mirror of https://github.com/PCSX2/pcsx2.git
602 lines
15 KiB
C++
602 lines
15 KiB
C++
|
///////////////////////////////////////////////////////////////////////////////
|
||
|
// Name: src/common/matrix.cpp
|
||
|
// Purpose: wxTransformMatrix class
|
||
|
// Author: Chris Breeze, Julian Smart
|
||
|
// Modified by: Klaas Holwerda
|
||
|
// Created: 01/02/97
|
||
|
// RCS-ID: $Id: matrix.cpp 39745 2006-06-15 17:58:49Z ABX $
|
||
|
// Copyright: (c) Julian Smart
|
||
|
// Licence: wxWindows licence
|
||
|
///////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
// Note: this is intended to be used in wxDC at some point to replace
|
||
|
// the current system of scaling/translation. It is not yet used.
|
||
|
|
||
|
// For compilers that support precompilation, includes "wx.h".
|
||
|
#include "wx/wxprec.h"
|
||
|
|
||
|
#ifdef __BORLANDC__
|
||
|
#pragma hdrstop
|
||
|
#endif
|
||
|
|
||
|
#include "wx/matrix.h"
|
||
|
|
||
|
#ifndef WX_PRECOMP
|
||
|
#include "wx/math.h"
|
||
|
#endif
|
||
|
|
||
|
static const double pi = M_PI;
|
||
|
|
||
|
wxTransformMatrix::wxTransformMatrix(void)
|
||
|
{
|
||
|
m_isIdentity = false;
|
||
|
|
||
|
Identity();
|
||
|
}
|
||
|
|
||
|
wxTransformMatrix::wxTransformMatrix(const wxTransformMatrix& mat)
|
||
|
: wxObject()
|
||
|
{
|
||
|
(*this) = mat;
|
||
|
}
|
||
|
|
||
|
double wxTransformMatrix::GetValue(int col, int row) const
|
||
|
{
|
||
|
if (row < 0 || row > 2 || col < 0 || col > 2)
|
||
|
return 0.0;
|
||
|
|
||
|
return m_matrix[col][row];
|
||
|
}
|
||
|
|
||
|
void wxTransformMatrix::SetValue(int col, int row, double value)
|
||
|
{
|
||
|
if (row < 0 || row > 2 || col < 0 || col > 2)
|
||
|
return;
|
||
|
|
||
|
m_matrix[col][row] = value;
|
||
|
m_isIdentity = IsIdentity1();
|
||
|
}
|
||
|
|
||
|
void wxTransformMatrix::operator = (const wxTransformMatrix& mat)
|
||
|
{
|
||
|
int i, j;
|
||
|
for (i = 0; i < 3; i++)
|
||
|
{
|
||
|
for (j = 0; j < 3; j++)
|
||
|
{
|
||
|
m_matrix[i][j] = mat.m_matrix[i][j];
|
||
|
}
|
||
|
}
|
||
|
m_isIdentity = mat.m_isIdentity;
|
||
|
}
|
||
|
|
||
|
bool wxTransformMatrix::operator == (const wxTransformMatrix& mat) const
|
||
|
{
|
||
|
if (m_isIdentity && mat.m_isIdentity)
|
||
|
return true;
|
||
|
|
||
|
int i, j;
|
||
|
for (i = 0; i < 3; i++)
|
||
|
{
|
||
|
for (j = 0; j < 3; j++)
|
||
|
{
|
||
|
if ( !wxIsSameDouble(m_matrix[i][j], mat.m_matrix[i][j]) )
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool wxTransformMatrix::operator != (const wxTransformMatrix& mat) const
|
||
|
{
|
||
|
return (! ((*this) == mat));
|
||
|
}
|
||
|
|
||
|
double& wxTransformMatrix::operator()(int col, int row)
|
||
|
{
|
||
|
if (row < 0 || row > 2 || col < 0 || col > 2)
|
||
|
return m_matrix[0][0];
|
||
|
|
||
|
return m_matrix[col][row];
|
||
|
}
|
||
|
|
||
|
double wxTransformMatrix::operator()(int col, int row) const
|
||
|
{
|
||
|
if (row < 0 || row > 2 || col < 0 || col > 2)
|
||
|
return 0.0;
|
||
|
|
||
|
return m_matrix[col][row];
|
||
|
}
|
||
|
|
||
|
// Invert matrix
|
||
|
bool wxTransformMatrix::Invert(void)
|
||
|
{
|
||
|
double inverseMatrix[3][3];
|
||
|
|
||
|
// calculate the adjoint
|
||
|
inverseMatrix[0][0] = wxCalculateDet(m_matrix[1][1],m_matrix[2][1],m_matrix[1][2],m_matrix[2][2]);
|
||
|
inverseMatrix[0][1] = -wxCalculateDet(m_matrix[0][1],m_matrix[2][1],m_matrix[0][2],m_matrix[2][2]);
|
||
|
inverseMatrix[0][2] = wxCalculateDet(m_matrix[0][1],m_matrix[1][1],m_matrix[0][2],m_matrix[1][2]);
|
||
|
|
||
|
inverseMatrix[1][0] = -wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][2],m_matrix[2][2]);
|
||
|
inverseMatrix[1][1] = wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][2],m_matrix[2][2]);
|
||
|
inverseMatrix[1][2] = -wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][2],m_matrix[1][2]);
|
||
|
|
||
|
inverseMatrix[2][0] = wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][1],m_matrix[2][1]);
|
||
|
inverseMatrix[2][1] = -wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][1],m_matrix[2][1]);
|
||
|
inverseMatrix[2][2] = wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][1],m_matrix[1][1]);
|
||
|
|
||
|
// now divide by the determinant
|
||
|
double det = m_matrix[0][0] * inverseMatrix[0][0] + m_matrix[0][1] * inverseMatrix[1][0] + m_matrix[0][2] * inverseMatrix[2][0];
|
||
|
if ( wxIsNullDouble(det) )
|
||
|
return false;
|
||
|
|
||
|
inverseMatrix[0][0] /= det; inverseMatrix[1][0] /= det; inverseMatrix[2][0] /= det;
|
||
|
inverseMatrix[0][1] /= det; inverseMatrix[1][1] /= det; inverseMatrix[2][1] /= det;
|
||
|
inverseMatrix[0][2] /= det; inverseMatrix[1][2] /= det; inverseMatrix[2][2] /= det;
|
||
|
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
for (int j = 0; j < 3; j++)
|
||
|
{
|
||
|
m_matrix[i][j] = inverseMatrix[i][j];
|
||
|
}
|
||
|
}
|
||
|
m_isIdentity = IsIdentity1();
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// Make into identity matrix
|
||
|
bool wxTransformMatrix::Identity(void)
|
||
|
{
|
||
|
m_matrix[0][0] = m_matrix[1][1] = m_matrix[2][2] = 1.0;
|
||
|
m_matrix[1][0] = m_matrix[2][0] = m_matrix[0][1] = m_matrix[2][1] = m_matrix[0][2] = m_matrix[1][2] = 0.0;
|
||
|
m_isIdentity = true;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// Scale by scale (isotropic scaling i.e. the same in x and y):
|
||
|
// | scale 0 0 |
|
||
|
// matrix' = | 0 scale 0 | x matrix
|
||
|
// | 0 0 scale |
|
||
|
//
|
||
|
bool wxTransformMatrix::Scale(double scale)
|
||
|
{
|
||
|
int i, j;
|
||
|
for (i = 0; i < 3; i++)
|
||
|
{
|
||
|
for (j = 0; j < 3; j++)
|
||
|
{
|
||
|
m_matrix[i][j] *= scale;
|
||
|
}
|
||
|
}
|
||
|
m_isIdentity = IsIdentity1();
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
// scale a matrix in 2D
|
||
|
//
|
||
|
// xs 0 xc(1-xs)
|
||
|
// 0 ys yc(1-ys)
|
||
|
// 0 0 1
|
||
|
//
|
||
|
wxTransformMatrix& wxTransformMatrix::Scale(const double &xs, const double &ys,const double &xc, const double &yc)
|
||
|
{
|
||
|
double r00,r10,r20,r01,r11,r21;
|
||
|
|
||
|
if (m_isIdentity)
|
||
|
{
|
||
|
double tx = xc*(1-xs);
|
||
|
double ty = yc*(1-ys);
|
||
|
r00 = xs;
|
||
|
r10 = 0;
|
||
|
r20 = tx;
|
||
|
r01 = 0;
|
||
|
r11 = ys;
|
||
|
r21 = ty;
|
||
|
}
|
||
|
else if ( !wxIsNullDouble(xc) || !wxIsNullDouble(yc) )
|
||
|
{
|
||
|
double tx = xc*(1-xs);
|
||
|
double ty = yc*(1-ys);
|
||
|
r00 = xs * m_matrix[0][0];
|
||
|
r10 = xs * m_matrix[1][0];
|
||
|
r20 = xs * m_matrix[2][0] + tx;
|
||
|
r01 = ys * m_matrix[0][1];
|
||
|
r11 = ys * m_matrix[1][1];
|
||
|
r21 = ys * m_matrix[2][1] + ty;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
r00 = xs * m_matrix[0][0];
|
||
|
r10 = xs * m_matrix[1][0];
|
||
|
r20 = xs * m_matrix[2][0];
|
||
|
r01 = ys * m_matrix[0][1];
|
||
|
r11 = ys * m_matrix[1][1];
|
||
|
r21 = ys * m_matrix[2][1];
|
||
|
}
|
||
|
|
||
|
m_matrix[0][0] = r00;
|
||
|
m_matrix[1][0] = r10;
|
||
|
m_matrix[2][0] = r20;
|
||
|
m_matrix[0][1] = r01;
|
||
|
m_matrix[1][1] = r11;
|
||
|
m_matrix[2][1] = r21;
|
||
|
|
||
|
/* or like this
|
||
|
// first translate to origin O
|
||
|
(*this).Translate(-x_cen, -y_cen);
|
||
|
|
||
|
// now do the scaling
|
||
|
wxTransformMatrix scale;
|
||
|
scale.m_matrix[0][0] = x_fac;
|
||
|
scale.m_matrix[1][1] = y_fac;
|
||
|
scale.m_isIdentity = IsIdentity1();
|
||
|
|
||
|
*this = scale * (*this);
|
||
|
|
||
|
// translate back from origin to x_cen, y_cen
|
||
|
(*this).Translate(x_cen, y_cen);
|
||
|
*/
|
||
|
|
||
|
m_isIdentity = IsIdentity1();
|
||
|
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
|
||
|
// mirror a matrix in x, y
|
||
|
//
|
||
|
// -1 0 0 Y-mirror
|
||
|
// 0 -1 0 X-mirror
|
||
|
// 0 0 -1 Z-mirror
|
||
|
wxTransformMatrix& wxTransformMatrix::Mirror(bool x, bool y)
|
||
|
{
|
||
|
wxTransformMatrix temp;
|
||
|
if (x)
|
||
|
{
|
||
|
temp.m_matrix[1][1] = -1;
|
||
|
temp.m_isIdentity=false;
|
||
|
}
|
||
|
if (y)
|
||
|
{
|
||
|
temp.m_matrix[0][0] = -1;
|
||
|
temp.m_isIdentity=false;
|
||
|
}
|
||
|
|
||
|
*this = temp * (*this);
|
||
|
m_isIdentity = IsIdentity1();
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
// Translate by dx, dy:
|
||
|
// | 1 0 dx |
|
||
|
// matrix' = | 0 1 dy | x matrix
|
||
|
// | 0 0 1 |
|
||
|
//
|
||
|
bool wxTransformMatrix::Translate(double dx, double dy)
|
||
|
{
|
||
|
int i;
|
||
|
for (i = 0; i < 3; i++)
|
||
|
m_matrix[i][0] += dx * m_matrix[i][2];
|
||
|
for (i = 0; i < 3; i++)
|
||
|
m_matrix[i][1] += dy * m_matrix[i][2];
|
||
|
|
||
|
m_isIdentity = IsIdentity1();
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// Rotate clockwise by the given number of degrees:
|
||
|
// | cos sin 0 |
|
||
|
// matrix' = | -sin cos 0 | x matrix
|
||
|
// | 0 0 1 |
|
||
|
bool wxTransformMatrix::Rotate(double degrees)
|
||
|
{
|
||
|
Rotate(-degrees,0,0);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// counter clockwise rotate around a point
|
||
|
//
|
||
|
// cos(r) -sin(r) x(1-cos(r))+y(sin(r)
|
||
|
// sin(r) cos(r) y(1-cos(r))-x(sin(r)
|
||
|
// 0 0 1
|
||
|
wxTransformMatrix& wxTransformMatrix::Rotate(const double °rees, const double &x, const double &y)
|
||
|
{
|
||
|
double angle = degrees * pi / 180.0;
|
||
|
double c = cos(angle);
|
||
|
double s = sin(angle);
|
||
|
double r00,r10,r20,r01,r11,r21;
|
||
|
|
||
|
if (m_isIdentity)
|
||
|
{
|
||
|
double tx = x*(1-c)+y*s;
|
||
|
double ty = y*(1-c)-x*s;
|
||
|
r00 = c ;
|
||
|
r10 = -s;
|
||
|
r20 = tx;
|
||
|
r01 = s;
|
||
|
r11 = c;
|
||
|
r21 = ty;
|
||
|
}
|
||
|
else if ( !wxIsNullDouble(x) || !wxIsNullDouble(y) )
|
||
|
{
|
||
|
double tx = x*(1-c)+y*s;
|
||
|
double ty = y*(1-c)-x*s;
|
||
|
r00 = c * m_matrix[0][0] - s * m_matrix[0][1] + tx * m_matrix[0][2];
|
||
|
r10 = c * m_matrix[1][0] - s * m_matrix[1][1] + tx * m_matrix[1][2];
|
||
|
r20 = c * m_matrix[2][0] - s * m_matrix[2][1] + tx;// * m_matrix[2][2];
|
||
|
r01 = c * m_matrix[0][1] + s * m_matrix[0][0] + ty * m_matrix[0][2];
|
||
|
r11 = c * m_matrix[1][1] + s * m_matrix[1][0] + ty * m_matrix[1][2];
|
||
|
r21 = c * m_matrix[2][1] + s * m_matrix[2][0] + ty;// * m_matrix[2][2];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
r00 = c * m_matrix[0][0] - s * m_matrix[0][1];
|
||
|
r10 = c * m_matrix[1][0] - s * m_matrix[1][1];
|
||
|
r20 = c * m_matrix[2][0] - s * m_matrix[2][1];
|
||
|
r01 = c * m_matrix[0][1] + s * m_matrix[0][0];
|
||
|
r11 = c * m_matrix[1][1] + s * m_matrix[1][0];
|
||
|
r21 = c * m_matrix[2][1] + s * m_matrix[2][0];
|
||
|
}
|
||
|
|
||
|
m_matrix[0][0] = r00;
|
||
|
m_matrix[1][0] = r10;
|
||
|
m_matrix[2][0] = r20;
|
||
|
m_matrix[0][1] = r01;
|
||
|
m_matrix[1][1] = r11;
|
||
|
m_matrix[2][1] = r21;
|
||
|
|
||
|
/* or like this
|
||
|
wxTransformMatrix rotate;
|
||
|
rotate.m_matrix[2][0] = tx;
|
||
|
rotate.m_matrix[2][1] = ty;
|
||
|
|
||
|
rotate.m_matrix[0][0] = c;
|
||
|
rotate.m_matrix[0][1] = s;
|
||
|
|
||
|
rotate.m_matrix[1][0] = -s;
|
||
|
rotate.m_matrix[1][1] = c;
|
||
|
|
||
|
rotate.m_isIdentity=false;
|
||
|
*this = rotate * (*this);
|
||
|
*/
|
||
|
m_isIdentity = IsIdentity1();
|
||
|
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
// Transform a point from logical to device coordinates
|
||
|
bool wxTransformMatrix::TransformPoint(double x, double y, double& tx, double& ty) const
|
||
|
{
|
||
|
if (IsIdentity())
|
||
|
{
|
||
|
tx = x; ty = y; return true;
|
||
|
}
|
||
|
|
||
|
tx = x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0];
|
||
|
ty = x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1];
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// Transform a point from device to logical coordinates.
|
||
|
|
||
|
// Example of use:
|
||
|
// wxTransformMatrix mat = dc.GetTransformation();
|
||
|
// mat.Invert();
|
||
|
// mat.InverseTransformPoint(x, y, x1, y1);
|
||
|
// OR (shorthand:)
|
||
|
// dc.LogicalToDevice(x, y, x1, y1);
|
||
|
// The latter is slightly less efficient if we're doing several
|
||
|
// conversions, since the matrix is inverted several times.
|
||
|
bool wxTransformMatrix::InverseTransformPoint(double x, double y, double& tx, double& ty) const
|
||
|
{
|
||
|
if (IsIdentity())
|
||
|
{
|
||
|
tx = x;
|
||
|
ty = y;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
const double z = (1.0 - m_matrix[0][2] * x - m_matrix[1][2] * y) / m_matrix[2][2];
|
||
|
if ( wxIsNullDouble(z) )
|
||
|
return false;
|
||
|
|
||
|
tx = x * m_matrix[0][0] + y * m_matrix[1][0] + z * m_matrix[2][0];
|
||
|
ty = x * m_matrix[0][1] + y * m_matrix[1][1] + z * m_matrix[2][1];
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
wxTransformMatrix& wxTransformMatrix::operator*=(const double& t)
|
||
|
{
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
for (int j = 0; j < 3; j++)
|
||
|
m_matrix[i][j]*= t;
|
||
|
m_isIdentity = IsIdentity1();
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
wxTransformMatrix& wxTransformMatrix::operator/=(const double& t)
|
||
|
{
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
for (int j = 0; j < 3; j++)
|
||
|
m_matrix[i][j]/= t;
|
||
|
m_isIdentity = IsIdentity1();
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
wxTransformMatrix& wxTransformMatrix::operator+=(const wxTransformMatrix& mat)
|
||
|
{
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
for (int j = 0; j < 3; j++)
|
||
|
m_matrix[i][j] += mat.m_matrix[i][j];
|
||
|
m_isIdentity = IsIdentity1();
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
wxTransformMatrix& wxTransformMatrix::operator-=(const wxTransformMatrix& mat)
|
||
|
{
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
for (int j = 0; j < 3; j++)
|
||
|
m_matrix[i][j] -= mat.m_matrix[i][j];
|
||
|
m_isIdentity = IsIdentity1();
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
wxTransformMatrix& wxTransformMatrix::operator*=(const wxTransformMatrix& mat)
|
||
|
{
|
||
|
|
||
|
if (mat.m_isIdentity)
|
||
|
return *this;
|
||
|
if (m_isIdentity)
|
||
|
{
|
||
|
*this = mat;
|
||
|
return *this;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
wxTransformMatrix result;
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
{
|
||
|
for (int j = 0; j < 3; j++)
|
||
|
{
|
||
|
double sum = 0;
|
||
|
for (int k = 0; k < 3; k++)
|
||
|
sum += m_matrix[k][i] * mat.m_matrix[j][k];
|
||
|
result.m_matrix[j][i] = sum;
|
||
|
}
|
||
|
}
|
||
|
*this = result;
|
||
|
}
|
||
|
|
||
|
m_isIdentity = IsIdentity1();
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
|
||
|
// constant operators
|
||
|
wxTransformMatrix wxTransformMatrix::operator*(const double& t) const
|
||
|
{
|
||
|
wxTransformMatrix result = *this;
|
||
|
result *= t;
|
||
|
result.m_isIdentity = result.IsIdentity1();
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
wxTransformMatrix wxTransformMatrix::operator/(const double& t) const
|
||
|
{
|
||
|
wxTransformMatrix result = *this;
|
||
|
// wxASSERT(t!=0);
|
||
|
result /= t;
|
||
|
result.m_isIdentity = result.IsIdentity1();
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
wxTransformMatrix wxTransformMatrix::operator+(const wxTransformMatrix& m) const
|
||
|
{
|
||
|
wxTransformMatrix result = *this;
|
||
|
result += m;
|
||
|
result.m_isIdentity = result.IsIdentity1();
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
wxTransformMatrix wxTransformMatrix::operator-(const wxTransformMatrix& m) const
|
||
|
{
|
||
|
wxTransformMatrix result = *this;
|
||
|
result -= m;
|
||
|
result.m_isIdentity = result.IsIdentity1();
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
wxTransformMatrix wxTransformMatrix::operator*(const wxTransformMatrix& m) const
|
||
|
{
|
||
|
wxTransformMatrix result = *this;
|
||
|
result *= m;
|
||
|
result.m_isIdentity = result.IsIdentity1();
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
wxTransformMatrix wxTransformMatrix::operator-() const
|
||
|
{
|
||
|
wxTransformMatrix result = *this;
|
||
|
for (int i = 0; i < 3; i++)
|
||
|
for (int j = 0; j < 3; j++)
|
||
|
result.m_matrix[i][j] = -(this->m_matrix[i][j]);
|
||
|
result.m_isIdentity = result.IsIdentity1();
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
static double CheckInt(double getal)
|
||
|
{
|
||
|
// check if the number is very close to an integer
|
||
|
if ( (ceil(getal) - getal) < 0.0001)
|
||
|
return ceil(getal);
|
||
|
|
||
|
else if ( (getal - floor(getal)) < 0.0001)
|
||
|
return floor(getal);
|
||
|
|
||
|
return getal;
|
||
|
|
||
|
}
|
||
|
|
||
|
double wxTransformMatrix::Get_scaleX()
|
||
|
{
|
||
|
double scale_factor;
|
||
|
double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi);
|
||
|
if ( !wxIsSameDouble(rot_angle, 90) && !wxIsSameDouble(rot_angle, -90) )
|
||
|
scale_factor = m_matrix[0][0]/cos((rot_angle/180)*pi);
|
||
|
else
|
||
|
scale_factor = m_matrix[0][0]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden !
|
||
|
|
||
|
scale_factor = CheckInt(scale_factor);
|
||
|
if (scale_factor < 0)
|
||
|
scale_factor = -scale_factor;
|
||
|
|
||
|
return scale_factor;
|
||
|
}
|
||
|
|
||
|
double wxTransformMatrix::Get_scaleY()
|
||
|
{
|
||
|
double scale_factor;
|
||
|
double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi);
|
||
|
if ( !wxIsSameDouble(rot_angle, 90) && !wxIsSameDouble(rot_angle, -90) )
|
||
|
scale_factor = m_matrix[1][1]/cos((rot_angle/180)*pi);
|
||
|
else
|
||
|
scale_factor = m_matrix[1][1]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden !
|
||
|
|
||
|
scale_factor = CheckInt(scale_factor);
|
||
|
if (scale_factor < 0)
|
||
|
|
||
|
scale_factor = -scale_factor;
|
||
|
|
||
|
return scale_factor;
|
||
|
|
||
|
}
|
||
|
|
||
|
double wxTransformMatrix::GetRotation()
|
||
|
{
|
||
|
double temp1 = GetValue(0,0); // for angle calculation
|
||
|
double temp2 = GetValue(0,1); //
|
||
|
|
||
|
// Rotation
|
||
|
double rot_angle = atan2(temp2,temp1)*180/pi;
|
||
|
|
||
|
rot_angle = CheckInt(rot_angle);
|
||
|
return rot_angle;
|
||
|
}
|
||
|
|
||
|
void wxTransformMatrix::SetRotation(double rotation)
|
||
|
{
|
||
|
double x=GetValue(2,0);
|
||
|
double y=GetValue(2,1);
|
||
|
Rotate(-GetRotation(), x, y);
|
||
|
Rotate(rotation, x, y);
|
||
|
}
|