pcsx2/plugins/zzogl-pg/opengl/ZZClut.cpp

1084 lines
34 KiB
C++
Raw Normal View History

/* ZZ Open GL graphics plugin
* Copyright (c)2009-2010 zeydlitz@gmail.com, arcum42@gmail.com
* Based on Zerofrog's ZeroGS KOSMOS (c)2005-2008
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "GS.h"
#include "Mem.h"
#include "Util.h"
#if defined(ZEROGS_SSE2)
#include <emmintrin.h>
#endif
// Local Clut buffer:
// It supports both 32 bits and 16 bits colors formats. The size of the buffer is 1KBytes.
// The 16 bits entries are arranged in 2 columns. One row is a 32 bits colors.
// 256 0
// 271 1
// ... ..
// 510 254
// 511 255
//
// CSA -> clut buffer offset:
// 16 bits format: CSA < 32 <=> 16 entries, 16 half-row of the buffer (for example 0 to 15)
// 32 bits format: CSA < 16 <=> 16 entries, 16 full row of the buffer (for example 256|0 to 271|15)
static const __aligned16 int s_clut_16bits_mask[4] = { 0x0000ffff, 0x0000ffff, 0x0000ffff, 0x0000ffff };
template <class T>
__forceinline T* GetClutBufferAddress(u32 csa) { }
template <>
__forceinline u32* GetClutBufferAddress<u32>(u32 csa)
{
return (u32*)(g_pbyGSClut + 64 * (csa & 15));
}
template <>
__forceinline u16* GetClutBufferAddress<u16>(u32 csa)
{
return (u16*)(g_pbyGSClut + 64 * (csa & 15) + (csa >= 16 ? 2 : 0));
}
/* *****************************************************************
* Local memory -> Clut buffer
* *****************************************************************/
#ifdef ZEROGS_SSE2
__forceinline void GSMem_to_ClutBuffer__T32_I8_CSM1_sse2(u32* vm, u32 csa)
{
u32* clut = GetClutBufferAddress<u32>(csa);
__m128i* src = (__m128i*)vm;
__m128i* dst = (__m128i*)clut;
for (int j = 0; j < 64; j += 32, src += 32, dst += 32)
{
for (int i = 0; i < 16; i += 4)
{
__m128i r0 = _mm_load_si128(&src[i+0]);
__m128i r1 = _mm_load_si128(&src[i+1]);
__m128i r2 = _mm_load_si128(&src[i+2]);
__m128i r3 = _mm_load_si128(&src[i+3]);
_mm_store_si128(&dst[i*2+0], _mm_unpacklo_epi64(r0, r1));
_mm_store_si128(&dst[i*2+1], _mm_unpacklo_epi64(r2, r3));
_mm_store_si128(&dst[i*2+2], _mm_unpackhi_epi64(r0, r1));
_mm_store_si128(&dst[i*2+3], _mm_unpackhi_epi64(r2, r3));
__m128i r4 = _mm_load_si128(&src[i+0+16]);
__m128i r5 = _mm_load_si128(&src[i+1+16]);
__m128i r6 = _mm_load_si128(&src[i+2+16]);
__m128i r7 = _mm_load_si128(&src[i+3+16]);
_mm_store_si128(&dst[i*2+4], _mm_unpacklo_epi64(r4, r5));
_mm_store_si128(&dst[i*2+5], _mm_unpacklo_epi64(r6, r7));
_mm_store_si128(&dst[i*2+6], _mm_unpackhi_epi64(r4, r5));
_mm_store_si128(&dst[i*2+7], _mm_unpackhi_epi64(r6, r7));
}
}
}
__forceinline void GSMem_to_ClutBuffer__T32_I4_CSM1_sse2(u32* vm, u32 csa)
{
u32* clut = GetClutBufferAddress<u32>(csa);
__m128i* src = (__m128i*)vm;
__m128i* dst = (__m128i*)clut;
__m128i r0 = _mm_load_si128(&src[0]);
__m128i r1 = _mm_load_si128(&src[1]);
__m128i r2 = _mm_load_si128(&src[2]);
__m128i r3 = _mm_load_si128(&src[3]);
_mm_store_si128(&dst[0], _mm_unpacklo_epi64(r0, r1));
_mm_store_si128(&dst[1], _mm_unpacklo_epi64(r2, r3));
_mm_store_si128(&dst[2], _mm_unpackhi_epi64(r0, r1));
_mm_store_si128(&dst[3], _mm_unpackhi_epi64(r2, r3));
}
template<bool CSA_0_15, bool HIGH_16BITS_VM>
__forceinline void GSMem_to_ClutBuffer__T16_I4_CSM1_core_sse2(u32* vm, u32* clut)
{
__m128i vm_0;
__m128i vm_1;
__m128i vm_2;
__m128i vm_3;
__m128i clut_0;
__m128i clut_1;
__m128i clut_2;
__m128i clut_3;
__m128i clut_mask = _mm_load_si128((__m128i*)s_clut_16bits_mask);
// !HIGH_16BITS_VM
// CSA in 0-15
// Replace lower 16 bits of clut with lower 16 bits of vm
// CSA in 16-31
// Replace higher 16 bits of clut with lower 16 bits of vm
// HIGH_16BITS_VM
// CSA in 0-15
// Replace lower 16 bits of clut with higher 16 bits of vm
// CSA in 16-31
// Replace higher 16 bits of clut with higher 16 bits of vm
if(HIGH_16BITS_VM && CSA_0_15) {
// move up to low
vm_0 = _mm_load_si128((__m128i*)vm); // 9 8 1 0
vm_1 = _mm_load_si128((__m128i*)vm+1); // 11 10 3 2
vm_2 = _mm_load_si128((__m128i*)vm+2); // 13 12 5 4
vm_3 = _mm_load_si128((__m128i*)vm+3); // 15 14 7 6
vm_0 = _mm_srli_epi32(vm_0, 16);
vm_1 = _mm_srli_epi32(vm_1, 16);
vm_2 = _mm_srli_epi32(vm_2, 16);
vm_3 = _mm_srli_epi32(vm_3, 16);
} else if(HIGH_16BITS_VM && !CSA_0_15) {
// Remove lower 16 bits
vm_0 = _mm_andnot_si128(clut_mask, _mm_load_si128((__m128i*)vm)); // 9 8 1 0
vm_1 = _mm_andnot_si128(clut_mask, _mm_load_si128((__m128i*)vm+1)); // 11 10 3 2
vm_2 = _mm_andnot_si128(clut_mask, _mm_load_si128((__m128i*)vm+2)); // 13 12 5 4
vm_3 = _mm_andnot_si128(clut_mask, _mm_load_si128((__m128i*)vm+3)); // 15 14 7 6
} else if(!HIGH_16BITS_VM && CSA_0_15) {
// Remove higher 16 bits
vm_0 = _mm_and_si128(clut_mask, _mm_load_si128((__m128i*)vm)); // 9 8 1 0
vm_1 = _mm_and_si128(clut_mask, _mm_load_si128((__m128i*)vm+1)); // 11 10 3 2
vm_2 = _mm_and_si128(clut_mask, _mm_load_si128((__m128i*)vm+2)); // 13 12 5 4
vm_3 = _mm_and_si128(clut_mask, _mm_load_si128((__m128i*)vm+3)); // 15 14 7 6
} else if(!HIGH_16BITS_VM && !CSA_0_15) {
// move low to high
vm_0 = _mm_load_si128((__m128i*)vm); // 9 8 1 0
vm_1 = _mm_load_si128((__m128i*)vm+1); // 11 10 3 2
vm_2 = _mm_load_si128((__m128i*)vm+2); // 13 12 5 4
vm_3 = _mm_load_si128((__m128i*)vm+3); // 15 14 7 6
vm_0 = _mm_slli_epi32(vm_0, 16);
vm_1 = _mm_slli_epi32(vm_1, 16);
vm_2 = _mm_slli_epi32(vm_2, 16);
vm_3 = _mm_slli_epi32(vm_3, 16);
}
// Unsizzle the data
__m128i row_0 = _mm_unpacklo_epi64(vm_0, vm_1); // 3 2 1 0
__m128i row_1 = _mm_unpacklo_epi64(vm_2, vm_3); // 7 6 5 4
__m128i row_2 = _mm_unpackhi_epi64(vm_0, vm_1); // 11 10 9 8
__m128i row_3 = _mm_unpackhi_epi64(vm_2, vm_3); // 15 14 13 12
// load old data & remove useless part
if(CSA_0_15) {
// Remove lower 16 bits
clut_0 = _mm_andnot_si128(clut_mask, _mm_load_si128((__m128i*)clut));
clut_1 = _mm_andnot_si128(clut_mask, _mm_load_si128((__m128i*)clut+1));
clut_2 = _mm_andnot_si128(clut_mask, _mm_load_si128((__m128i*)clut+2));
clut_3 = _mm_andnot_si128(clut_mask, _mm_load_si128((__m128i*)clut+3));
} else {
// Remove higher 16 bits
clut_0 = _mm_and_si128(clut_mask, _mm_load_si128((__m128i*)clut));
clut_1 = _mm_and_si128(clut_mask, _mm_load_si128((__m128i*)clut+1));
clut_2 = _mm_and_si128(clut_mask, _mm_load_si128((__m128i*)clut+2));
clut_3 = _mm_and_si128(clut_mask, _mm_load_si128((__m128i*)clut+3));
}
// Merge old & new data
clut_0 = _mm_or_si128(clut_0, row_0);
clut_1 = _mm_or_si128(clut_1, row_1);
clut_2 = _mm_or_si128(clut_2, row_2);
clut_3 = _mm_or_si128(clut_3, row_3);
_mm_store_si128((__m128i*)clut, clut_0);
_mm_store_si128((__m128i*)clut+1, clut_1);
_mm_store_si128((__m128i*)clut+2, clut_2);
_mm_store_si128((__m128i*)clut+3, clut_3);
}
__forceinline void GSMem_to_ClutBuffer__T16_I4_CSM1_sse2(u32* vm, u32 csa)
{
u32* clut = GetClutBufferAddress<u32>(csa); // Keep aligned version for sse2
if (csa > 15) {
GSMem_to_ClutBuffer__T16_I4_CSM1_core_sse2<false, false>(vm, clut);
} else {
GSMem_to_ClutBuffer__T16_I4_CSM1_core_sse2<true, false>(vm, clut);
}
}
__forceinline void GSMem_to_ClutBuffer__T16_I8_CSM1_sse2(u32* vm, u32 csa)
{
// update the right clut column (csa < 16)
u32* clut = GetClutBufferAddress<u32>(csa); // Keep aligned version for sse2
u32 csa_right = (csa < 16) ? 16 - csa : 0;
for(int i = (csa_right/2); i > 0 ; --i) {
GSMem_to_ClutBuffer__T16_I4_CSM1_core_sse2<true,false>(vm, clut);
clut += 16;
GSMem_to_ClutBuffer__T16_I4_CSM1_core_sse2<true,true>(vm, clut);
clut += 16;
vm += 16; // go down one column
}
// update the left clut column
u32 csa_left = (csa >= 16) ? 16 : csa;
// In case csa_right is odd (so csa_left is also odd), we cross the clut column
if(csa_right & 0x1) {
GSMem_to_ClutBuffer__T16_I4_CSM1_core_sse2<true,false>(vm, clut);
// go back to the base before processing left clut column
clut = GetClutBufferAddress<u32>(0); // Keep aligned version for sse2
GSMem_to_ClutBuffer__T16_I4_CSM1_core_sse2<false,true>(vm, clut);
clut += 16;
vm += 16; // go down one column
} else if(csa_right != 0) {
// go back to the base before processing left clut column
clut = GetClutBufferAddress<u32>(0); // Keep aligned version for sse2
}
for(int i = (csa_left/2); i > 0 ; --i) {
GSMem_to_ClutBuffer__T16_I4_CSM1_core_sse2<false,false>(vm, clut);
clut += 16;
GSMem_to_ClutBuffer__T16_I4_CSM1_core_sse2<false,true>(vm, clut);
clut += 16;
vm += 16; // go down one column
}
}
#endif // ZEROGS_SSE2
__forceinline void GSMem_to_ClutBuffer__T16_I8_CSM1_c(u32* _vm, u32 csa)
{
const static u32 map[] =
{
0, 2, 8, 10, 16, 18, 24, 26,
4, 6, 12, 14, 20, 22, 28, 30,
1, 3, 9, 11, 17, 19, 25, 27,
5, 7, 13, 15, 21, 23, 29, 31
};
u16* vm = (u16*)_vm;
u16* clut = GetClutBufferAddress<u16>(csa);
int left = ((u32)(uptr)clut & 2) ? 512 : 512 - (((u32)(uptr)clut) & 0x3ff) / 2;
for (int j = 0; j < 8; j++, vm += 32, clut += 64, left -= 32)
{
if (left == 32)
{
assert(left == 32);
for (int i = 0; i < 16; i++)
clut[2*i] = vm[map[i]];
clut = (u16*)((uptr)clut & ~0x3ff) + 1;
for (int i = 16; i < 32; i++)
clut[2*i] = vm[map[i]];
}
else
{
if (left == 0)
{
clut = (u16*)((uptr)clut & ~0x3ff) + 1;
left = -1;
}
for (int i = 0; i < 32; i++)
clut[2*i] = vm[map[i]];
}
}
}
__forceinline void GSMem_to_ClutBuffer__T32_I8_CSM1_c(u32* vm, u32 csa)
{
u64* src = (u64*)vm;
u64* dst = (u64*)GetClutBufferAddress<u32>(csa);
for (int j = 0; j < 2; j++, src += 32)
{
for (int i = 0; i < 4; i++, dst += 16, src += 8)
{
dst[0] = src[0];
dst[1] = src[2];
dst[2] = src[4];
dst[3] = src[6];
dst[4] = src[1];
dst[5] = src[3];
dst[6] = src[5];
dst[7] = src[7];
dst[8] = src[32];
dst[9] = src[32+2];
dst[10] = src[32+4];
dst[11] = src[32+6];
dst[12] = src[32+1];
dst[13] = src[32+3];
dst[14] = src[32+5];
dst[15] = src[32+7];
}
}
}
__forceinline void GSMem_to_ClutBuffer__T16_I4_CSM1_c(u32* _vm, u32 csa)
{
u16* dst = GetClutBufferAddress<u16>(csa);
u16* src = (u16*)_vm;
dst[0] = src[0];
dst[2] = src[2];
dst[4] = src[8];
dst[6] = src[10];
dst[8] = src[16];
dst[10] = src[18];
dst[12] = src[24];
dst[14] = src[26];
dst[16] = src[4];
dst[18] = src[6];
dst[20] = src[12];
dst[22] = src[14];
dst[24] = src[20];
dst[26] = src[22];
dst[28] = src[28];
dst[30] = src[30];
}
__forceinline void GSMem_to_ClutBuffer__T32_I4_CSM1_c(u32* vm, u32 csa)
{
u64* src = (u64*)vm;
u64* dst = (u64*)GetClutBufferAddress<u32>(csa);
dst[0] = src[0];
dst[1] = src[2];
dst[2] = src[4];
dst[3] = src[6];
dst[4] = src[1];
dst[5] = src[3];
dst[6] = src[5];
dst[7] = src[7];
}
// Main GSmem to Clutbuffer function
/*__forceinline*/ void GSMem_to_ClutBuffer(tex0Info &tex0)
{
int entries = PSMT_IS8CLUT(tex0.psm) ? 256 : 16;
u8* _src = g_pbyGSMemory + 256 * tex0.cbp;
if (tex0.csm)
{
switch (tex0.cpsm)
{
// 16bit psm
// eggomania uses non16bit textures for csm2
case PSMCT16:
{
u16* src = (u16*)_src;
u16 *dst = GetClutBufferAddress<u16>(tex0.csa);
for (int i = 0; i < entries; ++i)
{
*dst = src[getPixelAddress16_0(gs.clut.cou+i, gs.clut.cov, gs.clut.cbw)];
dst += 2;
// check for wrapping
if (((u32)dst & 0x3ff) == 0) dst = GetClutBufferAddress<u16>(16);
}
break;
}
case PSMCT16S:
{
u16* src = (u16*)_src;
u16 *dst = GetClutBufferAddress<u16>(tex0.csa);
for (int i = 0; i < entries; ++i)
{
*dst = src[getPixelAddress16S_0(gs.clut.cou+i, gs.clut.cov, gs.clut.cbw)];
dst += 2;
// check for wrapping
if (((u32)dst & 0x3ff) == 0) dst = GetClutBufferAddress<u16>(16);
}
break;
}
case PSMCT32:
case PSMCT24:
{
u32* src = (u32*)_src;
u32 *dst = GetClutBufferAddress<u32>(tex0.csa);
// check if address exceeds src
if (src + getPixelAddress32_0(gs.clut.cou + entries - 1, gs.clut.cov, gs.clut.cbw) >= (u32*)g_pbyGSMemory + 0x00100000)
ZZLog::Error_Log("texClutWrite out of bounds.");
else
for (int i = 0; i < entries; ++i)
{
*dst = src[getPixelAddress32_0(gs.clut.cou+i, gs.clut.cov, gs.clut.cbw)];
dst++;
}
break;
}
default:
{
//ZZLog::Debug_Log("Unknown cpsm: %x (%x).", tex0.cpsm, tex0.psm);
break;
}
}
}
else
{
u32* src = (u32*)_src;
if (entries == 16)
{
if (tex0.cpsm < 2) {
#ifdef ZEROGS_SSE2
GSMem_to_ClutBuffer__T32_I4_CSM1_sse2(src, tex0.csa);
#else
GSMem_to_ClutBuffer__T32_I4_CSM1_c(src, tex0.csa);
#endif
} else {
#ifdef ZEROGS_SSE2
GSMem_to_ClutBuffer__T16_I4_CSM1_sse2(src, tex0.csa);
#else
GSMem_to_ClutBuffer__T16_I4_CSM1_c(src, tex0.csa);
#endif
}
}
else
{
if (tex0.cpsm < 2) {
#ifdef ZEROGS_SSE2
GSMem_to_ClutBuffer__T32_I8_CSM1_sse2(src, tex0.csa);
#else
GSMem_to_ClutBuffer__T32_I8_CSM1_c(src, tex0.csa);
#endif
} else {
#ifdef ZEROGS_SSE2
GSMem_to_ClutBuffer__T16_I8_CSM1_sse2(src, tex0.csa);
#else
GSMem_to_ClutBuffer__T16_I8_CSM1_c(src, tex0.csa);
#endif
}
}
}
}
/* *****************************************************************
* Clut buffer -> local C array (linear)
* *****************************************************************/
template <class T>
/*__forceinline*/ void ClutBuffer_to_Array(T* dst, u32 csa, u32 clutsize) {}
template <>
/*__forceinline*/ void ClutBuffer_to_Array<u32>(u32* dst, u32 csa, u32 clutsize)
{
u8* clut = (u8*)GetClutBufferAddress<u32>(csa);
memcpy_amd((u8*)dst, clut, clutsize);
}
template <>
/*__forceinline*/ void ClutBuffer_to_Array<u16>(u16* dst, u32 csa, u32 clutsize)
{
u16* clut = (u16*)GetClutBufferAddress<u32>(csa); // Keep aligned version for sse2
// which side to copy
u32 clutsize_right;
u32 clutsize_left;
if (csa < 16) {
clutsize_right = min(clutsize, (16-csa)*64);
clutsize_left = clutsize - clutsize_right;
} else {
clutsize_right = 0;
clutsize_left = clutsize;
}
while (clutsize_right > 0)
{
#ifdef ZEROGS_SSE2
// only lower 16 bits of dword are valid
__m128i clut_0 = _mm_load_si128((__m128i*)clut);
__m128i clut_1 = _mm_load_si128((__m128i*)clut+1);
__m128i clut_2 = _mm_load_si128((__m128i*)clut+2);
__m128i clut_3 = _mm_load_si128((__m128i*)clut+3);
clut_0 = _mm_shufflelo_epi16(clut_0, 0x88);
clut_1 = _mm_shufflelo_epi16(clut_1, 0x88);
clut_2 = _mm_shufflelo_epi16(clut_2, 0x88);
clut_3 = _mm_shufflelo_epi16(clut_3, 0x88);
clut_0 = _mm_shufflehi_epi16(clut_0, 0x88); // - - 3 2 1 0 - -
clut_1 = _mm_shufflehi_epi16(clut_1, 0x88);
clut_2 = _mm_shufflehi_epi16(clut_2, 0x88);
clut_3 = _mm_shufflehi_epi16(clut_3, 0x88);
clut_0 = _mm_srli_si128(clut_0, 4);
clut_1 = _mm_srli_si128(clut_1, 4);
clut_2 = _mm_srli_si128(clut_2, 4);
clut_3 = _mm_srli_si128(clut_3, 4);
_mm_store_si128((__m128i*)dst, _mm_unpacklo_epi64(clut_0, clut_1));
_mm_store_si128((__m128i*)dst+1, _mm_unpacklo_epi64(clut_2, clut_3));
#else
for(int i = 0; i < 16; ++i)
dst[i] = clut[2*i];
#endif
dst += 16;
clut += 32;
clutsize_right -= 32;
}
if(csa < 16) {
// go back to the base before processing left clut column
clut = (u16*)GetClutBufferAddress<u32>(0); // Keep aligned version for sse2
}
while (clutsize_left > 0)
{
#ifdef ZEROGS_SSE2
// only higher 16 bits of dword are valid
__m128i clut_0 = _mm_load_si128((__m128i*)clut);
__m128i clut_1 = _mm_load_si128((__m128i*)clut+1);
__m128i clut_2 = _mm_load_si128((__m128i*)clut+2);
__m128i clut_3 = _mm_load_si128((__m128i*)clut+3);
clut_0 = _mm_shufflelo_epi16(clut_0, 0x88);
clut_1 = _mm_shufflelo_epi16(clut_1, 0x88);
clut_2 = _mm_shufflelo_epi16(clut_2, 0x88);
clut_3 = _mm_shufflelo_epi16(clut_3, 0x88);
clut_0 = _mm_shufflehi_epi16(clut_0, 0x88); // - - 3 2 1 0 - -
clut_1 = _mm_shufflehi_epi16(clut_1, 0x88);
clut_2 = _mm_shufflehi_epi16(clut_2, 0x88);
clut_3 = _mm_shufflehi_epi16(clut_3, 0x88);
clut_0 = _mm_srli_si128(clut_0, 4);
clut_1 = _mm_srli_si128(clut_1, 4);
clut_2 = _mm_srli_si128(clut_2, 4);
clut_3 = _mm_srli_si128(clut_3, 4);
_mm_store_si128((__m128i*)dst, _mm_unpacklo_epi64(clut_0, clut_1));
_mm_store_si128((__m128i*)dst+1, _mm_unpacklo_epi64(clut_2, clut_3));
#else
// Note +1 because we change higher 16 bits
for(int i = 0; i < 16; ++i)
dst[i] = clut[2*i];
#endif
dst += 16;
clut += 32;
clutsize_left -= 32;
}
}
/* *****************************************************************
* Compare: Clut buffer <-> Local Memory
* *****************************************************************/
// false -> identical
// true -> different
template <class T>
/*__forceinline*/ bool Cmp_ClutBuffer_GSMem(T* GSmem, u32 csa, u32 clutsize);
template <>
/*__forceinline*/ bool Cmp_ClutBuffer_GSMem<u32>(u32* GSmem, u32 csa, u32 clutsize)
{
u64* _GSmem = (u64*) GSmem;
u64* clut = (u64*)GetClutBufferAddress<u32>(csa);
while(clutsize > 0) {
#ifdef ZEROGS_SSE2
// Note: local memory datas are swizzles
__m128i GSmem_0 = _mm_load_si128((__m128i*)_GSmem); // 9 8 1 0
__m128i GSmem_1 = _mm_load_si128((__m128i*)_GSmem+1); // 11 10 3 2
__m128i GSmem_2 = _mm_load_si128((__m128i*)_GSmem+2); // 13 12 5 4
__m128i GSmem_3 = _mm_load_si128((__m128i*)_GSmem+3); // 15 14 7 6
__m128i clut_0 = _mm_load_si128((__m128i*)clut);
__m128i clut_1 = _mm_load_si128((__m128i*)clut+1);
__m128i clut_2 = _mm_load_si128((__m128i*)clut+2);
__m128i clut_3 = _mm_load_si128((__m128i*)clut+3);
__m128i result = _mm_cmpeq_epi32(_mm_unpacklo_epi64(GSmem_0, GSmem_1), clut_0);
__m128i result_tmp = _mm_cmpeq_epi32(_mm_unpacklo_epi64(GSmem_2, GSmem_3), clut_1);
result = _mm_and_si128(result, result_tmp);
result_tmp = _mm_cmpeq_epi32(_mm_unpackhi_epi64(GSmem_0, GSmem_1), clut_2);
result = _mm_and_si128(result, result_tmp);
result_tmp = _mm_cmpeq_epi32(_mm_unpackhi_epi64(GSmem_2, GSmem_3), clut_3);
result = _mm_and_si128(result, result_tmp);
u32 result_int = _mm_movemask_epi8(result);
if (result_int != 0xFFFF)
return true;
#else
// I see no point to keep an mmx version. SSE2 versions is probably faster.
// Keep a slow portable C version for reference/debug
// Note: local memory datas are swizzles
if (clut[0] != _GSmem[0] || clut[1] != _GSmem[2] || clut[2] != _GSmem[4] || clut[3] != _GSmem[6]
|| clut[4] != _GSmem[1] || clut[5] != _GSmem[3] || clut[6] != _GSmem[5] || clut[7] != _GSmem[7])
return true;
#endif
// go to the next memory block
_GSmem += 32;
// go back to the previous memory block then down one memory column
if (clutsize & 0x40) {
_GSmem -= (64-8);
}
// In case previous operation (down one column) cross the block boundary
// Go to the next block
if (clutsize == 0x240) {
_GSmem += 32;
}
clut += 8;
clutsize -= 64;
}
return false;
}
#ifdef ZEROGS_SSE2
template<bool CSA_0_15, bool HIGH_16BITS_VM>
__forceinline bool Cmp_ClutBuffer_GSMem_core(u16* GSmem, u16* clut)
{
__m128i GSmem_0;
__m128i GSmem_1;
__m128i GSmem_2;
__m128i GSmem_3;
__m128i clut_0;
__m128i clut_1;
__m128i clut_2;
__m128i clut_3;
__m128i clut_mask = _mm_load_si128((__m128i*)s_clut_16bits_mask);
// !HIGH_16BITS_VM
// CSA in 0-15
// cmp lower 16 bits of clut with lower 16 bits of GSmem
// CSA in 16-31
// cmp higher 16 bits of clut with lower 16 bits of GSmem
// HIGH_16BITS_VM
// CSA in 0-15
// cmp lower 16 bits of clut with higher 16 bits of GSmem
// CSA in 16-31
// cmp higher 16 bits of clut with higher 16 bits of GSmem
if(HIGH_16BITS_VM && CSA_0_15) {
// move up to low
GSmem_0 = _mm_load_si128((__m128i*)GSmem); // 9 8 1 0
GSmem_1 = _mm_load_si128((__m128i*)GSmem+1); // 11 10 3 2
GSmem_2 = _mm_load_si128((__m128i*)GSmem+2); // 13 12 5 4
GSmem_3 = _mm_load_si128((__m128i*)GSmem+3); // 15 14 7 6
GSmem_0 = _mm_srli_epi32(GSmem_0, 16);
GSmem_1 = _mm_srli_epi32(GSmem_1, 16);
GSmem_2 = _mm_srli_epi32(GSmem_2, 16);
GSmem_3 = _mm_srli_epi32(GSmem_3, 16);
} else if(HIGH_16BITS_VM && !CSA_0_15) {
// Remove lower 16 bits
GSmem_0 = _mm_andnot_si128(clut_mask, _mm_load_si128((__m128i*)GSmem)); // 9 8 1 0
GSmem_1 = _mm_andnot_si128(clut_mask, _mm_load_si128((__m128i*)GSmem+1)); // 11 10 3 2
GSmem_2 = _mm_andnot_si128(clut_mask, _mm_load_si128((__m128i*)GSmem+2)); // 13 12 5 4
GSmem_3 = _mm_andnot_si128(clut_mask, _mm_load_si128((__m128i*)GSmem+3)); // 15 14 7 6
} else if(!HIGH_16BITS_VM && CSA_0_15) {
// Remove higher 16 bits
GSmem_0 = _mm_and_si128(clut_mask, _mm_load_si128((__m128i*)GSmem)); // 9 8 1 0
GSmem_1 = _mm_and_si128(clut_mask, _mm_load_si128((__m128i*)GSmem+1)); // 11 10 3 2
GSmem_2 = _mm_and_si128(clut_mask, _mm_load_si128((__m128i*)GSmem+2)); // 13 12 5 4
GSmem_3 = _mm_and_si128(clut_mask, _mm_load_si128((__m128i*)GSmem+3)); // 15 14 7 6
} else if(!HIGH_16BITS_VM && !CSA_0_15) {
// move low to high
GSmem_0 = _mm_load_si128((__m128i*)GSmem); // 9 8 1 0
GSmem_1 = _mm_load_si128((__m128i*)GSmem+1); // 11 10 3 2
GSmem_2 = _mm_load_si128((__m128i*)GSmem+2); // 13 12 5 4
GSmem_3 = _mm_load_si128((__m128i*)GSmem+3); // 15 14 7 6
GSmem_0 = _mm_slli_epi32(GSmem_0, 16);
GSmem_1 = _mm_slli_epi32(GSmem_1, 16);
GSmem_2 = _mm_slli_epi32(GSmem_2, 16);
GSmem_3 = _mm_slli_epi32(GSmem_3, 16);
}
// Unsizzle the data
__m128i row_0 = _mm_unpacklo_epi64(GSmem_0, GSmem_1); // 3 2 1 0
__m128i row_1 = _mm_unpacklo_epi64(GSmem_2, GSmem_3); // 7 6 5 4
__m128i row_2 = _mm_unpackhi_epi64(GSmem_0, GSmem_1); // 11 10 9 8
__m128i row_3 = _mm_unpackhi_epi64(GSmem_2, GSmem_3); // 15 14 13 12
// load old data & remove useless part
if(!CSA_0_15) {
// Remove lower 16 bits
clut_0 = _mm_andnot_si128(clut_mask, _mm_load_si128((__m128i*)clut));
clut_1 = _mm_andnot_si128(clut_mask, _mm_load_si128((__m128i*)clut+1));
clut_2 = _mm_andnot_si128(clut_mask, _mm_load_si128((__m128i*)clut+2));
clut_3 = _mm_andnot_si128(clut_mask, _mm_load_si128((__m128i*)clut+3));
} else {
// Remove higher 16 bits
clut_0 = _mm_and_si128(clut_mask, _mm_load_si128((__m128i*)clut));
clut_1 = _mm_and_si128(clut_mask, _mm_load_si128((__m128i*)clut+1));
clut_2 = _mm_and_si128(clut_mask, _mm_load_si128((__m128i*)clut+2));
clut_3 = _mm_and_si128(clut_mask, _mm_load_si128((__m128i*)clut+3));
}
// Do the comparaison
__m128i result = _mm_cmpeq_epi16(row_0, clut_0);
__m128i result_tmp = _mm_cmpeq_epi16(row_1, clut_1);
result = _mm_and_si128(result, result_tmp);
result_tmp = _mm_cmpeq_epi16(row_2, clut_2);
result = _mm_and_si128(result, result_tmp);
result_tmp = _mm_cmpeq_epi16(row_3, clut_3);
result = _mm_and_si128(result, result_tmp);
u32 result_int = _mm_movemask_epi8(result);
if(CSA_0_15) {
// only lower 16bits must be checked
if ((result_int&0x3333) != 0x3333)
return true;
} else {
// only higher 16bits must be checked
if ((result_int&0xCCCC) != 0xCCCC)
return true;
}
return false;
}
#endif
template <>
/*__forceinline*/ bool Cmp_ClutBuffer_GSMem<u16>(u16* GSmem, u32 csa, u32 clutsize)
{
#ifdef ZEROGS_SSE2
u16* clut = (u16*)GetClutBufferAddress<u32>(csa); // Keep aligned version for sse2
// Special case only one CSA block to check
if(clutsize == 32) {
if (csa < 16)
return Cmp_ClutBuffer_GSMem_core<true, false>(GSmem, clut);
else
return Cmp_ClutBuffer_GSMem_core<false, false>(GSmem, clut);
}
// which side to cmp
s32 clutsize_right; // Note clutsize_right could be negative !
u32 clutsize_left;
if (csa < 16) {
// the '-32' is a trick to handle easily when csa is odd
clutsize_right = min(clutsize, (16-csa)*32) -32;
clutsize_left = clutsize - clutsize_right;
} else {
clutsize_right = 0;
clutsize_left = clutsize;
}
while(clutsize_right > 0) {
if (Cmp_ClutBuffer_GSMem_core<true, false>(GSmem, clut))
return true;
clut += 32;
if (Cmp_ClutBuffer_GSMem_core<true, true>(GSmem, clut))
return true;
clut += 32;
GSmem += 32; // go down one column
clutsize_right -= 64;
}
if(csa < 16) {
// because of the extra -32, csa_righ is null when csa is odd
if (clutsize_right == 0) {
// cross the clut
if (Cmp_ClutBuffer_GSMem_core<true, false>(GSmem, clut))
return true;
clut += 32;
if (Cmp_ClutBuffer_GSMem_core<false, true>(GSmem, clut))
return true;
GSmem += 32; // go down one column
clutsize_left -= 32;
}
// go back to the base before processing left clut column
clut = (u16*)GetClutBufferAddress<u32>(0); // Keep aligned version for sse2
}
while(clutsize_left > 0) {
if (Cmp_ClutBuffer_GSMem_core<false, false>(GSmem, clut))
return true;
clut += 32;
if (Cmp_ClutBuffer_GSMem_core<false, true>(GSmem, clut))
return true;
clut += 32;
GSmem += 32; // go down one column
clutsize_left -= 64;
}
return false;
#else
// This function is only useful for performance. So just return
// for a plain c build
return true;
#endif
}
/* *****************************************************************
* Compare: Clut buffer <-> local C array (linear)
* *****************************************************************/
// false -> identical
// true -> different
template <class T>
/*__forceinline*/ bool Cmp_ClutBuffer_SavedClut(T* saved_clut, u32 csa, u32 clutsize);
template <>
/*__forceinline*/ bool Cmp_ClutBuffer_SavedClut<u32>(u32* saved_clut, u32 csa, u32 clutsize)
{
u32* clut = GetClutBufferAddress<u32>(csa);
return !!memcmp_mmx(saved_clut, clut, clutsize);
}
template <>
/*__forceinline*/ bool Cmp_ClutBuffer_SavedClut<u16>(u16* saved_clut, u32 csa, u32 clutsize)
{
assert((clutsize&31) == 0);
#ifdef ZEROGS_SSE2
__m128i zero_128 = _mm_setzero_si128();
#endif
u16* clut = (u16*)GetClutBufferAddress<u32>(csa); // Keep aligned version for sse2
// which side to cmp
u32 clutsize_right;
u32 clutsize_left;
if (csa < 16) {
clutsize_right = min(clutsize, (16-csa)*32);
clutsize_left = clutsize - clutsize_right;
} else {
clutsize_right = 0;
clutsize_left = clutsize;
}
while (clutsize_right > 0)
{
#ifdef ZEROGS_SSE2
// only lower 16 bits of dword are valid
__m128i clut_0 = _mm_load_si128((__m128i*)clut);
__m128i clut_1 = _mm_load_si128((__m128i*)clut+1);
__m128i clut_2 = _mm_load_si128((__m128i*)clut+2);
__m128i clut_3 = _mm_load_si128((__m128i*)clut+3);
// value must converted to 32 bits
__m128i saved_clut_0 = _mm_load_si128((__m128i*)saved_clut);
__m128i saved_clut_1 = _mm_load_si128((__m128i*)saved_clut+1);
__m128i result = _mm_cmpeq_epi16(_mm_unpacklo_epi16(saved_clut_0, zero_128), clut_0);
__m128i result_tmp = _mm_cmpeq_epi16(_mm_unpackhi_epi16(saved_clut_0, zero_128), clut_1);
result = _mm_and_si128(result, result_tmp);
result_tmp = _mm_cmpeq_epi16(_mm_unpacklo_epi16(saved_clut_1, zero_128), clut_2);
result = _mm_and_si128(result, result_tmp);
result_tmp = _mm_cmpeq_epi16(_mm_unpackhi_epi16(saved_clut_1, zero_128), clut_3);
result = _mm_and_si128(result, result_tmp);
u32 result_int = _mm_movemask_epi8(result);
// only lower 16bits must be checked
if ((result_int&0x3333) != 0x3333)
return true;
#else
for (int i = 0; i < 16; ++i)
if (saved_clut[i] != clut[2*i]) return true;
#endif
saved_clut += 16;
clut += 32;
clutsize_right -= 32;
}
if(csa < 16) {
// go back to the base before processing left clut column
clut = (u16*)GetClutBufferAddress<u32>(0); // Keep aligned version for sse2
}
while (clutsize_left > 0)
{
#ifdef ZEROGS_SSE2
// only higher 16 bits of dword are valid
__m128i clut_0 = _mm_load_si128((__m128i*)clut);
__m128i clut_1 = _mm_load_si128((__m128i*)clut+1);
__m128i clut_2 = _mm_load_si128((__m128i*)clut+2);
__m128i clut_3 = _mm_load_si128((__m128i*)clut+3);
// value must converted to 32 bits (with 0 in lower 16 bits)
__m128i saved_clut_0 = _mm_load_si128((__m128i*)saved_clut);
__m128i saved_clut_1 = _mm_load_si128((__m128i*)saved_clut+1);
__m128i result = _mm_cmpeq_epi16(_mm_unpacklo_epi16(zero_128, saved_clut_0), clut_0);
__m128i result_tmp = _mm_cmpeq_epi16(_mm_unpackhi_epi16(zero_128, saved_clut_0), clut_1);
result = _mm_and_si128(result, result_tmp);
result_tmp = _mm_cmpeq_epi16(_mm_unpacklo_epi16(zero_128, saved_clut_1), clut_2);
result = _mm_and_si128(result, result_tmp);
result_tmp = _mm_cmpeq_epi16(_mm_unpackhi_epi16(zero_128, saved_clut_1), clut_3);
result = _mm_and_si128(result, result_tmp);
u32 result_int = _mm_movemask_epi8(result);
// only higher 16bits must be checked
if ((result_int&0xCCCC) != 0xCCCC)
return true;
#else
// Note +1 because we change higher 16 bits
for (int i = 0; i < 16; ++i)
if (saved_clut[i] != clut[2*i+1]) return true;
#endif
saved_clut += 16;
clut += 32;
clutsize_left -= 32;
}
return false;
}
/* *****************************************************************
* Resolve color of clut texture
* *****************************************************************/
// used to build clut textures (note that this is for both 16 and 32 bit cluts)
template <class T>
/*__forceinline*/ void Build_Clut_Texture(u32 psm, u32 height, T* pclut, u8* psrc, T* pdst)
{
switch (psm)
{
case PSMT8:
for (u32 i = 0; i < height; ++i)
{
for (int j = 0; j < GPU_TEXWIDTH / 2; ++j)
{
pdst[0] = pclut[psrc[0]];
pdst[1] = pclut[psrc[1]];
pdst[2] = pclut[psrc[2]];
pdst[3] = pclut[psrc[3]];
pdst[4] = pclut[psrc[4]];
pdst[5] = pclut[psrc[5]];
pdst[6] = pclut[psrc[6]];
pdst[7] = pclut[psrc[7]];
pdst += 8;
psrc += 8;
}
}
break;
case PSMT4:
for (u32 i = 0; i < height; ++i)
{
for (int j = 0; j < GPU_TEXWIDTH; ++j)
{
pdst[0] = pclut[psrc[0] & 15];
pdst[1] = pclut[psrc[0] >> 4];
pdst[2] = pclut[psrc[1] & 15];
pdst[3] = pclut[psrc[1] >> 4];
pdst[4] = pclut[psrc[2] & 15];
pdst[5] = pclut[psrc[2] >> 4];
pdst[6] = pclut[psrc[3] & 15];
pdst[7] = pclut[psrc[3] >> 4];
pdst += 8;
psrc += 4;
}
}
break;
case PSMT8H:
for (u32 i = 0; i < height; ++i)
{
for (int j = 0; j < GPU_TEXWIDTH / 8; ++j)
{
pdst[0] = pclut[psrc[3]];
pdst[1] = pclut[psrc[7]];
pdst[2] = pclut[psrc[11]];
pdst[3] = pclut[psrc[15]];
pdst[4] = pclut[psrc[19]];
pdst[5] = pclut[psrc[23]];
pdst[6] = pclut[psrc[27]];
pdst[7] = pclut[psrc[31]];
pdst += 8;
psrc += 32;
}
}
break;
case PSMT4HH:
for (u32 i = 0; i < height; ++i)
{
for (int j = 0; j < GPU_TEXWIDTH / 8; ++j)
{
pdst[0] = pclut[psrc[3] >> 4];
pdst[1] = pclut[psrc[7] >> 4];
pdst[2] = pclut[psrc[11] >> 4];
pdst[3] = pclut[psrc[15] >> 4];
pdst[4] = pclut[psrc[19] >> 4];
pdst[5] = pclut[psrc[23] >> 4];
pdst[6] = pclut[psrc[27] >> 4];
pdst[7] = pclut[psrc[31] >> 4];
pdst += 8;
psrc += 32;
}
}
break;
case PSMT4HL:
for (u32 i = 0; i < height; ++i)
{
for (int j = 0; j < GPU_TEXWIDTH / 8; ++j)
{
pdst[0] = pclut[psrc[3] & 15];
pdst[1] = pclut[psrc[7] & 15];
pdst[2] = pclut[psrc[11] & 15];
pdst[3] = pclut[psrc[15] & 15];
pdst[4] = pclut[psrc[19] & 15];
pdst[5] = pclut[psrc[23] & 15];
pdst[6] = pclut[psrc[27] & 15];
pdst[7] = pclut[psrc[31] & 15];
pdst += 8;
psrc += 32;
}
}
break;
default:
assert(0);
}
}
// Instantiate the Build_Clut_Texture template...
template void Build_Clut_Texture<u32>(u32 psm, u32 height, u32* pclut, u8* psrc, u32* pdst);
template void Build_Clut_Texture<u16>(u32 psm, u32 height, u16* pclut, u8* psrc, u16* pdst);