2023-12-22 11:57:49 +00:00
// SPDX-FileCopyrightText: 2002-2023 PCSX2 Dev Team
// SPDX-License-Identifier: LGPL-3.0+
2023-07-20 13:23:09 +00:00
2022-06-04 04:58:05 +00:00
#ifdef VERTEX_SHADER
layout(location = 0) in vec4 a_pos;
layout(location = 1) in vec2 a_tex;
layout(location = 0) out vec2 v_tex;
void main()
{
gl_Position = vec4(a_pos.x, -a_pos.y, a_pos.z, a_pos.w);
v_tex = a_tex;
}
#endif
#ifdef FRAGMENT_SHADER
layout(push_constant) uniform cb10
{
vec4 u_source_rect;
vec4 u_target_rect;
vec2 u_source_size;
vec2 u_target_size;
vec2 u_target_resolution;
vec2 u_rcp_target_resolution; // 1 / u_target_resolution
vec2 u_source_resolution;
vec2 u_rcp_source_resolution; // 1 / u_source_resolution
float u_time;
};
layout(location = 0) in vec2 v_tex;
layout(location = 0) out vec4 o_col0;
layout(set = 0, binding = 0) uniform sampler2D samp0;
vec4 sample_c(vec2 uv)
{
return texture(samp0, uv);
}
vec4 ps_crt(uint i)
{
2022-06-06 13:33:28 +00:00
vec4 mask[4] = vec4[4](
vec4(1, 0, 0, 0),
vec4(0, 1, 0, 0),
vec4(0, 0, 1, 0),
vec4(1, 1, 1, 0));
return sample_c(v_tex) * clamp((mask[i] + 0.5f), 0.0f, 1.0f);
2022-06-04 04:58:05 +00:00
}
vec4 ps_scanlines(uint i)
{
2022-06-06 13:33:28 +00:00
vec4 mask[2] =
2022-06-04 04:58:05 +00:00
{
2022-06-06 13:33:28 +00:00
vec4(1, 1, 1, 0),
vec4(0, 0, 0, 0)};
2022-06-04 04:58:05 +00:00
2022-06-06 13:33:28 +00:00
return sample_c(v_tex) * clamp((mask[i] + 0.5f), 0.0f, 1.0f);
2022-06-04 04:58:05 +00:00
}
#ifdef ps_copy
void ps_copy()
{
o_col0 = sample_c(v_tex);
}
#endif
#ifdef ps_filter_scanlines
void ps_filter_scanlines() // scanlines
{
uvec4 p = uvec4(gl_FragCoord);
o_col0 = ps_scanlines(p.y % 2);
}
#endif
#ifdef ps_filter_diagonal
void ps_filter_diagonal() // diagonal
{
uvec4 p = uvec4(gl_FragCoord);
o_col0 = ps_crt((p.x + (p.y % 3)) % 3);
}
#endif
#ifdef ps_filter_triangular
void ps_filter_triangular() // triangular
{
uvec4 p = uvec4(gl_FragCoord);
2022-06-06 13:33:28 +00:00
// output.c = ps_crt(input, ((p.x + (p.y & 1) * 3) >> 1) % 3);
2022-06-04 04:58:05 +00:00
o_col0 = ps_crt(((p.x + ((p.y >> 1) & 1) * 3) >> 1) % 3);
}
#endif
#ifdef ps_filter_complex
void ps_filter_complex() // triangular
{
const float PI = 3.14159265359f;
vec2 texdim = vec2(textureSize(samp0, 0));
2022-11-25 22:18:20 +00:00
2022-06-10 13:23:58 +00:00
o_col0 = (0.9 - 0.4 * cos(2 * PI * v_tex.y * texdim.y)) * sample_c(vec2(v_tex.x, (floor(v_tex.y * texdim.y) + 0.5) / texdim.y));
2022-06-04 04:58:05 +00:00
}
#endif
2022-06-06 13:33:28 +00:00
#ifdef ps_filter_lottes
#define MaskingType 4 //[1|2|3|4] The type of CRT shadow masking used. 1: compressed TV style, 2: Aperture-grille, 3: Stretched VGA style, 4: VGA style.
#define ScanBrightness -8.00 //[-16.0 to 1.0] The overall brightness of the scanline effect. Lower for darker, higher for brighter.
#define FilterCRTAmount -1.00 //[-4.0 to 1.0] The amount of filtering used, to replicate the TV CRT look. Lower for less, higher for more.
#define HorizontalWarp 0.00 //[0.0 to 0.1] The distortion warping effect for the horizontal (x) axis of the screen. Use small increments.
#define VerticalWarp 0.00 //[0.0 to 0.1] The distortion warping effect for the verticle (y) axis of the screen. Use small increments.
#define MaskAmountDark 0.80 //[0.0 to 1.0] The value of the dark masking line effect used. Lower for darker lower end masking, higher for brighter.
#define MaskAmountLight 1.50 //[0.0 to 2.0] The value of the light masking line effect used. Lower for darker higher end masking, higher for brighter.
#define ResolutionScale 2.00 //[0.1 to 4.0] The scale of the image resolution. Lowering this can give off a nice retro TV look. Raising it can clear up the image.
#define MaskResolutionScale 0.80 //[0.1 to 2.0] The scale of the CRT mask resolution. Use this for balancing the scanline mask scale for difference resolution scaling.
#define UseShadowMask 1 //[0 or 1] Enables, or disables the use of the CRT shadow mask. 0 is disabled, 1 is enabled.
#define saturate(x) clamp(x, 0.0, 1.0)
float ToLinear1(float c)
{
c = saturate(c);
return c <= 0.04045 ? c / 12.92 : pow((c + 0.055) / 1.055, 2.4);
}
vec3 ToLinear(vec3 c)
{
return vec3(ToLinear1(c.r), ToLinear1(c.g), ToLinear1(c.b));
}
float ToSrgb1(float c)
{
c = saturate(c);
return c < 0.0031308 ? c * 12.92 : 1.055 * pow(c, 0.41666) - 0.055;
}
vec3 ToSrgb(vec3 c)
{
return vec3(ToSrgb1(c.r), ToSrgb1(c.g), ToSrgb1(c.b));
}
vec3 Fetch(vec2 pos, vec2 off)
{
vec2 screenSize = u_source_resolution;
vec2 res = (screenSize * ResolutionScale);
pos = round(pos * res + off) / res;
if (max(abs(pos.x - 0.5), abs(pos.y - 0.5)) > 0.5)
{
return vec3(0.0, 0.0, 0.0);
}
else
{
return ToLinear(texture(samp0, pos.xy).rgb);
}
}
vec2 Dist(vec2 pos)
{
vec2 crtRes = u_rcp_target_resolution;
vec2 res = (crtRes * MaskResolutionScale);
pos = (pos * res);
return -((pos - floor(pos)) - vec2(0.5, 0.5));
}
float Gaus(float pos, float scale)
{
return exp2(scale * pos * pos);
}
vec3 Horz3(vec2 pos, float off)
{
vec3 b = Fetch(pos, vec2(-1.0, off));
vec3 c = Fetch(pos, vec2(0.0, off));
vec3 d = Fetch(pos, vec2(1.0, off));
float dst = Dist(pos).x;
// Convert distance to weight.
float scale = FilterCRTAmount;
float wb = Gaus(dst - 1.0, scale);
float wc = Gaus(dst + 0.0, scale);
float wd = Gaus(dst + 1.0, scale);
return (b * wb) + (c * wc) + (d * wd) / (wb + wc + wd);
}
vec3 Horz5(vec2 pos, float off)
{
vec3 a = Fetch(pos, vec2(-2.0, off));
vec3 b = Fetch(pos, vec2(-1.0, off));
vec3 c = Fetch(pos, vec2(0.0, off));
vec3 d = Fetch(pos, vec2(1.0, off));
vec3 e = Fetch(pos, vec2(2.0, off));
float dst = Dist(pos).x;
// Convert distance to weight.
float scale = FilterCRTAmount;
float wa = Gaus(dst - 2.0, scale);
float wb = Gaus(dst - 1.0, scale);
float wc = Gaus(dst + 0.0, scale);
float wd = Gaus(dst + 1.0, scale);
float we = Gaus(dst + 2.0, scale);
return (a * wa) + (b * wb) + (c * wc) + (d * wd) + (e * we) / (wa + wb + wc + wd + we);
}
// Return scanline weight.
float Scan(vec2 pos, float off)
{
float dst = Dist(pos).y;
return Gaus(dst + off, ScanBrightness);
}
vec3 Tri(vec2 pos)
{
vec3 a = Horz3(pos, -1.0);
vec3 b = Horz5(pos, 0.0);
vec3 c = Horz3(pos, 1.0);
float wa = Scan(pos, -1.0);
float wb = Scan(pos, 0.0);
float wc = Scan(pos, 1.0);
return (a * wa) + (b * wb) + (c * wc);
}
vec2 Warp(vec2 pos)
{
pos = pos * 2.0 - 1.0;
pos *= vec2(1.0 + (pos.y * pos.y) * HorizontalWarp, 1.0 + (pos.x * pos.x) * VerticalWarp);
return pos * 0.5 + 0.5;
}
vec3 Mask(vec2 pos)
{
#if MaskingType == 1
// Very compressed TV style shadow mask.
float lines = MaskAmountLight;
float odd = 0.0;
if (fract(pos.x / 6.0) < 0.5)
{
odd = 1.0;
}
if (fract((pos.y + odd) / 2.0) < 0.5)
{
lines = MaskAmountDark;
}
pos.x = fract(pos.x / 3.0);
vec3 mask = vec3(MaskAmountDark, MaskAmountDark, MaskAmountDark);
if (pos.x < 0.333)
{
mask.r = MaskAmountLight;
}
else if (pos.x < 0.666)
{
mask.g = MaskAmountLight;
}
else
{
mask.b = MaskAmountLight;
}
mask *= lines;
return mask;
#elif MaskingType == 2
// Aperture-grille.
pos.x = fract(pos.x / 3.0);
vec3 mask = vec3(MaskAmountDark, MaskAmountDark, MaskAmountDark);
if (pos.x < 0.333)
{
mask.r = MaskAmountLight;
}
else if (pos.x < 0.666)
{
mask.g = MaskAmountLight;
}
else
{
mask.b = MaskAmountLight;
}
return mask;
#elif MaskingType == 3
// Stretched VGA style shadow mask (same as prior shaders).
pos.x += pos.y * 3.0;
vec3 mask = vec3(MaskAmountDark, MaskAmountDark, MaskAmountDark);
pos.x = fract(pos.x / 6.0);
if (pos.x < 0.333)
{
mask.r = MaskAmountLight;
}
else if (pos.x < 0.666)
{
mask.g = MaskAmountLight;
}
else
{
mask.b = MaskAmountLight;
}
return mask;
#else
// VGA style shadow mask.
pos.xy = floor(pos.xy * vec2(1.0, 0.5));
pos.x += pos.y * 3.0;
vec3 mask = vec3(MaskAmountDark, MaskAmountDark, MaskAmountDark);
pos.x = fract(pos.x / 6.0);
if (pos.x < 0.333)
{
mask.r = MaskAmountLight;
}
else if (pos.x < 0.666)
{
mask.g = MaskAmountLight;
}
else
{
mask.b = MaskAmountLight;
}
return mask;
#endif
}
vec4 LottesCRTPass()
{
vec4 fragcoord = gl_FragCoord - u_target_rect;
vec4 color;
vec2 inSize = u_target_resolution - (2 * u_target_rect.xy);
vec2 pos = Warp(fragcoord.xy / inSize);
#if UseShadowMask == 0
color.rgb = Tri(pos);
#else
color.rgb = Tri(pos) * Mask(fragcoord.xy);
#endif
color.rgb = ToSrgb(color.rgb);
color.a = 1.0;
return color;
}
void ps_filter_lottes()
{
o_col0 = LottesCRTPass();
}
#endif
2022-12-21 17:12:50 +00:00
#ifdef ps_4x_rgss
void ps_4x_rgss()
{
vec2 dxy = vec2(dFdx(v_tex.x), dFdy(v_tex.y));
vec3 color = vec3(0);
float s = 1.0/8.0;
float l = 3.0/8.0;
color += sample_c(v_tex + vec2( s, l) * dxy).rgb;
color += sample_c(v_tex + vec2( l,-s) * dxy).rgb;
color += sample_c(v_tex + vec2(-s,-l) * dxy).rgb;
color += sample_c(v_tex + vec2(-l, s) * dxy).rgb;
o_col0 = vec4(color * 0.25,1);
}
#endif
#ifdef ps_automagical_supersampling
void ps_automagical_supersampling()
{
vec2 ratio = (u_source_size / u_target_size) * 0.5;
vec2 steps = floor(ratio);
vec3 col = sample_c(v_tex).rgb;
float div = 1;
for (float y = 0; y < steps.y; y++)
{
for (float x = 0; x < steps.x; x++)
{
vec2 offset = vec2(x,y) - ratio * 0.5;
col += sample_c(v_tex + offset * u_rcp_source_resolution * 2.0).rgb;
div++;
}
}
o_col0 = vec4(col / div, 1);
}
#endif
2022-11-25 22:18:20 +00:00
#endif