Reverted r4667. We need to talk.

git-svn-id: http://pcsx2.googlecode.com/svn/trunk@4670 96395faa-99c1-11dd-bbfe-3dabce05a288
This commit is contained in:
sudonim1@gmail.com 2011-05-24 21:52:58 +00:00
parent a7c93c75fb
commit 1bb055bf10
2 changed files with 101 additions and 535 deletions

View File

@ -1238,7 +1238,7 @@ void recompileNextInstruction(int delayslot)
case 1: case 1:
switch(_Rt_) { switch(_Rt_) {
case 0: case 1: case 2: case 3: case 0x10: case 0x11: case 0x12: case 0x13: case 0: case 1: case 2: case 3: case 0x10: case 0x11: case 0x12: case 0x13:
Console.Warning("EE branch %x in delay slot!", cpuRegs.code); Console.Warning("branch %x in delay slot!", cpuRegs.code);
_clearNeededX86regs(); _clearNeededX86regs();
_clearNeededMMXregs(); _clearNeededMMXregs();
_clearNeededXMMregs(); _clearNeededXMMregs();
@ -1247,7 +1247,7 @@ void recompileNextInstruction(int delayslot)
break; break;
case 2: case 3: case 4: case 5: case 6: case 7: case 0x14: case 0x15: case 0x16: case 0x17: case 2: case 3: case 4: case 5: case 6: case 7: case 0x14: case 0x15: case 0x16: case 0x17:
Console.Warning("EE branch %x in delay slot!", cpuRegs.code); Console.Warning("branch %x in delay slot!", cpuRegs.code);
_clearNeededX86regs(); _clearNeededX86regs();
_clearNeededMMXregs(); _clearNeededMMXregs();
_clearNeededXMMregs(); _clearNeededXMMregs();

View File

@ -108,22 +108,23 @@ void recLoad64( u32 bits, bool sign )
// Load EDX with the destination. // Load EDX with the destination.
// 64/128 bit modes load the result directly into the cpuRegs.GPR struct. // 64/128 bit modes load the result directly into the cpuRegs.GPR struct.
if( _Rt_ )
MOV32ItoR(EDX, (uptr)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] );
else
MOV32ItoR(EDX, (uptr)&dummyValue[0] );
if( GPR_IS_CONST1( _Rs_ ) ) if( GPR_IS_CONST1( _Rs_ ) )
{ {
//iFlushCall(FLUSH_EXCEPTION); iFlushCall(FLUSH_EXCEPTION);
_eeOnLoadWrite(_Rt_);
//_deleteEEreg(_Rt_, 0); _deleteEEreg(_Rt_, 0);
u32 srcadr = g_cpuConstRegs[_Rs_].UL[0] + _Imm_; u32 srcadr = g_cpuConstRegs[_Rs_].UL[0] + _Imm_;
if( bits == 128 ) srcadr &= ~0x0f; if( bits == 128 ) srcadr &= ~0x0f;
_eeOnLoadWrite(_Rt_);
MOV32ItoR(EDX, (uptr)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] );
vtlb_DynGenRead64_Const( bits, srcadr ); vtlb_DynGenRead64_Const( bits, srcadr );
} }
else else
{ {
//iFlushCall(FLUSH_EXCEPTION); iFlushCall(FLUSH_EXCEPTION);
// Load ECX with the source memory address that we're reading from. // Load ECX with the source memory address that we're reading from.
_eeMoveGPRtoR(ECX, _Rs_); _eeMoveGPRtoR(ECX, _Rs_);
if ( _Imm_ != 0 ) if ( _Imm_ != 0 )
@ -132,7 +133,7 @@ void recLoad64( u32 bits, bool sign )
AND32ItoR(ECX,~0x0F); // emitter automatically encodes this as an 8-bit sign-extended imm8 AND32ItoR(ECX,~0x0F); // emitter automatically encodes this as an 8-bit sign-extended imm8
_eeOnLoadWrite(_Rt_); _eeOnLoadWrite(_Rt_);
MOV32ItoR(EDX, (uptr)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] ); _deleteEEreg(_Rt_, 0);
vtlb_DynGenRead64(bits); vtlb_DynGenRead64(bits);
} }
@ -152,36 +153,36 @@ void recLoad32( u32 bits, bool sign )
if( GPR_IS_CONST1( _Rs_ ) ) if( GPR_IS_CONST1( _Rs_ ) )
{ {
iFlushCall(FLUSH_EXCEPTION); iFlushCall(FLUSH_EXCEPTION);
_eeOnLoadWrite(_Rt_);
//_deleteEEreg(_Rt_, 0); _deleteEEreg(_Rt_, 0);
u32 srcadr = g_cpuConstRegs[_Rs_].UL[0] + _Imm_; u32 srcadr = g_cpuConstRegs[_Rs_].UL[0] + _Imm_;
vtlb_DynGenRead32_Const( bits, sign, srcadr ); vtlb_DynGenRead32_Const( bits, sign, srcadr );
} }
else else
{ {
//iFlushCall(FLUSH_EXCEPTION); iFlushCall(FLUSH_EXCEPTION);
// Load ECX with the source memory address that we're reading from. // Load ECX with the source memory address that we're reading from.
_eeMoveGPRtoR(ECX, _Rs_); _eeMoveGPRtoR(ECX, _Rs_);
if ( _Imm_ != 0 ) if ( _Imm_ != 0 )
ADD32ItoR( ECX, _Imm_ ); ADD32ItoR( ECX, _Imm_ );
_eeOnLoadWrite(_Rt_);
_deleteEEreg(_Rt_, 0);
vtlb_DynGenRead32(bits, sign); vtlb_DynGenRead32(bits, sign);
} }
if( _Rt_ )
{
// EAX holds the loaded value, so sign extend as needed: // EAX holds the loaded value, so sign extend as needed:
if (sign) if (sign)
CDQ(); CDQ();
else else
XOR32RtoR(EDX,EDX); XOR32RtoR(EDX,EDX);
_eeOnLoadWrite(_Rt_);
_deleteEEreg(_Rt_, 0);
MOV32RtoM( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ], EAX ); MOV32RtoM( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ], EAX );
MOV32RtoM( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ], EDX ); MOV32RtoM( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ], EDX );
}
} }
////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////
@ -207,7 +208,6 @@ void recStore(u32 sz, bool edxAlreadyAssigned=false)
else if (sz==128 || sz==64) else if (sz==128 || sz==64)
{ {
_deleteEEreg(_Rt_, 1); // flush register to mem _deleteEEreg(_Rt_, 1); // flush register to mem
_eeOnLoadWrite(_Rt_);
MOV32ItoR(EDX,(int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ]); MOV32ItoR(EDX,(int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ]);
} }
} }
@ -217,14 +217,14 @@ void recStore(u32 sz, bool edxAlreadyAssigned=false)
if( GPR_IS_CONST1( _Rs_ ) ) if( GPR_IS_CONST1( _Rs_ ) )
{ {
//iFlushCall(FLUSH_EXCEPTION); iFlushCall(FLUSH_EXCEPTION);
u32 dstadr = g_cpuConstRegs[_Rs_].UL[0] + _Imm_; u32 dstadr = g_cpuConstRegs[_Rs_].UL[0] + _Imm_;
if( sz == 128 ) dstadr &= ~0x0f; if( sz == 128 ) dstadr &= ~0x0f;
vtlb_DynGenWrite_Const( sz, dstadr ); vtlb_DynGenWrite_Const( sz, dstadr );
} }
else else
{ {
//iFlushCall(FLUSH_EXCEPTION); iFlushCall(FLUSH_EXCEPTION);
_eeMoveGPRtoR(ECX, _Rs_); _eeMoveGPRtoR(ECX, _Rs_);
if ( _Imm_ != 0 ) if ( _Imm_ != 0 )
@ -238,14 +238,14 @@ void recStore(u32 sz, bool edxAlreadyAssigned=false)
////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////
// //
void recLB( void ) { if(_Rt_) recLoad32(8,true); } void recLB( void ) { recLoad32(8,true); }
void recLBU( void ) { if(_Rt_) recLoad32(8,false); } void recLBU( void ) { recLoad32(8,false); }
void recLH( void ) { if(_Rt_) recLoad32(16,true); } void recLH( void ) { recLoad32(16,true); }
void recLHU( void ) { if(_Rt_) recLoad32(16,false); } void recLHU( void ) { recLoad32(16,false); }
void recLW( void ) { if(_Rt_) recLoad32(32,true); } void recLW( void ) { recLoad32(32,true); }
void recLWU( void ) { if(_Rt_) recLoad32(32,false); } void recLWU( void ) { recLoad32(32,false); }
void recLD( void ) { if(_Rt_) recLoad64(64,false); } void recLD( void ) { recLoad64(64,false); }
void recLQ( void ) { if(_Rt_) recLoad64(128,false); } void recLQ( void ) { recLoad64(128,false); }
void recSB( void ) { recStore(8); } void recSB( void ) { recStore(8); }
void recSH( void ) { recStore(16); } void recSH( void ) { recStore(16); }
@ -258,163 +258,25 @@ void recSD( void ) { recStore(64); }
// (LWL/SWL, LWR/SWR, etc) // (LWL/SWL, LWR/SWR, etc)
//////////////////////////////////////////////////// ////////////////////////////////////////////////////
static const s32 LWL_MASK[4] = { 0xffffff, 0x0000ffff, 0x000000ff, 0x00000000 };
static const s32 LWR_MASK[4] = { 0x000000, 0xff000000, 0xffff0000, 0xffffff00 };
static const u8 LWL_SHIFT[4] = { 24, 16, 8, 0 };
static const u8 LWR_SHIFT[4] = { 0, 8, 16, 24 };
void recLWL( void ) void recLWL( void )
{ {
if(!_Rt_) return;
if( GPR_IS_CONST1( _Rs_ ) )
{
//iFlushCall(FLUSH_EXCEPTION);
u32 srcadr = g_cpuConstRegs[_Rs_].UL[0] + _Imm_;
u32 shift = srcadr & 0x3;
srcadr &= ~0x3;
vtlb_DynGenRead32_Const( 32, true, srcadr );
if( GPR_IS_CONST1( _Rt_ ) )
{
int res = g_cpuConstRegs[_Rt_].UL[0] & LWL_MASK[shift];
MOV32ItoR( EDX, res );
}
else
{
_eeMoveGPRtoR(EDX, _Rt_);
AND32ItoR( EDX, LWL_MASK[shift] );
}
SHL32ItoR( EAX, LWL_SHIFT[shift] );
OR32RtoR( EAX, EDX );
}
else
{
//iFlushCall(FLUSH_EXCEPTION);
// Load ECX with the source memory address that we're reading from.
_eeMoveGPRtoR(ECX, _Rs_);
if ( _Imm_ != 0 )
ADD32ItoR( ECX, _Imm_ );
MOV32RtoR(EDX, ECX);
AND32ItoR(EDX, 0x3);
SHL32ItoR(EDX, 3);
AND32ItoR(ECX,~0x3);
vtlb_DynGenRead32(32, true);
MOV32RtoR(ECX, EDX);
MOV32ItoR( EBX, 0xffffff );
SHR32CLtoR( EBX );
MOV32ItoR( ECX, 24 );
SUB32RtoR(ECX, EDX);
SHL32CLtoR( EAX );// eax << ecx
_eeMoveGPRtoR(EDX, _Rt_);
AND32RtoR( EDX, EBX );
OR32RtoR( EAX, EDX );
}
_eeOnLoadWrite(_Rt_);
_deleteEEreg(_Rt_, 0);
// EAX holds the loaded value, so sign extend as needed:
CDQ();
MOV32RtoM( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ], EAX );
MOV32RtoM( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ], EDX );
/*
iFlushCall(FLUSH_EXCEPTION); iFlushCall(FLUSH_EXCEPTION);
_deleteEEreg(_Rs_, 1); _deleteEEreg(_Rs_, 1);
_eeOnLoadWrite(_Rt_); _eeOnLoadWrite(_Rt_);
_deleteEEreg(_Rt_, 1); _deleteEEreg(_Rt_, 1);
recCall(LWL);*/ recCall(LWL);
} }
//////////////////////////////////////////////////// ////////////////////////////////////////////////////
void recLWR( void ) void recLWR( void )
{ {
if(!_Rt_) return; iFlushCall(FLUSH_EXCEPTION);
if( GPR_IS_CONST1( _Rs_ ) )
{
u32 srcadr = g_cpuConstRegs[_Rs_].UL[0] + _Imm_;
u32 shift = srcadr & 0x3;
srcadr &= ~0x3;
vtlb_DynGenRead32_Const( 32, true, srcadr );
if( GPR_IS_CONST1( _Rt_ ) )
{
int res = g_cpuConstRegs[_Rt_].UL[0] & LWR_MASK[shift];
MOV32ItoR( EDX, res );
}
else
{
_eeMoveGPRtoR(EDX, _Rt_);
AND32ItoR( EDX, LWR_MASK[shift] );
}
SHR32ItoR( EAX, LWR_SHIFT[shift] );
OR32RtoR( EAX, EDX );
}
else
{
//iFlushCall(FLUSH_EXCEPTION);
// Load ECX with the source memory address that we're reading from.
_eeMoveGPRtoR(ECX, _Rs_);
if ( _Imm_ != 0 )
ADD32ItoR( ECX, _Imm_ );
MOV32RtoR(EDX, ECX);
AND32ItoR(EDX, 0x3);
SHL32ItoR(EDX, 3);
AND32ItoR(ECX,~0x3);
vtlb_DynGenRead32(32, true);
MOV32RtoR(ECX, EDX);
MOV32ItoR( EBX, 0xffffff00 );
SHR32CLtoR( EAX ); // eax << ecx
MOV32ItoR( ECX, 24 );
SUB32RtoR(ECX, EDX);
SHL32CLtoR( EBX );// ebx << ecx
_eeMoveGPRtoR(EDX, _Rt_);
AND32RtoR( EDX, EBX );
OR32RtoR( EAX, EDX );
}
//Now we've used the const reg we can delete it.
_eeOnLoadWrite(_Rt_);
_deleteEEreg(_Rt_, 0);
// EAX holds the loaded value, so sign extend as needed:
CDQ();
MOV32RtoM( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ], EAX );
MOV32RtoM( (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ], EDX );
/*iFlushCall(FLUSH_EXCEPTION);
_deleteEEreg(_Rs_, 1); _deleteEEreg(_Rs_, 1);
_eeOnLoadWrite(_Rt_); _eeOnLoadWrite(_Rt_);
_deleteEEreg(_Rt_, 1); _deleteEEreg(_Rt_, 1);
recCall(LWR);*/ recCall(LWR);
} }
static const u32 SWL_MASK[4] = { 0xffffff00, 0xffff0000, 0xff000000, 0x00000000 }; static const u32 SWL_MASK[4] = { 0xffffff00, 0xffff0000, 0xff000000, 0x00000000 };
@ -426,347 +288,88 @@ static const u8 SWL_SHIFT[4] = { 24, 16, 8, 0 };
//////////////////////////////////////////////////// ////////////////////////////////////////////////////
void recSWL( void ) void recSWL( void )
{ {
/*iFlushCall(FLUSH_EXCEPTION);
_deleteEEreg(_Rs_, 1);
_deleteEEreg(_Rt_, 1);
recCall(SWL);*/
// Perform a translated memory read, followed by a translated memory write // Perform a translated memory read, followed by a translated memory write
// of the "merged" result. // of the "merged" result.
// NOTE: Code incomplete. I'll fix/finish it soon. --air // NOTE: Code incomplete. I'll fix/finish it soon. --air
if( GPR_IS_CONST1( _Rs_ ) ) if( 0 ) //GPR_IS_CONST1( _Rs_ ) )
{ {
iFlushCall(FLUSH_EXCEPTION);
_eeOnLoadWrite(_Rt_);
//_deleteEEreg(_Rt_, 0);
u32 addr = g_cpuConstRegs[_Rs_].UL[0] + _Imm_; u32 addr = g_cpuConstRegs[_Rs_].UL[0] + _Imm_;
u32 shift = addr & 3; u32 shift = addr & 3;
vtlb_DynGenRead32_Const( 32, false, addr & ~3 ); vtlb_DynGenRead32_Const( 32, false, addr & 3 );
// Prep eax/edx for producing the writeback result: // Prep eax/edx for producing the writeback result:
if(_Rt_) // equiv to: (cpuRegs.GPR.r[_Rt_].UL[0] >> SWL_SHIFT[shift]) | (mem & SWL_MASK[shift])
{
if( GPR_IS_CONST1( _Rt_ ) )
{
int res;
res = g_cpuConstRegs[_Rt_].UL[0] >> SWL_SHIFT[shift];
}
else
{
_eeMoveGPRtoR(EDX, _Rt_);
SHR32ItoR( EDX, SWL_SHIFT[shift] );
}
}
else XOR32RtoR( EDX, EDX );
//_deleteEEreg(_Rt_, 1);
//MOV32MtoR( EDX, (int)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] );
_eeMoveGPRtoR(EDX, _Rt_);
AND32ItoR( EAX, SWL_MASK[shift] ); AND32ItoR( EAX, SWL_MASK[shift] );
SHR32ItoR( EDX, SWL_SHIFT[shift] );
OR32RtoR( EDX, EAX ); OR32RtoR( EDX, EAX );
vtlb_DynGenWrite_Const( 32, addr & ~0x3 ); recStore( 32, true );
} }
else else
{ {
iFlushCall(FLUSH_EXCEPTION);
//iFlushCall(FLUSH_EXCEPTION); _deleteEEreg(_Rs_, 1);
_eeMoveGPRtoR(ECX, _Rs_); _deleteEEreg(_Rt_, 1);
recCall(SWL);
if ( _Imm_ != 0 )
ADD32ItoR(ECX, _Imm_);
MOV32RtoR(EDX, ECX);
AND32ItoR(EDX, 0x3);
SHL32ItoR(EDX, 3);
AND32ItoR(ECX,~0x3);
vtlb_DynGenRead32(32, false);
MOV32RtoR( ECX, EDX );
MOV32ItoR( EBX, 0xffffff00 );
SHL32CLtoR( EBX ); // ebx << ecx
AND32RtoR( EAX, EBX );
if(_Rt_)
{
MOV32ItoR( ECX, 24 );
SUB32RtoR( ECX, EDX );
_eeMoveGPRtoR(EDX, _Rt_);
SHR32CLtoR( EDX ); // edx >> ecx
}
else XOR32RtoR( EDX, EDX );
OR32RtoR( EDX, EAX );
_eeMoveGPRtoR(ECX, _Rs_);
if ( _Imm_ != 0 )
ADD32ItoR(ECX, _Imm_);
AND32ItoR(ECX,~0x3);
vtlb_DynGenWrite(32);
} }
} }
//////////////////////////////////////////////////// ////////////////////////////////////////////////////
void recSWR( void ) void recSWR( void )
{ {
/*iFlushCall(FLUSH_EXCEPTION); iFlushCall(FLUSH_EXCEPTION);
_deleteEEreg(_Rs_, 1); _deleteEEreg(_Rs_, 1);
_deleteEEreg(_Rt_, 1); _deleteEEreg(_Rt_, 1);
recCall(SWR);*/ recCall(SWR);
if( GPR_IS_CONST1( _Rs_ ) )
{
//iFlushCall(FLUSH_EXCEPTION);
u32 addr = g_cpuConstRegs[_Rs_].UL[0] + _Imm_;
u32 shift = addr & 3;
vtlb_DynGenRead32_Const( 32, false, addr & ~3 );
// Prep eax/edx for producing the writeback result:
if(_Rt_)
{
if( GPR_IS_CONST1( _Rt_ ) )
{
int res;
res = g_cpuConstRegs[_Rt_].UL[0] << SWR_SHIFT[shift];
MOV32ItoR( EDX, res );
}
else
{
_eeMoveGPRtoR(EDX, _Rt_);
SHL32ItoR( EDX, SWR_SHIFT[shift] );
}
}
else XOR32RtoR( EDX, EDX );
AND32ItoR( EAX, SWR_MASK[shift] );
OR32RtoR( EDX, EAX );
//iFlushCall(FLUSH_EXCEPTION);
vtlb_DynGenWrite_Const( 32, addr & ~0x3 );
}
else
{
//iFlushCall(FLUSH_EXCEPTION);
_eeMoveGPRtoR(ECX, _Rs_);
if ( _Imm_ != 0 )
ADD32ItoR(ECX, _Imm_);
MOV32RtoR(EDX, ECX); //Move to EBX for shift
AND32ItoR(ECX,~0x3); //Mask final bit of address
vtlb_DynGenRead32(32, false); //Read in to EAX
AND32ItoR(EDX, 0x3); //Mask shift bits
SHL32ItoR(EDX, 3); //Multiply by 8
if(_Rt_)
{
MOV32RtoR( ECX, EDX ); //Copy shift in to ECX
_eeMoveGPRtoR(EBX, _Rt_); //Move Rt in to EDX
SHL32CLtoR( EBX ); // Rt << shift (ecx)
}
else XOR32RtoR( EBX, EBX );
MOV32ItoR( ECX, 24 ); //Move 24 in to ECX
SUB32RtoR( ECX, EDX ); //Take the shift from it (so if shift is 1, itll do 24 - 8 = 16)
MOV32ItoR( EDX, 0xffffff ); //Move the mask in to where the shift was
SHR32CLtoR( EDX ); // mask >> 24-shift
AND32RtoR( EAX, EDX ); //And the Mask with the original memory in EAX
OR32RtoR( EBX, EAX ); //Or our result of the _Rt_ shift to it
MOV32RtoR( EDX, EBX );
_eeMoveGPRtoR(ECX, _Rs_);
if ( _Imm_ != 0 )
ADD32ItoR(ECX, _Imm_);
AND32ItoR(ECX,~0x3);
//EDX holds data to be written back
vtlb_DynGenWrite(32); //Write back to memory
}
} }
//////////////////////////////////////////////////// ////////////////////////////////////////////////////
void recLDL( void ) void recLDL( void )
{ {
/*iFlushCall(FLUSH_EXCEPTION); iFlushCall(FLUSH_EXCEPTION);
_deleteEEreg(_Rs_, 1); _deleteEEreg(_Rs_, 1);
_eeOnLoadWrite(_Rt_); _eeOnLoadWrite(_Rt_);
_deleteEEreg(_Rt_, 1); _deleteEEreg(_Rt_, 1);
recCall(LDL);*/
if(!_Rt_) return;
//_eeOnLoadWrite(_Rt_);
if( GPR_IS_CONST1( _Rs_ ) )
{
u32 srcadr = g_cpuConstRegs[_Rs_].UL[0] + _Imm_;
u32 shift = srcadr & 0x7;
_deleteEEreg(_Rt_, 0);
_eeOnLoadWrite(_Rt_);
if(shift == 7)
{
srcadr &= ~0x7;
MOV32ItoR(EDX, (uptr)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] );
vtlb_DynGenRead64_Const( 64, srcadr );
}
else if(shift == 3)
{
srcadr &= ~0x7;
vtlb_DynGenRead32_Const( 32, false, srcadr );
MOV32RtoM((uptr)&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ] , EAX);
}
else
{
//DevCon.Warning("LDL Const Interpreter Drop Back %x", shift);
recCall(LDL); recCall(LDL);
} }
}
else
{
_deleteEEreg(_Rt_, 0);
_eeOnLoadWrite(_Rt_);
recCall(LDL);
}
}
//////////////////////////////////////////////////// ////////////////////////////////////////////////////
void recLDR( void ) void recLDR( void )
{ {
iFlushCall(FLUSH_EXCEPTION);
/*iFlushCall(FLUSH_EXCEPTION);
_deleteEEreg(_Rs_, 1); _deleteEEreg(_Rs_, 1);
_eeOnLoadWrite(_Rt_); _eeOnLoadWrite(_Rt_);
_deleteEEreg(_Rt_, 1); _deleteEEreg(_Rt_, 1);
recCall(LDR);*/
if(!_Rt_) return;
if( GPR_IS_CONST1( _Rs_ ) )
{
u32 srcadr = g_cpuConstRegs[_Rs_].UL[0] + _Imm_;
u32 shift = srcadr & 0x7;
_deleteEEreg(_Rt_, 0);
_eeOnLoadWrite(_Rt_);
if(shift == 0)
{
MOV32ItoR(EDX, (uptr)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] );
vtlb_DynGenRead64_Const( 64, srcadr );
}
else if(shift == 4)
{
vtlb_DynGenRead32_Const( 32, false, srcadr );
MOV32RtoM((uptr)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] , EAX);
}
else
{
//DevCon.Warning("LDR Const Interpreter Drop Back %x", shift);
recCall(LDR); recCall(LDR);
} }
}
else
{
_deleteEEreg(_Rt_, 0);
_eeOnLoadWrite(_Rt_);
recCall(LDR);
}
}
//////////////////////////////////////////////////// ////////////////////////////////////////////////////
static const u64 SDL_MASK[8] =
{ 0xffffffffffffff00LL, 0xffffffffffff0000LL, 0xffffffffff000000LL, 0xffffffff00000000LL,
0xffffff0000000000LL, 0xffff000000000000LL, 0xff00000000000000LL, 0x0000000000000000LL
};
static const u64 SDR_MASK[8] =
{ 0x0000000000000000LL, 0x00000000000000ffLL, 0x000000000000ffffLL, 0x0000000000ffffffLL,
0x00000000ffffffffLL, 0x000000ffffffffffLL, 0x0000ffffffffffffLL, 0x00ffffffffffffffLL
};
void recSDL( void ) void recSDL( void )
{ {
iFlushCall(FLUSH_EXCEPTION);
/*iFlushCall(FLUSH_EXCEPTION);
_deleteEEreg(_Rs_, 1); _deleteEEreg(_Rs_, 1);
_deleteEEreg(_Rt_, 1); _deleteEEreg(_Rt_, 1);
recCall(SDL);*/
if( GPR_IS_CONST1( _Rs_ ) )
{
u32 addr = g_cpuConstRegs[_Rs_].UL[0] + _Imm_;
u32 shift = addr & 7;
if(shift == 7)
{
if( GPR_IS_CONST1( _Rt_ ) ) MOV32ItoR(EDX, (uptr)&g_cpuConstRegs[_Rt_].UL[0]);
else MOV32ItoR(EDX, (uptr)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] );
vtlb_DynGenWrite_Const( 64, addr & ~0x7 );
}
else if(shift == 3)
{
if( GPR_IS_CONST1( _Rt_ ) ) MOV32ItoR(EDX, (uptr)&g_cpuConstRegs[_Rt_].UL[1]);
else MOV32MtoR(EDX, (uptr)&cpuRegs.GPR.r[ _Rt_ ].UL[ 1 ] );
vtlb_DynGenWrite_Const( 32, addr & ~0x7 );
}
else
{
//DevCon.Warning("SDL Const Interpreter Drop Back %x", shift);
iFlushCall(FLUSH_INTERPRETER);
recCall(SDL); recCall(SDL);
} }
}
else
{
iFlushCall(FLUSH_INTERPRETER);
recCall(SDL);
}
}
//////////////////////////////////////////////////// ////////////////////////////////////////////////////
void recSDR( void ) void recSDR( void )
{ {
if( GPR_IS_CONST1( _Rs_ ) ) iFlushCall(FLUSH_EXCEPTION);
{ _deleteEEreg(_Rs_, 1);
//iFlushCall(FLUSH_EXCEPTION); _deleteEEreg(_Rt_, 1);
//_eeOnLoadWrite(_Rt_);
//_deleteEEreg(_Rt_, 1);
u32 addr = g_cpuConstRegs[_Rs_].UL[0] + _Imm_;
u32 shift = addr & 7;
if(shift == 0)
{
if( GPR_IS_CONST1( _Rt_ ) ) MOV32ItoR(EDX, (uptr)&g_cpuConstRegs[_Rt_].UL[0]);
else MOV32ItoR(EDX, (uptr)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] );
vtlb_DynGenWrite_Const( 64, addr );
}
else if(shift == 4)
{
if( GPR_IS_CONST1( _Rt_ ) ) MOV32ItoR(EDX, (uptr)&g_cpuConstRegs[_Rt_].UL[0]);
else MOV32MtoR(EDX, (uptr)&cpuRegs.GPR.r[ _Rt_ ].UL[ 0 ] );
vtlb_DynGenWrite_Const( 32, addr );
}
else
{
//DevCon.Warning("SDR Const Interpreter Drop Back %x", shift);
iFlushCall(FLUSH_INTERPRETER);
recCall(SDR); recCall(SDR);
} }
}
else
{
iFlushCall(FLUSH_INTERPRETER);
recCall(SDR);
}
}
////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////
/********************************************************* /*********************************************************
@ -777,48 +380,31 @@ void recSDR( void )
//////////////////////////////////////////////////// ////////////////////////////////////////////////////
void recLWC1( void ) void recLWC1( void )
{ {
//iFlushCall(FLUSH_EXCEPTION); iFlushCall(FLUSH_EXCEPTION);
//_deleteEEreg(_Rs_, 1); _deleteEEreg(_Rs_, 1);
_deleteFPtoXMMreg(_Rt_, 2); _deleteFPtoXMMreg(_Rt_, 2);
if( GPR_IS_CONST1( _Rs_ ) )
{
int addr = g_cpuConstRegs[_Rs_].UL[0] + _Imm_;
vtlb_DynGenRead32_Const(32, false, addr);
}
else
{
MOV32MtoR( ECX, (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ); MOV32MtoR( ECX, (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] );
if ( _Imm_ != 0 ) if ( _Imm_ != 0 )
ADD32ItoR( ECX, _Imm_ ); ADD32ItoR( ECX, _Imm_ );
vtlb_DynGenRead32(32, false);
}
vtlb_DynGenRead32(32, false);
MOV32RtoM( (int)&fpuRegs.fpr[ _Rt_ ].UL, EAX ); MOV32RtoM( (int)&fpuRegs.fpr[ _Rt_ ].UL, EAX );
} }
//////////////////////////////////////////////////// ////////////////////////////////////////////////////
void recSWC1( void ) void recSWC1( void )
{ {
//iFlushCall(FLUSH_EXCEPTION); iFlushCall(FLUSH_EXCEPTION);
//_deleteEEreg(_Rs_, 1); _deleteEEreg(_Rs_, 1);
_deleteFPtoXMMreg(_Rt_, 1); _deleteFPtoXMMreg(_Rt_, 0);
MOV32MtoR(EDX, (int)&fpuRegs.fpr[ _Rt_ ].UL );
if( GPR_IS_CONST1( _Rs_ ) )
{
int addr = g_cpuConstRegs[_Rs_].UL[0] + _Imm_;
vtlb_DynGenWrite_Const(32, addr);
}
else
{
MOV32MtoR( ECX, (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ); MOV32MtoR( ECX, (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] );
if ( _Imm_ != 0 ) if ( _Imm_ != 0 )
ADD32ItoR( ECX, _Imm_ ); ADD32ItoR( ECX, _Imm_ );
vtlb_DynGenWrite(32);
}
MOV32MtoR(EDX, (int)&fpuRegs.fpr[ _Rt_ ].UL );
vtlb_DynGenWrite(32);
} }
//////////////////////////////////////////////////// ////////////////////////////////////////////////////
@ -834,57 +420,37 @@ void recSWC1( void )
void recLQC2( void ) void recLQC2( void )
{ {
//iFlushCall(FLUSH_EXCEPTION); iFlushCall(FLUSH_EXCEPTION);
_deleteEEreg(_Rs_, 1);
//_deleteEEreg(_Rs_, 1);
_deleteVFtoXMMreg(_Ft_, 0, 2); _deleteVFtoXMMreg(_Ft_, 0, 2);
MOV32MtoR( ECX, (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] );
if ( _Imm_ != 0 )
ADD32ItoR( ECX, _Imm_);
if ( _Rt_ ) if ( _Rt_ )
MOV32ItoR(EDX, (int)&VU0.VF[_Ft_].UD[0] ); MOV32ItoR(EDX, (int)&VU0.VF[_Ft_].UD[0] );
else else
MOV32ItoR(EDX, (int)&dummyValue[0] ); MOV32ItoR(EDX, (int)&dummyValue[0] );
if( GPR_IS_CONST1( _Rs_ ) )
{
int addr = g_cpuConstRegs[_Rs_].UL[0] + _Imm_;
vtlb_DynGenRead64_Const(128, addr);
}
else
{
MOV32MtoR( ECX, (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] );
if ( _Imm_ != 0 )
ADD32ItoR( ECX, _Imm_);
vtlb_DynGenRead64(128); vtlb_DynGenRead64(128);
} }
}
//////////////////////////////////////////////////// ////////////////////////////////////////////////////
void recSQC2( void ) void recSQC2( void )
{ {
//iFlushCall(FLUSH_EXCEPTION); iFlushCall(FLUSH_EXCEPTION);
//_deleteEEreg(_Rs_, 1); _deleteEEreg(_Rs_, 1);
_deleteVFtoXMMreg(_Ft_, 0, 1); //Want to flush it but not clear it _deleteVFtoXMMreg(_Ft_, 0, 0);
MOV32ItoR(EDX, (int)&VU0.VF[_Ft_].UD[0] );
if( GPR_IS_CONST1( _Rs_ ) )
{
int addr = g_cpuConstRegs[_Rs_].UL[0] + _Imm_;
vtlb_DynGenWrite_Const(128, addr);
}
else
{
MOV32MtoR( ECX, (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] ); MOV32MtoR( ECX, (int)&cpuRegs.GPR.r[ _Rs_ ].UL[ 0 ] );
if ( _Imm_ != 0 ) if ( _Imm_ != 0 )
ADD32ItoR( ECX, _Imm_ ); ADD32ItoR( ECX, _Imm_ );
MOV32ItoR(EDX, (int)&VU0.VF[_Ft_].UD[0] );
vtlb_DynGenWrite(128); vtlb_DynGenWrite(128);
} }
}
#endif #endif
} } } // end namespace R5900::Dynarec::OpcodeImpl } } } // end namespace R5900::Dynarec::OpcodeImpl