pcsx2/plugins/GSdx/GSVector4.h

1001 lines
21 KiB
C
Raw Normal View History

/*
* Copyright (C) 2007-2017 Gabest
* http://www.gabest.org
*
* This Program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This Program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Make; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA USA.
* http://www.gnu.org/copyleft/gpl.html
*
*/
class alignas(16) GSVector4
{
constexpr static __m128 cxpr_setr_ps(float x, float y, float z, float w)
{
#ifdef __GNUC__
return __m128{x, y, z, w};
#else
__m128 m = {};
m.m128_f32[0] = x;
m.m128_f32[1] = y;
m.m128_f32[2] = z;
m.m128_f32[3] = w;
return m;
#endif
}
constexpr static __m128 cxpr_setr_epi32(int x, int y, int z, int w)
{
#ifdef __GNUC__
return (__m128)(__v4si{x, y, z, w});
#else
__m128 m = {};
m.m128_i32[0] = x;
m.m128_i32[1] = y;
m.m128_i32[2] = z;
m.m128_i32[3] = w;
return m;
#endif
}
public:
union
{
struct {float x, y, z, w;};
struct {float r, g, b, a;};
struct {float left, top, right, bottom;};
float v[4];
float f32[4];
int8 i8[16];
int16 i16[8];
int32 i32[4];
int64 i64[2];
uint8 u8[16];
uint16 u16[8];
uint32 u32[4];
uint64 u64[2];
__m128 m;
};
static const GSVector4 m_ps0123;
static const GSVector4 m_ps4567;
static const GSVector4 m_half;
static const GSVector4 m_one;
static const GSVector4 m_two;
static const GSVector4 m_four;
static const GSVector4 m_x4b000000;
static const GSVector4 m_x4f800000;
static const GSVector4 m_max;
static const GSVector4 m_min;
GSVector4() = default;
constexpr GSVector4(const GSVector4&) = default;
constexpr static GSVector4 cxpr(float x, float y, float z, float w)
{
return GSVector4(cxpr_setr_ps(x, y, z, w));
}
constexpr static GSVector4 cxpr(float x)
{
return GSVector4(cxpr_setr_ps(x, x, x, x));
}
constexpr static GSVector4 cxpr(int x, int y, int z, int w)
{
return GSVector4(cxpr_setr_epi32(x, y, z, w));
}
constexpr static GSVector4 cxpr(int x)
{
return GSVector4(cxpr_setr_epi32(x, x, x, x));
}
__forceinline GSVector4(float x, float y, float z, float w)
{
m = _mm_set_ps(w, z, y, x);
}
__forceinline GSVector4(float x, float y)
{
m = _mm_unpacklo_ps(_mm_load_ss(&x), _mm_load_ss(&y));
}
__forceinline GSVector4(int x, int y, int z, int w)
{
GSVector4i v(x, y, z, w);
m = _mm_cvtepi32_ps(v.m);
}
__forceinline GSVector4(int x, int y)
{
m = _mm_cvtepi32_ps(_mm_unpacklo_epi32(_mm_cvtsi32_si128(x), _mm_cvtsi32_si128(y)));
}
__forceinline explicit GSVector4(const GSVector2& v)
{
m = _mm_castsi128_ps(_mm_loadl_epi64((__m128i*)&v));
}
__forceinline explicit GSVector4(const GSVector2i& v)
{
m = _mm_cvtepi32_ps(_mm_loadl_epi64((__m128i*)&v));
}
__forceinline constexpr explicit GSVector4(__m128 m)
: m(m)
{
}
__forceinline explicit GSVector4(float f)
{
*this = f;
}
__forceinline explicit GSVector4(int i)
{
#if _M_SSE >= 0x501
m = _mm_cvtepi32_ps(_mm_broadcastd_epi32(_mm_cvtsi32_si128(i)));
#else
GSVector4i v((int)i);
*this = GSVector4(v);
#endif
}
__forceinline explicit GSVector4(uint32 u)
{
GSVector4i v((int)u);
*this = GSVector4(v) + (m_x4f800000 & GSVector4::cast(v.sra32(31)));
}
__forceinline explicit GSVector4(const GSVector4i& v);
__forceinline static GSVector4 cast(const GSVector4i& v);
#if _M_SSE >= 0x500
__forceinline static GSVector4 cast(const GSVector8& v);
#endif
#if _M_SSE >= 0x501
__forceinline static GSVector4 cast(const GSVector8i& v);
#endif
__forceinline void operator = (const GSVector4& v)
{
m = v.m;
}
__forceinline void operator = (float f)
{
#if _M_SSE >= 0x501
m = _mm_broadcastss_ps(_mm_load_ss(&f));
#else
m = _mm_set1_ps(f);
#endif
}
__forceinline void operator = (__m128 m)
{
this->m = m;
}
__forceinline operator __m128() const
{
return m;
}
__forceinline uint32 rgba32() const
{
return GSVector4i(*this).rgba32();
}
__forceinline static GSVector4 rgba32(uint32 rgba)
{
return GSVector4(GSVector4i::load((int)rgba).u8to32());
}
__forceinline static GSVector4 rgba32(uint32 rgba, int shift)
{
return GSVector4(GSVector4i::load((int)rgba).u8to32() << shift);
}
__forceinline GSVector4 abs() const
{
return *this & cast(GSVector4i::x7fffffff());
}
__forceinline GSVector4 neg() const
{
return *this ^ cast(GSVector4i::x80000000());
}
__forceinline GSVector4 rcp() const
{
return GSVector4(_mm_rcp_ps(m));
}
__forceinline GSVector4 rcpnr() const
{
GSVector4 v = rcp();
return (v + v) - (v * v) * *this;
}
template<int mode> __forceinline GSVector4 round() const
{
#if _M_SSE >= 0x401
return GSVector4(_mm_round_ps(m, mode));
#else
GSVector4 a = *this;
GSVector4 b = (a & cast(GSVector4i::x80000000())) | m_x4b000000;
b = a + b - b;
if((mode & 7) == (Round_NegInf & 7))
{
return b - ((a < b) & m_one);
}
if((mode & 7) == (Round_PosInf & 7))
{
return b + ((a > b) & m_one);
}
ASSERT((mode & 7) == (Round_NearestInt & 7)); // other modes aren't implemented
return b;
#endif
}
__forceinline GSVector4 floor() const
{
return round<Round_NegInf>();
}
__forceinline GSVector4 ceil() const
{
return round<Round_PosInf>();
}
// http://jrfonseca.blogspot.com/2008/09/fast-sse2-pow-tables-or-polynomials.html
#define LOG_POLY0(x, c0) GSVector4(c0)
#define LOG_POLY1(x, c0, c1) (LOG_POLY0(x, c1).madd(x, GSVector4(c0)))
#define LOG_POLY2(x, c0, c1, c2) (LOG_POLY1(x, c1, c2).madd(x, GSVector4(c0)))
#define LOG_POLY3(x, c0, c1, c2, c3) (LOG_POLY2(x, c1, c2, c3).madd(x, GSVector4(c0)))
#define LOG_POLY4(x, c0, c1, c2, c3, c4) (LOG_POLY3(x, c1, c2, c3, c4).madd(x, GSVector4(c0)))
#define LOG_POLY5(x, c0, c1, c2, c3, c4, c5) (LOG_POLY4(x, c1, c2, c3, c4, c5).madd(x, GSVector4(c0)))
__forceinline GSVector4 log2(int precision = 5) const
{
// NOTE: sign bit ignored, safe to pass negative numbers
// The idea behind this algorithm is to split the float into two parts, log2(m * 2^e) => log2(m) + log2(2^e) => log2(m) + e,
// and then approximate the logarithm of the mantissa (it's 1.x when normalized, a nice short range).
GSVector4 one = m_one;
GSVector4i i = GSVector4i::cast(*this);
GSVector4 e = GSVector4(((i << 1) >> 24) - GSVector4i::x0000007f());
GSVector4 m = GSVector4::cast((i << 9) >> 9) | one;
GSVector4 p;
// Minimax polynomial fit of log2(x)/(x - 1), for x in range [1, 2[
switch(precision)
{
case 3:
p = LOG_POLY2(m, 2.28330284476918490682f, -1.04913055217340124191f, 0.204446009836232697516f);
break;
case 4:
p = LOG_POLY3(m, 2.61761038894603480148f, -1.75647175389045657003f, 0.688243882994381274313f, -0.107254423828329604454f);
break;
default:
case 5:
p = LOG_POLY4(m, 2.8882704548164776201f, -2.52074962577807006663f, 1.48116647521213171641f, -0.465725644288844778798f, 0.0596515482674574969533f);
break;
case 6:
p = LOG_POLY5(m, 3.1157899f, -3.3241990f, 2.5988452f, -1.2315303f, 3.1821337e-1f, -3.4436006e-2f);
break;
}
// This effectively increases the polynomial degree by one, but ensures that log2(1) == 0
p = p * (m - one);
return p + e;
}
__forceinline GSVector4 madd(const GSVector4& a, const GSVector4& b) const
{
#if 0//_M_SSE >= 0x501
return GSVector4(_mm_fmadd_ps(m, a, b));
#else
return *this * a + b;
#endif
}
__forceinline GSVector4 msub(const GSVector4& a, const GSVector4& b) const
{
#if 0//_M_SSE >= 0x501
return GSVector4(_mm_fmsub_ps(m, a, b));
#else
return *this * a - b;
#endif
}
__forceinline GSVector4 nmadd(const GSVector4& a, const GSVector4& b) const
{
#if 0//_M_SSE >= 0x501
return GSVector4(_mm_fnmadd_ps(m, a, b));
#else
return b - *this * a;
#endif
}
__forceinline GSVector4 nmsub(const GSVector4& a, const GSVector4& b) const
{
#if 0//_M_SSE >= 0x501
return GSVector4(_mm_fnmsub_ps(m, a, b));
#else
return -b - *this * a;
#endif
}
__forceinline GSVector4 addm(const GSVector4& a, const GSVector4& b) const
{
return a.madd(b, *this); // *this + a * b
}
__forceinline GSVector4 subm(const GSVector4& a, const GSVector4& b) const
{
return a.nmadd(b, *this); // *this - a * b
}
__forceinline GSVector4 hadd() const
{
#if _M_SSE >= 0x300
return GSVector4(_mm_hadd_ps(m, m));
#else
return xzxz() + ywyw();
#endif
}
__forceinline GSVector4 hadd(const GSVector4& v) const
{
#if _M_SSE >= 0x300
return GSVector4(_mm_hadd_ps(m, v.m));
#else
return xzxz(v) + ywyw(v);
#endif
}
__forceinline GSVector4 hsub() const
{
#if _M_SSE >= 0x300
return GSVector4(_mm_hsub_ps(m, m));
#else
return xzxz() - ywyw();
#endif
}
__forceinline GSVector4 hsub(const GSVector4& v) const
{
#if _M_SSE >= 0x300
return GSVector4(_mm_hsub_ps(m, v.m));
#else
return xzxz(v) - ywyw(v);
#endif
}
#if _M_SSE >= 0x401
template<int i> __forceinline GSVector4 dp(const GSVector4& v) const
{
return GSVector4(_mm_dp_ps(m, v.m, i));
}
#endif
__forceinline GSVector4 sat(const GSVector4& a, const GSVector4& b) const
{
return GSVector4(_mm_min_ps(_mm_max_ps(m, a), b));
}
__forceinline GSVector4 sat(const GSVector4& a) const
{
return GSVector4(_mm_min_ps(_mm_max_ps(m, a.xyxy()), a.zwzw()));
}
__forceinline GSVector4 sat(const float scale = 255) const
{
return sat(zero(), GSVector4(scale));
}
__forceinline GSVector4 clamp(const float scale = 255) const
{
return min(GSVector4(scale));
}
__forceinline GSVector4 min(const GSVector4& a) const
{
return GSVector4(_mm_min_ps(m, a));
}
__forceinline GSVector4 max(const GSVector4& a) const
{
return GSVector4(_mm_max_ps(m, a));
}
#if _M_SSE >= 0x401
template<int mask> __forceinline GSVector4 blend32(const GSVector4& a) const
{
return GSVector4(_mm_blend_ps(m, a, mask));
}
#endif
__forceinline GSVector4 blend32(const GSVector4& a, const GSVector4& mask) const
{
#if _M_SSE >= 0x401
return GSVector4(_mm_blendv_ps(m, a, mask));
#else
return GSVector4(_mm_or_ps(_mm_andnot_ps(mask, m), _mm_and_ps(mask, a)));
#endif
}
__forceinline GSVector4 upl(const GSVector4& a) const
{
return GSVector4(_mm_unpacklo_ps(m, a));
}
__forceinline GSVector4 uph(const GSVector4& a) const
{
return GSVector4(_mm_unpackhi_ps(m, a));
}
__forceinline GSVector4 upld(const GSVector4& a) const
{
return GSVector4(_mm_castpd_ps(_mm_unpacklo_pd(_mm_castps_pd(m), _mm_castps_pd(a.m))));
}
__forceinline GSVector4 uphd(const GSVector4& a) const
{
return GSVector4(_mm_castpd_ps(_mm_unpackhi_pd(_mm_castps_pd(m), _mm_castps_pd(a.m))));
}
__forceinline GSVector4 l2h(const GSVector4& a) const
{
return GSVector4(_mm_movelh_ps(m, a));
}
__forceinline GSVector4 h2l(const GSVector4& a) const
{
return GSVector4(_mm_movehl_ps(m, a));
}
__forceinline GSVector4 andnot(const GSVector4& v) const
{
return GSVector4(_mm_andnot_ps(v.m, m));
}
__forceinline int mask() const
{
return _mm_movemask_ps(m);
}
__forceinline bool alltrue() const
{
return mask() == 0xf;
}
__forceinline bool allfalse() const
{
#if _M_SSE >= 0x500
return _mm_testz_ps(m, m) != 0;
#elif _M_SSE >= 0x401
__m128i a = _mm_castps_si128(m);
return _mm_testz_si128(a, a) != 0;
#else
return mask() == 0;
#endif
}
__forceinline GSVector4 replace_nan(const GSVector4& v) const
{
return v.blend32(*this, *this == *this);
}
template<int src, int dst> __forceinline GSVector4 insert32(const GSVector4& v) const
{
// TODO: use blendps when src == dst
#if 0 // _M_SSE >= 0x401
// NOTE: it's faster with shuffles...
return GSVector4(_mm_insert_ps(m, v.m, _MM_MK_INSERTPS_NDX(src, dst, 0)));
#else
switch(dst)
{
case 0:
switch(src)
{
case 0: return yyxx(v).zxzw(*this);
case 1: return yyyy(v).zxzw(*this);
case 2: return yyzz(v).zxzw(*this);
case 3: return yyww(v).zxzw(*this);
default: __assume(0);
}
break;
case 1:
switch(src)
{
case 0: return xxxx(v).xzzw(*this);
case 1: return xxyy(v).xzzw(*this);
case 2: return xxzz(v).xzzw(*this);
case 3: return xxww(v).xzzw(*this);
default: __assume(0);
}
break;
case 2:
switch(src)
{
case 0: return xyzx(wwxx(v));
case 1: return xyzx(wwyy(v));
case 2: return xyzx(wwzz(v));
case 3: return xyzx(wwww(v));
default: __assume(0);
}
break;
case 3:
switch(src)
{
case 0: return xyxz(zzxx(v));
case 1: return xyxz(zzyy(v));
case 2: return xyxz(zzzz(v));
case 3: return xyxz(zzww(v));
default: __assume(0);
}
break;
default:
__assume(0);
}
#endif
}
#ifdef __linux__
#if 0
// Debug build error, _mm_extract_ps is actually a macro that use an anonymous union
// that contains i. I decide to rename the template on linux but it makes windows unhappy
// Hence the nice ifdef
//
// Code extract:
// union { int i; float f; } __tmp;
GSVector.h:2977:40: error: declaration of 'int GSVector4::extract32() const::<anonymous union>::i'
return _mm_extract_ps(m, i);
GSVector.h:2973:15: error: shadows template parm 'int i'
template<int i> __forceinline int extract32() const
#endif
template<int index> __forceinline int extract32() const
{
#if _M_SSE >= 0x401
return _mm_extract_ps(m, index);
#else
return i32[index];
#endif
}
#else
template<int i> __forceinline int extract32() const
{
#if _M_SSE >= 0x401
return _mm_extract_ps(m, i);
#else
return i32[i];
#endif
}
#endif
__forceinline static GSVector4 zero()
{
return GSVector4(_mm_setzero_ps());
}
__forceinline static GSVector4 xffffffff()
{
return zero() == zero();
}
__forceinline static GSVector4 ps0123()
{
return GSVector4(m_ps0123);
}
__forceinline static GSVector4 ps4567()
{
return GSVector4(m_ps4567);
}
__forceinline static GSVector4 loadl(const void* p)
{
return GSVector4(_mm_castpd_ps(_mm_load_sd((double*)p)));
}
__forceinline static GSVector4 load(float f)
{
return GSVector4(_mm_load_ss(&f));
}
__forceinline static GSVector4 load(uint32 u)
{
GSVector4i v = GSVector4i::load((int)u);
return GSVector4(v) + (m_x4f800000 & GSVector4::cast(v.sra32(31)));
}
template<bool aligned> __forceinline static GSVector4 load(const void* p)
{
return GSVector4(aligned ? _mm_load_ps((const float*)p) : _mm_loadu_ps((const float*)p));
}
__forceinline static void storent(void* p, const GSVector4& v)
{
_mm_stream_ps((float*)p, v.m);
}
__forceinline static void storel(void* p, const GSVector4& v)
{
_mm_store_sd((double*)p, _mm_castps_pd(v.m));
}
__forceinline static void storeh(void* p, const GSVector4& v)
{
_mm_storeh_pd((double*)p, _mm_castps_pd(v.m));
}
template<bool aligned> __forceinline static void store(void* p, const GSVector4& v)
{
if(aligned) _mm_store_ps((float*)p, v.m);
else _mm_storeu_ps((float*)p, v.m);
}
__forceinline static void store(float* p, const GSVector4& v)
{
_mm_store_ss(p, v.m);
}
__forceinline static void expand(const GSVector4i& v, GSVector4& a, GSVector4& b, GSVector4& c, GSVector4& d)
{
GSVector4i mask = GSVector4i::x000000ff();
a = GSVector4(v & mask);
b = GSVector4((v >> 8) & mask);
c = GSVector4((v >> 16) & mask);
d = GSVector4((v >> 24));
}
__forceinline static void transpose(GSVector4& a, GSVector4& b, GSVector4& c, GSVector4& d)
{
GSVector4 v0 = a.xyxy(b);
GSVector4 v1 = c.xyxy(d);
GSVector4 e = v0.xzxz(v1);
GSVector4 f = v0.ywyw(v1);
GSVector4 v2 = a.zwzw(b);
GSVector4 v3 = c.zwzw(d);
GSVector4 g = v2.xzxz(v3);
GSVector4 h = v2.ywyw(v3);
a = e;
b = f;
c = g;
d = h;
/*
GSVector4 v0 = a.xyxy(b);
GSVector4 v1 = c.xyxy(d);
GSVector4 v2 = a.zwzw(b);
GSVector4 v3 = c.zwzw(d);
a = v0.xzxz(v1);
b = v0.ywyw(v1);
c = v2.xzxz(v3);
d = v2.ywyw(v3);
*/
/*
GSVector4 v0 = a.upl(b);
GSVector4 v1 = a.uph(b);
GSVector4 v2 = c.upl(d);
GSVector4 v3 = c.uph(d);
a = v0.l2h(v2);
b = v2.h2l(v0);
c = v1.l2h(v3);
d = v3.h2l(v1);
*/ }
__forceinline GSVector4 operator - () const
{
return neg();
}
__forceinline void operator += (const GSVector4& v)
{
m = _mm_add_ps(m, v);
}
__forceinline void operator -= (const GSVector4& v)
{
m = _mm_sub_ps(m, v);
}
__forceinline void operator *= (const GSVector4& v)
{
m = _mm_mul_ps(m, v);
}
__forceinline void operator /= (const GSVector4& v)
{
m = _mm_div_ps(m, v);
}
__forceinline void operator += (float f)
{
*this += GSVector4(f);
}
__forceinline void operator -= (float f)
{
*this -= GSVector4(f);
}
__forceinline void operator *= (float f)
{
*this *= GSVector4(f);
}
__forceinline void operator /= (float f)
{
*this /= GSVector4(f);
}
__forceinline void operator &= (const GSVector4& v)
{
m = _mm_and_ps(m, v);
}
__forceinline void operator |= (const GSVector4& v)
{
m = _mm_or_ps(m, v);
}
__forceinline void operator ^= (const GSVector4& v)
{
m = _mm_xor_ps(m, v);
}
__forceinline friend GSVector4 operator + (const GSVector4& v1, const GSVector4& v2)
{
return GSVector4(_mm_add_ps(v1, v2));
}
__forceinline friend GSVector4 operator - (const GSVector4& v1, const GSVector4& v2)
{
return GSVector4(_mm_sub_ps(v1, v2));
}
__forceinline friend GSVector4 operator * (const GSVector4& v1, const GSVector4& v2)
{
return GSVector4(_mm_mul_ps(v1, v2));
}
__forceinline friend GSVector4 operator / (const GSVector4& v1, const GSVector4& v2)
{
return GSVector4(_mm_div_ps(v1, v2));
}
__forceinline friend GSVector4 operator + (const GSVector4& v, float f)
{
return v + GSVector4(f);
}
__forceinline friend GSVector4 operator - (const GSVector4& v, float f)
{
return v - GSVector4(f);
}
__forceinline friend GSVector4 operator * (const GSVector4& v, float f)
{
return v * GSVector4(f);
}
__forceinline friend GSVector4 operator / (const GSVector4& v, float f)
{
return v / GSVector4(f);
}
__forceinline friend GSVector4 operator & (const GSVector4& v1, const GSVector4& v2)
{
return GSVector4(_mm_and_ps(v1, v2));
}
__forceinline friend GSVector4 operator | (const GSVector4& v1, const GSVector4& v2)
{
return GSVector4(_mm_or_ps(v1, v2));
}
__forceinline friend GSVector4 operator ^ (const GSVector4& v1, const GSVector4& v2)
{
return GSVector4(_mm_xor_ps(v1, v2));
}
__forceinline friend GSVector4 operator == (const GSVector4& v1, const GSVector4& v2)
{
return GSVector4(_mm_cmpeq_ps(v1, v2));
}
__forceinline friend GSVector4 operator != (const GSVector4& v1, const GSVector4& v2)
{
return GSVector4(_mm_cmpneq_ps(v1, v2));
}
__forceinline friend GSVector4 operator > (const GSVector4& v1, const GSVector4& v2)
{
return GSVector4(_mm_cmpgt_ps(v1, v2));
}
__forceinline friend GSVector4 operator < (const GSVector4& v1, const GSVector4& v2)
{
return GSVector4(_mm_cmplt_ps(v1, v2));
}
__forceinline friend GSVector4 operator >= (const GSVector4& v1, const GSVector4& v2)
{
return GSVector4(_mm_cmpge_ps(v1, v2));
}
__forceinline friend GSVector4 operator <= (const GSVector4& v1, const GSVector4& v2)
{
return GSVector4(_mm_cmple_ps(v1, v2));
}
#define VECTOR4_SHUFFLE_4(xs, xn, ys, yn, zs, zn, ws, wn) \
__forceinline GSVector4 xs##ys##zs##ws() const {return GSVector4(_mm_shuffle_ps(m, m, _MM_SHUFFLE(wn, zn, yn, xn)));} \
__forceinline GSVector4 xs##ys##zs##ws(const GSVector4& v) const {return GSVector4(_mm_shuffle_ps(m, v.m, _MM_SHUFFLE(wn, zn, yn, xn)));} \
#define VECTOR4_SHUFFLE_3(xs, xn, ys, yn, zs, zn) \
VECTOR4_SHUFFLE_4(xs, xn, ys, yn, zs, zn, x, 0) \
VECTOR4_SHUFFLE_4(xs, xn, ys, yn, zs, zn, y, 1) \
VECTOR4_SHUFFLE_4(xs, xn, ys, yn, zs, zn, z, 2) \
VECTOR4_SHUFFLE_4(xs, xn, ys, yn, zs, zn, w, 3) \
#define VECTOR4_SHUFFLE_2(xs, xn, ys, yn) \
VECTOR4_SHUFFLE_3(xs, xn, ys, yn, x, 0) \
VECTOR4_SHUFFLE_3(xs, xn, ys, yn, y, 1) \
VECTOR4_SHUFFLE_3(xs, xn, ys, yn, z, 2) \
VECTOR4_SHUFFLE_3(xs, xn, ys, yn, w, 3) \
#define VECTOR4_SHUFFLE_1(xs, xn) \
VECTOR4_SHUFFLE_2(xs, xn, x, 0) \
VECTOR4_SHUFFLE_2(xs, xn, y, 1) \
VECTOR4_SHUFFLE_2(xs, xn, z, 2) \
VECTOR4_SHUFFLE_2(xs, xn, w, 3) \
VECTOR4_SHUFFLE_1(x, 0)
VECTOR4_SHUFFLE_1(y, 1)
VECTOR4_SHUFFLE_1(z, 2)
VECTOR4_SHUFFLE_1(w, 3)
#if _M_SSE >= 0x501
__forceinline GSVector4 broadcast32() const
{
return GSVector4(_mm_broadcastss_ps(m));
}
__forceinline static GSVector4 broadcast32(const GSVector4& v)
{
return GSVector4(_mm_broadcastss_ps(v.m));
}
__forceinline static GSVector4 broadcast32(const void* f)
{
return GSVector4(_mm_broadcastss_ps(_mm_load_ss((const float*)f)));
}
#endif
};