gsdx hack: move round sprite offset into a separate function

Use a boolean template to separate the linear case. I'm afraid it will
cost extra computation but 90% of sprites use nearest.
This commit is contained in:
Gregory Hainaut 2015-04-12 12:24:07 +02:00
parent 46aecb3748
commit 1d0deb5ffe
2 changed files with 92 additions and 79 deletions

View File

@ -229,6 +229,91 @@ float GSRendererHW::alpha1(int offset, int x0, int x1)
return (x - X0) / L; return (x - X0) / L;
} }
template <bool linear>
void GSRendererHW::RoundSpriteOffset()
{
//#define DEBUG_U
//#define DEBUG_V
bool debug = linear;
const int half = linear ? 8 : 0;
size_t count = m_vertex.next;
GSVertex* v = &m_vertex.buff[0];
for(size_t i = 0; i < count; i += 2) {
// Performance note: if it had any impact on perf, someone would port it to SSE
// Compute the coordinate of first and last texels (in native with a linear filtering)
float ax0 = alpha0(m_context->XYOFFSET.OFX, v[i].XYZ.X, v[i+1].XYZ.X);
float ax1 = alpha1(m_context->XYOFFSET.OFX, v[i].XYZ.X, v[i+1].XYZ.X);
int tx0 = Interpolate_UV(ax0, v[i].U, v[i+1].U);
int tx1 = Interpolate_UV(ax1, v[i].U, v[i+1].U);
#ifdef DEBUG_U
if (debug) {
fprintf(stderr, "u0:%d and u1:%d\n", v[i].U, v[i+1].U);
fprintf(stderr, "a0:%f and a1:%f\n", ax0, ax1);
fprintf(stderr, "t0:%d and t1:%d\n", tx0, tx1);
}
#endif
float ay0 = alpha0(m_context->XYOFFSET.OFY, v[i].XYZ.Y, v[i+1].XYZ.Y);
float ay1 = alpha1(m_context->XYOFFSET.OFY, v[i].XYZ.Y, v[i+1].XYZ.Y);
int ty0 = Interpolate_UV(ay0, v[i].V, v[i+1].V);
int ty1 = Interpolate_UV(ay1, v[i].V, v[i+1].V);
#ifdef DEBUG_V
if (debug) {
fprintf(stderr, "v0:%d and v1:%d\n", v[i].V, v[i+1].V);
fprintf(stderr, "a0:%f and a1:%f\n", ay0, ay1);
fprintf(stderr, "t0:%d and t1:%d\n", ty0, ty1);
}
#endif
#ifdef DEBUG_U
if (debug)
fprintf(stderr, "GREP_BEFORE %d => %d\n", v[i].U, v[i+1].U);
#endif
#ifdef DEBUG_V
if (debug)
fprintf(stderr, "GREP_BEFORE %d => %d\n", v[i].V, v[i+1].V);
#endif
#if 1
// Use rounded value of the newly computed texture coordinate. It ensures
// that sampling will remains inside texture boundary
//
// Note for bilinear: in this mode the PS2 add -0.5 offset (aka half) and 4 texels
// will be sampled so (t0 - 8) and (t1 - 8 + 16) must be valid.
//
// Minus half for t1 case might be too much
if (tx0 <= tx1) {
v[i].U = tx0 + half + 1;
v[i+1].U = tx1 - half + 1 + 15;
} else {
v[i].U = tx0 + 15;
v[i+1].U = tx1 + 15 + 16;
}
#endif
#if 1
if (ty0 <= ty1) {
v[i].V = ty0 + half + 1;
v[i+1].V = ty1 - half + 1 + 15;
} else {
v[i].V = ty0 + 15;
v[i+1].V = ty1 + 15 + 16;
}
#endif
#ifdef DEBUG_U
if (debug)
fprintf(stderr, "GREP_AFTER %d => %d\n\n", v[i].U, v[i+1].U);
#endif
#ifdef DEBUG_V
if (debug)
fprintf(stderr, "GREP_AFTER %d => %d\n\n", v[i].V, v[i+1].V);
#endif
}
}
void GSRendererHW::Draw() void GSRendererHW::Draw()
{ {
if(m_dev->IsLost()) return; if(m_dev->IsLost()) return;
@ -398,84 +483,10 @@ void GSRendererHW::Draw()
} }
else if ((m_userhacks_round_sprite_offset == 2) || (m_userhacks_round_sprite_offset == 1 && !m_vt.IsLinear())) { else if ((m_userhacks_round_sprite_offset == 2) || (m_userhacks_round_sprite_offset == 1 && !m_vt.IsLinear())) {
//#define DEBUG_U if (m_vt.IsLinear())
//#define DEBUG_V RoundSpriteOffset<true>();
//bool debug = m_vt.IsLinear(); else
const int half = m_vt.IsLinear() ? 8 : 0; RoundSpriteOffset<false>();
for(size_t i = 0; i < count; i += 2) {
// Performance note: if it had any impact on perf, someone would port it to SSE
// Compute the coordinate of first and last texels (in native with a linear filtering)
float ax0 = alpha0(context->XYOFFSET.OFX, v[i].XYZ.X, v[i+1].XYZ.X);
float ax1 = alpha1(context->XYOFFSET.OFX, v[i].XYZ.X, v[i+1].XYZ.X);
int tx0 = Interpolate_UV(ax0, v[i].U, v[i+1].U);
int tx1 = Interpolate_UV(ax1, v[i].U, v[i+1].U);
#ifdef DEBUG_U
if (debug) {
fprintf(stderr, "u0:%d and u1:%d\n", v[i].U, v[i+1].U);
fprintf(stderr, "a0:%f and a1:%f\n", ax0, ax1);
fprintf(stderr, "t0:%d and t1:%d\n", tx0, tx1);
}
#endif
float ay0 = alpha0(context->XYOFFSET.OFY, v[i].XYZ.Y, v[i+1].XYZ.Y);
float ay1 = alpha1(context->XYOFFSET.OFY, v[i].XYZ.Y, v[i+1].XYZ.Y);
int ty0 = Interpolate_UV(ay0, v[i].V, v[i+1].V);
int ty1 = Interpolate_UV(ay1, v[i].V, v[i+1].V);
#ifdef DEBUG_V
if (debug) {
fprintf(stderr, "v0:%d and v1:%d\n", v[i].V, v[i+1].V);
fprintf(stderr, "a0:%f and a1:%f\n", ay0, ay1);
fprintf(stderr, "t0:%d and t1:%d\n", ty0, ty1);
}
#endif
#ifdef DEBUG_U
if (debug)
fprintf(stderr, "GREP_BEFORE %d => %d\n", v[i].U, v[i+1].U);
#endif
#ifdef DEBUG_V
if (debug)
fprintf(stderr, "GREP_BEFORE %d => %d\n", v[i].V, v[i+1].V);
#endif
#if 1
// Use rounded value of the newly computed texture coordinate. It ensures
// that sampling will remains inside texture boundary
//
// Note for bilinear: in this mode the PS2 add -0.5 offset (aka half) and 4 texels
// will be sampled so (t0 - 8) and (t1 - 8 + 16) must be valid.
//
// Minus half for t1 case might be too much
if (tx0 <= tx1) {
v[i].U = tx0 + half + 1;
v[i+1].U = tx1 - half + 1 + 15;
} else {
v[i].U = tx0 + 15;
v[i+1].U = tx1 + 15 + 16;
}
#endif
#if 1
if (ty0 <= ty1) {
v[i].V = ty0 + half + 1;
v[i+1].V = ty1 - half + 1 + 15;
} else {
v[i].V = ty0 + 15;
v[i+1].V = ty1 + 15 + 16;
}
#endif
#ifdef DEBUG_U
if (debug)
fprintf(stderr, "GREP_AFTER %d => %d\n\n", v[i].U, v[i+1].U);
#endif
#ifdef DEBUG_V
if (debug)
fprintf(stderr, "GREP_AFTER %d => %d\n\n", v[i].V, v[i+1].V);
#endif
}
} }
else if (0 && m_userhacks_round_sprite_offset && !m_vt.IsLinear()) { // Debug only else if (0 && m_userhacks_round_sprite_offset && !m_vt.IsLinear()) { // Debug only

View File

@ -130,11 +130,13 @@ private:
} m_hacks; } m_hacks;
#pragma endregion
int Interpolate_UV(float alpha, int t0, int t1); int Interpolate_UV(float alpha, int t0, int t1);
float alpha0(int offset, int x0, int x1); float alpha0(int offset, int x0, int x1);
float alpha1(int offset, int x0, int x1); float alpha1(int offset, int x0, int x1);
#pragma endregion template <bool linear> void RoundSpriteOffset();
protected: protected:
GSTextureCache* m_tc; GSTextureCache* m_tc;