pcsx2/plugins/GSdx/GSThread.h

452 lines
9.8 KiB
C
Raw Normal View History

/*
* Copyright (C) 2007-2009 Gabest
* http://www.gabest.org
*
* This Program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This Program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Make; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
* http://www.gnu.org/copyleft/gpl.html
*
*/
#pragma once
#ifdef _WINDOWS
class GSThread
{
DWORD m_ThreadId;
HANDLE m_hThread;
static DWORD WINAPI StaticThreadProc(void* lpParam);
protected:
virtual void ThreadProc() = 0;
void CreateThread();
void CloseThread();
public:
GSThread();
virtual ~GSThread();
};
class GSCritSec
{
CRITICAL_SECTION m_cs;
public:
GSCritSec() {InitializeCriticalSection(&m_cs);}
~GSCritSec() {DeleteCriticalSection(&m_cs);}
void Lock() {EnterCriticalSection(&m_cs);}
bool TryLock() {return TryEnterCriticalSection(&m_cs) == TRUE;}
void Unlock() {LeaveCriticalSection(&m_cs);}
};
class GSEvent
{
protected:
HANDLE m_hEvent;
public:
GSEvent(bool manual = false, bool initial = false) {m_hEvent = CreateEvent(NULL, manual, initial, NULL);}
~GSEvent() {CloseHandle(m_hEvent);}
void Set() {SetEvent(m_hEvent);}
void Reset() {ResetEvent(m_hEvent);}
bool Wait() {return WaitForSingleObject(m_hEvent, INFINITE) == WAIT_OBJECT_0;}
};
#else
#include <pthread.h>
#include <semaphore.h>
class GSThread
{
pthread_attr_t m_thread_attr;
pthread_t m_thread;
static void* StaticThreadProc(void* param);
protected:
virtual void ThreadProc() = 0;
void CreateThread();
void CloseThread();
public:
GSThread();
virtual ~GSThread();
};
class GSCritSec
{
pthread_mutexattr_t m_mutex_attr;
pthread_mutex_t m_mutex;
public:
GSCritSec()
{
pthread_mutexattr_init(&m_mutex_attr);
pthread_mutexattr_settype(&m_mutex_attr, PTHREAD_MUTEX_RECURSIVE_NP);
pthread_mutex_init(&m_mutex, &m_mutex_attr);
}
~GSCritSec()
{
pthread_mutex_destroy(&m_mutex);
pthread_mutexattr_destroy(&m_mutex_attr);
}
void Lock() {pthread_mutex_lock(&m_mutex);}
bool TryLock() {return pthread_mutex_trylock(&m_mutex) == 0;}
void Unlock() {pthread_mutex_unlock(&m_mutex);}
};
class GSEvent
{
protected:
sem_t m_sem;
public:
GSEvent() {sem_init(&m_sem, 0, 0);}
~GSEvent() {sem_destroy(&m_sem);}
void Set() {sem_post(&m_sem);}
bool Wait() {return sem_wait(&m_sem) == 0;}
};
#endif
class GSAutoLock
{
protected:
GSCritSec* m_cs;
public:
GSAutoLock(GSCritSec* cs) {m_cs = cs; m_cs->Lock();}
~GSAutoLock() {m_cs->Unlock();}
};
class GSEventSpin
{
protected:
volatile long m_sync;
volatile bool m_manual;
public:
GSEventSpin(bool manual = false, bool initial = false) {m_sync = initial ? 1 : 0; m_manual = manual;}
~GSEventSpin() {}
void Set() {_interlockedbittestandset(&m_sync, 0);}
void Reset() {_interlockedbittestandreset(&m_sync, 0);}
bool Wait()
{
if(m_manual) while(!m_sync) _mm_pause();
else while(!_interlockedbittestandreset(&m_sync, 0)) _mm_pause();
return true;
}
};
template<class T> class GSJobQueue : private GSThread
{
protected:
int m_count;
queue<T> m_queue;
volatile bool m_exit;
struct {GSCritSec lock; GSEvent notempty; volatile long count;} m_ev;
#ifdef _WINDOWS
struct {SRWLOCK lock; CONDITION_VARIABLE notempty, empty; bool available;} m_cv;
HMODULE m_kernel32;
typedef void (WINAPI * InitializeConditionVariablePtr)(CONDITION_VARIABLE* ConditionVariable);
typedef void (WINAPI * WakeConditionVariablePtr)(CONDITION_VARIABLE* ConditionVariable);
typedef void (WINAPI * WakeAllConditionVariablePtr)(CONDITION_VARIABLE* ConditionVariable);
typedef void (WINAPI * SleepConditionVariableSRWPtr)(CONDITION_VARIABLE* ConditionVariable, SRWLOCK* SRWLock, DWORD dwMilliseconds, ULONG Flags);
typedef void (WINAPI * InitializeSRWLockPtr)(SRWLOCK* SRWLock);
typedef void (WINAPI * AcquireSRWLockExclusivePtr)(SRWLOCK* SRWLock);
typedef void (WINAPI * ReleaseSRWLockExclusivePtr)(SRWLOCK* SRWLock);
InitializeConditionVariablePtr pInitializeConditionVariable;
WakeConditionVariablePtr pWakeConditionVariable;
WakeAllConditionVariablePtr pWakeAllConditionVariable;
SleepConditionVariableSRWPtr pSleepConditionVariableSRW;
InitializeSRWLockPtr pInitializeSRWLock;;
AcquireSRWLockExclusivePtr pAcquireSRWLockExclusive;
ReleaseSRWLockExclusivePtr pReleaseSRWLockExclusive;
#elif defined(_LINUX)
struct {pthread_mutex_t lock; pthread_cond_t notempty, empty; bool available;} m_cv;
#endif
void ThreadProc()
{
if(m_cv.available)
{
#ifdef _WINDOWS
pAcquireSRWLockExclusive(&m_cv.lock);
while(true)
{
while(m_queue.empty())
{
pSleepConditionVariableSRW(&m_cv.notempty, &m_cv.lock, INFINITE, 0);
if(m_exit) {pReleaseSRWLockExclusive(&m_cv.lock); return;}
}
{
// NOTE: this is scoped because we must make sure the last item is no longer around when Wait detects an empty queue
T item = m_queue.front();
pReleaseSRWLockExclusive(&m_cv.lock);
Process(item);
pAcquireSRWLockExclusive(&m_cv.lock);
m_queue.pop();
}
if(m_queue.empty())
{
pWakeConditionVariable(&m_cv.empty);
}
}
#elif defined(_LINUX)
pthread_mutex_lock(&m_cv.lock);
while(true)
{
while(m_queue.empty())
{
pthread_cond_wait(&m_cv.notempty, &m_cv.lock);
if(m_exit) {pthread_mutex_unlock(&m_cv.lock); return;}
}
{
// NOTE: this is scoped because we must make sure the last item is no longer around when Wait detects an empty queue
T item = m_queue.front();
pthread_mutex_unlock(&m_cv.lock);
Process(item);
pthread_mutex_lock(&m_cv.lock);
m_queue.pop();
}
if(m_queue.empty())
{
pthread_cond_signal(&m_cv.empty);
}
}
#endif
}
else
{
m_ev.lock.Lock();
while(true)
{
while(m_queue.empty())
{
m_ev.lock.Unlock();
m_ev.notempty.Wait();
if(m_exit) {return;}
m_ev.lock.Lock();
}
{
// NOTE: this is scoped because we must make sure the last item is no longer around when Wait detects an empty queue
T item = m_queue.front();
m_ev.lock.Unlock();
Process(item);
m_ev.lock.Lock();
m_queue.pop();
}
_InterlockedDecrement(&m_ev.count);
}
}
}
public:
GSJobQueue()
: m_count(0)
, m_exit(false)
{
m_ev.count = 0;
#ifdef _WINDOWS
m_cv.available = false;
m_kernel32 = LoadLibrary("kernel32.dll");
pInitializeConditionVariable = (InitializeConditionVariablePtr)GetProcAddress(m_kernel32, "InitializeConditionVariable");
pWakeConditionVariable = (WakeConditionVariablePtr)GetProcAddress(m_kernel32, "WakeConditionVariable");
pWakeAllConditionVariable = (WakeAllConditionVariablePtr)GetProcAddress(m_kernel32, "WakeAllConditionVariable");
pSleepConditionVariableSRW = (SleepConditionVariableSRWPtr)GetProcAddress(m_kernel32, "SleepConditionVariableSRW");
pInitializeSRWLock = (InitializeSRWLockPtr)GetProcAddress(m_kernel32, "InitializeSRWLock");
pAcquireSRWLockExclusive = (AcquireSRWLockExclusivePtr)GetProcAddress(m_kernel32, "AcquireSRWLockExclusive");
pReleaseSRWLockExclusive = (ReleaseSRWLockExclusivePtr)GetProcAddress(m_kernel32, "ReleaseSRWLockExclusive");
if(pInitializeConditionVariable != NULL)
{
pInitializeSRWLock(&m_cv.lock);
pInitializeConditionVariable(&m_cv.notempty);
pInitializeConditionVariable(&m_cv.empty);
m_cv.available = true;
}
#elif defined(_LINUX)
m_cv.available = true;
// FIXME attribute
pthread_cond_init(&m_cv.notempty, NULL);
pthread_cond_init(&m_cv.empty, NULL);
pthread_mutex_init(&m_cv.lock, NULL);
#endif
CreateThread();
}
virtual ~GSJobQueue()
{
m_exit = true;
if(m_cv.available)
{
#ifdef _WINDOWS
pWakeConditionVariable(&m_cv.notempty);
#elif defined(_LINUX)
pthread_cond_signal(&m_cv.notempty);
pthread_mutex_destroy(&m_cv.lock);
pthread_cond_destroy(&m_cv.notempty);
pthread_cond_destroy(&m_cv.empty);
#endif
}
else
{
m_ev.notempty.Set();
}
#ifdef _WINDOWS
if(m_kernel32 != NULL)
{
FreeLibrary(m_kernel32); // lol, decrement the refcount anyway
}
#endif
}
int GetCount() const
{
return m_count;
}
virtual void Push(const T& item)
{
if(m_cv.available)
{
#ifdef _WINDOWS
pAcquireSRWLockExclusive(&m_cv.lock);
m_queue.push(item);
pReleaseSRWLockExclusive(&m_cv.lock);
pWakeConditionVariable(&m_cv.notempty);
#elif defined(_LINUX)
pthread_mutex_lock(&m_cv.lock);
m_queue.push(item);
pthread_mutex_unlock(&m_cv.lock);
pthread_cond_signal(&m_cv.notempty);
#endif
}
else
{
GSAutoLock l(&m_ev.lock);
m_queue.push(item);
_InterlockedIncrement(&m_ev.count);
m_ev.notempty.Set();
}
m_count++;
}
virtual void Wait()
{
if(m_cv.available)
{
#ifdef _WINDOWS
pAcquireSRWLockExclusive(&m_cv.lock);
while(!m_queue.empty())
{
pSleepConditionVariableSRW(&m_cv.empty, &m_cv.lock, INFINITE, 0);
}
pReleaseSRWLockExclusive(&m_cv.lock);
#elif defined(_LINUX)
pthread_mutex_lock(&m_cv.lock);
while(!m_queue.empty())
{
pthread_cond_wait(&m_cv.empty, &m_cv.lock);
}
pthread_mutex_unlock(&m_cv.lock);
#endif
}
else
{
// NOTE: it is the safest to have our own counter because m_queue.pop() might decrement its own before the last item runs out of its scope and gets destroyed (implementation dependent)
while(m_ev.count > 0) _mm_pause();
}
m_count++;
}
virtual void Process(T& item) = 0;
};