier said then done; running gtk in two threads at the same time can't be
// done, and working around that is pretty fiddly.
RunGui();
break;
default:
GSkeyEvent(ev);
break;
}
}
else if (ev->evt == KEYRELEASE)
{
if (SHIFT_EVT(ev->key))
shift = 0;
if (CAPS_LOCK_EVT(ev->key))
{
//Release caps lock
}
}
if (SHIFT_EVT(ev->key)) keymod->shift = FALSE;
if (CTRL_EVT(ev->key)) keymod->control = FALSE;
if (ALT_EVT(ev->key)) keymod->alt = FALSE;
if (CAPS_LOCK_EVT(ev->key)) keymod->capslock = FALSE;
GSkeyEvent(ev);
return;
}
}
if (ev->evt == KEYPRESS)
{
if (SHIFT_EVT(ev->key)) keymod->shift = TRUE;
if (CTRL_EVT(ev->key)) keymod->control = TRUE;
if (ALT_EVT(ev->key)) keymod->alt = TRUE;
if (CAPS_LOCK_EVT(ev->key)) keymod->capslock = TRUE;
switch (ev->key)
{
case XK_F1:
case XK_F2:
case XK_F3:
case XK_F4:
case XK_F5:
case XK_F6:
case XK_F7:
case XK_F8:
case XK_F9:
case XK_F10:
case XK_F11:
case XK_F12:
try
{
ProcessFKeys(ev->key - XK_F1 + 1, keymod);
}
catch (Exception::CpuStateShutdown&)
{
// Woops! Something was unrecoverable. Bummer.
// Let's give the user a RunGui!
g_EmulationInProgress = false;
SysEndExecution();
}
break;
case XK_Tab:
CycleFrameLimit(0);
break;
case XK_Escape:
signal(SIGINT, SIG_DFL);
signal(SIGPIPE, SIG_DFL);
#ifdef PCSX2_DEVBUILD
if (g_SaveGSStream >= 3)
{
g_SaveGSStream = 4;// gs state
break;
}
#endif
SysEndExecution();
if (g_Startup.NoGui) exit(0);
// fixme: The GUI is now capable of receiving control back from the
// emulator. Which means that when we call SysEscapeExecute() here, the
// emulation loop in ExecuteCpu() will exit. You should be able to set it
// up so that it returns control to the existing GTK event loop, instead of
// always starting a new one via RunGui(). (but could take some trial and
// error) -- (air)
// Easier said then done; running gtk in two threads at the same time can't be
// done, and working around that is pretty fiddly.
RunGui();
break;
default:
GSkeyEvent(ev);
break;
}
}
return;
}
}

View File

@ -51,6 +51,8 @@ char CdromId[12];
static int g_Pcsx2Recording = 0; // true 1 if recording video and sound
bool renderswitch = 0;
struct KeyModifiers keymodifiers = {false, false, false, false};
#define NUM_STATES 10
int StatesC = 0;
extern wxString strgametitle;
@ -413,11 +415,12 @@ void CycleFrameLimit(int dir)
//SaveConfig();
}
void ProcessFKeys(int fkey, int shift)
void ProcessFKeys(int fkey, struct KeyModifiers *keymod)
{
assert(fkey >= 1 && fkey <= 12 );
switch(fkey) {
switch(fkey)
{
case 1:
try
{
@ -435,7 +438,7 @@ void ProcessFKeys(int fkey, int shift)
break;
case 2:
if( shift )
if( keymod->shift )
StatesC = (StatesC+NUM_STATES-1) % NUM_STATES;
else
StatesC = (StatesC+1) % NUM_STATES;
@ -482,7 +485,7 @@ void ProcessFKeys(int fkey, int shift)
break;
case 4:
CycleFrameLimit(shift ? -1 : 1);
CycleFrameLimit(keymod->shift ? -1 : 1);
break;
// note: VK_F5-VK_F7 are reserved for GS
@ -491,7 +494,8 @@ void ProcessFKeys(int fkey, int shift)
break;
case 9: //gsdx "on the fly" renderer switching
if (!renderswitch) {
if (!renderswitch)
{
StateRecovery::MakeGsOnly();
g_EmulationInProgress = false;
CloseGS();
@ -499,7 +503,8 @@ void ProcessFKeys(int fkey, int shift)
StateRecovery::Recover();
HostGui::BeginExecution(); //also sets g_EmulationInProgress to true later
}
else {
else
{
StateRecovery::MakeGsOnly();
g_EmulationInProgress = false;
CloseGS();
@ -509,9 +514,21 @@ void ProcessFKeys(int fkey, int shift)
}
break;
#ifdef PCSX2_DEVBUILD
case 10:
// There's likely a better way to implement this, but this seemed useful.
// I might add turning EE, VU0, and VU1 recs on and off by hotkey at some point, too.
// --arcum42
enableLogging = !enableLogging;
if (enableLogging)
GSprintf(10, "Logging Enabled.");
else
GSprintf(10,"Logging Disabled.");
break;
case 11:
if( mtgsThread != NULL ) {
if( mtgsThread != NULL )
{
Console::Notice( "Cannot make gsstates in MTGS mode" );
}
else
@ -534,28 +551,32 @@ void ProcessFKeys(int fkey, int shift)
Text = Path::Combine( SSTATES_DIR, gsText );
}
else
{
Text = GetGSStateFilename();
}
SaveGSState(Text);
}
break;
#endif
case 12:
if( shift ) {
if( keymod->shift )
{
#ifdef PCSX2_DEVBUILD
iDumpRegisters(cpuRegs.pc, 0);
Console::Notice("hardware registers dumped EE:%x, IOP:%x\n", params cpuRegs.pc, psxRegs.pc);
#endif
}
else {
else
{
g_Pcsx2Recording ^= 1;
if( mtgsThread != NULL ) {
if( mtgsThread != NULL )
mtgsThread->SendSimplePacket(GS_RINGTYPE_RECORD, g_Pcsx2Recording, 0, 0);
}
else {
if( GSsetupRecording != NULL ) GSsetupRecording(g_Pcsx2Recording, NULL);
}
else if( GSsetupRecording != NULL )
GSsetupRecording(g_Pcsx2Recording, NULL);
if( SPU2setupRecording != NULL ) SPU2setupRecording(g_Pcsx2Recording, NULL);
}
break;

View File

@ -19,11 +19,17 @@
#ifndef __MISC_H__
#define __MISC_H__
#include "System.h"
#include "Pcsx2Config.h"
struct KeyModifiers
{
bool control;
bool alt;
bool shift;
bool capslock;
};
extern struct KeyModifiers keymodifiers;
// what the hell is this unused piece of crap passed to every plugin for? (air)
// Agreed. It ought to get removed in the next version of the plugin api. (arcum42)
// Per ChickenLiver, this is being used to pass the GS plugins window handle to the Pad plugins.
// So a rename to pDisplay is in the works, but it will not, in fact, be removed.
extern uptr pDsp; //Used in GS, MTGS, Plugins, Misc
u32 GetBiosVersion(); // Used in Misc, Memory
@ -58,7 +64,7 @@ extern u64 GetCPUTicks();
extern u64 GetTickFrequency();
// Used in Misc,and Windows/Linux files.
extern void ProcessFKeys(int fkey, int shift); // processes fkey related commands value 1-12
extern void ProcessFKeys(int fkey, struct KeyModifiers *keymod); // processes fkey related commands value 1-12
extern int IsBIOS(const char *filename, char *description);
//extern const char *LabelAuthors;

View File

@ -45,7 +45,7 @@ static bool OpenLogFile(wxFile& file, wxString& filename, wxWindow *parent)
strMsg.Printf(wxT("Append log to file '%s' (choosing [No] will overwrite it)?"),
filename.c_str());
switch ( wxMessageBox(strMsg, _t("Question"), wxICON_QUESTION | wxYES_NO | wxCANCEL) )
switch ( wxMessageBox(strMsg, _("Question"), wxICON_QUESTION | wxYES_NO | wxCANCEL) )
{
case wxYES:
bAppend = true;
@ -91,12 +91,12 @@ ConsoleLogFrame::ConsoleLogFrame(MainEmuFrame *parent, const wxString& title) :
// create menu
wxMenuBar *pMenuBar = new wxMenuBar;
wxMenu *pMenu = new wxMenu;
pMenu->Append(Menu_Save, _t("&Save..."), wxT("Save log contents to file"));
pMenu->Append(Menu_Clear, _t("C&lear"), wxT("Clear the log contents"));
pMenu->Append(Menu_Save, _("&Save..."), wxT("Save log contents to file"));
pMenu->Append(Menu_Clear, _("C&lear"), wxT("Clear the log contents"));
pMenu->AppendSeparator();
pMenu->Append(Menu_Close, _t("&Close"), wxT("Close this window"));
pMenu->Append(Menu_Close, _("&Close"), wxT("Close this window"));
pMenuBar->Append(pMenu, _t("&Log"));
pMenuBar->Append(pMenu, _("&Log"));
SetMenuBar(pMenuBar);
// status bar for menu prompts

View File

@ -183,7 +183,7 @@ MainEmuFrame::MainEmuFrame(wxWindow* parent, int id, const wxString& title, cons
wxSize backsize( m_background.GetSize() );
SetTitle(_t("Pcsx2"));
SetTitle(_("Pcsx2"));
wxIcon myIcon;
myIcon.CopyFromBitmap( wxBitmap( EmbeddedImage<png_AppIcon>().GetImage() ) );

View File

@ -574,11 +574,10 @@ void LDR()
void LQ()
{
// MIPS Note: LQ and SQ are special and "silently" align memory addresses, thus
// an address error due to unaligned access isn't possible like it is on other loads/stores.
u32 addr = cpuRegs.GPR.r[_Rs_].UL[0] + _Imm_;
if( addr & 15 )
throw R5900Exception::AddressError( addr, false );
memRead128(addr & ~0xf, gpr_GetWritePtr(_Rt_));
}
@ -704,11 +703,10 @@ void SDR()
void SQ()
{
u32 addr = cpuRegs.GPR.r[_Rs_].UL[0] + _Imm_;
if( addr & 15 )
throw R5900Exception::AddressError( addr, true );
// MIPS Note: LQ and SQ are special and "silently" align memory addresses, thus
// an address error due to unaligned access isn't possible like it is on other loads/stores.
u32 addr = cpuRegs.GPR.r[_Rs_].UL[0] + _Imm_;
memWrite128(addr & ~0xf, &cpuRegs.GPR.r[_Rt_].UD[0]);
}

View File

@ -98,7 +98,7 @@ void _SPR0interleave()
int qwc = spr0->qwc;
int sqwc = psHu32(DMAC_SQWC) & 0xff;
int tqwc = (psHu32(DMAC_SQWC) >> 16) & 0xff;
int cycles = 0;
//int cycles = 0;
u32 *pMem;
if (tqwc == 0) tqwc = qwc;
@ -111,8 +111,8 @@ void _SPR0interleave()
spr0->qwc = std::min(tqwc, qwc);
qwc -= spr0->qwc;
pMem = (u32*)dmaGetAddr(spr0->madr);
if ((psHu32(DMAC_CTRL) & 0xC) == 0xC || // GIF MFIFO
(psHu32(DMAC_CTRL) & 0xC) == 0x8) // VIF1 MFIFO
if ((((psHu32(DMAC_CTRL) & 0xC) == 0xC) || // GIF MFIFO
(psHu32(DMAC_CTRL) & 0xC) == 0x8)) // VIF1 MFIFO
{
hwMFIFOWrite(spr0->madr, (u8*)&PS2MEM_SCRATCH[spr0->sadr & 0x3fff], spr0->qwc << 4);
mfifotransferred += spr0->qwc;
@ -123,7 +123,7 @@ void _SPR0interleave()
TestClearVUs(spr0->madr, spr0->qwc << 2);
memcpy_fast((u8*)pMem, &PS2MEM_SCRATCH[spr0->sadr & 0x3fff], spr0->qwc << 4);
}
cycles += tqwc * BIAS;
//cycles += tqwc * BIAS;
spr0->sadr += spr0->qwc * 16;
spr0->madr += (sqwc + spr0->qwc) * 16; //qwc-= sqwc;
}
@ -153,7 +153,7 @@ static __forceinline void _dmaSPR0()
int cycles = 0;
u32 *ptag;
int id;
int done = 0;
bool done = FALSE;
if (spr0->qwc > 0)
{
@ -169,7 +169,7 @@ static __forceinline void _dmaSPR0()
spr0->chcr = (spr0->chcr & 0xFFFF) | ((*ptag) & 0xFFFF0000); //Transfer upper part of tag to CHCR bits 31-15
id = (ptag[0] >> 28) & 0x7; //ID for DmaChain copied from bit 28 of the tag
id = (ptag[0] >> 28) & 0x7; //ID for DmaChain copied from bit 28 of the tag
spr0->qwc = (u16)ptag[0]; //QWC set to lower 16bits of the tag
spr0->madr = ptag[1]; //MADR = ADDR field
@ -188,27 +188,28 @@ static __forceinline void _dmaSPR0()
break;
case 1: // CNT - Transfer QWC following the tag.
done = 0;
done = FALSE;
break;
case 7: // End - Transfer QWC following the tag
done = 1; //End Transfer
done = TRUE;
break;
}
SPR0chain();
if (spr0->chcr & 0x80 && ptag[0] >> 31) //Check TIE bit of CHCR and IRQ bit of tag
{
//Console::WriteLn("SPR0 TIE");
done = 1;
done = TRUE;
spr0->qwc = 0;
}
spr0finished = (done) ? 1 : 0;
spr0finished = done;
if (done == 0)
if (!done)
{
ptag = (u32*) & PS2MEM_SCRATCH[spr0->sadr & 0x3fff]; //Set memory pointer to SADR
spr0->qwc = (u16)ptag[0]; //QWC set to lower 16bits of the tag
CPU_INT(8, spr0->qwc / BIAS);
//spr0->qwc = (u16)ptag[0]; //QWC set to lower 16bits of the tag
CPU_INT(8, ((u16)ptag[0]) / BIAS); //spr0->qwc / BIAS);
spr0->qwc = 0;
return;
}
@ -219,9 +220,6 @@ static __forceinline void _dmaSPR0()
{
_SPR0interleave();
}
}
void SPRFROMinterrupt()
@ -253,8 +251,6 @@ void SPRFROMinterrupt()
void dmaSPR0() // fromSPR
{
SPR_LOG("dmaSPR0 chcr = %lx, madr = %lx, qwc = %lx, sadr = %lx",
spr0->chcr, spr0->madr, spr0->qwc, spr0->sadr);
@ -303,7 +299,7 @@ void _SPR1interleave()
int qwc = spr1->qwc;
int sqwc = psHu32(DMAC_SQWC) & 0xff;
int tqwc = (psHu32(DMAC_SQWC) >> 16) & 0xff;
int cycles = 0;
//int cycles = 0;
u32 *pMem;
if (tqwc == 0) tqwc = qwc;
@ -317,7 +313,7 @@ void _SPR1interleave()
pMem = (u32*)dmaGetAddr(spr1->madr);
memcpy_fast(&PS2MEM_SCRATCH[spr1->sadr & 0x3fff], (u8*)pMem, spr1->qwc << 4);
spr1->sadr += spr1->qwc * 16;
cycles += spr1->qwc * BIAS;
//cycles += spr1->qwc * BIAS;
spr1->madr += (sqwc + spr1->qwc) * 16; //qwc-= sqwc;
}
@ -339,7 +335,8 @@ void _dmaSPR1() // toSPR work function
{
int cycles = 0;
u32 *ptag;
int id, done = 0;
int id;
bool done = FALSE;
if (spr1->qwc > 0)
{
@ -356,8 +353,8 @@ void _dmaSPR1() // toSPR work function
Console::WriteLn("SPR1 Tag BUSERR");
spr1->chcr = (spr1->chcr & 0xFFFF) | ((*ptag) & 0xFFFF0000); //Transfer upper part of tag to CHCR bits 31-15
psHu32(DMAC_STAT) |= 1 << 15; //If yes, set BEIS (BUSERR) in DMAC_STAT register
done = 1;
spr1finished = done;
done = TRUE;
spr1finished = (done) ? 1: 0;
return;
}
spr1->chcr = (spr1->chcr & 0xFFFF) | ((*ptag) & 0xFFFF0000); //Transfer upper part of tag to CHCR bits 31-15
@ -376,7 +373,7 @@ void _dmaSPR1() // toSPR work function
SPR_LOG("spr1 dmaChain %8.8x_%8.8x size=%d, id=%d, addr=%lx",
ptag[1], ptag[0], spr1->qwc, id, spr1->madr);
done = hwDmacSrcChain(spr1, id);
done = (hwDmacSrcChain(spr1, id) == 1);
SPR1chain(); //Transfers the data set by the switch
if (spr1->chcr & 0x80 && ptag[0] >> 31) //Check TIE bit of CHCR and IRQ bit of tag
@ -385,15 +382,15 @@ void _dmaSPR1() // toSPR work function
//Console::WriteLn("SPR1 TIE");
spr1->qwc = 0;
done = 1;
done = TRUE;
}
spr1finished = done;
if (done == 0)
if (!done)
{
ptag = (u32*)dmaGetAddr(spr1->tadr); //Set memory pointer to TADR
spr1->qwc = (u16)ptag[0]; //QWC set to lower 16bits of the tag
CPU_INT(9, spr1->qwc / BIAS);
//spr1->qwc = (u16)ptag[0]; //QWC set to lower 16bits of the tag
CPU_INT(9, (((u16)ptag[0]) / BIAS));// spr1->qwc / BIAS);
spr1->qwc = 0;
}
}
@ -416,7 +413,6 @@ void dmaSPR1() // toSPR
u32 *ptag;
ptag = (u32*)dmaGetAddr(spr1->tadr); //Set memory pointer to TADR
CPU_INT(9, (ptag[0] & 0xffff) / BIAS);
//spr1->qwc = 0;
return;
}
// COMPLETE HACK!!! For now at least.. FFX Videos dont rely on interrupts or reading DMA values

View File

@ -40,26 +40,26 @@ DMACh *sif2ch;
struct _sif0
{
u32 fifoData[FIFO_SIF0_W];
int fifoReadPos;
int fifoWritePos;
int fifoSize;
int chain;
int end;
int tagMode;
int counter;
s32 fifoReadPos;
s32 fifoWritePos;
s32 fifoSize;
s32 chain;
s32 end;
s32 tagMode;
s32 counter;
struct sifData sifData;
};
struct _sif1
{
u32 fifoData[FIFO_SIF1_W];
int fifoReadPos;
int fifoWritePos;
int fifoSize;
int chain;
int end;
int tagMode;
int counter;
s32 fifoReadPos;
s32 fifoWritePos;
s32 fifoSize;
s32 chain;
s32 end;
s32 tagMode;
s32 counter;
};
static _sif0 sif0;
@ -85,7 +85,6 @@ static __forceinline void SIF0write(u32 *from, int words)
memcpy(&sif0.fifoData[0], &from[wP0], wP1 << 2);
sif0.fifoWritePos = (sif0.fifoWritePos + words) & (FIFO_SIF0_W - 1);
sif0.fifoSize += words;
SIF_LOG(" SIF0 + %d = %d (pos=%d)", words, sif0.fifoSize, sif0.fifoWritePos);
}
@ -132,7 +131,7 @@ static __forceinline void SIF1read(u32 *to, int words)
__forceinline void SIF0Dma()
{
u32 *ptag;
int notDone = TRUE;
bool done = FALSE;
int cycles = 0, psxCycles = 0;
SIF_LOG("SIF0 DMA start...");
@ -157,7 +156,7 @@ __forceinline void SIF0Dma()
PSX_INT(IopEvt_SIF0, psxCycles);
sif0.sifData.data = 0;
notDone = FALSE;
done = TRUE;
}
else // Chain mode
{
@ -171,13 +170,13 @@ __forceinline void SIF0Dma()
HW_DMA9_MADR = sif0.sifData.data & 0xFFFFFF;
HW_DMA9_TADR += 16; ///HW_DMA9_MADR + 16 + sif0.sifData.words << 2;
sif0.counter = sif0.sifData.words & 0xFFFFFF;
notDone = TRUE;
SIF_LOG(" SIF0 Tag: madr=%lx, tadr=%lx, counter=%lx (%08X_%08X)", HW_DMA9_MADR, HW_DMA9_TADR, sif0.counter, sif0.sifData.words, sif0.sifData.data);
if (sif0.sifData.data & 0x40000000)
SIF_LOG(" END");
else
SIF_LOG(" CNT %08X, %08X", sif0.sifData.data, sif0.sifData.words);
done = FALSE;
}
}
else // There's some data ready to transfer into the fifo..
@ -220,23 +219,16 @@ __forceinline void SIF0Dma()
if (sif0dma->qwc == 0)
{
if ((sif0dma->chcr & 0x80000080) == 0x80000080) // Stop on tag IRQ
if (((sif0dma->chcr & 0x80000080) == 0x80000080) || (sif0.end)) // Stop on tag IRQ or END
{
// Tag interrupt
SIF_LOG(" EE SIF interrupt");
if (sif0.end)
SIF_LOG(" EE SIF end");
else
SIF_LOG(" EE SIF interrupt");
eesifbusy[0] = 0;
CPU_INT(5, cycles*BIAS);
notDone = FALSE;
}
else if (sif0.end) // Stop on tag END
{
// End tag.
SIF_LOG(" EE SIF end");
eesifbusy[0] = 0;
CPU_INT(5, cycles*BIAS);
notDone = FALSE;
done = TRUE;
}
else if (sif0.fifoSize >= 4) // Read a tag
{
@ -252,22 +244,22 @@ __forceinline void SIF0Dma()
if ((psHu32(DMAC_CTRL) & 0x30) != 0 && ((tag[0] >> 28)&3) == 0)
psHu32(DMAC_STADR) = sif0dma->madr + (sif0dma->qwc * 16);
notDone = TRUE;
sif0.chain = 1;
if (tag[0] & 0x40000000) sif0.end = 1;
done = FALSE;
}
}
}
}
while (notDone);
while (!done);
}
__forceinline void SIF1Dma()
{
int id;
u32 *ptag;
bool notDone = true;
bool done = FALSE;
int cycles = 0, psxCycles = 0;
do
{
@ -284,7 +276,7 @@ __forceinline void SIF1Dma()
// Stop & signal interrupts on EE
SIF_LOG("EE SIF1 End %x", sif1.end);
eesifbusy[1] = 0;
notDone = FALSE;
done = TRUE;
CPU_INT(6, cycles*BIAS);
sif1.chain = 0;
sif1.end = 0;
@ -292,7 +284,7 @@ __forceinline void SIF1Dma()
else // Chain mode
{
// Process DMA tag at sif1dma->tadr
notDone = TRUE;
done = FALSE;
_dmaGetAddr(sif1dma, ptag, sif1dma->tadr, 6);
sif1dma->chcr = (sif1dma->chcr & 0xFFFF) | ((*ptag) & 0xFFFF0000); // Copy the tag
sif1dma->qwc = (u16)ptag[0];
@ -390,23 +382,17 @@ __forceinline void SIF1Dma()
if (sif1.counter <= 0)
{
if (sif1.tagMode & 0x80) // Stop on tag IRQ
if ((sif1.tagMode & 0x80) || (sif1.tagMode & 0x40)) // Stop on tag IRQ or END
{
// Tag interrupt
SIF_LOG(" IOP SIF interrupt");
if (sif1.tagMode & 0x40)
SIF_LOG(" IOP SIF end");
else
SIF_LOG(" IOP SIF interrupt");
iopsifbusy[1] = 0;
PSX_INT(IopEvt_SIF1, psxCycles);
sif1.tagMode = 0;
notDone = FALSE;
}
else if (sif1.tagMode & 0x40) // Stop on tag END
{
// End tag.
SIF_LOG(" IOP SIF end");
iopsifbusy[1] = 0;
PSX_INT(IopEvt_SIF1, psxCycles);
sif1.tagMode = 0;
notDone = FALSE;
done = TRUE;
}
else if (sif1.fifoSize >= 4) // Read a tag
{
@ -416,12 +402,12 @@ __forceinline void SIF1Dma()
HW_DMA10_MADR = d.data & 0xffffff;
sif1.counter = d.words;
sif1.tagMode = (d.data >> 24) & 0xFF;
notDone = TRUE;
done = FALSE;
}
}
}
}
while (notDone);
while (!done);
}
__forceinline void sif0Interrupt()
@ -460,7 +446,7 @@ __forceinline void dmaSIF0()
psHu32(0x1000F240) |= 0x2000;
eesifbusy[0] = 1;
if (eesifbusy[0] == 1 && iopsifbusy[0] == 1)
if (iopsifbusy[0] == 1)
{
FreezeXMMRegs(1);
hwIntcIrq(INTC_SBUS);
@ -483,7 +469,7 @@ __forceinline void dmaSIF1()
psHu32(0x1000F240) |= 0x4000;
eesifbusy[1] = 1;
if (eesifbusy[1] == 1 && iopsifbusy[1] == 1)
if (iopsifbusy[1] == 1)
{
FreezeXMMRegs(1);
SIF1Dma();

View File

@ -19,11 +19,12 @@
#ifndef __SIF_H__
#define __SIF_H__
struct sifData{
int data,
words,
count,
addr;
struct sifData
{
s32 data;
s32 words;
s32 count;
s32 addr;
};
extern DMACh *sif0ch;

View File

@ -25,46 +25,49 @@
struct t_sif_cmd_header
{
u32 size;
void *dest;
int command;
u32 unknown;
u32 size;
void *dest;
s32 command;
u32 unknown;
};
struct t_sif_dma_transfer
{
void *src,
*dest;
int size;
int attr;
void *src;
void *dest;
s32 size;
s32 attr;
};
struct t_sif_handler
{
void (*handler) ( void *a, void *b);
void *buff;
void (*handler)(void *a, void *b);
void *buff;
};
#define SYSTEM_CMD_CHANGE_SADDR 0x80000000
#define SYSTEM_CMD_INIT_CMD 0x80000002
struct t_sif_saddr{
struct t_sif_saddr
{
struct t_sif_cmd_header hdr; //+00
void *newaddr; //+10
void *newaddr; //+10
}; //=14
#define SYSTEM_CMD_SET_SREG 0x80000001
struct t_sif_sreg{
struct t_sif_sreg
{
struct t_sif_cmd_header hdr; //+00
int index; //+10
unsigned int value; //+14
s32 index; //+10
u32 value; //+14
}; //=18
#define SYSTEM_CMD_RESET 0x80000003
struct t_sif_reset{
struct t_sif_reset
{
struct t_sif_cmd_header hdr; //+00
int size, //+10
flag; //+14
char data[80]; //+18
s32 size; //+10
s32 flag; //+14
char data[80]; //+18
}; //=68
/* end of sifcmd.h */
@ -73,119 +76,119 @@ struct t_sif_reset{
struct t_sif_rpc_rend
{
struct t_sif_cmd_header sifcmd;
int rec_id; /* 04 */
void *pkt_addr; /* 05 */
int rpc_id; /* 06 */
struct t_rpc_client_data *client; /* 7 */
u32 command; /* 8 */
struct t_rpc_server_data *server; /* 9 */
void *buff, /* 10 */
*buff2; /* 11 */
struct t_sif_cmd_header sifcmd;
s32 rec_id; /* 04 */
void *pkt_addr; /* 05 */
s32 rpc_id; /* 06 */
struct t_rpc_client_data *client; /* 7 */
u32 command; /* 8 */
struct t_rpc_server_data *server; /* 9 */
void *buff; /* 10 */
void *buff2; /* 11 */
};
struct t_sif_rpc_other_data
{
struct t_sif_cmd_header sifcmd;
int rec_id; /* 04 */
void *pkt_addr; /* 05 */
int rpc_id; /* 06 */
struct t_rpc_receive_data *receive; /* 07 */
void *src; /* 08 */
void *dest; /* 09 */
int size; /* 10 */
struct t_sif_cmd_header sifcmd;
s32 rec_id; /* 04 */
void *pkt_addr; /* 05 */
s32 rpc_id; /* 06 */
struct t_rpc_receive_data *receive; /* 07 */
void *src; /* 08 */
void *dest; /* 09 */
s32 size; /* 10 */
};
struct t_sif_rpc_bind
{
struct t_sif_cmd_header sifcmd;
int rec_id; /* 04 */
void *pkt_addr; /* 05 */
int rpc_id; /* 06 */
struct t_rpc_client_data *client; /* 07 */
int rpc_number; /* 08 */
struct t_sif_cmd_header sifcmd;
s32 rec_id; /* 04 */
void *pkt_addr; /* 05 */
s32 rpc_id; /* 06 */
struct t_rpc_client_data *client; /* 07 */
s32 rpc_number; /* 08 */
};
struct t_sif_rpc_call
{
struct t_sif_cmd_header sifcmd;
int rec_id; /* 04 */
void *pkt_addr; /* 05 */
int rpc_id; /* 06 */
struct t_rpc_client_data *client; /* 07 */
int rpc_number; /* 08 */
int send_size; /* 09 */
void *receive; /* 10 */
int rec_size; /* 11 */
int has_async_ef; /* 12 */
struct t_rpc_server_data *server; /* 13 */
struct t_sif_cmd_header sifcmd;
s32 rec_id; /* 04 */
void *pkt_addr; /* 05 */
s32 rpc_id; /* 06 */
struct t_rpc_client_data *client; /* 07 */
s32 rpc_number; /* 08 */
s32 send_size; /* 09 */
void *receive; /* 10 */
s32 rec_size; /* 11 */
s32 has_async_ef; /* 12 */
struct t_rpc_server_data *server; /* 13 */
};
struct t_rpc_server_data
{
int command; /* 04 00 */
s32 command; /* 04 00 */
void * (*func)(u32, void *, int); /* 05 01 */
void *buff; /* 06 02 */
int size; /* 07 03 */
void *(*func)(u32, void *, int); /* 05 01 */
void *buff; /* 06 02 */
s32 size; /* 07 03 */
void * (*func2)(u32, void *, int); /* 08 04 */
void *buff2; /* 09 05 */
int size2; /* 10 06 */
void *(*func2)(u32, void *, int); /* 08 04 */
void *buff2; /* 09 05 */
s32 size2; /* 10 06 */
struct t_rpc_client_data *client; /* 11 07 */
void *pkt_addr; /* 12 08 */
int rpc_number; /* 13 09 */
struct t_rpc_client_data *client; /* 11 07 */
void *pkt_addr; /* 12 08 */
s32 rpc_number; /* 13 09 */
void *receive; /* 14 10 */
int rec_size; /* 15 11 */
int has_async_ef; /* 16 12 */
int rec_id; /* 17 13 */
void *receive; /* 14 10 */
s32 rec_size; /* 15 11 */
s32 has_async_ef; /* 16 12 */
s32 rec_id; /* 17 13 */
struct t_rpc_server_data *link; /* 18 14 */
struct r_rpc_server_data *next; /* 19 15 */
struct t_rpc_data_queue *queued_object; /* 20 16 */
struct t_rpc_server_data *link; /* 18 14 */
struct r_rpc_server_data *next; /* 19 15 */
struct t_rpc_data_queue *queued_object; /* 20 16 */
};
struct t_rpc_header
{
void *pkt_addr; /* 04 00 */
u32 rpc_id; /* 05 01 */
int sema_id; /* 06 02 */
u32 mode; /* 07 03 */
void *pkt_addr; /* 04 00 */
u32 rpc_id; /* 05 01 */
s32 sema_id; /* 06 02 */
u32 mode; /* 07 03 */
};
struct t_rpc_client_data
{
struct t_rpc_header hdr;
u32 command; /* 04 08 */
void *buff, /* 05 09 */
*buff2; /* 06 10 */
void (*end_function) ( void *); /* 07 11 */
void *end_param; /* 08 12*/
struct t_rpc_server_data *server; /* 09 13 */
struct t_rpc_header hdr;
u32 command; /* 04 08 */
void *buff; /* 05 09 */
void *buff2; /* 06 10 */
void (*end_function)(void *); /* 07 11 */
void *end_param; /* 08 12*/
struct t_rpc_server_data *server; /* 09 13 */
};
struct t_rpc_receive_data
{
struct t_rpc_header hdr;
void *src, /* 04 */
*dest; /* 05 */
int size; /* 06 */
struct t_rpc_header hdr;
void *src; /* 04 */
void *dest; /* 05 */
s32 size; /* 06 */
};
struct t_rpc_data_queue
{
int thread_id, /* 00 */
active; /* 01 */
struct t_rpc_server_data *svdata_ref, /* 02 */
*start, /* 03 */
*end; /* 04 */
struct t_rpc_data_queue *next; /* 05 */
s32 thread_id; /* 00 */
s32 active; /* 01 */
struct t_rpc_server_data *svdata_ref; /* 02 */
struct t_rpc_server_data *start; /* 03 */
struct t_rpc_server_data *end; /* 04 */
struct t_rpc_data_queue *next; /* 05 */
};
/* end of sifrpc.h */

View File

@ -460,10 +460,9 @@ void SIO_CommandWrite(u8 value,int way) {
sio.bufcount = 6; // No idea why this is 6, saved from old code.
break;
}
// These were taken from old code. No idea if they're needed.
// Don't seem to break anything, at least.
sio.buf[sio.bufcount-1]='+';
sio.buf[sio.bufcount]='Z';
// Commented out values are from original code. Break multitap in bios..
sio.buf[sio.bufcount-1]=0;//'+';
sio.buf[sio.bufcount]=0;//'Z';
return;
case 0x2:
sio.packetsize++;
@ -626,7 +625,7 @@ void InitializeSIO(u8 value)
const int mcidx = sio.GetMemcardIndex();
if( sio.activeMemcardSlot[mcidx] )
if( sio.activeMemcardSlot[mcidx] != 0 )
{
// Might want to more agressively declare a card's non-existence here.
// As non-zero slots always report a failure, and have to read

View File

@ -44,6 +44,7 @@ u16 logProtocol;
u8 logSource;
#endif
bool enableLogging = TRUE;
int connected=0;
#define SYNC_LOGGING
@ -52,8 +53,10 @@ int connected=0;
void __Log( const char* fmt, ... )
{
char tmp[2024];
va_list list;
if (!enableLogging) return;
va_start(list, fmt);
// concatenate the log message after the prefix:
@ -126,6 +129,9 @@ static __forceinline void _vSourceLog( u16 protocol, u8 source, u32 cpuPc, u32 c
void SourceLog( u16 protocol, u8 source, u32 cpuPc, u32 cpuCycle, const char *fmt, ...)
{
va_list list;
if (!enableLogging) return;
va_start(list, fmt);
_vSourceLog( protocol, source, cpuPc, cpuCycle, fmt, list );
va_end(list);
@ -136,6 +142,7 @@ void SourceLog( u16 protocol, u8 source, u32 cpuPc, u32 cpuCycle, const char *fm
bool SrcLog_##unit( const char* fmt, ... ) \
{ \
va_list list; \
if (!enableLogging) return false; \
va_start( list, fmt ); \
_vSourceLog( protocol, source, \
(source == 'E') ? cpuRegs.pc : psxRegs.pc, \

View File

@ -26,7 +26,6 @@
#include "Misc.h"
#include "Threading.h" // to use threading stuff, include the Threading namespace in your file.
enum PageProtectionMode
{
Protect_NoAccess = 0,
@ -102,21 +101,6 @@ extern u8 *SysMmapEx(uptr base, u32 size, uptr bounds, const char *caller="Unnam
extern void vSyncDebugStuff( uint frame );
//////////////////////////////////////////////////////////////////////////////////////////
// Pcsx2 Custom Translation System
// Work-in-progress!
//
static const char* _t( const char* translate_me_please )
{
return translate_me_please;
}
// Temporary placebo?
static const char* _( const char* translate_me_please )
{
return translate_me_please;
}
//////////////////////////////////////////////////////////////////////////////////////////
// Console Namespace -- Replacements for SysPrintf.
// SysPrintf is depreciated -- We should phase these in over time.

View File

@ -18,54 +18,47 @@
#include "PrecompiledHeader.h"
#include <cmath>
#include <assert.h>
#include "Common.h"
#include "VUmicro.h"
#include "Vif.h"
#include "VifDma.h"
#include <assert.h>
VIFregisters *_vifRegs;
u32* _vifRow = NULL, *_vifCol = NULL;
u32* _vifMaskRegs = NULL;
vifStruct *_vif;
PCSX2_ALIGNED16(u32 g_vifRow0[4]);
PCSX2_ALIGNED16(u32 g_vifCol0[4]);
PCSX2_ALIGNED16(u32 g_vifRow1[4]);
PCSX2_ALIGNED16(u32 g_vifCol1[4]);
u32* _vifRow = NULL, *_vifCol = NULL;
vifStruct *_vif;
static int n;
#define spr0 ((DMACh*)&PS2MEM_HW[0xD000])
static int cycles;
//static int cycles;
extern int g_vifCycles;
u16 vifqwc = 0;
u32 mfifodmairq = 0;
bool mfifodmairq = FALSE;
enum UnpackOffset
{
OFFSET_X = 0,
OFFSET_Y,
OFFSET_Z,
OFFSET_W
};
#define spr0 ((DMACh*)&PS2MEM_HW[0xD000])
__forceinline static int _limit(int a, int max)
{
return (a > max) ? max : a;
}
#define _UNPACKpart( offnum, func ) \
if ( ( size > 0 ) && ( _vifRegs->offset == offnum ) ) { \
func; \
size--; \
_vifRegs->offset++; \
}
#define _UNPACKpart_nosize( offnum, func ) \
if ( ( _vifRegs->offset == offnum ) ) { \
func; \
_vifRegs->offset++; \
}
static __releaseinline void writeX(u32 *dest, u32 data)
{
int n;
if (_vifRegs->code & 0x10000000)
{
switch (_vif->cl)
@ -133,6 +126,8 @@ static __releaseinline void writeX(u32 *dest, u32 data)
static __releaseinline void writeY(u32 *dest, u32 data)
{
int n;
if (_vifRegs->code & 0x10000000)
{
switch (_vif->cl)
@ -200,6 +195,8 @@ static __releaseinline void writeY(u32 *dest, u32 data)
static __releaseinline void writeZ(u32 *dest, u32 data)
{
int n;
if (_vifRegs->code & 0x10000000)
{
switch (_vif->cl)
@ -267,6 +264,8 @@ static __releaseinline void writeZ(u32 *dest, u32 data)
static __releaseinline void writeW(u32 *dest, u32 data)
{
int n;
if (_vifRegs->code & 0x10000000)
{
switch (_vif->cl)
@ -332,61 +331,89 @@ static __releaseinline void writeW(u32 *dest, u32 data)
// VIF_LOG("writeW %8.8x : Mode %d, r3 = %x, data %8.8x", *dest,_vifRegs->mode,_vifRegs->r3,data);
}
static __forceinline bool __fastcall _UNPACKpart(u32 offnum, u32 *x, u32 y)
{
if (_vifRegs->offset == offnum)
{
switch (offnum)
{
case OFFSET_X:
writeX(x,y);
break;
case OFFSET_Y:
writeY(x,y);
break;
case OFFSET_Z:
writeZ(x,y);
break;
case OFFSET_W:
writeW(x,y);
break;
default:
break;
}
_vifRegs->offset++;
return TRUE;
}
return FALSE;
}
void __fastcall UNPACK_S_32(u32 *dest, u32 *data, int size)
{
_UNPACKpart(0, writeX(dest++, *data));
_UNPACKpart(1, writeY(dest++, *data));
_UNPACKpart(2, writeZ(dest++, *data));
_UNPACKpart(3, writeW(dest , *data));
if (size > 0) if (_UNPACKpart(OFFSET_X, dest++, *data)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Y, dest++, *data)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Z, dest++, *data)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_W, dest , *data)) size--;
if (_vifRegs->offset == 4) _vifRegs->offset = 0;
}
void __fastcall UNPACK_S_16s(u32 *dest, u32 *data, int size)
{
s16 *sdata = (s16*)data;
_UNPACKpart(0, writeX(dest++, *sdata));
_UNPACKpart(1, writeY(dest++, *sdata));
_UNPACKpart(2, writeZ(dest++, *sdata));
_UNPACKpart(3, writeW(dest , *sdata));
if (size > 0) if (_UNPACKpart(OFFSET_X, dest++, *sdata)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Y, dest++, *sdata)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Z, dest++, *sdata)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_W, dest, *sdata)) size--;
if (_vifRegs->offset == 4) _vifRegs->offset = 0;
}
void __fastcall UNPACK_S_16u(u32 *dest, u32 *data, int size)
{
const u16 *sdata = (u16*)data;
_UNPACKpart(0, writeX(dest++, *sdata));
_UNPACKpart(1, writeY(dest++, *sdata));
_UNPACKpart(2, writeZ(dest++, *sdata));
_UNPACKpart(3, writeW(dest , *sdata));
if (size > 0) if (_UNPACKpart(OFFSET_X, dest++, *sdata)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Y, dest++, *sdata)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Z, dest++, *sdata)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_W, dest , *sdata)) size--;
if (_vifRegs->offset == 4) _vifRegs->offset = 0;
}
void __fastcall UNPACK_S_8s(u32 *dest, u32 *data, int size)
{
s8 *cdata = (s8*)data;
_UNPACKpart(0, writeX(dest++, *cdata));
_UNPACKpart(1, writeY(dest++, *cdata));
_UNPACKpart(2, writeZ(dest++, *cdata));
_UNPACKpart(3, writeW(dest , *cdata));
if (size > 0) if (_UNPACKpart(OFFSET_X, dest++, *cdata)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Y, dest++, *cdata)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Z, dest++, *cdata)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_W, dest , *cdata)) size--;
if (_vifRegs->offset == 4) _vifRegs->offset = 0;
}
void __fastcall UNPACK_S_8u(u32 *dest, u32 *data, int size)
{
u8 *cdata = (u8*)data;
_UNPACKpart(0, writeX(dest++, *cdata));
_UNPACKpart(1, writeY(dest++, *cdata));
_UNPACKpart(2, writeZ(dest++, *cdata));
_UNPACKpart(3, writeW(dest , *cdata));
if (size > 0) if (_UNPACKpart(OFFSET_X, dest++, *cdata)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Y, dest++, *cdata))size--;
if (size > 0) if (_UNPACKpart(OFFSET_Z, dest++, *cdata)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_W, dest , *cdata)) size--;
if (_vifRegs->offset == 4) _vifRegs->offset = 0;
}
void __fastcall UNPACK_V2_32(u32 *dest, u32 *data, int size)
{
_UNPACKpart(0, writeX(dest++, *data++));
_UNPACKpart(1, writeY(dest++, *data--));
_UNPACKpart_nosize(2, writeZ(dest++, *data));
_UNPACKpart_nosize(3, writeW(dest , 0));
if (size > 0) if (_UNPACKpart(OFFSET_X, dest++, *data++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Y, dest++, *data--)) size--;
_UNPACKpart(OFFSET_Z, dest++, *data);
_UNPACKpart(OFFSET_W, dest, 0);
if (_vifRegs->offset == 4) _vifRegs->offset = 0;
}
@ -394,148 +421,148 @@ void __fastcall UNPACK_V2_32(u32 *dest, u32 *data, int size)
void __fastcall UNPACK_V2_16s(u32 *dest, u32 *data, int size)
{
s16 *sdata = (s16*)data;
_UNPACKpart(0, writeX(dest++, *sdata++));
_UNPACKpart(1, writeY(dest++, *sdata--));
_UNPACKpart_nosize(2, writeZ(dest++, *sdata++));
_UNPACKpart_nosize(3, writeW(dest , *sdata));
if (size > 0) if (_UNPACKpart(OFFSET_X, dest++, *sdata++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Y, dest++, *sdata--)) size--;
_UNPACKpart(OFFSET_Z, dest++, *sdata++);
_UNPACKpart(OFFSET_W, dest , *sdata);
if (_vifRegs->offset == 4) _vifRegs->offset = 0;
}
void __fastcall UNPACK_V2_16u(u32 *dest, u32 *data, int size)
{
u16 *sdata = (u16*)data;
_UNPACKpart(0, writeX(dest++, *sdata++));
_UNPACKpart(1, writeY(dest++, *sdata--));
_UNPACKpart_nosize(2, writeZ(dest++, *sdata++));
_UNPACKpart_nosize(3, writeW(dest , *sdata));
if (size > 0) if (_UNPACKpart(OFFSET_X, dest++, *sdata++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Y, dest++, *sdata--)) size--;
_UNPACKpart(OFFSET_Z, dest++, *sdata++);
_UNPACKpart(OFFSET_W, dest , *sdata);
if (_vifRegs->offset == 4) _vifRegs->offset = 0;
}
void __fastcall UNPACK_V2_8s(u32 *dest, u32 *data, int size)
{
s8 *cdata = (s8*)data;
_UNPACKpart(0, writeX(dest++, *cdata++));
_UNPACKpart(1, writeY(dest++, *cdata--));
_UNPACKpart_nosize(2, writeZ(dest++, *cdata++));
_UNPACKpart_nosize(3, writeW(dest , *cdata));
if (size > 0) if (_UNPACKpart(OFFSET_X, dest++, *cdata++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Y, dest++, *cdata--)) size--;
_UNPACKpart(OFFSET_Z, dest++, *cdata++);
_UNPACKpart(OFFSET_W, dest , *cdata);
if (_vifRegs->offset == 4) _vifRegs->offset = 0;
}
void __fastcall UNPACK_V2_8u(u32 *dest, u32 *data, int size)
{
u8 *cdata = (u8*)data;
_UNPACKpart(0, writeX(dest++, *cdata++));
_UNPACKpart(1, writeY(dest++, *cdata--));
_UNPACKpart_nosize(2, writeZ(dest++, *cdata++));
_UNPACKpart_nosize(3, writeW(dest , *cdata));
if (size > 0) if (_UNPACKpart(OFFSET_X, dest++, *cdata++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Y, dest++, *cdata--)) size--;
_UNPACKpart(OFFSET_Z, dest++, *cdata++);
_UNPACKpart(OFFSET_W, dest , *cdata);
if (_vifRegs->offset == 4) _vifRegs->offset = 0;
}
void __fastcall UNPACK_V3_32(u32 *dest, u32 *data, int size)
{
_UNPACKpart(0, writeX(dest++, *data++););
_UNPACKpart(1, writeY(dest++, *data++););
_UNPACKpart(2, writeZ(dest++, *data++););
_UNPACKpart_nosize(3, writeW(dest, *data););
if (size > 0) if (_UNPACKpart(OFFSET_X, dest++, *data++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Y, dest++, *data++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Z, dest++, *data++)) size--;
_UNPACKpart(OFFSET_W, dest, *data);
if (_vifRegs->offset == 4) _vifRegs->offset = 0;
}
void __fastcall UNPACK_V3_16s(u32 *dest, u32 *data, int size)
{
s16 *sdata = (s16*)data;
_UNPACKpart(0, writeX(dest++, *sdata++));
_UNPACKpart(1, writeY(dest++, *sdata++));
_UNPACKpart(2, writeZ(dest++, *sdata++));
_UNPACKpart_nosize(3, writeW(dest, *sdata));
if (size > 0) if (_UNPACKpart(OFFSET_X, dest++, *sdata++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Y, dest++, *sdata++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Z, dest++, *sdata++)) size--;
_UNPACKpart(OFFSET_W, dest, *sdata);
if (_vifRegs->offset == 4) _vifRegs->offset = 0;
}
void __fastcall UNPACK_V3_16u(u32 *dest, u32 *data, int size)
{
u16 *sdata = (u16*)data;
_UNPACKpart(0, writeX(dest++, *sdata++));
_UNPACKpart(1, writeY(dest++, *sdata++));
_UNPACKpart(2, writeZ(dest++, *sdata++));
_UNPACKpart_nosize(3, writeW(dest, *sdata));
if (size > 0) if (_UNPACKpart(OFFSET_X, dest++, *sdata++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Y, dest++, *sdata++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Z, dest++, *sdata++)) size--;
_UNPACKpart(OFFSET_W, dest, *sdata);
if (_vifRegs->offset == 4) _vifRegs->offset = 0;
}
void __fastcall UNPACK_V3_8s(u32 *dest, u32 *data, int size)
{
s8 *cdata = (s8*)data;
_UNPACKpart(0, writeX(dest++, *cdata++));
_UNPACKpart(1, writeY(dest++, *cdata++));
_UNPACKpart(2, writeZ(dest++, *cdata++));
_UNPACKpart_nosize(3, writeW(dest, *cdata));
if (size > 0) if (_UNPACKpart(OFFSET_X, dest++, *cdata++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Y, dest++, *cdata++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Z, dest++, *cdata++)) size--;
_UNPACKpart(OFFSET_W, dest, *cdata);
if (_vifRegs->offset == 4) _vifRegs->offset = 0;
}
void __fastcall UNPACK_V3_8u(u32 *dest, u32 *data, int size)
{
u8 *cdata = (u8*)data;
_UNPACKpart(0, writeX(dest++, *cdata++));
_UNPACKpart(1, writeY(dest++, *cdata++));
_UNPACKpart(2, writeZ(dest++, *cdata++));
_UNPACKpart_nosize(3, writeW(dest, *cdata));
if (size > 0) if (_UNPACKpart(OFFSET_X, dest++, *cdata++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Y, dest++, *cdata++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Z, dest++, *cdata++)) size--;
_UNPACKpart(OFFSET_W, dest, *cdata);
if (_vifRegs->offset == 4) _vifRegs->offset = 0;
}
void __fastcall UNPACK_V4_32(u32 *dest, u32 *data , int size)
{
_UNPACKpart(0, writeX(dest++, *data++));
_UNPACKpart(1, writeY(dest++, *data++));
_UNPACKpart(2, writeZ(dest++, *data++));
_UNPACKpart(3, writeW(dest , *data));
if (size > 0) if (_UNPACKpart(OFFSET_X, dest++, *data++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Y, dest++, *data++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Z, dest++, *data++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_W, dest , *data)) size--;
if (_vifRegs->offset == 4) _vifRegs->offset = 0;
}
void __fastcall UNPACK_V4_16s(u32 *dest, u32 *data, int size)
{
s16 *sdata = (s16*)data;
_UNPACKpart(0, writeX(dest++, *sdata++));
_UNPACKpart(1, writeY(dest++, *sdata++));
_UNPACKpart(2, writeZ(dest++, *sdata++));
_UNPACKpart(3, writeW(dest , *sdata));
if (size > 0) if (_UNPACKpart(OFFSET_X, dest++, *sdata++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Y, dest++, *sdata++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Z, dest++, *sdata++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_W, dest , *sdata)) size--;
if (_vifRegs->offset == 4) _vifRegs->offset = 0;
}
void __fastcall UNPACK_V4_16u(u32 *dest, u32 *data, int size)
{
u16 *sdata = (u16*)data;
_UNPACKpart(0, writeX(dest++, *sdata++));
_UNPACKpart(1, writeY(dest++, *sdata++));
_UNPACKpart(2, writeZ(dest++, *sdata++));
_UNPACKpart(3, writeW(dest , *sdata));
if (size > 0) if (_UNPACKpart(OFFSET_X, dest++, *sdata++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Y, dest++, *sdata++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Z, dest++, *sdata++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_W, dest, *sdata)) size--;
if (_vifRegs->offset == 4) _vifRegs->offset = 0;
}
void __fastcall UNPACK_V4_8s(u32 *dest, u32 *data, int size)
{
s8 *cdata = (s8*)data;
_UNPACKpart(0, writeX(dest++, *cdata++));
_UNPACKpart(1, writeY(dest++, *cdata++));
_UNPACKpart(2, writeZ(dest++, *cdata++));
_UNPACKpart(3, writeW(dest , *cdata));
if (size > 0) if (_UNPACKpart(OFFSET_X, dest++, *cdata++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Y, dest++, *cdata++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Z, dest++, *cdata++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_W, dest, *cdata)) size--;
if (_vifRegs->offset == 4) _vifRegs->offset = 0;
}
void __fastcall UNPACK_V4_8u(u32 *dest, u32 *data, int size)
{
u8 *cdata = (u8*)data;
_UNPACKpart(0, writeX(dest++, *cdata++));
_UNPACKpart(1, writeY(dest++, *cdata++));
_UNPACKpart(2, writeZ(dest++, *cdata++));
_UNPACKpart(3, writeW(dest , *cdata));
if (size > 0) if (_UNPACKpart(OFFSET_X, dest++, *cdata++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Y, dest++, *cdata++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Z, dest++, *cdata++)) size--;
if (size > 0) if (_UNPACKpart(OFFSET_W, dest, *cdata)) size--;
if (_vifRegs->offset == 4) _vifRegs->offset = 0;
}
void __fastcall UNPACK_V4_5(u32 *dest, u32 *data, int size)
{
_UNPACKpart(0, writeX(dest++, (*data & 0x001f) << 3););
_UNPACKpart(1, writeY(dest++, (*data & 0x03e0) >> 2););
_UNPACKpart(2, writeZ(dest++, (*data & 0x7c00) >> 7););
_UNPACKpart(3, writeW(dest , (*data & 0x8000) >> 8););
if (size > 0) if (_UNPACKpart(OFFSET_X, dest++, ((*data & 0x001f) << 3))) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Y, dest++, ((*data & 0x03e0) >> 2))) size--;
if (size > 0) if (_UNPACKpart(OFFSET_Z, dest++, ((*data & 0x7c00) >> 7))) size--;
if (size > 0) if (_UNPACKpart(OFFSET_W, dest , ((*data & 0x8000) >> 8))) size--;
if (_vifRegs->offset == 4) _vifRegs->offset = 0;
}
@ -648,7 +675,7 @@ void mfifoVIF1transfer(int qwc)
return;
}
mfifodmairq = 0; //Clear any previous TIE interrupt
mfifodmairq = FALSE; //Clear any previous TIE interrupt
if (vif1ch->qwc == 0)
{
@ -669,7 +696,7 @@ void mfifoVIF1transfer(int qwc)
id = (ptag[0] >> 28) & 0x7;
vif1ch->qwc = (ptag[0] & 0xffff);
vif1ch->madr = ptag[1];
cycles += 2;
//cycles += 2;
vif1ch->chcr = (vif1ch->chcr & 0xFFFF) | ((*ptag) & 0xFFFF0000);
@ -715,7 +742,7 @@ void mfifoVIF1transfer(int qwc)
{
VIF_LOG("dmaIrq Set");
vif1.done = 1;
mfifodmairq = 1; //Let the handler know we have prematurely ended MFIFO
mfifodmairq = TRUE; //Let the handler know we have prematurely ended MFIFO
}
}
@ -772,7 +799,7 @@ void vifMFIFOInterrupt()
//On a TIE break we do not clear the MFIFO (Art of Fighting)
//If we dont clear it on MFIFO end, Tekken Tag breaks, understandably (Refraction)
if (mfifodmairq == 0) vifqwc = 0;
if (!mfifodmairq) vifqwc = 0;
vif1.done = 1;
g_vifCycles = 0;

View File

@ -446,13 +446,9 @@ static void VIFunpack(u32 *data, vifCode *v, int size, const unsigned int VIFdma
if (vif->cl == vifRegs->cycle.wl)
{
if (vifRegs->cycle.cl != vifRegs->cycle.wl)
{
dest += ((vifRegs->cycle.cl - vifRegs->cycle.wl) << 2) + destinc;
}
else
{
dest += destinc;
}
vif->cl = 0;
}
else
@ -539,7 +535,7 @@ static void VIFunpack(u32 *data, vifCode *v, int size, const unsigned int VIFdma
}
#endif
if (vifRegs->cycle.cl == 0 || vifRegs->cycle.wl == 0 || (vifRegs->cycle.cl == vifRegs->cycle.wl && !(vifRegs->code&0x10000000)))
if ((vifRegs->cycle.cl == 0) || (vifRegs->cycle.wl == 0) || ((vifRegs->cycle.cl == vifRegs->cycle.wl) && !(vifRegs->code & 0x10000000)))
{
oldcycle = *(u32*) & vifRegs->cycle;
vifRegs->cycle.cl = vifRegs->cycle.wl = 1;
@ -2137,7 +2133,7 @@ int _VIF1chain()
u32 *pMem;
u32 ret;
if (vif1ch->qwc == 0 && vif1.vifstalled == 0 && vif1.irqoffset == 0)
if (vif1ch->qwc == 0)
{
vif1.inprogress = 0;
return 0;
@ -2237,7 +2233,7 @@ __forceinline void vif1SetupTransfer()
}
}
vif1.irqoffset = 0;
vif1.done |= hwDmacSrcChainWithStack(vif1ch, id);
if ((vif1ch->chcr & 0x80) && (vif1ptag[0] >> 31)) //Check TIE bit of CHCR and IRQ bit of tag
@ -2411,7 +2407,7 @@ void vif1Write32(u32 mem, u32 value)
// just stoppin the VIF (linuz).
vif1Regs->stat |= VIF1_STAT_VSS;
vif1Regs->stat &= ~VIF1_STAT_VPS;
vif1.inprogress = 0;
cpuRegs.interrupt &= ~((1 << 1) | (1 << 10)); //Stop all vif1 DMA's
vif1.vifstalled = 1;
}
if (value & 0x8)

View File

@ -136,6 +136,7 @@
AdditionalIncludeDirectories="&quot;$(ProjectRootDir)/NewGUI&quot;"
PreprocessorDefinitions="NDEBUG"
StringPooling="true"
MinimalRebuild="true"
ExceptionHandling="2"
SmallerTypeCheck="false"
BufferSecurityCheck="false"
@ -145,6 +146,7 @@
PrecompiledHeaderFile="$(IntDir)\$(TargetName).pch"
WarningLevel="3"
SuppressStartupBanner="true"
DebugInformationFormat="3"
CompileAs="2"
/>
<Tool

View File

@ -14,7 +14,7 @@
/>
<Tool
Name="VCLinkerTool"
AdditionalDependencies="odbc32.lib odbccp32.lib comctl32.lib ws2_32.lib winmm.lib gnu_gettext.lib"
AdditionalDependencies="odbc32.lib odbccp32.lib comctl32.lib ws2_32.lib winmm.lib"
LinkIncremental="1"
AdditionalLibraryDirectories="..\;..\libs"
GenerateDebugInformation="true"

View File

@ -24,6 +24,10 @@
#include "iR5900.h"
// temporary hack to keep this code compiling.
static const char* _( const char* src ) { return src; }
static bool sinit = false;
bool nDisableSC = false; // screensaver
@ -163,7 +167,6 @@ static void strcatz(char *dst, char *src)
strcpy(dst + len, src);
}
void OnStates_LoadOther()
{
OPENFILENAME ofn;
@ -398,14 +401,19 @@ namespace HostGui
void __fastcall KeyEvent( keyEvent* ev )
{
static int shiftkey = 0;
struct KeyModifiers *keymod = &keymodifiers;
if (ev == NULL) return;
if (ev->evt == KEYRELEASE)
{
switch (ev->key)
{
case VK_SHIFT: shiftkey = 0; break;
case VK_SHIFT: keymod->shift = FALSE; break;
case VK_CONTROL: keymod->control = FALSE; break;
/* They couldn't just name this something simple, like VK_ALT */
case VK_MENU: keymod->alt = FALSE; break;
case VK_CAPITAL: keymod->capslock = FALSE; break;
}
GSkeyEvent(ev); return;
}
@ -414,14 +422,17 @@ namespace HostGui
switch (ev->key)
{
case VK_SHIFT: shiftkey = 1; break;
case VK_SHIFT: keymod->shift = TRUE; break;
case VK_CONTROL: keymod->control = TRUE; break;
case VK_MENU: keymod->alt = TRUE; break;
case VK_CAPITAL: keymod->capslock = TRUE; break;
case VK_F1: case VK_F2: case VK_F3: case VK_F4:
case VK_F5: case VK_F6: case VK_F7: case VK_F8:
case VK_F9: case VK_F10: case VK_F11: case VK_F12:
try
{
ProcessFKeys(ev->key-VK_F1 + 1, shiftkey);
ProcessFKeys(ev->key-VK_F1 + 1, keymod);
}
catch( Exception::CpuStateShutdown& )
{

View File

@ -362,7 +362,7 @@ void _recMove128MtoRmOffset(u32 offset, u32 from);
extern int _signExtendGPRtoMMX(x86MMXRegType to, u32 gprreg, int shift);
extern _mmxregs mmxregs[MMXREGS], s_saveMMXregs[MMXREGS];
extern u16 x86FpuState, iCWstate;
extern u16 x86FpuState;
extern void iDumpRegisters(u32 startpc, u32 temp);

View File

@ -23,39 +23,6 @@
#include "iR5900.h"
#include "iFPU.h"
//------------------------------------------------------------------
// Misc...
//------------------------------------------------------------------
//static u32 _mxcsr = 0x7F80;
//static u32 _mxcsrs;
static u32 fpucw = 0x007f;
static u32 fpucws = 0;
void SaveCW(int type) {
if (iCWstate & type) return;
if (type == 2) {
// SSE_STMXCSR((uptr)&_mxcsrs);
// SSE_LDMXCSR((uptr)&_mxcsr);
} else {
FNSTCW( (uptr)&fpucws );
FLDCW( (uptr)&fpucw );
}
iCWstate|= type;
}
void LoadCW() {
if (iCWstate == 0) return;
if (iCWstate & 2) {
//SSE_LDMXCSR((uptr)&_mxcsrs);
}
if (iCWstate & 1) {
FLDCW( (uptr)&fpucws );
}
iCWstate = 0;
}
//------------------------------------------------------------------
namespace R5900 {
namespace Dynarec {

View File

@ -22,9 +22,6 @@
namespace R5900 {
namespace Dynarec {
void SaveCW();
void LoadCW();
namespace OpcodeImpl {
namespace COP1
{

View File

@ -39,40 +39,9 @@
//set I&D flags. also impacts other aspects of DIV/R/SQRT correctness
#define FPU_FLAGS_ID 1
//------------------------------------------------------------------
// Misc...
//------------------------------------------------------------------
//static u32 _mxcsr = 0x7F80;
//static u32 _mxcsrs;
/*static u32 fpucw = 0x007f;
static u32 fpucws = 0;
void SaveCW(int type) {
if (iCWstate & type) return;
if (type == 2) {
// SSE_STMXCSR((uptr)&_mxcsrs);
// SSE_LDMXCSR((uptr)&_mxcsr);
} else {
FNSTCW( (uptr)&fpucws );
FLDCW( (uptr)&fpucw );
}
iCWstate|= type;
}
void LoadCW() {
if (iCWstate == 0) return;
if (iCWstate & 2) {
//SSE_LDMXCSR((uptr)&_mxcsrs);
}
if (iCWstate & 1) {
FLDCW( (uptr)&fpucws );
}
iCWstate = 0;
}
*/
#ifdef FPU_RECOMPILE
//------------------------------------------------------------------
namespace R5900 {
namespace Dynarec {
@ -1058,3 +1027,4 @@ FPURECOMPILE_CONSTCODE(RSQRT_S, XMMINFO_WRITED|XMMINFO_READS|XMMINFO_READT);
} } } } }
#endif

View File

@ -88,6 +88,17 @@ extern u32 s_nBlockCycles; // cycles of current block recompiling
branch = 2; \
}
#define REC_SYS_DEL( f, delreg ) \
void rec##f( void ) \
{ \
MOV32ItoM( (uptr)&cpuRegs.code, (u32)cpuRegs.code ); \
MOV32ItoM( (uptr)&cpuRegs.pc, (u32)pc ); \
iFlushCall(FLUSH_EVERYTHING); \
if( (delreg) > 0 ) _deleteEEreg(delreg, 0); \
CALLFunc( (uptr)Interp::f ); \
branch = 2; \
}
// Used to clear recompiled code blocks during memory/dma write operations.
u32 recClearMem(u32 pc);
@ -106,10 +117,6 @@ void iFlushCall(int flushtype);
void recBranchCall( void (*func)() );
void recCall( void (*func)(), int delreg );
// these are defined in iFPU.cpp
void LoadCW();
void SaveCW(int type);
extern void recExecute(); // same as recCpu.Execute(), but faster (can be inline'd)
namespace R5900{

View File

@ -44,9 +44,8 @@ namespace VU0micro
{
SuperVUReset(0);
// these shouldn't be needed, but shouldn't hurt anything either.
// this shouldn't be needed, but shouldn't hurt anything either.
x86FpuState = FPU_STATE;
iCWstate = 0;
}
static void recStep()

View File

@ -85,7 +85,6 @@ namespace VU1micro
// these shouldn't be needed, but shouldn't hurt anything either.
x86FpuState = FPU_STATE;
iCWstate = 0;
}
static void recStep()

View File

@ -473,8 +473,8 @@ void SuperVUAnalyzeOp(VURegs *VU, _vuopinfo *info, _VURegsNum* pCodeRegs)
if (ptr[1] & 0x40000000) { // EOP
branch |= 8;
}
}
VU->code = ptr[1];
if (VU == &VU1) VU1regs_UPPER_OPCODE[VU->code & 0x3f](uregs);
else VU0regs_UPPER_OPCODE[VU->code & 0x3f](uregs);

View File

@ -918,20 +918,39 @@ static VuInstruction* getDelayInst(VuInstruction* pInst)
// ibeq vi05, vi03
// The ibeq should read the vi05 before the first sqi
//more info:
// iaddiu vi01, 0, 1
// ibeq vi01, 0 <- reads vi01 before the iaddiu
// iaddiu vi01, 0, 1
// iaddiu vi01, vi01, 1
// iaddiu vi01, vi01, 1
// ibeq vi01, 0 <- reads vi01 before the last two iaddiu's (so the value read is 1)
// ilw vi02, addr
// iaddiu vi01, 0, 1
// ibeq vi01, vi02 <- reads current values of both vi01 and vi02 because the branch instruction stalls
int delay = 1;
VuInstruction* pDelayInst = NULL;
VuInstruction* pTargetInst = pInst->pPrevInst;
while( 1 ) { // fixme: is 3-cycle delay really maximum?
while( 1 ) {
if( pTargetInst != NULL
&& pTargetInst->info.cycle+delay==pInst->info.cycle
&& (pTargetInst->regs[0].pipe == VUPIPE_IALU||pTargetInst->regs[0].pipe == VUPIPE_FMAC)
&& ((pTargetInst->regs[0].VIwrite & pInst->regs[0].VIread) & 0xffff)
&& ((pTargetInst->regs[0].VIwrite & pInst->regs[0].VIread) & 0xffff) == ((pTargetInst->regs[0].VIwrite & pInst->pPrevInst->regs[0].VIread) & 0xffff)
&& (delay == 1 || ((pTargetInst->regs[0].VIwrite & pInst->regs[0].VIread) & 0xffff) == ((pTargetInst->regs[0].VIwrite & pInst->pPrevInst->regs[0].VIread) & 0xffff))
&& !(pTargetInst->regs[0].VIread&((1<<REG_STATUS_FLAG)|(1<<REG_MAC_FLAG)|(1<<REG_CLIP_FLAG))) )
{
pDelayInst = pTargetInst;
pTargetInst = pTargetInst->pPrevInst;
delay++;
if (delay == 5) //maximum delay is 4 (length of the pipeline)
{
DevCon::WriteLn("supervu: cycle branch delay maximum (4) is reached");
break;
}
}
else break;
}
@ -2041,9 +2060,9 @@ void VuBaseBlock::AssignVFRegs()
_freeXMMreg(free1);
_freeXMMreg(free2);
}
else if( regs->VIwrite & (1<<REG_P) ) {
else if( regs->VIwrite & (1<<REG_P) || regs->VIwrite & (1<<REG_Q)) {
free1 = _allocTempXMMreg(XMMT_FPS, -1);
// protects against insts like esadd vf0
// protects against insts like esadd vf0 and sqrt vf0
if( free0 == -1 )
free0 = free1;
_freeXMMreg(free1);

View File

@ -33,7 +33,7 @@ using namespace std;
extern u32 g_psxConstRegs[32];
u16 x86FpuState, iCWstate;
u16 x86FpuState;
u16 g_mmxAllocCounter = 0;
// X86 caching

View File

@ -92,7 +92,7 @@ static u32 s_nHasDelay = 0;
// save states for branches
GPR_reg64 s_saveConstRegs[32];
static u16 s_savex86FpuState, s_saveiCWstate;
static u16 s_savex86FpuState;
static u32 s_saveHasConstReg = 0, s_saveFlushedConstReg = 0, s_saveRegHasLive1 = 0, s_saveRegHasSignExt = 0;
static EEINST* s_psaveInstInfo = NULL;
@ -323,7 +323,9 @@ u32* _eeGetConstReg(int reg)
void _eeMoveGPRtoR(x86IntRegType to, int fromgpr)
{
if( GPR_IS_CONST1(fromgpr) )
if( fromgpr == 0 )
XOR32RtoR( to, to ); // zero register should use xor, thanks --air
else if( GPR_IS_CONST1(fromgpr) )
MOV32ItoR( to, g_cpuConstRegs[fromgpr].UL[0] );
else {
int mmreg;
@ -585,7 +587,6 @@ void recResetEE( void )
recPtr = recMem;
recStackPtr = recStack;
x86FpuState = FPU_STATE;
iCWstate = 0;
branch = 0;
SetCPUState(Config.sseMXCSR, Config.sseVUMXCSR);
@ -985,7 +986,6 @@ void SetBranchImm( u32 imm )
void SaveBranchState()
{
s_savex86FpuState = x86FpuState;
s_saveiCWstate = iCWstate;
s_savenBlockCycles = s_nBlockCycles;
memcpy(s_saveConstRegs, g_cpuConstRegs, sizeof(g_cpuConstRegs));
s_saveHasConstReg = g_cpuHasConstReg;
@ -1002,7 +1002,6 @@ void SaveBranchState()
void LoadBranchState()
{
x86FpuState = s_savex86FpuState;
iCWstate = s_saveiCWstate;
s_nBlockCycles = s_savenBlockCycles;
memcpy(g_cpuConstRegs, s_saveConstRegs, sizeof(g_cpuConstRegs));
@ -1034,8 +1033,6 @@ void iFlushCall(int flushtype)
if( flushtype & FLUSH_CACHED_REGS )
_flushConstRegs();
LoadCW();
if (x86FpuState==MMX_STATE) {
if (cpucaps.has3DNOWInstructionExtensions) FEMMS();
else EMMS();
@ -1404,7 +1401,6 @@ void recRecompile( const u32 startpc )
s_nBlockCycles = 0;
pc = startpc;
x86FpuState = FPU_STATE;
iCWstate = 0;
g_cpuHasConstReg = g_cpuFlushedConstReg = 1;
g_cpuPrevRegHasLive1 = g_cpuRegHasLive1 = 0xffffffff;
g_cpuPrevRegHasSignExt = g_cpuRegHasSignExt = 0;

View File

@ -40,20 +40,20 @@ namespace OpcodeImpl
namespace Interp = R5900::Interpreter::OpcodeImpl;
REC_FUNC(ADD);
REC_FUNC(ADDU);
REC_FUNC(DADD);
REC_FUNC(DADDU);
REC_FUNC(SUB);
REC_FUNC(SUBU);
REC_FUNC(DSUB);
REC_FUNC(DSUBU);
REC_FUNC(AND);
REC_FUNC(OR);
REC_FUNC(XOR);
REC_FUNC(NOR);
REC_FUNC(SLT);
REC_FUNC(SLTU);
REC_FUNC_DEL(ADD, _Rd_);
REC_FUNC_DEL(ADDU, _Rd_);
REC_FUNC_DEL(DADD, _Rd_);
REC_FUNC_DEL(DADDU, _Rd_);
REC_FUNC_DEL(SUB, _Rd_);
REC_FUNC_DEL(SUBU, _Rd_);
REC_FUNC_DEL(DSUB, _Rd_);
REC_FUNC_DEL(DSUBU, _Rd_);
REC_FUNC_DEL(AND, _Rd_);
REC_FUNC_DEL(OR, _Rd_);
REC_FUNC_DEL(XOR, _Rd_);
REC_FUNC_DEL(NOR, _Rd_);
REC_FUNC_DEL(SLT, _Rd_);
REC_FUNC_DEL(SLTU, _Rd_);
#elif defined(EE_CONST_PROP)

View File

@ -47,12 +47,12 @@ REC_SYS(BLEZ);
REC_SYS(BGEZ);
REC_SYS(BGTZL);
REC_SYS(BLTZL);
REC_SYS(BLTZAL);
REC_SYS(BLTZALL);
REC_SYS_DEL(BLTZAL, 31);
REC_SYS_DEL(BLTZALL, 31);
REC_SYS(BLEZL);
REC_SYS(BGEZL);
REC_SYS(BGEZAL);
REC_SYS(BGEZALL);
REC_SYS_DEL(BGEZAL, 31);
REC_SYS_DEL(BGEZALL, 31);
#else

View File

@ -38,9 +38,9 @@ namespace OpcodeImpl
namespace Interp = R5900::Interpreter::OpcodeImpl;
REC_SYS(J);
REC_SYS(JAL);
REC_SYS_DEL(JAL, 31);
REC_SYS(JR);
REC_SYS(JALR);
REC_SYS_DEL(JALR, _Rd_);
#else

View File

@ -38,18 +38,18 @@ namespace OpcodeImpl {
namespace Interp = R5900::Interpreter::OpcodeImpl;
REC_FUNC(LB);
REC_FUNC(LBU);
REC_FUNC(LH);
REC_FUNC(LHU);
REC_FUNC(LW);
REC_FUNC(LWU);
REC_FUNC(LWL);
REC_FUNC(LWR);
REC_FUNC(LD);
REC_FUNC(LDR);
REC_FUNC(LDL);
REC_FUNC(LQ);
REC_FUNC_DEL(LB, _Rt_);
REC_FUNC_DEL(LBU, _Rt_);
REC_FUNC_DEL(LH, _Rt_);
REC_FUNC_DEL(LHU, _Rt_);
REC_FUNC_DEL(LW, _Rt_);
REC_FUNC_DEL(LWU, _Rt_);
REC_FUNC_DEL(LWL, _Rt_);
REC_FUNC_DEL(LWR, _Rt_);
REC_FUNC_DEL(LD, _Rt_);
REC_FUNC_DEL(LDR, _Rt_);
REC_FUNC_DEL(LDL, _Rt_);
REC_FUNC_DEL(LQ, _Rt_);
REC_FUNC(SB);
REC_FUNC(SH);
REC_FUNC(SW);
@ -230,8 +230,6 @@ int recSetMemLocation(int regs, int imm, int mmreg, int msize, int j32)
if ( imm != 0 ) ADD32ItoR( ECX, imm );
LoadCW();
#ifdef _DEBUG
//CALLFunc((uptr)testaddrs);
#endif
@ -2070,6 +2068,8 @@ void SetFastMemory(int bSetFast)
// nothing
}
//////////////////////////////////////////////////////////////////////////////////////////
//
void recLoad64( u32 bits, bool sign )
{
jASSUME( bits == 64 || bits == 128 );
@ -2096,23 +2096,24 @@ void recLoad64( u32 bits, bool sign )
}
else
{
_deleteEEreg(_Rs_, 1);
// Load ECX with the source memory address that we're reading from.
MOV32MtoR( ECX, (uptr)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] );
_eeMoveGPRtoR(ECX, _Rs_);
if ( _Imm_ != 0 )
ADD32ItoR( ECX, _Imm_ );
if( bits == 128 ) // force 16 byte alignment on 128 bit reads
AND32I8toR(ECX,0xF0);
_eeOnLoadWrite(_Rt_);
EEINST_RESETSIGNEXT(_Rt_); // remove the sign extension
_deleteEEreg(_Rt_, 0);
if ( _Imm_ != 0 )
ADD32ItoR( ECX, _Imm_ );
if( bits == 128 ) // force 16 byte alignment on 128 bit reads
AND32I8toR(ECX,0xF0);
vtlb_DynGenRead64(bits);
}
}
void recLoad32(u32 bits,bool sign)
//////////////////////////////////////////////////////////////////////////////////////////
//
void recLoad32( u32 bits, bool sign )
{
jASSUME( bits <= 32 );
@ -2131,14 +2132,13 @@ void recLoad32(u32 bits,bool sign)
}
else
{
_deleteEEreg(_Rs_, 1);
// Load ECX with the source memory address that we're reading from.
MOV32MtoR( ECX, (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] );
_eeOnLoadWrite(_Rt_);
_deleteEEreg(_Rt_, 0);
_eeMoveGPRtoR(ECX, _Rs_);
if ( _Imm_ != 0 )
ADD32ItoR( ECX, _Imm_ );
_eeOnLoadWrite(_Rt_);
_deleteEEreg(_Rt_, 0);
vtlb_DynGenRead32(bits, sign);
}
@ -2155,337 +2155,31 @@ void recLoad32(u32 bits,bool sign)
}
}
////////////////////////////////////////////////////
void recLB( void )
//////////////////////////////////////////////////////////////////////////////////////////
//
// edxAlreadyAssigned - set to true if edx already holds the value being written (used by SWL/SWR)
void recStore(u32 sz, bool edxAlreadyAssigned=false)
{
recLoad32(8,true);
/*
_deleteEEreg(_Rs_, 1);
_eeOnLoadWrite(_Rt_);
_deleteEEreg(_Rt_, 0);
MOV32MtoR( EAX, (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] );
if ( _Imm_ != 0 )
{
ADD32ItoR( EAX, _Imm_ );
}
PUSH32I( (int)&dummyValue[0] );
PUSH32R( EAX );
CALLFunc( (int)memRead8 );
ADD32ItoR( ESP, 8 );
if ( _Rt_ )
{
u8* linkEnd;
TEST32RtoR( EAX, EAX );
linkEnd = JNZ8( 0 );
MOV32MtoR( EAX, (int)&dummyValue[0] );
MOVSX32R8toR( EAX, EAX );
CDQ( );
MOV32RtoM( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ], EAX );
MOV32RtoM( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ], EDX );
x86SetJ8( linkEnd );
}
*/
}
////////////////////////////////////////////////////
void recLBU( void )
{
recLoad32(8,false);
/*
_deleteEEreg(_Rs_, 1);
_eeOnLoadWrite(_Rt_);
_deleteEEreg(_Rt_, 0);
MOV32MtoR( EAX, (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] );
if ( _Imm_ != 0 )
{
ADD32ItoR( EAX, _Imm_ );
}
PUSH32I( (int)&dummyValue[0] );
PUSH32R( EAX );
CALLFunc( (int)memRead8 );
ADD32ItoR( ESP, 8 );
if ( _Rt_ )
{
u8* linkEnd;
TEST32RtoR( EAX, EAX );
linkEnd = JNZ8( 0 );
MOV32MtoR( EAX, (int)&dummyValue[0] );
MOVZX32R8toR( EAX, EAX );
MOV32RtoM( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ], EAX );
MOV32ItoM( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ], 0 );
x86SetJ8( linkEnd );
}
*/
}
////////////////////////////////////////////////////
void recLH( void )
{
recLoad32(16,true);
/*
_deleteEEreg(_Rs_, 1);
_eeOnLoadWrite(_Rt_);
_deleteEEreg(_Rt_, 0);
MOV32MtoR( EAX, (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] );
if ( _Imm_ != 0 )
{
ADD32ItoR( EAX, _Imm_ );
}
PUSH32I( (int)&dummyValue[0] );
PUSH32R( EAX );
CALLFunc( (int)memRead16 );
ADD32ItoR( ESP, 8 );
if ( _Rt_ )
{
u8* linkEnd;
TEST32RtoR( EAX, EAX );
linkEnd = JNZ8( 0 );
MOV32MtoR( EAX, (int)&dummyValue[0]);
MOVSX32R16toR( EAX, EAX );
CDQ( );
MOV32RtoM( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ], EAX );
MOV32RtoM( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ], EDX );
x86SetJ8( linkEnd );
}
*/
}
////////////////////////////////////////////////////
void recLHU( void )
{
recLoad32(16,false);
/*
_deleteEEreg(_Rs_, 1);
_eeOnLoadWrite(_Rt_);
_deleteEEreg(_Rt_, 0);
MOV32MtoR( EAX, (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] );
if ( _Imm_ != 0 )
{
ADD32ItoR( EAX, _Imm_ );
}
PUSH32I( (int)&dummyValue[0] );
PUSH32R( EAX );
CALLFunc( (int)memRead16 );
ADD32ItoR( ESP, 8 );
if ( _Rt_ )
{
u8* linkEnd;
TEST32RtoR( EAX, EAX );
linkEnd = JNZ8( 0 );
MOV32MtoR( EAX, (int)&dummyValue[0] );
MOVZX32R16toR( EAX, EAX );
MOV32RtoM( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ], EAX );
MOV32ItoM( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ], 0 );
x86SetJ8( linkEnd );
}*/
}
////////////////////////////////////////////////////
void recLW( void )
{
recLoad32(32,true);
/*
_deleteEEreg(_Rs_, 1);
_eeOnLoadWrite(_Rt_);
_deleteEEreg(_Rt_, 0);
MOV32MtoR( EAX, (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] );
if ( _Imm_ != 0 )
{
ADD32ItoR( EAX, _Imm_ );
}
PUSH32I( (int)&dummyValue[0]);
PUSH32R( EAX );
CALLFunc( (int)memRead32 );
ADD32ItoR( ESP, 8 );
if ( _Rt_ )
{
u8* linkEnd;
TEST32RtoR( EAX, EAX );
linkEnd = JNZ8( 0 );
MOV32MtoR( EAX, (int)&dummyValue[0]);
CDQ( );
MOV32RtoM( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ], EAX );
MOV32RtoM( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ], EDX );
x86SetJ8( linkEnd );
}*/
}
////////////////////////////////////////////////////
void recLWU( void )
{
recLoad32(32,false);
/*
_deleteEEreg(_Rs_, 1);
_eeOnLoadWrite(_Rt_);
_deleteEEreg(_Rt_, 0);
MOV32MtoR( EAX, (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] );
if ( _Imm_ != 0 )
{
ADD32ItoR( EAX, _Imm_ );
}
PUSH32I( (int)&dummyValue[0]);
PUSH32R( EAX );
CALLFunc( (int)memRead32 );
ADD32ItoR( ESP, 8 );
if ( _Rt_ )
{
u8* linkEnd;
TEST32RtoR( EAX, EAX );
linkEnd = JNZ8( 0 );
MOV32MtoR( EAX, (int)&dummyValue[0]);
MOV32RtoM( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ], EAX );
MOV32ItoM( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ], 0 );
x86SetJ8( linkEnd );
}
*/
}
////////////////////////////////////////////////////
void recLWL( void )
{
_deleteEEreg(_Rs_, 1);
_eeOnLoadWrite(_Rt_);
_deleteEEreg(_Rt_, 0);
MOV32ItoM( (int)&cpuRegs.code, cpuRegs.code );
MOV32ItoM( (int)&cpuRegs.pc, pc );
CALLFunc( (int)LWL );
}
////////////////////////////////////////////////////
void recLWR( void )
{
iFlushCall(FLUSH_EVERYTHING);
MOV32ItoM( (int)&cpuRegs.code, cpuRegs.code );
MOV32ItoM( (int)&cpuRegs.pc, pc );
CALLFunc( (int)LWR );
}
////////////////////////////////////////////////////
extern void MOV64RmtoR( x86IntRegType to, x86IntRegType from );
void recLD( void )
{
recLoad64(64,false);
/*
_deleteEEreg(_Rs_, 1);
_eeOnLoadWrite(_Rt_);
EEINST_RESETSIGNEXT(_Rt_); // remove the sign extension
_deleteEEreg(_Rt_, 0);
MOV32MtoR( EAX, (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] );
if ( _Imm_ != 0 )
{
ADD32ItoR( EAX, _Imm_ );
}
if ( _Rt_ )
{
PUSH32I( (int)&cpuRegs.GPR.r[ _Rt_ ].UD[ 0 ] );
}
else
{
PUSH32I( (int)&dummyValue[0] );
}
PUSH32R( EAX );
CALLFunc( (int)memRead64 );
ADD32ItoR( ESP, 8 );
*/
}
////////////////////////////////////////////////////
void recLDL( void )
{
_deleteEEreg(_Rs_, 1);
_eeOnLoadWrite(_Rt_);
EEINST_RESETSIGNEXT(_Rt_); // remove the sign extension
_deleteEEreg(_Rt_, 0);
MOV32ItoM( (int)&cpuRegs.code, cpuRegs.code );
MOV32ItoM( (int)&cpuRegs.pc, pc );
CALLFunc( (int)LDL );
}
////////////////////////////////////////////////////
void recLDR( void )
{
_deleteEEreg(_Rs_, 1);
_eeOnLoadWrite(_Rt_);
EEINST_RESETSIGNEXT(_Rt_); // remove the sign extension
_deleteEEreg(_Rt_, 0);
MOV32ItoM( (int)&cpuRegs.code, cpuRegs.code );
MOV32ItoM( (int)&cpuRegs.pc, pc );
CALLFunc( (int)LDR );
}
////////////////////////////////////////////////////
void recLQ( void )
{
recLoad64(128,false);
/*
_deleteEEreg(_Rs_, 1);
_eeOnLoadWrite(_Rt_);
EEINST_RESETSIGNEXT(_Rt_); // remove the sign extension
_deleteEEreg(_Rt_, 0);
MOV32MtoR( EAX, (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] );
if ( _Imm_ != 0 )
{
ADD32ItoR( EAX, _Imm_);
}
AND32ItoR( EAX, ~0xf );
if ( _Rt_ )
{
PUSH32I( (int)&cpuRegs.GPR.r[ _Rt_ ].UD[ 0 ] );
}
else
{
PUSH32I( (int)&dummyValue[0] );
}
PUSH32R( EAX );
CALLFunc( (int)memRead128 );
ADD32ItoR( ESP, 8 );
*/
}
void recStore(u32 sz)
{
//no int 3? i love to get my hands dirty ;p - Raz
//write8(0xCC);
_deleteEEreg(_Rt_, 1);
// Performance note: Const prop for the store address is good, always.
// Constprop for the value being stored is not really worthwhile (better to use register
// allocation -- simpler code and just as fast)
// Load EDX first with the value being written, or the address of the value
// being written (64/128 bit modes). TODO: use register allocation, if the
// value is allocated to a register.
if (sz<64)
if( !edxAlreadyAssigned )
{
if (_Rt_)
MOV32MtoR(EDX,(int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ]);
else
XOR32RtoR(EDX,EDX);
}
else if (sz==128 || sz==64)
{
MOV32ItoR(EDX,(int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ]);
if( sz < 64 )
{
_eeMoveGPRtoR(EDX, _Rt_);
}
else if (sz==128 || sz==64)
{
_deleteEEreg(_Rt_, 1); // flush register to mem
MOV32ItoR(EDX,(int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ]);
}
}
// Load ECX with the destination address, or issue a direct optimized write
@ -2499,11 +2193,10 @@ void recStore(u32 sz)
}
else
{
_deleteEEreg(_Rs_, 1);
MOV32MtoR( ECX, (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] );
_eeMoveGPRtoR(ECX, _Rs_);
if ( _Imm_ != 0 )
ADD32ItoR(ECX, _Imm_);
if (sz==128)
AND32I8toR(ECX,0xF0);
@ -2511,74 +2204,94 @@ void recStore(u32 sz)
}
}
//////////////////////////////////////////////////////////////////////////////////////////
//
void recLB( void ) { recLoad32(8,true); }
void recLBU( void ) { recLoad32(8,false); }
void recLH( void ) { recLoad32(16,true); }
void recLHU( void ) { recLoad32(16,false); }
void recLW( void ) { recLoad32(32,true); }
void recLWU( void ) { recLoad32(32,false); }
void recLD( void ) { recLoad64(64,false); }
void recLQ( void ) { recLoad64(128,false); }
void recSB( void ) { recStore(8); }
void recSH( void ) { recStore(16); }
void recSW( void ) { recStore(32); }
void recSQ( void ) { recStore(128); }
void recSD( void ) { recStore(64); }
//////////////////////////////////////////////////////////////////////////////////////////
// Non-recompiled Implementations Start Here -->
// (LWL/SWL, LWR/SWR, etc)
////////////////////////////////////////////////////
void recSB( void )
void recLWL( void )
{
recStore(8);
/*
_deleteEEreg(_Rs_, 1);
_eeOnLoadWrite(_Rt_);
_deleteEEreg(_Rt_, 1);
MOV32MtoR( EAX, (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] );
if ( _Imm_ != 0 )
{
ADD32ItoR( EAX, _Imm_);
}
PUSH32M( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] );
PUSH32R( EAX );
CALLFunc( (int)memWrite8 );
ADD32ItoR( ESP, 8 );
*/
MOV32ItoM( (int)&cpuRegs.code, cpuRegs.code );
//MOV32ItoM( (int)&cpuRegs.pc, pc );
CALLFunc( (int)LWL );
}
////////////////////////////////////////////////////
void recSH( void )
void recLWR( void )
{
recStore(16);
/*
_deleteEEreg(_Rs_, 1);
_eeOnLoadWrite(_Rt_);
_deleteEEreg(_Rt_, 1);
MOV32MtoR( EAX, (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] );
if ( _Imm_ != 0 )
{
ADD32ItoR( EAX, _Imm_ );
}
PUSH32M( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] );
PUSH32R( EAX );
CALLFunc( (int)memWrite16 );
ADD32ItoR( ESP, 8 );
*/
MOV32ItoM( (int)&cpuRegs.code, cpuRegs.code );
//MOV32ItoM( (int)&cpuRegs.pc, pc );
CALLFunc( (int)LWR );
}
////////////////////////////////////////////////////
void recSW( void )
{
recStore(32);
/*
_deleteEEreg(_Rs_, 1);
_deleteEEreg(_Rt_, 1);
static const u32 SWL_MASK[4] = { 0xffffff00, 0xffff0000, 0xff000000, 0x00000000 };
static const u32 SWR_MASK[4] = { 0x00000000, 0x000000ff, 0x0000ffff, 0x00ffffff };
MOV32MtoR( EAX, (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] );
if ( _Imm_ != 0 )
{
ADD32ItoR( EAX, _Imm_ );
}
PUSH32M( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] );
PUSH32R( EAX );
CALLFunc( (int)memWrite32 );
ADD32ItoR( ESP, 8 );
*/
}
static const u8 SWR_SHIFT[4] = { 0, 8, 16, 24 };
static const u8 SWL_SHIFT[4] = { 24, 16, 8, 0 };
////////////////////////////////////////////////////
void recSWL( void )
{
_deleteEEreg(_Rs_, 1);
_deleteEEreg(_Rt_, 1);
MOV32ItoM( (int)&cpuRegs.code, cpuRegs.code );
MOV32ItoM( (int)&cpuRegs.pc, pc );
CALLFunc( (int)SWL );
// Perform a translated memory read, followed by a translated memory write
// of the "merged" result.
// NOTE: Code incomplete. I'll fix/finish it soon. --air
if( 0 ) //GPR_IS_CONST1( _Rs_ ) )
{
_eeOnLoadWrite(_Rt_);
//_deleteEEreg(_Rt_, 0);
u32 addr = g_cpuConstRegs[_Rs_].UL[0] + _Imm_;
u32 shift = addr & 3;
vtlb_DynGenRead32_Const( 32, false, addr & 3 );
// Prep eax/edx for producing the writeback result:
// equiv to: (cpuRegs.GPR.r[_Rt_].UL[0] >> SWL_SHIFT[shift]) | (mem & SWL_MASK[shift])
//_deleteEEreg(_Rt_, 1);
//MOV32MtoR( EDX, (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] );
_eeMoveGPRtoR(EDX, _Rt_);
AND32ItoR( EAX, SWL_MASK[shift] );
SHR32ItoR( EDX, SWL_SHIFT[shift] );
OR32RtoR( EDX, EAX );
recStore( 32, true );
}
else
{
_deleteEEreg(_Rs_, 1);
_deleteEEreg(_Rt_, 1);
MOV32ItoM( (int)&cpuRegs.code, cpuRegs.code );
//MOV32ItoM( (int)&cpuRegs.pc, pc ); // pc's not needed by SWL
CALLFunc( (int)SWL );
}
}
////////////////////////////////////////////////////
@ -2587,29 +2300,32 @@ void recSWR( void )
_deleteEEreg(_Rs_, 1);
_deleteEEreg(_Rt_, 1);
MOV32ItoM( (int)&cpuRegs.code, cpuRegs.code );
MOV32ItoM( (int)&cpuRegs.pc, pc );
//MOV32ItoM( (int)&cpuRegs.pc, pc );
CALLFunc( (int)SWR );
}
////////////////////////////////////////////////////
void recSD( void )
void recLDL( void )
{
recStore(64);
/*
_deleteEEreg(_Rs_, 1);
_eeOnLoadWrite(_Rt_);
EEINST_RESETSIGNEXT(_Rt_); // remove the sign extension
_deleteEEreg(_Rt_, 1);
MOV32MtoR( EAX, (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] );
if ( _Imm_ != 0 )
{
ADD32ItoR( EAX, _Imm_ );
}
MOV32ItoM( (int)&cpuRegs.code, cpuRegs.code );
//MOV32ItoM( (int)&cpuRegs.pc, pc );
CALLFunc( (int)LDL );
}
PUSH32M( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ] );
PUSH32M( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] );
PUSH32R( EAX );
CALLFunc( (int)memWrite64 );
ADD32ItoR( ESP, 12 );
*/
////////////////////////////////////////////////////
void recLDR( void )
{
_deleteEEreg(_Rs_, 1);
_eeOnLoadWrite(_Rt_);
EEINST_RESETSIGNEXT(_Rt_); // remove the sign extension
_deleteEEreg(_Rt_, 1);
MOV32ItoM( (int)&cpuRegs.code, cpuRegs.code );
//MOV32ItoM( (int)&cpuRegs.pc, pc );
CALLFunc( (int)LDR );
}
////////////////////////////////////////////////////
@ -2618,7 +2334,7 @@ void recSDL( void )
_deleteEEreg(_Rs_, 1);
_deleteEEreg(_Rt_, 1);
MOV32ItoM( (int)&cpuRegs.code, cpuRegs.code );
MOV32ItoM( (int)&cpuRegs.pc, pc );
//MOV32ItoM( (int)&cpuRegs.pc, pc );
CALLFunc( (int)SDL );
}
@ -2628,30 +2344,11 @@ void recSDR( void )
_deleteEEreg(_Rs_, 1);
_deleteEEreg(_Rt_, 1);
MOV32ItoM( (int)&cpuRegs.code, cpuRegs.code );
MOV32ItoM( (int)&cpuRegs.pc, pc );
//MOV32ItoM( (int)&cpuRegs.pc, pc );
CALLFunc( (int)SDR );
}
////////////////////////////////////////////////////
void recSQ( void )
{
recStore(128);
/*
_deleteEEreg(_Rs_, 1);
_deleteEEreg(_Rt_, 1);
MOV32MtoR( EAX, (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] );
if ( _Imm_ != 0 )
{
ADD32ItoR( EAX, _Imm_ );
}
AND32ItoR( EAX, ~0xf );
PUSH32I( (int)&cpuRegs.GPR.r[ _Rt_ ].UD[ 0 ] );
PUSH32R( EAX );
CALLFunc( (int)memWrite128 );
ADD32ItoR( ESP, 8 );*/
}
//////////////////////////////////////////////////////////////////////////////////////////
/*********************************************************
* Load and store for COP1 *
* Format: OP rt, offset(base) *
@ -2667,8 +2364,6 @@ void recLWC1( void )
if ( _Imm_ != 0 )
ADD32ItoR( ECX, _Imm_ );
//MOV32ItoR(EDX, (int)&fpuRegs.fpr[ _Rt_ ].UL ); //no 0 for fpu ?
//CALLFunc( (int)memRead32 );
vtlb_DynGenRead32(32, false);
MOV32RtoM( (int)&fpuRegs.fpr[ _Rt_ ].UL, EAX );
}

View File

@ -42,18 +42,18 @@ namespace OpcodeImpl
namespace Interp = R5900::Interpreter::OpcodeImpl;
REC_FUNC_DEL(LUI,_Rt_);
REC_FUNC(MFLO);
REC_FUNC(MFHI);
REC_FUNC_DEL(MFLO, _Rd_);
REC_FUNC_DEL(MFHI, _Rd_);
REC_FUNC(MTLO);
REC_FUNC(MTHI);
REC_FUNC( MFHI1 );
REC_FUNC( MFLO1 );
REC_FUNC_DEL(MFLO1, _Rd_);
REC_FUNC_DEL(MFHI1, _Rd_);
REC_FUNC( MTHI1 );
REC_FUNC( MTLO1 );
REC_FUNC(MOVZ);
REC_FUNC(MOVN);
REC_FUNC_DEL(MOVZ, _Rd_);
REC_FUNC_DEL(MOVN, _Rd_);
#elif defined(EE_CONST_PROP)

View File

@ -35,20 +35,20 @@ namespace OpcodeImpl
*********************************************************/
#ifndef MULTDIV_RECOMPILE
REC_FUNC(MULT);
REC_FUNC(MULTU);
REC_FUNC( MULT1 );
REC_FUNC( MULTU1 );
REC_FUNC_DEL(MULT , _Rd_);
REC_FUNC_DEL(MULTU , _Rd_);
REC_FUNC_DEL( MULT1 , _Rd_);
REC_FUNC_DEL( MULTU1 , _Rd_);
REC_FUNC(DIV);
REC_FUNC(DIVU);
REC_FUNC( DIV1 );
REC_FUNC( DIVU1 );
REC_FUNC( MADD );
REC_FUNC( MADDU );
REC_FUNC( MADD1 );
REC_FUNC( MADDU1 );
REC_FUNC_DEL( MADD , _Rd_ );
REC_FUNC_DEL( MADDU , _Rd_);
REC_FUNC_DEL( MADD1 , _Rd_);
REC_FUNC_DEL( MADDU1 , _Rd_ );
#elif defined(EE_CONST_PROP)

View File

@ -36,22 +36,22 @@ namespace OpcodeImpl
namespace Interp = R5900::Interpreter::OpcodeImpl;
REC_FUNC(SLL);
REC_FUNC(SRL);
REC_FUNC(SRA);
REC_FUNC(DSLL);
REC_FUNC(DSRL);
REC_FUNC(DSRA);
REC_FUNC(DSLL32);
REC_FUNC(DSRL32);
REC_FUNC(DSRA32);
REC_FUNC_DEL(SLL, _Rd_);
REC_FUNC_DEL(SRL, _Rd_);
REC_FUNC_DEL(SRA, _Rd_);
REC_FUNC_DEL(DSLL, _Rd_);
REC_FUNC_DEL(DSRL, _Rd_);
REC_FUNC_DEL(DSRA, _Rd_);
REC_FUNC_DEL(DSLL32, _Rd_);
REC_FUNC_DEL(DSRL32, _Rd_);
REC_FUNC_DEL(DSRA32, _Rd_);
REC_FUNC(SLLV);
REC_FUNC(SRLV);
REC_FUNC(SRAV);
REC_FUNC(DSLLV);
REC_FUNC(DSRLV);
REC_FUNC(DSRAV);
REC_FUNC_DEL(SLLV, _Rd_);
REC_FUNC_DEL(SRLV, _Rd_);
REC_FUNC_DEL(SRAV, _Rd_);
REC_FUNC_DEL(DSLLV, _Rd_);
REC_FUNC_DEL(DSRLV, _Rd_);
REC_FUNC_DEL(DSRAV, _Rd_);
#elif defined(EE_CONST_PROP)
@ -189,6 +189,10 @@ void recSRLs_(int info, int sa)
// PUNPCKLDQRtoR(rdreg, t0reg);
// _freeMMXreg(t0reg);
}
else {
if( EEINST_ISLIVE1(_Rd_) ) _signExtendGPRtoMMX(rdreg, _Rd_, 0);
else EEINST_RESETHASLIVE1(_Rd_);
}
}
void recSRL_(int info)
@ -264,6 +268,10 @@ void recSRAs_(int info, int sa)
mmxregs[t0reg] = mmxregs[rdreg];
mmxregs[rdreg].inuse = 0;
}
else {
if( EEINST_ISLIVE1(_Rd_) ) _signExtendGPRtoMMX(rdreg, _Rd_, 0);
else EEINST_RESETHASLIVE1(_Rd_);
}
}
void recSRA_(int info)

View File

@ -239,64 +239,149 @@ void vtlb_DynGenRead32(u32 bits, bool sign)
x86SetJ8(cont);
}
//
// TLB lookup is performed in const, with the assumption that the COP0/TLB will clear the
// recompiler if the TLB is changed.
void vtlb_DynGenRead64_Const( u32 bits, u32 addr_const )
{
jASSUME( bits == 64 || bits == 128 );
u32 vmv_ptr = vtlbdata.vmap[addr_const>>VTLB_PAGE_BITS];
s32 ppf = addr_const + vmv_ptr;
if( ppf >= 0 )
{
switch( bits )
{
case 64:
if( _hasFreeMMXreg() )
{
const int freereg = _allocMMXreg(-1, MMX_TEMP, 0);
MOVQMtoR(freereg,ppf);
MOVQRtoRmOffset(EDX,freereg,0);
_freeMMXreg(freereg);
}
else
{
MOV32MtoR(EAX,ppf);
MOV32RtoRm(EDX,EAX);
void* vmv_ptr = &vtlbdata.vmap[addr_const>>VTLB_PAGE_BITS];
MOV32MtoR(EAX,ppf+4);
MOV32RtoRmOffset(EDX,EAX,4);
}
break;
MOV32MtoR(EAX,(uptr)vmv_ptr);
MOV32ItoR(ECX,addr_const);
ADD32RtoR(ECX,EAX); // ecx=ppf
u8* _fullread = JS8(0);
case 128:
if( _hasFreeXMMreg() )
{
const int freereg = _allocTempXMMreg( XMMT_INT, -1 );
SSE2_MOVDQA_M128_to_XMM( freereg, ppf );
SSE2_MOVDQARtoRmOffset(EDX,freereg,0);
_freeXMMreg(freereg);
}
else
{
// Could put in an MMX optimization here as well, but no point really.
// It's almost never used since there's almost always a free XMM reg.
_vtlb_DynGen_DirectRead( bits, false );
u8* cont = JMP8(0);
MOV32ItoR( ECX, ppf );
MOV128_MtoM( EDX, ECX ); // dest <- src!
}
break;
x86SetJ8(_fullread);
_vtlb_DynGen_IndirectRead( bits );
jNO_DEFAULT
}
}
else
{
// has to: translate, find function, call function
u32 handler = (u8)vmv_ptr;
u32 paddr = ppf - handler + 0x80000000;
x86SetJ8(cont);
int szidx = 0;
switch( bits )
{
case 64: szidx=3; break;
case 128: szidx=4; break;
}
MOV32ItoR( ECX, paddr );
CALLFunc( (int)vtlbdata.RWFT[szidx][0][handler] );
}
}
// Recompiled input registers:
// ecx - source address to read from
// Returns read value in eax.
//
// TLB lookup is performed in const, with the assumption that the COP0/TLB will clear the
// recompiler if the TLB is changed.
void vtlb_DynGenRead32_Const( u32 bits, bool sign, u32 addr_const )
{
jASSUME( bits <= 32 );
void* vmv_ptr = &vtlbdata.vmap[addr_const>>VTLB_PAGE_BITS];
MOV32MtoR(EAX,(uptr)vmv_ptr);
MOV32ItoR(ECX,addr_const);
ADD32RtoR(ECX,EAX); // ecx=ppf
u8* _fullread = JS8(0);
_vtlb_DynGen_DirectRead( bits, sign );
u8* cont = JMP8(0);
x86SetJ8(_fullread);
_vtlb_DynGen_IndirectRead( bits );
// perform sign extension on the result:
if( bits==8 )
u32 vmv_ptr = vtlbdata.vmap[addr_const>>VTLB_PAGE_BITS];
s32 ppf = addr_const + vmv_ptr;
if( ppf >= 0 )
{
if( sign )
MOVSX32R8toR(EAX,EAX);
else
MOVZX32R8toR(EAX,EAX);
}
else if( bits==16 )
{
if( sign )
MOVSX32R16toR(EAX,EAX);
else
MOVZX32R16toR(EAX,EAX);
}
switch( bits )
{
case 8:
if( sign )
MOVSX32M8toR(EAX,ppf);
else
MOVZX32M8toR(EAX,ppf);
break;
x86SetJ8(cont);
case 16:
if( sign )
MOVSX32M16toR(EAX,ppf);
else
MOVZX32M16toR(EAX,ppf);
break;
case 32:
MOV32MtoR(EAX,ppf);
break;
}
}
else
{
// has to: translate, find function, call function
u32 handler = (u8)vmv_ptr;
u32 paddr = ppf - handler + 0x80000000;
int szidx = 0;
switch( bits )
{
case 8: szidx=0; break;
case 16: szidx=1; break;
case 32: szidx=2; break;
}
// Shortcut for the INTC_STAT register, which many games like to spin on heavily.
if( (bits == 32) && !CHECK_INTC_STAT_HACK && (paddr == INTC_STAT) )
{
MOV32MtoR( EAX, (uptr)&psHu32( INTC_STAT ) );
}
else
{
MOV32ItoR( ECX, paddr );
CALLFunc( (int)vtlbdata.RWFT[szidx][0][handler] );
// perform sign extension on the result:
if( bits==8 )
{
if( sign )
MOVSX32R8toR(EAX,EAX);
else
MOVZX32R8toR(EAX,EAX);
}
else if( bits==16 )
{
if( sign )
MOVSX32R16toR(EAX,EAX);
else
MOVZX32R16toR(EAX,EAX);
}
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////
@ -392,24 +477,82 @@ void vtlb_DynGenWrite(u32 sz)
// Generates code for a store instruction, where the address is a known constant.
// TLB lookup is performed in const, with the assumption that the COP0/TLB will clear the
// recompiler if the TLB is changed.
void vtlb_DynGenWrite_Const( u32 bits, u32 addr_const )
{
// Important: It's not technically safe to do a const lookup of the VTLB here, since
// the VTLB could feasibly be remapped by other recompiled code at any time.
// So we're limited in exactly how much we can pre-calcuate.
u32 vmv_ptr = vtlbdata.vmap[addr_const>>VTLB_PAGE_BITS];
s32 ppf = addr_const + vmv_ptr;
if( ppf >= 0 )
{
switch(bits)
{
//8 , 16, 32 : data on EDX
case 8:
MOV8RtoM(ppf,EDX);
break;
case 16:
MOV16RtoM(ppf,EDX);
break;
case 32:
MOV32RtoM(ppf,EDX);
break;
void* vmv_ptr = &vtlbdata.vmap[addr_const>>VTLB_PAGE_BITS];
case 64:
if( _hasFreeMMXreg() )
{
const int freereg = _allocMMXreg(-1, MMX_TEMP, 0);
MOVQRmtoROffset(freereg,EDX,0);
MOVQRtoM(ppf,freereg);
_freeMMXreg( freereg );
}
else
{
MOV32RmtoR(EAX,EDX);
MOV32RtoM(ppf,EAX);
MOV32MtoR(EAX,(uptr)vmv_ptr);
MOV32ItoR(ECX,addr_const);
ADD32RtoR(ECX,EAX); // ecx=ppf
u8* _full = JS8(0);
MOV32RmtoROffset(EAX,EDX,4);
MOV32RtoM(ppf+4,EAX);
}
break;
_vtlb_DynGen_DirectWrite( bits );
u8* cont = JMP8(0);
case 128:
if( _hasFreeXMMreg() )
{
const int freereg = _allocTempXMMreg( XMMT_INT, -1 );
SSE2_MOVDQARmtoROffset(freereg,EDX,0);
SSE2_MOVDQA_XMM_to_M128(ppf,freereg);
_freeXMMreg( freereg );
}
else
{
// Could put in an MMX optimization here as well, but no point really.
// It's almost never used since there's almost always a free XMM reg.
x86SetJ8(_full);
_vtlb_DynGen_IndirectWrite( bits );
MOV32ItoR( ECX, ppf );
MOV128_MtoM( ECX, EDX ); // dest <- src!
}
break;
}
x86SetJ8(cont);
}
else
{
// has to: translate, find function, call function
u32 handler = (u8)vmv_ptr;
u32 paddr = ppf - handler + 0x80000000;
int szidx = 0;
switch( bits )
{
case 8: szidx=0; break;
case 16: szidx=1; break;
case 32: szidx=2; break;
case 64: szidx=3; break;
case 128: szidx=4; break;
}
MOV32ItoR( ECX, paddr );
CALLFunc( (int)vtlbdata.RWFT[szidx][1][handler] );
}
}

View File

@ -2344,6 +2344,22 @@ emitterT void eAND32MtoR( x86IntRegType to, uptr from )
write32<I>( MEMADDR(from, 4) );
}
// Warning: Untested form of AND.
emitterT void eAND32RmtoR( x86IntRegType to, x86IntRegType from )
{
RexRB(0,to,from);
write8<I>( 0x23 );
ModRM<I>( 0, to, from );
}
// Warning: Untested form of AND.
emitterT void eAND32RmtoROffset( x86IntRegType to, x86IntRegType from, int offset )
{
RexRB(0,to,from);
write16<I>( 0x23 );
WriteRmOffsetFrom<I>(to,from,offset);
}
// and r16 to r16
emitterT void eAND16RtoR( x86IntRegType to, x86IntRegType from )
{

View File

@ -274,6 +274,8 @@
#define AND32RtoR eAND32RtoR<_EmitterId_>
#define AND32RtoM eAND32RtoM<_EmitterId_>
#define AND32MtoR eAND32MtoR<_EmitterId_>
#define AND32RmtoR eAND32RmtoR<_EmitterId_>
#define AND32RmtoROffset eAND32RmtoROffset<_EmitterId_>
#define AND16RtoR eAND16RtoR<_EmitterId_>
#define AND16ItoR eAND16ItoR<_EmitterId_>
#define AND16ItoM eAND16ItoM<_EmitterId_>
@ -706,7 +708,7 @@
#define SSE2_MOVDQA_XMM_to_XMM eSSE2_MOVDQA_XMM_to_XMM<_EmitterId_>
#define SSE2_MOVDQU_M128_to_XMM eSSE2_MOVDQU_M128_to_XMM<_EmitterId_>
#define SSE2_MOVDQU_XMM_to_M128 eSSE2_MOVDQU_XMM_to_M128<_EmitterId_>
#define SSE2_MOVDQU_XMM_to_XMM eSSE2_MOVDQU_XMM_to_XMM<_EmitterId_>
#define SSE2_MOVDQU_XMM_to_XMM eSSE2_MOVDQA_XMM_to_XMM<_EmitterId_>
#define SSE2_PSRLW_XMM_to_XMM eSSE2_PSRLW_XMM_to_XMM<_EmitterId_>
#define SSE2_PSRLW_M128_to_XMM eSSE2_PSRLW_M128_to_XMM<_EmitterId_>
#define SSE2_PSRLW_I8_to_XMM eSSE2_PSRLW_I8_to_XMM<_EmitterId_>

View File

@ -40,6 +40,8 @@ struct microTempRegInfo {
u8 VFreg[2]; // Index of the VF reg
u8 VI; // Holds cycle info for Id
u8 VIreg; // Index of the VI reg
u8 q; // Holds cycle info for Q reg
u8 p; // Holds cycle info for P reg
};
template<u32 pSize>
@ -49,9 +51,9 @@ struct microAllocInfo {
u8 branch; // 0 = No Branch, 1 = Branch, 2 = Conditional Branch, 3 = Jump (JALR/JR)
u8 divFlag; // 0 = Transfer DS/IS flags normally, 1 = Clear DS/IS Flags, > 1 = set DS/IS flags to bit 2::1 of divFlag
u8 divFlagTimer; // Used to ensure divFlag's contents are merged at the appropriate time.
u32 curPC; // Current PC
u8 maxStall; // Helps in computing stalls (stores the max amount of cycles to stall for the current opcodes)
u32 cycles; // Cycles for current block
u32 maxStall; // Helps in computing stalls (stores the max amount of cycles to stall for the current opcodes)
u32 curPC; // Current PC
u32 info[pSize]; // bit 00 = Lower Instruction is NOP
// bit 01
// bit 02

View File

@ -27,8 +27,8 @@
// FMAC1 - Normal FMAC Opcodes
//------------------------------------------------------------------
#define aReg(x) mVUallocInfo.regs.VF[x]
#define bReg(x) mVUallocInfo.regsTemp.VFreg[0] = x; mVUallocInfo.regsTemp.VF[0]
#define aReg(x) mVUregs.VF[x]
#define bReg(x) mVUregsTemp.VFreg[0] = x; mVUregsTemp.VF[0]
#define aMax(x, y) ((x > y) ? x : y)
#define analyzeReg1(reg) { \
@ -117,10 +117,30 @@ microVUt(void) mVUanalyzeFMAC4(int Fs, int Ft) {
} \
}
microVUt(void) mVUanalyzeFDIV(int Fs, int Fsf, int Ft, int Ftf) {
#define analyzeQreg(x) { mVUregsTemp.q = x; mVUstall = aMax(mVUstall, mVUregs.q); }
#define analyzePreg(x) { mVUregsTemp.p = x; mVUstall = aMax(mVUstall, ((mVUregs.p) ? (mVUregs.p - 1) : 0)); }
microVUt(void) mVUanalyzeFDIV(int Fs, int Fsf, int Ft, int Ftf, u8 xCycles) {
microVU* mVU = mVUx;
analyzeReg5(Fs, Fsf);
analyzeReg5(Ft, Ftf);
analyzeQreg(xCycles);
}
//------------------------------------------------------------------
// EFU - EFU Opcodes
//------------------------------------------------------------------
microVUt(void) mVUanalyzeEFU1(int Fs, int Fsf, u8 xCycles) {
microVU* mVU = mVUx;
analyzeReg5(Fs, Fsf);
analyzePreg(xCycles);
}
microVUt(void) mVUanalyzeEFU2(int Fs, u8 xCycles) {
microVU* mVU = mVUx;
analyzeReg1(Fs);
analyzePreg(xCycles);
}
#endif //PCSX2_MICROVU

View File

@ -50,8 +50,10 @@ microVUt(void) mVUsetCycles() {
microVU* mVU = mVUx;
incCycles(mVUstall);
mVUregs.VF[mVUregsTemp.VFreg[0]].reg = mVUregsTemp.VF[0].reg;
mVUregs.VF[mVUregsTemp.VFreg[1]].reg = mVUregsTemp.VF[1].reg;
mVUregs.VF[mVUregsTemp.VFreg[1]].reg =(mVUregsTemp.VFreg[0] == mVUregsTemp.VFreg[1]) ? (aMax(mVUregsTemp.VF[0].reg, mVUregsTemp.VF[1].reg)) : (mVUregsTemp.VF[1].reg);
mVUregs.VI[mVUregsTemp.VIreg] = mVUregsTemp.VI;
mVUregs.q = mVUregsTemp.q;
mVUregs.p = mVUregsTemp.p;
}
microVUx(void) mVUcompile(u32 startPC, u32 pipelineState, microRegInfo* pState, u8* x86ptrStart) {

View File

@ -23,18 +23,27 @@
// Micro VU Micromode Lower instructions
//------------------------------------------------------------------
#define testZero(xmmReg, xmmTemp, gprTemp) { \
SSE_XORPS_XMM_to_XMM(xmmTemp, xmmTemp); /* Clear xmmTemp (make it 0) */ \
SSE_CMPEQPS_XMM_to_XMM(xmmTemp, xmmReg); /* Set all F's if each vector is zero */ \
SSE_MOVMSKPS_XMM_to_R32(gprTemp, xmmTemp); /* Move the sign bits */ \
TEST32ItoR(gprTemp, 1); /* Test "Is Zero" bit */ \
#define testZero(xmmReg, xmmTemp, gprTemp) { \
SSE_XORPS_XMM_to_XMM(xmmTemp, xmmTemp); /* Clear xmmTemp (make it 0) */ \
SSE_CMPEQPS_XMM_to_XMM(xmmTemp, xmmReg); /* Set all F's if zero */ \
SSE_MOVMSKPS_XMM_to_R32(gprTemp, xmmTemp); /* Move the sign bits */ \
TEST32ItoR(gprTemp, 1); /* Test "Is Zero" bit */ \
}
#define testNeg(xmmReg, gprTemp, aJump) { \
SSE_MOVMSKPS_XMM_to_R32(gprTemp, xmmReg); \
TEST32ItoR(gprTemp, 1); /* Check sign bit */ \
aJump = JZ8(0); /* Skip if positive */ \
MOV32ItoM((uptr)&mVU->divFlag, 0x410); /* Set Invalid Flags */ \
SSE_ANDPS_M128_to_XMM(xmmReg, (uptr)mVU_absclip); /* Abs(xmmReg) */ \
x86SetJ8(aJump); \
}
microVUf(void) mVU_DIV() {
microVU* mVU = mVUx;
if (!recPass) { mVUanalyzeFDIV<vuIndex>(_Fs_, _Fsf_, _Ft_, _Ftf_); }
if (!recPass) { mVUanalyzeFDIV<vuIndex>(_Fs_, _Fsf_, _Ft_, _Ftf_, 7); }
else {
u8 *ajmp, *bjmp, *cjmp, *djmp;
u8 *ajmp, *bjmp, *cjmp, *djmp;
getReg5(xmmFs, _Fs_, _Fsf_);
getReg5(xmmFt, _Ft_, _Ftf_);
@ -67,19 +76,13 @@ microVUf(void) mVU_DIV() {
microVUf(void) mVU_SQRT() {
microVU* mVU = mVUx;
if (!recPass) { mVUanalyzeFDIV<vuIndex>(0, 0, _Ft_, _Ftf_); }
if (!recPass) { mVUanalyzeFDIV<vuIndex>(0, 0, _Ft_, _Ftf_, 7); }
else {
u8* ajmp;
u8 *ajmp;
getReg5(xmmFt, _Ft_, _Ftf_);
MOV32ItoM((uptr)&mVU->divFlag, 0); // Clear I/D flags
/* Check for negative sqrt */
SSE_MOVMSKPS_XMM_to_R32(gprT1, xmmFt);
AND32ItoR(gprT1, 1); //Check sign
ajmp = JZ8(0); //Skip if none are
MOV32ItoM((uptr)&mVU->divFlag, 0x410); // Invalid Flag - Negative number sqrt
SSE_ANDPS_M128_to_XMM(xmmFt, (uptr)mVU_absclip); // Do a cardinal sqrt
x86SetJ8(ajmp);
MOV32ItoM((uptr)&mVU->divFlag, 0); // Clear I/D flags
testNeg(xmmFt, gprT1, ajmp); // Check for negative sqrt
if (CHECK_VU_OVERFLOW) SSE_MINSS_XMM_to_XMM(xmmFt, xmmMax); // Clamp infinities (only need to do positive clamp since xmmFt is positive)
SSE_SQRTSS_XMM_to_XMM(xmmFt, xmmFt);
@ -90,41 +93,35 @@ microVUf(void) mVU_SQRT() {
microVUf(void) mVU_RSQRT() {
microVU* mVU = mVUx;
if (!recPass) { mVUanalyzeFDIV<vuIndex>(_Fs_, _Fsf_, _Ft_, _Ftf_); }
if (!recPass) { mVUanalyzeFDIV<vuIndex>(_Fs_, _Fsf_, _Ft_, _Ftf_, 13); }
else {
u8 *ajmp8, *bjmp8, *cjmp8, *djmp8;
u8 *ajmp, *bjmp, *cjmp, *djmp;
getReg5(xmmFs, _Fs_, _Fsf_);
getReg5(xmmFt, _Ft_, _Ftf_);
MOV32ItoM((uptr)&mVU->divFlag, 0); // Clear I/D flags
/* Check for negative divide */
SSE_MOVMSKPS_XMM_to_R32(gprT1, xmmT1);
AND32ItoR(gprT1, 1); //Check sign
ajmp8 = JZ8(0); //Skip if none are
MOV32ItoM((uptr)&mVU->divFlag, 0x410); // Invalid Flag - Negative number sqrt
SSE_ANDPS_M128_to_XMM(xmmFt, (uptr)mVU_absclip); // Do a cardinal sqrt
x86SetJ8(ajmp8);
MOV32ItoM((uptr)&mVU->divFlag, 0); // Clear I/D flags
testNeg(xmmFt, gprT1, ajmp); // Check for negative sqrt
SSE_SQRTSS_XMM_to_XMM(xmmFt, xmmFt);
testZero(xmmFt, xmmT1, gprT1); // Test if Ft is zero
ajmp8 = JZ8(0); // Skip if not zero
ajmp = JZ8(0); // Skip if not zero
testZero(xmmFs, xmmT1, gprT1); // Test if Fs is zero
bjmp8 = JZ8(0); // Skip if none are
bjmp = JZ8(0); // Skip if none are
MOV32ItoM((uptr)&mVU->divFlag, 0x410); // Set invalid flag (0/0)
cjmp8 = JMP8(0);
x86SetJ8(bjmp8);
cjmp = JMP8(0);
x86SetJ8(bjmp);
MOV32ItoM((uptr)&mVU->divFlag, 0x820); // Zero divide flag (only when not 0/0)
x86SetJ8(cjmp8);
x86SetJ8(cjmp);
SSE_ANDPS_M128_to_XMM(xmmFs, (uptr)mVU_signbit);
SSE_ORPS_XMM_to_XMM(xmmFs, xmmMax); // xmmFs = +/-Max
djmp8 = JMP8(0);
x86SetJ8(ajmp8);
djmp = JMP8(0);
x86SetJ8(ajmp);
SSE_DIVSS_XMM_to_XMM(xmmFs, xmmFt);
mVUclamp1<vuIndex>(xmmFs, xmmFt, 8);
x86SetJ8(djmp8);
x86SetJ8(djmp);
mVUunpack_xyzw<vuIndex>(xmmFs, xmmFs, 0);
mVUmergeRegs<vuIndex>(xmmPQ, xmmFs, writeQ ? 4 : 8);
@ -161,7 +158,7 @@ microVUt(void) mVU_EATAN_() {
microVUf(void) mVU_EATAN() {
microVU* mVU = mVUx;
if (!recPass) {}
if (!recPass) { mVUanalyzeEFU1<vuIndex>(_Fs_, _Fsf_, 54); }
else {
getReg5(xmmFs, _Fs_, _Fsf_);
SSE2_PSHUFD_XMM_to_XMM(xmmPQ, xmmPQ, writeP ? 0x27 : 0xC6); // Flip xmmPQ to get Valid P instance
@ -177,14 +174,14 @@ microVUf(void) mVU_EATAN() {
microVUf(void) mVU_EATANxy() {
microVU* mVU = mVUx;
if (!recPass) {}
if (!recPass) { mVUanalyzeEFU2<vuIndex>(_Fs_, 54); }
else {
getReg6(xmmFt, _Fs_);
SSE2_PSHUFD_XMM_to_XMM(xmmFs, xmmFt, 0x01);
SSE2_PSHUFD_XMM_to_XMM(xmmPQ, xmmPQ, writeP ? 0x27 : 0xC6); // Flip xmmPQ to get Valid P instance
SSE_MOVSS_XMM_to_XMM(xmmPQ, xmmFs);
SSE_SUBSS_M32_to_XMM(xmmFs, (uptr)mVU_one);
SSE_SUBSS_XMM_to_XMM(xmmFs, xmmFt); // y-x, not y-1? ><
SSE_ADDSS_XMM_to_XMM(xmmFt, xmmPQ);
SSE_DIVSS_XMM_to_XMM(xmmFs, xmmFt);
@ -194,7 +191,7 @@ microVUf(void) mVU_EATANxy() {
microVUf(void) mVU_EATANxz() {
microVU* mVU = mVUx;
if (!recPass) {}
if (!recPass) { mVUanalyzeEFU2<vuIndex>(_Fs_, 54); }
else {
getReg6(xmmFt, _Fs_);
SSE2_PSHUFD_XMM_to_XMM(xmmFs, xmmFt, 0x02);
@ -218,7 +215,7 @@ microVUf(void) mVU_EATANxz() {
microVUf(void) mVU_EEXP() {
microVU* mVU = mVUx;
if (!recPass) {}
if (!recPass) { mVUanalyzeEFU1<vuIndex>(_Fs_, _Fsf_, 44); }
else {
getReg5(xmmFs, _Fs_, _Fsf_);
SSE2_PSHUFD_XMM_to_XMM(xmmPQ, xmmPQ, writeP ? 0x27 : 0xC6); // Flip xmmPQ to get Valid P instance
@ -266,7 +263,7 @@ microVUt(void) mVU_sumXYZ() {
microVUf(void) mVU_ELENG() {
microVU* mVU = mVUx;
if (!recPass) {}
if (!recPass) { mVUanalyzeEFU2<vuIndex>(_Fs_, 18); }
else {
getReg6(xmmFs, _Fs_);
SSE2_PSHUFD_XMM_to_XMM(xmmPQ, xmmPQ, writeP ? 0x27 : 0xC6); // Flip xmmPQ to get Valid P instance
@ -278,7 +275,7 @@ microVUf(void) mVU_ELENG() {
microVUf(void) mVU_ERCPR() {
microVU* mVU = mVUx;
if (!recPass) {}
if (!recPass) { mVUanalyzeEFU1<vuIndex>(_Fs_, _Fsf_, 12); }
else {
getReg5(xmmFs, _Fs_, _Fsf_);
SSE2_PSHUFD_XMM_to_XMM(xmmPQ, xmmPQ, writeP ? 0x27 : 0xC6); // Flip xmmPQ to get Valid P instance
@ -292,7 +289,7 @@ microVUf(void) mVU_ERCPR() {
microVUf(void) mVU_ERLENG() {
microVU* mVU = mVUx;
if (!recPass) {}
if (!recPass) { mVUanalyzeEFU2<vuIndex>(_Fs_, 24); }
else {
getReg6(xmmFs, _Fs_);
SSE2_PSHUFD_XMM_to_XMM(xmmPQ, xmmPQ, writeP ? 0x27 : 0xC6); // Flip xmmPQ to get Valid P instance
@ -307,7 +304,7 @@ microVUf(void) mVU_ERLENG() {
microVUf(void) mVU_ERSADD() {
microVU* mVU = mVUx;
if (!recPass) {}
if (!recPass) { mVUanalyzeEFU2<vuIndex>(_Fs_, 18); }
else {
getReg6(xmmFs, _Fs_);
SSE2_PSHUFD_XMM_to_XMM(xmmPQ, xmmPQ, writeP ? 0x27 : 0xC6); // Flip xmmPQ to get Valid P instance
@ -322,7 +319,7 @@ microVUf(void) mVU_ERSADD() {
microVUf(void) mVU_ERSQRT() {
microVU* mVU = mVUx;
if (!recPass) {}
if (!recPass) { mVUanalyzeEFU1<vuIndex>(_Fs_, _Fsf_, 18); }
else {
getReg5(xmmFs, _Fs_, _Fsf_);
SSE2_PSHUFD_XMM_to_XMM(xmmPQ, xmmPQ, writeP ? 0x27 : 0xC6); // Flip xmmPQ to get Valid P instance
@ -336,7 +333,7 @@ microVUf(void) mVU_ERSQRT() {
microVUf(void) mVU_ESADD() {
microVU* mVU = mVUx;
if (!recPass) {}
if (!recPass) { mVUanalyzeEFU2<vuIndex>(_Fs_, 11); }
else {
getReg6(xmmFs, _Fs_);
SSE2_PSHUFD_XMM_to_XMM(xmmPQ, xmmPQ, writeP ? 0x27 : 0xC6); // Flip xmmPQ to get Valid P instance
@ -354,7 +351,7 @@ microVUf(void) mVU_ESADD() {
microVUf(void) mVU_ESIN() {
microVU* mVU = mVUx;
if (!recPass) {}
if (!recPass) { mVUanalyzeEFU2<vuIndex>(_Fs_, 29); }
else {
getReg5(xmmFs, _Fs_, _Fsf_);
SSE2_PSHUFD_XMM_to_XMM(xmmPQ, xmmPQ, writeP ? 0x27 : 0xC6); // Flip xmmPQ to get Valid P instance
@ -380,7 +377,7 @@ microVUf(void) mVU_ESIN() {
microVUf(void) mVU_ESQRT() {
microVU* mVU = mVUx;
if (!recPass) {}
if (!recPass) { mVUanalyzeEFU1<vuIndex>(_Fs_, _Fsf_, 12); }
else {
getReg5(xmmFs, _Fs_, _Fsf_);
SSE2_PSHUFD_XMM_to_XMM(xmmPQ, xmmPQ, writeP ? 0x27 : 0xC6); // Flip xmmPQ to get Valid P instance
@ -391,7 +388,7 @@ microVUf(void) mVU_ESQRT() {
microVUf(void) mVU_ESUM() {
microVU* mVU = mVUx;
if (!recPass) {}
if (!recPass) { mVUanalyzeEFU2<vuIndex>(_Fs_, 12); }
else {
getReg6(xmmFs, _Fs_);
SSE2_PSHUFD_XMM_to_XMM(xmmPQ, xmmPQ, writeP ? 0x27 : 0xC6); // Flip xmmPQ to get Valid P instance

View File

@ -99,7 +99,7 @@ declareAllVariables
#define _Mbit_ (1<<29)
#define _Dbit_ (1<<28)
#define _Tbit_ (1<<27)
#define _MDTbit_ ( _Mbit_ | _Dbit_ | _Tbit_ )
#define _MDTbit_ 0 //( _Mbit_ | _Dbit_ | _Tbit_ ) // ToDo: Implement this stuff...
#define getVUmem(x) (((vuIndex == 1) ? (x & 0x3ff) : ((x >= 0x400) ? (x & 0x43f) : (x & 0xff))) * 16)
#define offsetSS ((_X) ? (0) : ((_Y) ? (4) : ((_Z) ? 8: 12)))

View File

@ -1139,9 +1139,6 @@ void GSState::Move()
// ffxii uses this to move the top/bottom of the scrolling menus offscreen and then blends them back over the text to create a shading effect
// guitar hero copies the far end of the board to do a similar blend too
GSLocalMemory::readPixel rp = GSLocalMemory::m_psm[m_env.BITBLTBUF.SPSM].rp;
GSLocalMemory::writePixel wp = GSLocalMemory::m_psm[m_env.BITBLTBUF.DPSM].wp;
int sx = m_env.TRXPOS.SSAX;
int dx = m_env.TRXPOS.DSAX;
int sy = m_env.TRXPOS.SSAY;
@ -1151,17 +1148,56 @@ void GSState::Move()
int xinc = 1;
int yinc = 1;
if(sx < dx) sx += w-1, dx += w-1, xinc = -1;
if(sy < dy) sy += h-1, dy += h-1, yinc = -1;
InvalidateLocalMem(m_env.BITBLTBUF, CRect(CPoint(sx, sy), CSize(w, h)));
InvalidateVideoMem(m_env.BITBLTBUF, CRect(CPoint(dx, dy), CSize(w, h)));
// TODO: use rowOffset
if(sx < dx) sx += w-1, dx += w-1, xinc = -1;
if(sy < dy) sy += h-1, dy += h-1, yinc = -1;
/*
GSLocalMemory::readPixel rp = GSLocalMemory::m_psm[m_env.BITBLTBUF.SPSM].rp;
GSLocalMemory::writePixel wp = GSLocalMemory::m_psm[m_env.BITBLTBUF.DPSM].wp;
for(int y = 0; y < h; y++, sy += yinc, dy += yinc, sx -= xinc*w, dx -= xinc*w)
for(int x = 0; x < w; x++, sx += xinc, dx += xinc)
(m_mem.*wp)(dx, dy, (m_mem.*rp)(sx, sy, m_env.BITBLTBUF.SBP, m_env.BITBLTBUF.SBW), m_env.BITBLTBUF.DBP, m_env.BITBLTBUF.DBW);
*/
const GSLocalMemory::psm_t& spsm = GSLocalMemory::m_psm[m_env.BITBLTBUF.SPSM];
const GSLocalMemory::psm_t& dpsm = GSLocalMemory::m_psm[m_env.BITBLTBUF.DPSM];
if(m_env.BITBLTBUF.SPSM == PSM_PSMCT32 && m_env.BITBLTBUF.DPSM == PSM_PSMCT32)
{
for(int y = 0; y < h; y++, sy += yinc, dy += yinc, sx -= xinc*w, dx -= xinc*w)
{
DWORD sbase = spsm.pa(0, sy, m_env.BITBLTBUF.SBP, m_env.BITBLTBUF.SBW);
int* soffset = spsm.rowOffset[sy & 7];
DWORD dbase = dpsm.pa(0, dy, m_env.BITBLTBUF.DBP, m_env.BITBLTBUF.DBW);
int* doffset = dpsm.rowOffset[dy & 7];
for(int x = 0; x < w; x++, sx += xinc, dx += xinc)
{
m_mem.WritePixel32(dbase + doffset[dx], m_mem.ReadPixel32(sbase + soffset[sx]));
}
}
}
else
{
for(int y = 0; y < h; y++, sy += yinc, dy += yinc, sx -= xinc*w, dx -= xinc*w)
{
DWORD sbase = spsm.pa(0, sy, m_env.BITBLTBUF.SBP, m_env.BITBLTBUF.SBW);
int* soffset = spsm.rowOffset[sy & 7];
DWORD dbase = dpsm.pa(0, dy, m_env.BITBLTBUF.DBP, m_env.BITBLTBUF.DBW);
int* doffset = dpsm.rowOffset[dy & 7];
for(int x = 0; x < w; x++, sx += xinc, dx += xinc)
{
(m_mem.*dpsm.wpa)(dbase + doffset[dx], (m_mem.*spsm.rpa)(sbase + soffset[sx]));
}
}
}
}
void GSState::SoftReset(BYTE mask)