2009-02-09 21:15:56 +00:00
|
|
|
/******************************************************************************
|
|
|
|
|
|
|
|
Copyright (c) 2001 Advanced Micro Devices, Inc.
|
|
|
|
|
|
|
|
LIMITATION OF LIABILITY: THE MATERIALS ARE PROVIDED *AS IS* WITHOUT ANY
|
|
|
|
EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF MERCHANTABILITY,
|
|
|
|
NONINFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY, OR FITNESS FOR ANY
|
|
|
|
PARTICULAR PURPOSE. IN NO EVENT SHALL AMD OR ITS SUPPLIERS BE LIABLE FOR ANY
|
|
|
|
DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
|
|
|
|
BUSINESS INTERRUPTION, LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR
|
|
|
|
INABILITY TO USE THE MATERIALS, EVEN IF AMD HAS BEEN ADVISED OF THE POSSIBILITY
|
|
|
|
OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION
|
|
|
|
OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATION MAY
|
|
|
|
NOT APPLY TO YOU.
|
|
|
|
|
|
|
|
AMD does not assume any responsibility for any errors which may appear in the
|
|
|
|
Materials nor any responsibility to support or update the Materials. AMD retains
|
|
|
|
the right to make changes to its test specifications at any time, without notice.
|
|
|
|
|
|
|
|
NO SUPPORT OBLIGATION: AMD is not obligated to furnish, support, or make any
|
|
|
|
further information, software, technical information, know-how, or show-how
|
|
|
|
available to you.
|
|
|
|
|
|
|
|
So that all may benefit from your experience, please report any problems
|
|
|
|
or suggestions about this software to 3dsdk.support@amd.com
|
|
|
|
|
|
|
|
AMD Developer Technologies, M/S 585
|
|
|
|
Advanced Micro Devices, Inc.
|
|
|
|
5900 E. Ben White Blvd.
|
|
|
|
Austin, TX 78741
|
|
|
|
3dsdk.support@amd.com
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
#include <assert.h>
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
|
|
MEMCPY_AMD.CPP
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
// Very optimized memcpy() routine for AMD Athlon and Duron family.
|
|
|
|
// This code uses any of FOUR different basic copy methods, depending
|
|
|
|
// on the transfer size.
|
|
|
|
// NOTE: Since this code uses MOVNTQ (also known as "Non-Temporal MOV" or
|
|
|
|
// "Streaming Store"), and also uses the software prefetch instructions,
|
|
|
|
// be sure you're running on Athlon/Duron or other recent CPU before calling!
|
|
|
|
|
|
|
|
#define TINY_BLOCK_COPY 64 // upper limit for movsd type copy
|
|
|
|
// The smallest copy uses the X86 "movsd" instruction, in an optimized
|
|
|
|
// form which is an "unrolled loop".
|
|
|
|
|
|
|
|
#define IN_CACHE_COPY 2 * 1024 // upper limit for movq/movq copy w/SW prefetch
|
|
|
|
// Next is a copy that uses the MMX registers to copy 8 bytes at a time,
|
|
|
|
// also using the "unrolled loop" optimization. This code uses
|
|
|
|
// the software prefetch instruction to get the data into the cache.
|
|
|
|
|
|
|
|
#define UNCACHED_COPY 4 * 1024 // upper limit for movq/movntq w/SW prefetch
|
|
|
|
// For larger blocks, which will spill beyond the cache, it's faster to
|
|
|
|
// use the Streaming Store instruction MOVNTQ. This write instruction
|
|
|
|
// bypasses the cache and writes straight to main memory. This code also
|
|
|
|
// uses the software prefetch instruction to pre-read the data.
|
|
|
|
// USE 64 * 1024 FOR THIS VALUE IF YOU'RE ALWAYS FILLING A "CLEAN CACHE"
|
|
|
|
|
|
|
|
#define BLOCK_PREFETCH_COPY infinity // no limit for movq/movntq w/block prefetch
|
|
|
|
#define CACHEBLOCK 80h // number of 64-byte blocks (cache lines) for block prefetch
|
|
|
|
// For the largest size blocks, a special technique called Block Prefetch
|
|
|
|
// can be used to accelerate the read operations. Block Prefetch reads
|
|
|
|
// one address per cache line, for a series of cache lines, in a short loop.
|
|
|
|
// This is faster than using software prefetch. The technique is great for
|
|
|
|
// getting maximum read bandwidth, especially in DDR memory systems.
|
|
|
|
|
|
|
|
//#include <stddef.h>
|
|
|
|
|
|
|
|
// Inline assembly syntax for use with Visual C++
|
|
|
|
#ifdef _WIN32
|
|
|
|
#include <windows.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
extern "C" {
|
|
|
|
|
|
|
|
#include "PS2Etypes.h"
|
|
|
|
|
|
|
|
#if defined(_MSC_VER) && !defined(__x86_64__)
|
|
|
|
|
|
|
|
void * memcpy_amd(void *dest, const void *src, size_t n)
|
|
|
|
{
|
|
|
|
__asm {
|
|
|
|
mov ecx, [n] ; number of bytes to copy
|
|
|
|
mov edi, [dest] ; destination
|
|
|
|
mov esi, [src] ; source
|
|
|
|
mov ebx, ecx ; keep a copy of count
|
|
|
|
|
|
|
|
cld
|
|
|
|
cmp ecx, TINY_BLOCK_COPY
|
|
|
|
jb $memcpy_ic_3 ; tiny? skip mmx copy
|
|
|
|
|
|
|
|
cmp ecx, 32*1024 ; don't align between 32k-64k because
|
|
|
|
jbe $memcpy_do_align ; it appears to be slower
|
|
|
|
cmp ecx, 64*1024
|
|
|
|
jbe $memcpy_align_done
|
|
|
|
$memcpy_do_align:
|
|
|
|
mov ecx, 8 ; a trick that's faster than rep movsb...
|
|
|
|
sub ecx, edi ; align destination to qword
|
|
|
|
and ecx, 111b ; get the low bits
|
|
|
|
sub ebx, ecx ; update copy count
|
|
|
|
neg ecx ; set up to jump into the array
|
|
|
|
add ecx, offset $memcpy_align_done
|
|
|
|
jmp ecx ; jump to array of movsb's
|
|
|
|
|
|
|
|
align 4
|
|
|
|
movsb
|
|
|
|
movsb
|
|
|
|
movsb
|
|
|
|
movsb
|
|
|
|
movsb
|
|
|
|
movsb
|
|
|
|
movsb
|
|
|
|
movsb
|
|
|
|
|
|
|
|
$memcpy_align_done: ; destination is dword aligned
|
|
|
|
mov ecx, ebx ; number of bytes left to copy
|
|
|
|
shr ecx, 6 ; get 64-byte block count
|
|
|
|
jz $memcpy_ic_2 ; finish the last few bytes
|
|
|
|
|
|
|
|
cmp ecx, IN_CACHE_COPY/64 ; too big 4 cache? use uncached copy
|
|
|
|
jae $memcpy_uc_test
|
|
|
|
|
|
|
|
// This is small block copy that uses the MMX registers to copy 8 bytes
|
|
|
|
// at a time. It uses the "unrolled loop" optimization, and also uses
|
|
|
|
// the software prefetch instruction to get the data into the cache.
|
|
|
|
align 16
|
|
|
|
$memcpy_ic_1: ; 64-byte block copies, in-cache copy
|
|
|
|
|
|
|
|
prefetchnta [esi + (200*64/34+192)] ; start reading ahead
|
|
|
|
|
|
|
|
movq mm0, [esi+0] ; read 64 bits
|
|
|
|
movq mm1, [esi+8]
|
|
|
|
movq [edi+0], mm0 ; write 64 bits
|
|
|
|
movq [edi+8], mm1 ; note: the normal movq writes the
|
|
|
|
movq mm2, [esi+16] ; data to cache; a cache line will be
|
|
|
|
movq mm3, [esi+24] ; allocated as needed, to store the data
|
|
|
|
movq [edi+16], mm2
|
|
|
|
movq [edi+24], mm3
|
|
|
|
movq mm0, [esi+32]
|
|
|
|
movq mm1, [esi+40]
|
|
|
|
movq [edi+32], mm0
|
|
|
|
movq [edi+40], mm1
|
|
|
|
movq mm2, [esi+48]
|
|
|
|
movq mm3, [esi+56]
|
|
|
|
movq [edi+48], mm2
|
|
|
|
movq [edi+56], mm3
|
|
|
|
|
|
|
|
add esi, 64 ; update source pointer
|
|
|
|
add edi, 64 ; update destination pointer
|
|
|
|
dec ecx ; count down
|
|
|
|
jnz $memcpy_ic_1 ; last 64-byte block?
|
|
|
|
|
|
|
|
$memcpy_ic_2:
|
|
|
|
mov ecx, ebx ; has valid low 6 bits of the byte count
|
|
|
|
$memcpy_ic_3:
|
|
|
|
shr ecx, 2 ; dword count
|
|
|
|
and ecx, 1111b ; only look at the "remainder" bits
|
|
|
|
neg ecx ; set up to jump into the array
|
|
|
|
add ecx, offset $memcpy_last_few
|
|
|
|
jmp ecx ; jump to array of movsd's
|
|
|
|
|
|
|
|
$memcpy_uc_test:
|
|
|
|
cmp ecx, UNCACHED_COPY/64 ; big enough? use block prefetch copy
|
|
|
|
jae $memcpy_bp_1
|
|
|
|
|
|
|
|
$memcpy_64_test:
|
|
|
|
or ecx, ecx ; tail end of block prefetch will jump here
|
|
|
|
jz $memcpy_ic_2 ; no more 64-byte blocks left
|
|
|
|
|
|
|
|
// For larger blocks, which will spill beyond the cache, it's faster to
|
|
|
|
// use the Streaming Store instruction MOVNTQ. This write instruction
|
|
|
|
// bypasses the cache and writes straight to main memory. This code also
|
|
|
|
// uses the software prefetch instruction to pre-read the data.
|
|
|
|
align 16
|
|
|
|
$memcpy_uc_1: ; 64-byte blocks, uncached copy
|
|
|
|
|
|
|
|
prefetchnta [esi + (200*64/34+192)] ; start reading ahead
|
|
|
|
|
|
|
|
movq mm0,[esi+0] ; read 64 bits
|
|
|
|
add edi,64 ; update destination pointer
|
|
|
|
movq mm1,[esi+8]
|
|
|
|
add esi,64 ; update source pointer
|
|
|
|
movq mm2,[esi-48]
|
|
|
|
movntq [edi-64], mm0 ; write 64 bits, bypassing the cache
|
|
|
|
movq mm0,[esi-40] ; note: movntq also prevents the CPU
|
|
|
|
movntq [edi-56], mm1 ; from READING the destination address
|
|
|
|
movq mm1,[esi-32] ; into the cache, only to be over-written
|
|
|
|
movntq [edi-48], mm2 ; so that also helps performance
|
|
|
|
movq mm2,[esi-24]
|
|
|
|
movntq [edi-40], mm0
|
|
|
|
movq mm0,[esi-16]
|
|
|
|
movntq [edi-32], mm1
|
|
|
|
movq mm1,[esi-8]
|
|
|
|
movntq [edi-24], mm2
|
|
|
|
movntq [edi-16], mm0
|
|
|
|
dec ecx
|
|
|
|
movntq [edi-8], mm1
|
|
|
|
jnz $memcpy_uc_1 ; last 64-byte block?
|
|
|
|
|
|
|
|
jmp $memcpy_ic_2 ; almost done
|
|
|
|
|
|
|
|
// For the largest size blocks, a special technique called Block Prefetch
|
|
|
|
// can be used to accelerate the read operations. Block Prefetch reads
|
|
|
|
// one address per cache line, for a series of cache lines, in a short loop.
|
|
|
|
// This is faster than using software prefetch. The technique is great for
|
|
|
|
// getting maximum read bandwidth, especially in DDR memory systems.
|
|
|
|
$memcpy_bp_1: ; large blocks, block prefetch copy
|
|
|
|
|
|
|
|
cmp ecx, CACHEBLOCK ; big enough to run another prefetch loop?
|
|
|
|
jl $memcpy_64_test ; no, back to regular uncached copy
|
|
|
|
|
|
|
|
mov eax, CACHEBLOCK / 2 ; block prefetch loop, unrolled 2X
|
|
|
|
add esi, CACHEBLOCK * 64 ; move to the top of the block
|
|
|
|
align 16
|
|
|
|
$memcpy_bp_2:
|
|
|
|
mov edx, [esi-64] ; grab one address per cache line
|
|
|
|
mov edx, [esi-128] ; grab one address per cache line
|
|
|
|
sub esi, 128 ; go reverse order to suppress HW prefetcher
|
|
|
|
dec eax ; count down the cache lines
|
|
|
|
jnz $memcpy_bp_2 ; keep grabbing more lines into cache
|
|
|
|
|
|
|
|
mov eax, CACHEBLOCK ; now that it's in cache, do the copy
|
|
|
|
align 16
|
|
|
|
$memcpy_bp_3:
|
|
|
|
movq mm0, [esi ] ; read 64 bits
|
|
|
|
movq mm1, [esi+ 8]
|
|
|
|
movq mm2, [esi+16]
|
|
|
|
movq mm3, [esi+24]
|
|
|
|
movq mm4, [esi+32]
|
|
|
|
movq mm5, [esi+40]
|
|
|
|
movq mm6, [esi+48]
|
|
|
|
movq mm7, [esi+56]
|
|
|
|
add esi, 64 ; update source pointer
|
|
|
|
movntq [edi ], mm0 ; write 64 bits, bypassing cache
|
|
|
|
movntq [edi+ 8], mm1 ; note: movntq also prevents the CPU
|
|
|
|
movntq [edi+16], mm2 ; from READING the destination address
|
|
|
|
movntq [edi+24], mm3 ; into the cache, only to be over-written,
|
|
|
|
movntq [edi+32], mm4 ; so that also helps performance
|
|
|
|
movntq [edi+40], mm5
|
|
|
|
movntq [edi+48], mm6
|
|
|
|
movntq [edi+56], mm7
|
|
|
|
add edi, 64 ; update dest pointer
|
|
|
|
|
|
|
|
dec eax ; count down
|
|
|
|
|
|
|
|
jnz $memcpy_bp_3 ; keep copying
|
|
|
|
sub ecx, CACHEBLOCK ; update the 64-byte block count
|
|
|
|
jmp $memcpy_bp_1 ; keep processing chunks
|
|
|
|
|
|
|
|
// The smallest copy uses the X86 "movsd" instruction, in an optimized
|
|
|
|
// form which is an "unrolled loop". Then it handles the last few bytes.
|
|
|
|
align 4
|
|
|
|
movsd
|
|
|
|
movsd ; perform last 1-15 dword copies
|
|
|
|
movsd
|
|
|
|
movsd
|
|
|
|
movsd
|
|
|
|
movsd
|
|
|
|
movsd
|
|
|
|
movsd
|
|
|
|
movsd
|
|
|
|
movsd ; perform last 1-7 dword copies
|
|
|
|
movsd
|
|
|
|
movsd
|
|
|
|
movsd
|
|
|
|
movsd
|
|
|
|
movsd
|
|
|
|
movsd
|
|
|
|
|
|
|
|
$memcpy_last_few: ; dword aligned from before movsd's
|
|
|
|
mov ecx, ebx ; has valid low 2 bits of the byte count
|
|
|
|
and ecx, 11b ; the last few cows must come home
|
|
|
|
jz $memcpy_final ; no more, let's leave
|
|
|
|
rep movsb ; the last 1, 2, or 3 bytes
|
|
|
|
|
|
|
|
$memcpy_final:
|
|
|
|
emms ; clean up the MMX state
|
|
|
|
sfence ; flush the write buffer
|
|
|
|
mov eax, [dest] ; ret value = destination pointer
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// mmx memcpy implementation, size has to be a multiple of 8
|
|
|
|
// returns 0 is equal, nonzero value if not equal
|
|
|
|
// ~10 times faster than standard memcmp
|
|
|
|
// (zerofrog)
|
|
|
|
u8 memcmp_mmx(const void* src1, const void* src2, int cmpsize)
|
|
|
|
{
|
|
|
|
assert( (cmpsize&7) == 0 );
|
|
|
|
|
|
|
|
__asm {
|
|
|
|
push esi
|
|
|
|
mov ecx, cmpsize
|
|
|
|
mov edx, src1
|
|
|
|
mov esi, src2
|
|
|
|
|
|
|
|
cmp ecx, 32
|
|
|
|
jl Done4
|
|
|
|
|
|
|
|
// custom test first 8 to make sure things are ok
|
|
|
|
movq mm0, [esi]
|
|
|
|
movq mm1, [esi+8]
|
|
|
|
pcmpeqd mm0, [edx]
|
|
|
|
pcmpeqd mm1, [edx+8]
|
|
|
|
pand mm0, mm1
|
|
|
|
movq mm2, [esi+16]
|
|
|
|
pmovmskb eax, mm0
|
|
|
|
movq mm3, [esi+24]
|
|
|
|
|
|
|
|
// check if eq
|
|
|
|
cmp eax, 0xff
|
|
|
|
je NextComp
|
|
|
|
mov eax, 1
|
|
|
|
jmp End
|
|
|
|
|
|
|
|
NextComp:
|
|
|
|
pcmpeqd mm2, [edx+16]
|
|
|
|
pcmpeqd mm3, [edx+24]
|
|
|
|
pand mm2, mm3
|
|
|
|
pmovmskb eax, mm2
|
|
|
|
|
|
|
|
sub ecx, 32
|
|
|
|
add esi, 32
|
|
|
|
add edx, 32
|
|
|
|
|
|
|
|
// check if eq
|
|
|
|
cmp eax, 0xff
|
|
|
|
je ContinueTest
|
|
|
|
mov eax, 1
|
|
|
|
jmp End
|
|
|
|
|
|
|
|
cmp ecx, 64
|
|
|
|
jl Done8
|
|
|
|
|
|
|
|
Cmp8:
|
|
|
|
movq mm0, [esi]
|
|
|
|
movq mm1, [esi+8]
|
|
|
|
movq mm2, [esi+16]
|
|
|
|
movq mm3, [esi+24]
|
|
|
|
movq mm4, [esi+32]
|
|
|
|
movq mm5, [esi+40]
|
|
|
|
movq mm6, [esi+48]
|
|
|
|
movq mm7, [esi+56]
|
|
|
|
pcmpeqd mm0, [edx]
|
|
|
|
pcmpeqd mm1, [edx+8]
|
|
|
|
pcmpeqd mm2, [edx+16]
|
|
|
|
pcmpeqd mm3, [edx+24]
|
|
|
|
pand mm0, mm1
|
|
|
|
pcmpeqd mm4, [edx+32]
|
|
|
|
pand mm0, mm2
|
|
|
|
pcmpeqd mm5, [edx+40]
|
|
|
|
pand mm0, mm3
|
|
|
|
pcmpeqd mm6, [edx+48]
|
|
|
|
pand mm0, mm4
|
|
|
|
pcmpeqd mm7, [edx+56]
|
|
|
|
pand mm0, mm5
|
|
|
|
pand mm0, mm6
|
|
|
|
pand mm0, mm7
|
|
|
|
pmovmskb eax, mm0
|
|
|
|
|
|
|
|
// check if eq
|
|
|
|
cmp eax, 0xff
|
|
|
|
je Continue
|
|
|
|
mov eax, 1
|
|
|
|
jmp End
|
|
|
|
|
|
|
|
Continue:
|
|
|
|
sub ecx, 64
|
|
|
|
add esi, 64
|
|
|
|
add edx, 64
|
|
|
|
ContinueTest:
|
|
|
|
cmp ecx, 64
|
|
|
|
jge Cmp8
|
|
|
|
|
|
|
|
Done8:
|
|
|
|
test ecx, 0x20
|
|
|
|
jz Done4
|
|
|
|
movq mm0, [esi]
|
|
|
|
movq mm1, [esi+8]
|
|
|
|
movq mm2, [esi+16]
|
|
|
|
movq mm3, [esi+24]
|
|
|
|
pcmpeqd mm0, [edx]
|
|
|
|
pcmpeqd mm1, [edx+8]
|
|
|
|
pcmpeqd mm2, [edx+16]
|
|
|
|
pcmpeqd mm3, [edx+24]
|
|
|
|
pand mm0, mm1
|
|
|
|
pand mm0, mm2
|
|
|
|
pand mm0, mm3
|
|
|
|
pmovmskb eax, mm0
|
|
|
|
sub ecx, 32
|
|
|
|
add esi, 32
|
|
|
|
add edx, 32
|
|
|
|
|
|
|
|
// check if eq
|
|
|
|
cmp eax, 0xff
|
|
|
|
je Done4
|
|
|
|
mov eax, 1
|
|
|
|
jmp End
|
|
|
|
|
|
|
|
Done4:
|
|
|
|
cmp ecx, 24
|
|
|
|
jne Done2
|
|
|
|
movq mm0, [esi]
|
|
|
|
movq mm1, [esi+8]
|
|
|
|
movq mm2, [esi+16]
|
|
|
|
pcmpeqd mm0, [edx]
|
|
|
|
pcmpeqd mm1, [edx+8]
|
|
|
|
pcmpeqd mm2, [edx+16]
|
|
|
|
pand mm0, mm1
|
|
|
|
pand mm0, mm2
|
|
|
|
pmovmskb eax, mm0
|
|
|
|
|
|
|
|
// check if eq
|
|
|
|
cmp eax, 0xff
|
|
|
|
setne al
|
|
|
|
jmp End
|
|
|
|
|
|
|
|
Done2:
|
|
|
|
cmp ecx, 16
|
|
|
|
jne Done1
|
|
|
|
|
|
|
|
movq mm0, [esi]
|
|
|
|
movq mm1, [esi+8]
|
|
|
|
pcmpeqd mm0, [edx]
|
|
|
|
pcmpeqd mm1, [edx+8]
|
|
|
|
pand mm0, mm1
|
|
|
|
pmovmskb eax, mm0
|
|
|
|
|
|
|
|
// check if eq
|
|
|
|
cmp eax, 0xff
|
|
|
|
setne al
|
|
|
|
jmp End
|
|
|
|
|
|
|
|
Done1:
|
|
|
|
cmp ecx, 8
|
|
|
|
jne Done
|
|
|
|
|
|
|
|
mov eax, [esi]
|
|
|
|
mov esi, [esi+4]
|
|
|
|
cmp eax, [edx]
|
|
|
|
je Next
|
|
|
|
mov eax, 1
|
|
|
|
jmp End
|
|
|
|
|
|
|
|
Next:
|
|
|
|
cmp esi, [edx+4]
|
|
|
|
setne al
|
|
|
|
jmp End
|
|
|
|
|
|
|
|
Done:
|
|
|
|
xor eax, eax
|
|
|
|
|
|
|
|
End:
|
|
|
|
pop esi
|
|
|
|
emms
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#else // _MSC_VER
|
|
|
|
// assume gcc or mingw or win x64
|
|
|
|
|
|
|
|
#include <memory.h>
|
|
|
|
#include <string.h>
|
|
|
|
|
|
|
|
void * memcpy_amd(void *dest, const void *src, size_t n)
|
|
|
|
{
|
|
|
|
memcpy(dest, src, n);
|
|
|
|
return dest;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
}
|