microVU: 70% implemented Branch in Branch Delay Slots. Hopefully I'll finish tomorrow.

Compare Star Ocean 3 intro with mVU vs sVU, and you can see mVU now correctly renders the title menu/new game startup screen =)

git-svn-id: http://pcsx2.googlecode.com/svn/trunk@1652 96395faa-99c1-11dd-bbfe-3dabce05a288
This commit is contained in:
cottonvibes 2009-08-19 07:48:20 +00:00
parent 614cc7e55d
commit 0587cdc210
7 changed files with 92 additions and 51 deletions

View File

@ -159,6 +159,7 @@ struct microVU {
u32 VIbackup; // Holds a backup of a VI reg if modified before a branch u32 VIbackup; // Holds a backup of a VI reg if modified before a branch
u32 VIxgkick; // Holds a backup of a VI reg used for xgkick-delays u32 VIxgkick; // Holds a backup of a VI reg used for xgkick-delays
u32 branch; // Holds branch compare result (IBxx) OR Holds address to Jump to (JALR/JR) u32 branch; // Holds branch compare result (IBxx) OR Holds address to Jump to (JALR/JR)
u32 evilBranch; // For Branches in Branch Delay Slots, holds Address to Jump to
u32 p; // Holds current P instance index u32 p; // Holds current P instance index
u32 q; // Holds current Q instance index u32 q; // Holds current Q instance index
u32 totalCycles; // Total Cycles that mVU is expected to run for u32 totalCycles; // Total Cycles that mVU is expected to run for

View File

@ -389,30 +389,31 @@ microVUt(void) analyzeBranchVI(mV, int xReg, bool &infoVar) {
} }
// Branch in Branch Delay-Slots // Branch in Branch Delay-Slots
microVUt(void) mVUbranchCheck(mV) { microVUt(int) mVUbranchCheck(mV) {
if (!mVUcount) return; if (!mVUcount) return 0;
incPC(-2); incPC(-2);
if (mVUlow.branch) { if (mVUlow.branch) {
incPC(2); incPC(2);
Console::Error("microVU%d Warning: Branch in Branch delay slot! [%04x]", params mVU->index, xPC); mVUlow.evilBranch = 1;
mVUlow.isNOP = 1; mVUregs.blockType = 2;
DevCon::Status("microVU%d Warning: Branch in Branch delay slot! [%04x]", params mVU->index, xPC);
return 1;
} }
else incPC(2); incPC(2);
return 0;
} }
microVUt(void) mVUanalyzeCondBranch1(mV, int Is) { microVUt(void) mVUanalyzeCondBranch1(mV, int Is) {
mVUbranchCheck(mVU);
analyzeVIreg1(Is, mVUlow.VI_read[0]); analyzeVIreg1(Is, mVUlow.VI_read[0]);
if (!mVUstall) { if (!mVUstall && !mVUbranchCheck(mVU)) {
analyzeBranchVI(mVU, Is, mVUlow.memReadIs); analyzeBranchVI(mVU, Is, mVUlow.memReadIs);
} }
} }
microVUt(void) mVUanalyzeCondBranch2(mV, int Is, int It) { microVUt(void) mVUanalyzeCondBranch2(mV, int Is, int It) {
mVUbranchCheck(mVU);
analyzeVIreg1(Is, mVUlow.VI_read[0]); analyzeVIreg1(Is, mVUlow.VI_read[0]);
analyzeVIreg1(It, mVUlow.VI_read[1]); analyzeVIreg1(It, mVUlow.VI_read[1]);
if (!mVUstall) { if (!mVUstall && !mVUbranchCheck(mVU)) {
analyzeBranchVI(mVU, Is, mVUlow.memReadIs); analyzeBranchVI(mVU, Is, mVUlow.memReadIs);
analyzeBranchVI(mVU, It, mVUlow.memReadIt); analyzeBranchVI(mVU, It, mVUlow.memReadIt);
} }

View File

@ -96,9 +96,24 @@ void normBranchCompile(microVU* mVU, u32 branchPC) {
else { mVUcompile(mVU, branchPC, (uptr)&mVUregs); } else { mVUcompile(mVU, branchPC, (uptr)&mVUregs); }
} }
void normBranch(mV, microFlagCycles& mFC) { void normJumpCompile(mV, microFlagCycles& mFC, bool isEvilJump) {
using namespace x86Emitter;
memcpy_fast(&mVUpBlock->pStateEnd, &mVUregs, sizeof(microRegInfo));
mVUsetupBranch(mVU, mFC);
mVUbackupRegs(mVU);
incPC(-3); // Go back to branch opcode (to get branch imm addr) if (isEvilJump) MOV32MtoR(gprT2, (uptr)&mVU->evilBranch);
else MOV32MtoR(gprT2, (uptr)&mVU->branch);
MOV32ItoR(gprR, (u32)&mVUpBlock->pStateEnd);
if (!mVU->index) xCALL(mVUcompileJIT<0>); //(u32 startPC, uptr pState)
else xCALL(mVUcompileJIT<1>);
mVUrestoreRegs(mVU);
JMPR(gprT1); // Jump to rec-code address
}
void normBranch(mV, microFlagCycles& mFC) {
// E-bit Branch // E-bit Branch
if (mVUup.eBit) { iPC = branchAddr/4; mVUendProgram(mVU, &mFC, 1); return; } if (mVUup.eBit) { iPC = branchAddr/4; mVUendProgram(mVU, &mFC, 1); return; }
@ -112,6 +127,7 @@ void condBranch(mV, microFlagCycles& mFC, int JMPcc) {
using namespace x86Emitter; using namespace x86Emitter;
mVUsetupBranch(mVU, mFC); mVUsetupBranch(mVU, mFC);
xCMP(ptr16[&mVU->branch], 0); xCMP(ptr16[&mVU->branch], 0);
incPC(3);
if (mVUup.eBit) { // Conditional Branch With E-Bit Set if (mVUup.eBit) { // Conditional Branch With E-Bit Set
mVUendProgram(mVU, &mFC, 2); mVUendProgram(mVU, &mFC, 2);
xForwardJump8 eJMP((JccComparisonType)JMPcc); xForwardJump8 eJMP((JccComparisonType)JMPcc);
@ -155,8 +171,6 @@ void condBranch(mV, microFlagCycles& mFC, int JMPcc) {
void normJump(mV, microFlagCycles& mFC) { void normJump(mV, microFlagCycles& mFC) {
using namespace x86Emitter; using namespace x86Emitter;
mVUprint("mVUcompile JR/JALR");
incPC(-3); // Go back to jump opcode
if (mVUlow.constJump.isValid) { // Jump Address is Constant if (mVUlow.constJump.isValid) { // Jump Address is Constant
if (mVUup.eBit) { // E-bit Jump if (mVUup.eBit) { // E-bit Jump
@ -175,18 +189,6 @@ void normJump(mV, microFlagCycles& mFC) {
MOV32MtoR(gprT1, (uptr)&mVU->branch); MOV32MtoR(gprT1, (uptr)&mVU->branch);
MOV32RtoM((uptr)&mVU->regs->VI[REG_TPC].UL, gprT1); MOV32RtoM((uptr)&mVU->regs->VI[REG_TPC].UL, gprT1);
xJMP(mVU->exitFunct); xJMP(mVU->exitFunct);
return;
} }
else normJumpCompile(mVU, mFC, 0);
memcpy_fast(&mVUpBlock->pStateEnd, &mVUregs, sizeof(microRegInfo));
mVUsetupBranch(mVU, mFC);
mVUbackupRegs(mVU);
MOV32MtoR(gprT2, (uptr)&mVU->branch); // Get startPC (ECX 1st argument for __fastcall)
MOV32ItoR(gprR, (u32)&mVUpBlock->pStateEnd); // Get pState (EDX 2nd argument for __fastcall)
if (!mVU->index) xCALL(mVUcompileJIT<0>); //(u32 startPC, uptr pState)
else xCALL(mVUcompileJIT<1>);
mVUrestoreRegs(mVU);
JMPR(gprT1); // Jump to rec-code address
} }

View File

@ -174,14 +174,15 @@ microVUt(void) branchWarning(mV) {
} }
microVUt(void) eBitPass1(mV, int& branch) { microVUt(void) eBitPass1(mV, int& branch) {
if (!mVUregs.blockType) { if (mVUregs.blockType != 1) {
branch = 1; branch = 1;
mVUup.eBit = 1; mVUup.eBit = 1;
} }
} }
microVUt(void) eBitWarning(mV, u32 endCount) { microVUt(void) eBitWarning(mV) {
if (endCount == 1) Console::Error("microVU%d Warning: Branch, E-bit, Branch! [%04x]", params mVU->index, xPC); if (mVUpBlock->pState.blockType == 1) Console::Error("microVU%d Warning: Branch, E-bit, Branch! [%04x]", params mVU->index, xPC);
if (mVUpBlock->pState.blockType == 2) Console::Error("microVU%d Warning: Branch, Branch, Branch! [%04x]", params mVU->index, xPC);
incPC(2); incPC(2);
if (curI & _Ebit_) { if (curI & _Ebit_) {
DevCon::Status("microVU%d: E-bit in Branch delay slot! [%04x]", params mVU->index, xPC); DevCon::Status("microVU%d: E-bit in Branch delay slot! [%04x]", params mVU->index, xPC);
@ -361,7 +362,7 @@ microVUr(void*) mVUcompile(microVU* mVU, u32 startPC, uptr pState) {
mVUinfo.writeP = !mVU->p; mVUinfo.writeP = !mVU->p;
if (branch >= 2) { mVUinfo.isEOB = 1; if (branch == 3) { mVUinfo.isBdelay = 1; } mVUcount++; branchWarning(mVU); break; } if (branch >= 2) { mVUinfo.isEOB = 1; if (branch == 3) { mVUinfo.isBdelay = 1; } mVUcount++; branchWarning(mVU); break; }
else if (branch == 1) { branch = 2; } else if (branch == 1) { branch = 2; }
if (mVUbranch) { mVUsetFlagInfo(mVU); eBitWarning(mVU, endCount); branch = 3; mVUbranch = 0; } if (mVUbranch) { mVUsetFlagInfo(mVU); eBitWarning(mVU); branch = 3; mVUbranch = 0; }
incPC(1); incPC(1);
} }
@ -385,11 +386,13 @@ microVUr(void*) mVUcompile(microVU* mVU, u32 startPC, uptr pState) {
else { doSwapOp(mVU); } else { doSwapOp(mVU); }
if (mVUinfo.doXGKICK) { mVU_XGKICK_DELAY(mVU, 1); } if (mVUinfo.doXGKICK) { mVU_XGKICK_DELAY(mVU, 1); }
if (!doRegAlloc) { mVU->regAlloc->flushAll(); } if (!doRegAlloc) { mVU->regAlloc->flushAll(); }
if (!mVUinfo.isBdelay) { incPC(1); } if (_isBlock2) { mVUsetupRange(mVU, xPC, 0); normJumpCompile(mVU, mFC, 1); return thisPtr; }
else if (!mVUinfo.isBdelay) { incPC(1); }
else { else {
mVUsetupRange(mVU, xPC, 0); mVUsetupRange(mVU, xPC, 0);
mVUdebugNOW(1); mVUdebugNOW(1);
switch (mVUbranch) { incPC(-3); // Go back to branch opcode
switch (mVUlow.branch) {
case 1: case 2: normBranch(mVU, mFC); return thisPtr; // B/BAL case 1: case 2: normBranch(mVU, mFC); return thisPtr; // B/BAL
case 9: case 10: normJump (mVU, mFC); return thisPtr; // JR/JALR case 9: case 10: normJump (mVU, mFC); return thisPtr; // JR/JALR
case 3: condBranch(mVU, mFC, Jcc_Equal); return thisPtr; // IBEQ case 3: condBranch(mVU, mFC, Jcc_Equal); return thisPtr; // IBEQ

View File

@ -44,7 +44,7 @@ __declspec(align(16)) struct microRegInfo { // Ordered for Faster Compares
u8 VI[16]; u8 VI[16];
regInfo VF[32]; regInfo VF[32];
u8 flags; // clip x2 :: status x2 u8 flags; // clip x2 :: status x2
u8 blockType; // 0 = Normal; 1 = Compile one instruction with E-bit termination u8 blockType; // 0 = Normal; 1 = Compile one instruction (E-bit End); 2 = Compile one instruction (Branch End)
u8 padding[5]; // 160 bytes u8 padding[5]; // 160 bytes
#if defined(_MSC_VER) #if defined(_MSC_VER)
}; };
@ -107,6 +107,7 @@ struct microLowerOp {
microVIreg VI_read[2]; // VI regs read by this instruction microVIreg VI_read[2]; // VI regs read by this instruction
microConstInfo constJump; // Constant Reg Info for JR/JARL instructions microConstInfo constJump; // Constant Reg Info for JR/JARL instructions
u32 branch; // Branch Type (0 = Not a Branch, 1 = B. 2 = BAL, 3~8 = Conditional Branches, 9 = JALR, 10 = JR) u32 branch; // Branch Type (0 = Not a Branch, 1 = B. 2 = BAL, 3~8 = Conditional Branches, 9 = JALR, 10 = JR)
bool evilBranch;// This instruction is a Branch in a Branch Delay Slot
bool isNOP; // This instruction is a NOP bool isNOP; // This instruction is a NOP
bool isFSSET; // This instruction is a FSSET bool isFSSET; // This instruction is a FSSET
bool noWriteVF; // Don't write back the result of a lower op to VF reg if upper op writes to same reg (or if VF = 0) bool noWriteVF; // Don't write back the result of a lower op to VF reg if upper op writes to same reg (or if VF = 0)

View File

@ -1164,9 +1164,21 @@ void setBranchA(mP, int x, int _x_) {
pass4 { if (_Imm11_ == 1 && !_x_) { return; } mVUbranch = x; } pass4 { if (_Imm11_ == 1 && !_x_) { return; } mVUbranch = x; }
} }
void condEvilBranch(mV, int JMPcc) {
using namespace x86Emitter;
xCMP(ax, 0);
xMOV(ptr32[&mVU->evilBranch], branchAddr);
xForwardJump8 cJMP((JccComparisonType)JMPcc);
incPC(-2); // Branch Not Taken
xMOV(ptr32[&mVU->evilBranch], ((branchAddr+8) & (mVU->microMemSize-8)));
incPC(2);
cJMP.SetTarget();
}
mVUop(mVU_B) { mVUop(mVU_B) {
setBranchA(mX, 1, 0); setBranchA(mX, 1, 0);
pass1 { mVUanalyzeNormBranch(mVU, 0, 0); } pass1 { mVUanalyzeNormBranch(mVU, 0, 0); }
pass2 { if (mVUlow.evilBranch) { MOV32ItoM((uptr)&mVU->evilBranch, branchAddr); } }
pass3 { mVUlog("B [<a href=\"#addr%04x\">%04x</a>]", branchAddr, branchAddr); } pass3 { mVUlog("B [<a href=\"#addr%04x\">%04x</a>]", branchAddr, branchAddr); }
} }
@ -1176,76 +1188,93 @@ mVUop(mVU_BAL) {
pass2 { pass2 {
MOV32ItoR(gprT1, bSaveAddr); MOV32ItoR(gprT1, bSaveAddr);
mVUallocVIb(mVU, gprT1, _It_); mVUallocVIb(mVU, gprT1, _It_);
if (mVUlow.evilBranch) { MOV32ItoM((uptr)&mVU->evilBranch, branchAddr); }
} }
pass3 { mVUlog("BAL vi%02d [<a href=\"#addr%04x\">%04x</a>]", _Ft_, branchAddr, branchAddr); } pass3 { mVUlog("BAL vi%02d [<a href=\"#addr%04x\">%04x</a>]", _Ft_, branchAddr, branchAddr); }
} }
mVUop(mVU_IBEQ) { mVUop(mVU_IBEQ) {
using namespace x86Emitter;
setBranchA(mX, 3, 0); setBranchA(mX, 3, 0);
pass1 { mVUanalyzeCondBranch2(mVU, _Is_, _It_); } pass1 { mVUanalyzeCondBranch2(mVU, _Is_, _It_); }
pass2 { pass2 {
if (mVUlow.memReadIs) MOV32MtoR(gprT1, (uptr)&mVU->VIbackup); if (mVUlow.memReadIs) MOV32MtoR(gprT1, (uptr)&mVU->VIbackup);
else mVUallocVIa(mVU, gprT1, _Is_); else mVUallocVIa(mVU, gprT1, _Is_);
if (mVUlow.memReadIt) XOR32MtoR(gprT1, (uptr)&mVU->VIbackup); if (mVUlow.memReadIt) XOR32MtoR(gprT1, (uptr)&mVU->VIbackup);
else { mVUallocVIa(mVU, gprT2, _It_); XOR32RtoR(gprT1, gprT2); } else { mVUallocVIa(mVU, gprT2, _It_); XOR32RtoR(gprT1, gprT2); }
MOV32RtoM((uptr)&mVU->branch, gprT1);
if (!mVUlow.evilBranch) { MOV32RtoM((uptr)&mVU->branch, gprT1); }
else { condEvilBranch(mVU, Jcc_Equal); }
} }
pass3 { mVUlog("IBEQ vi%02d, vi%02d [<a href=\"#addr%04x\">%04x</a>]", _Ft_, _Fs_, branchAddr, branchAddr); } pass3 { mVUlog("IBEQ vi%02d, vi%02d [<a href=\"#addr%04x\">%04x</a>]", _Ft_, _Fs_, branchAddr, branchAddr); }
} }
mVUop(mVU_IBGEZ) { mVUop(mVU_IBGEZ) {
using namespace x86Emitter;
setBranchA(mX, 4, 0); setBranchA(mX, 4, 0);
pass1 { mVUanalyzeCondBranch1(mVU, _Is_); } pass1 { mVUanalyzeCondBranch1(mVU, _Is_); }
pass2 { pass2 {
if (mVUlow.memReadIs) MOV32MtoR(gprT1, (uptr)&mVU->VIbackup); if (mVUlow.memReadIs) MOV32MtoR(gprT1, (uptr)&mVU->VIbackup);
else mVUallocVIa(mVU, gprT1, _Is_); else mVUallocVIa(mVU, gprT1, _Is_);
MOV32RtoM((uptr)&mVU->branch, gprT1); if (!mVUlow.evilBranch) MOV32RtoM((uptr)&mVU->branch, gprT1);
else condEvilBranch(mVU, Jcc_GreaterOrEqual);
} }
pass3 { mVUlog("IBGEZ vi%02d [<a href=\"#addr%04x\">%04x</a>]", _Fs_, branchAddr, branchAddr); } pass3 { mVUlog("IBGEZ vi%02d [<a href=\"#addr%04x\">%04x</a>]", _Fs_, branchAddr, branchAddr); }
} }
mVUop(mVU_IBGTZ) { mVUop(mVU_IBGTZ) {
using namespace x86Emitter;
setBranchA(mX, 5, 0); setBranchA(mX, 5, 0);
pass1 { mVUanalyzeCondBranch1(mVU, _Is_); } pass1 { mVUanalyzeCondBranch1(mVU, _Is_); }
pass2 { pass2 {
if (mVUlow.memReadIs) MOV32MtoR(gprT1, (uptr)&mVU->VIbackup); if (mVUlow.memReadIs) MOV32MtoR(gprT1, (uptr)&mVU->VIbackup);
else mVUallocVIa(mVU, gprT1, _Is_); else mVUallocVIa(mVU, gprT1, _Is_);
MOV32RtoM((uptr)&mVU->branch, gprT1); if (!mVUlow.evilBranch) MOV32RtoM((uptr)&mVU->branch, gprT1);
else condEvilBranch(mVU, Jcc_Greater);
} }
pass3 { mVUlog("IBGTZ vi%02d [<a href=\"#addr%04x\">%04x</a>]", _Fs_, branchAddr, branchAddr); } pass3 { mVUlog("IBGTZ vi%02d [<a href=\"#addr%04x\">%04x</a>]", _Fs_, branchAddr, branchAddr); }
} }
mVUop(mVU_IBLEZ) { mVUop(mVU_IBLEZ) {
using namespace x86Emitter;
setBranchA(mX, 6, 0); setBranchA(mX, 6, 0);
pass1 { mVUanalyzeCondBranch1(mVU, _Is_); } pass1 { mVUanalyzeCondBranch1(mVU, _Is_); }
pass2 { pass2 {
if (mVUlow.memReadIs) MOV32MtoR(gprT1, (uptr)&mVU->VIbackup); if (mVUlow.memReadIs) MOV32MtoR(gprT1, (uptr)&mVU->VIbackup);
else mVUallocVIa(mVU, gprT1, _Is_); else mVUallocVIa(mVU, gprT1, _Is_);
MOV32RtoM((uptr)&mVU->branch, gprT1); if (!mVUlow.evilBranch) MOV32RtoM((uptr)&mVU->branch, gprT1);
else condEvilBranch(mVU, Jcc_LessOrEqual);
} }
pass3 { mVUlog("IBLEZ vi%02d [<a href=\"#addr%04x\">%04x</a>]", _Fs_, branchAddr, branchAddr); } pass3 { mVUlog("IBLEZ vi%02d [<a href=\"#addr%04x\">%04x</a>]", _Fs_, branchAddr, branchAddr); }
} }
mVUop(mVU_IBLTZ) { mVUop(mVU_IBLTZ) {
using namespace x86Emitter;
setBranchA(mX, 7, 0); setBranchA(mX, 7, 0);
pass1 { mVUanalyzeCondBranch1(mVU, _Is_); } pass1 { mVUanalyzeCondBranch1(mVU, _Is_); }
pass2 { pass2 {
if (mVUlow.memReadIs) MOV32MtoR(gprT1, (uptr)&mVU->VIbackup); if (mVUlow.memReadIs) MOV32MtoR(gprT1, (uptr)&mVU->VIbackup);
else mVUallocVIa(mVU, gprT1, _Is_); else mVUallocVIa(mVU, gprT1, _Is_);
MOV32RtoM((uptr)&mVU->branch, gprT1); if (!mVUlow.evilBranch) MOV32RtoM((uptr)&mVU->branch, gprT1);
else condEvilBranch(mVU, Jcc_Less);
} }
pass3 { mVUlog("IBLTZ vi%02d [<a href=\"#addr%04x\">%04x</a>]", _Fs_, branchAddr, branchAddr); } pass3 { mVUlog("IBLTZ vi%02d [<a href=\"#addr%04x\">%04x</a>]", _Fs_, branchAddr, branchAddr); }
} }
mVUop(mVU_IBNE) { mVUop(mVU_IBNE) {
using namespace x86Emitter;
setBranchA(mX, 8, 0); setBranchA(mX, 8, 0);
pass1 { mVUanalyzeCondBranch2(mVU, _Is_, _It_); } pass1 { mVUanalyzeCondBranch2(mVU, _Is_, _It_); }
pass2 { pass2 {
if (mVUlow.memReadIs) MOV32MtoR(gprT1, (uptr)&mVU->VIbackup); if (mVUlow.memReadIs) MOV32MtoR(gprT1, (uptr)&mVU->VIbackup);
else mVUallocVIa(mVU, gprT1, _Is_); else mVUallocVIa(mVU, gprT1, _Is_);
if (mVUlow.memReadIt) XOR32MtoR(gprT1, (uptr)&mVU->VIbackup); if (mVUlow.memReadIt) XOR32MtoR(gprT1, (uptr)&mVU->VIbackup);
else { mVUallocVIa(mVU, gprT2, _It_); XOR32RtoR(gprT1, gprT2); } else { mVUallocVIa(mVU, gprT2, _It_); XOR32RtoR(gprT1, gprT2); }
MOV32RtoM((uptr)&mVU->branch, gprT1);
if (!mVUlow.evilBranch) { MOV32RtoM((uptr)&mVU->branch, gprT1); }
else { condEvilBranch(mVU, Jcc_NotEqual); }
} }
pass3 { mVUlog("IBNE vi%02d, vi%02d [<a href=\"#addr%04x\">%04x</a>]", _Ft_, _Fs_, branchAddr, branchAddr); } pass3 { mVUlog("IBNE vi%02d, vi%02d [<a href=\"#addr%04x\">%04x</a>]", _Ft_, _Fs_, branchAddr, branchAddr); }
} }
@ -1254,11 +1283,12 @@ mVUop(mVU_JR) {
mVUbranch = 9; mVUbranch = 9;
pass1 { mVUanalyzeJump(mVU, _Is_, 0, 0); } pass1 { mVUanalyzeJump(mVU, _Is_, 0, 0); }
pass2 { pass2 {
if (!mVUlow.constJump.isValid) { if (!mVUlow.constJump.isValid || mVUlow.evilBranch) {
mVUallocVIa(mVU, gprT1, _Is_); mVUallocVIa(mVU, gprT1, _Is_);
SHL32ItoR(gprT1, 3); SHL32ItoR(gprT1, 3);
AND32ItoR(gprT1, mVU->microMemSize - 8); AND32ItoR(gprT1, mVU->microMemSize - 8);
MOV32RtoM((uptr)&mVU->branch, gprT1); if (!mVUlow.evilBranch) MOV32RtoM((uptr)&mVU->branch, gprT1);
else MOV32RtoM((uptr)&mVU->evilBranch, gprT1);
} }
} }
pass3 { mVUlog("JR [vi%02d]", _Fs_); } pass3 { mVUlog("JR [vi%02d]", _Fs_); }
@ -1268,11 +1298,13 @@ mVUop(mVU_JALR) {
mVUbranch = 10; mVUbranch = 10;
pass1 { mVUanalyzeJump(mVU, _Is_, _It_, 1); } pass1 { mVUanalyzeJump(mVU, _Is_, _It_, 1); }
pass2 { pass2 {
if (!mVUlow.constJump.isValid) { if (!mVUlow.constJump.isValid || mVUlow.evilBranch) {
mVUallocVIa(mVU, gprT1, _Is_); mVUallocVIa(mVU, gprT1, _Is_);
SHL32ItoR(gprT1, 3); SHL32ItoR(gprT1, 3);
AND32ItoR(gprT1, mVU->microMemSize - 8); AND32ItoR(gprT1, mVU->microMemSize - 8);
MOV32RtoM((uptr)&mVU->branch, gprT1); MOV32RtoM((uptr)&mVU->branch, gprT1);
if (!mVUlow.evilBranch) MOV32RtoM((uptr)&mVU->branch, gprT1);
else MOV32RtoM((uptr)&mVU->evilBranch, gprT1);
} }
MOV32ItoR(gprT1, bSaveAddr); MOV32ItoR(gprT1, bSaveAddr);
mVUallocVIb(mVU, gprT1, _It_); mVUallocVIb(mVU, gprT1, _It_);

View File

@ -206,6 +206,7 @@ typedef u32 (__fastcall *mVUCall)(void*, void*);
#define mFLAG mVUinfo.mFlag #define mFLAG mVUinfo.mFlag
#define cFLAG mVUinfo.cFlag #define cFLAG mVUinfo.cFlag
#define mVUrange mVUcurProg.ranges.range[mVUcurProg.ranges.total] #define mVUrange mVUcurProg.ranges.range[mVUcurProg.ranges.total]
#define _isBlock2 (mVUpBlock->pState.blockType == 2)
#define xPC ((iPC / 2) * 8) #define xPC ((iPC / 2) * 8)
#define curI ((u32*)mVU->regs->Micro)[iPC] //mVUcurProg.data[iPC] #define curI ((u32*)mVU->regs->Micro)[iPC] //mVUcurProg.data[iPC]
#define setCode() { mVU->code = curI; } #define setCode() { mVU->code = curI; }