mirror of https://github.com/PCSX2/pcsx2.git
615 lines
14 KiB
Plaintext
615 lines
14 KiB
Plaintext
|
//#version 420 // Keep it for text editor detection
|
||
|
|
||
|
// Require for bit operation
|
||
|
//#extension GL_ARB_gpu_shader5 : enable
|
||
|
|
||
|
#define FMT_32 0
|
||
|
#define FMT_24 1
|
||
|
#define FMT_16 2
|
||
|
|
||
|
#define PS_PAL_FMT (PS_TEX_FMT >> 2)
|
||
|
#define PS_AEM_FMT (PS_TEX_FMT & 3)
|
||
|
|
||
|
// APITRACE_DEBUG enables forced pixel output to easily detect
|
||
|
// the fragment computed by primitive
|
||
|
#define APITRACE_DEBUG 0
|
||
|
// TEX_COORD_DEBUG output the uv coordinate as color. It is useful
|
||
|
// to detect bad sampling due to upscaling
|
||
|
//#define TEX_COORD_DEBUG
|
||
|
// Just copy directly the texture coordinate
|
||
|
#ifdef TEX_COORD_DEBUG
|
||
|
#define PS_TFX 1
|
||
|
#define PS_TCC 1
|
||
|
#endif
|
||
|
|
||
|
#define SW_BLEND (PS_BLEND_A || PS_BLEND_B || PS_BLEND_D)
|
||
|
|
||
|
#ifdef FRAGMENT_SHADER
|
||
|
|
||
|
in SHADER
|
||
|
{
|
||
|
vec4 t_float;
|
||
|
vec4 t_int;
|
||
|
vec4 c;
|
||
|
flat vec4 fc;
|
||
|
} PSin;
|
||
|
|
||
|
#define PSin_c (PSin.c)
|
||
|
#define PSin_fc (PSin.fc)
|
||
|
|
||
|
// Same buffer but 2 colors for dual source blending
|
||
|
layout(location = 0, index = 0) out vec4 SV_Target0;
|
||
|
layout(location = 0, index = 1) out vec4 SV_Target1;
|
||
|
|
||
|
layout(binding = 0) uniform sampler2D TextureSampler;
|
||
|
layout(binding = 1) uniform sampler2D PaletteSampler;
|
||
|
layout(binding = 3) uniform sampler2D RtSampler; // note 2 already use by the image below
|
||
|
|
||
|
#ifndef DISABLE_GL42_image
|
||
|
#if PS_DATE > 0
|
||
|
// FIXME how to declare memory access
|
||
|
layout(r32i, binding = 2) uniform iimage2D img_prim_min;
|
||
|
// WARNING:
|
||
|
// You can't enable it if you discard the fragment. The depth is still
|
||
|
// updated (shadow in Shin Megami Tensei Nocturne)
|
||
|
//
|
||
|
// early_fragment_tests must still be enabled in the first pass of the 2 passes algo
|
||
|
// First pass search the first primitive that will write the bad alpha value. Value
|
||
|
// won't be written if the fragment fails the depth test.
|
||
|
//
|
||
|
// In theory the best solution will be do
|
||
|
// 1/ copy the depth buffer
|
||
|
// 2/ do the full depth (current depth writes are disabled)
|
||
|
// 3/ restore the depth buffer for 2nd pass
|
||
|
// Of course, it is likely too costly.
|
||
|
#if PS_DATE == 1 || PS_DATE == 2
|
||
|
layout(early_fragment_tests) in;
|
||
|
#endif
|
||
|
|
||
|
// I don't remember why I set this parameter but it is surely useless
|
||
|
//layout(pixel_center_integer) in vec4 gl_FragCoord;
|
||
|
#endif
|
||
|
#else
|
||
|
// use basic stencil
|
||
|
#endif
|
||
|
|
||
|
|
||
|
// Warning duplicated in both GLSL file
|
||
|
layout(std140, binding = 21) uniform cb21
|
||
|
{
|
||
|
vec3 FogColor;
|
||
|
float AREF;
|
||
|
|
||
|
vec4 WH;
|
||
|
|
||
|
vec2 TA;
|
||
|
float _pad0;
|
||
|
float Af;
|
||
|
|
||
|
uvec4 MskFix;
|
||
|
|
||
|
uvec4 FbMask;
|
||
|
|
||
|
vec4 HalfTexel;
|
||
|
|
||
|
vec4 MinMax;
|
||
|
|
||
|
vec2 TextureScale;
|
||
|
vec2 TC_OffsetHack;
|
||
|
};
|
||
|
|
||
|
vec4 sample_c(vec2 uv)
|
||
|
{
|
||
|
return texture(TextureSampler, uv);
|
||
|
}
|
||
|
|
||
|
vec4 sample_p(float idx)
|
||
|
{
|
||
|
return texture(PaletteSampler, vec2(idx, 0.0f));
|
||
|
}
|
||
|
|
||
|
vec4 clamp_wrap_uv(vec4 uv)
|
||
|
{
|
||
|
vec4 uv_out = uv;
|
||
|
|
||
|
#if PS_WMS == PS_WMT
|
||
|
|
||
|
#if PS_WMS == 2
|
||
|
uv_out = clamp(uv, MinMax.xyxy, MinMax.zwzw);
|
||
|
#elif PS_WMS == 3
|
||
|
uv_out = vec4((ivec4(uv * WH.xyxy) & ivec4(MskFix.xyxy)) | ivec4(MskFix.zwzw)) / WH.xyxy;
|
||
|
#endif
|
||
|
|
||
|
#else // PS_WMS != PS_WMT
|
||
|
|
||
|
#if PS_WMS == 2
|
||
|
uv_out.xz = clamp(uv.xz, MinMax.xx, MinMax.zz);
|
||
|
|
||
|
#elif PS_WMS == 3
|
||
|
uv_out.xz = vec2((ivec2(uv.xz * WH.xx) & ivec2(MskFix.xx)) | ivec2(MskFix.zz)) / WH.xx;
|
||
|
|
||
|
#endif
|
||
|
|
||
|
#if PS_WMT == 2
|
||
|
uv_out.yw = clamp(uv.yw, MinMax.yy, MinMax.ww);
|
||
|
|
||
|
#elif PS_WMT == 3
|
||
|
|
||
|
uv_out.yw = vec2((ivec2(uv.yw * WH.yy) & ivec2(MskFix.yy)) | ivec2(MskFix.ww)) / WH.yy;
|
||
|
#endif
|
||
|
|
||
|
#endif
|
||
|
|
||
|
return uv_out;
|
||
|
}
|
||
|
|
||
|
mat4 sample_4c(vec4 uv)
|
||
|
{
|
||
|
mat4 c;
|
||
|
|
||
|
// Note: texture gather can't be used because of special clamping/wrapping
|
||
|
// Also it doesn't support lod
|
||
|
c[0] = sample_c(uv.xy);
|
||
|
c[1] = sample_c(uv.zy);
|
||
|
c[2] = sample_c(uv.xw);
|
||
|
c[3] = sample_c(uv.zw);
|
||
|
|
||
|
return c;
|
||
|
}
|
||
|
|
||
|
vec4 sample_4_index(vec4 uv)
|
||
|
{
|
||
|
vec4 c;
|
||
|
|
||
|
// Either GSdx will send a texture that contains a single channel
|
||
|
// in this case the red channel is remapped as alpha channel
|
||
|
//
|
||
|
// Or we have an old RT (ie RGBA8) that contains index (4/8) in the alpha channel
|
||
|
|
||
|
// Note: texture gather can't be used because of special clamping/wrapping
|
||
|
// Also it doesn't support lod
|
||
|
c.x = sample_c(uv.xy).a;
|
||
|
c.y = sample_c(uv.zy).a;
|
||
|
c.z = sample_c(uv.xw).a;
|
||
|
c.w = sample_c(uv.zw).a;
|
||
|
|
||
|
uvec4 i = uvec4(c * 255.0f + 0.5f); // Denormalize value
|
||
|
|
||
|
#if PS_PAL_FMT == 1
|
||
|
// 4HL
|
||
|
return vec4(i & 0xFu) / 255.0f;
|
||
|
|
||
|
#elif PS_PAL_FMT == 2
|
||
|
// 4HH
|
||
|
return vec4(i >> 4u) / 255.0f;
|
||
|
|
||
|
#else
|
||
|
// Most of texture will hit this code so keep normalized float value
|
||
|
|
||
|
// 8 bits
|
||
|
return c;
|
||
|
#endif
|
||
|
|
||
|
}
|
||
|
|
||
|
mat4 sample_4p(vec4 u)
|
||
|
{
|
||
|
mat4 c;
|
||
|
|
||
|
c[0] = sample_p(u.x);
|
||
|
c[1] = sample_p(u.y);
|
||
|
c[2] = sample_p(u.z);
|
||
|
c[3] = sample_p(u.w);
|
||
|
|
||
|
return c;
|
||
|
}
|
||
|
|
||
|
vec4 sample_color(vec2 st)
|
||
|
{
|
||
|
#if (PS_TCOFFSETHACK == 1)
|
||
|
st += TC_OffsetHack.xy;
|
||
|
#endif
|
||
|
|
||
|
vec4 t;
|
||
|
mat4 c;
|
||
|
vec2 dd;
|
||
|
|
||
|
// FIXME I'm not sure this condition is useful (I think code will be optimized)
|
||
|
#if (PS_LTF == 0 && PS_AEM_FMT == FMT_32 && PS_PAL_FMT == 0 && PS_WMS < 2 && PS_WMT < 2)
|
||
|
// No software LTF and pure 32 bits RGBA texure without special texture wrapping
|
||
|
c[0] = sample_c(st);
|
||
|
#ifdef TEX_COORD_DEBUG
|
||
|
c[0].rg = st.xy;
|
||
|
#endif
|
||
|
|
||
|
#else
|
||
|
vec4 uv;
|
||
|
|
||
|
if(PS_LTF != 0)
|
||
|
{
|
||
|
uv = st.xyxy + HalfTexel;
|
||
|
dd = fract(uv.xy * WH.zw);
|
||
|
#if (PS_FST == 0)
|
||
|
// Background in Shin Megami Tensei Lucifers
|
||
|
// I suspect that uv isn't a standard number, so fract is outside of the [0;1] range
|
||
|
// Note: it is free on GPU but let's do it only for float coordinate
|
||
|
// Strangely Dx doesn't suffer from this issue.
|
||
|
dd = clamp(dd, vec2(0.0f), vec2(1.0f));
|
||
|
#endif
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
uv = st.xyxy;
|
||
|
}
|
||
|
|
||
|
uv = clamp_wrap_uv(uv);
|
||
|
|
||
|
#if PS_PAL_FMT != 0
|
||
|
c = sample_4p(sample_4_index(uv));
|
||
|
#else
|
||
|
c = sample_4c(uv);
|
||
|
#endif
|
||
|
|
||
|
#ifdef TEX_COORD_DEBUG
|
||
|
c[0].rg = uv.xy;
|
||
|
c[1].rg = uv.xy;
|
||
|
c[2].rg = uv.xy;
|
||
|
c[3].rg = uv.xy;
|
||
|
#endif
|
||
|
|
||
|
#endif
|
||
|
|
||
|
// PERF note: using dot product reduces by 1 the number of instruction
|
||
|
// but I'm not sure it is equivalent neither faster.
|
||
|
for (int i = 0; i < 4; i++)
|
||
|
{
|
||
|
//float sum = dot(c[i].rgb, vec3(1.0f));
|
||
|
#if (PS_AEM_FMT == FMT_24)
|
||
|
c[i].a = ( (PS_AEM == 0) || any(bvec3(c[i].rgb)) ) ? TA.x : 0.0f;
|
||
|
//c[i].a = ( (PS_AEM == 0) || (sum > 0.0f) ) ? TA.x : 0.0f;
|
||
|
#elif (PS_AEM_FMT == FMT_16)
|
||
|
c[i].a = c[i].a >= 0.5 ? TA.y : ( (PS_AEM == 0) || any(bvec3(c[i].rgb)) ) ? TA.x : 0.0f;
|
||
|
//c[i].a = c[i].a >= 0.5 ? TA.y : ( (PS_AEM == 0) || (sum > 0.0f) ) ? TA.x : 0.0f;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
#if(PS_LTF != 0)
|
||
|
t = mix(mix(c[0], c[1], dd.x), mix(c[2], c[3], dd.x), dd.y);
|
||
|
#else
|
||
|
t = c[0];
|
||
|
#endif
|
||
|
|
||
|
// The 0.05f helps to fix the overbloom of sotc
|
||
|
// I think the issue is related to the rounding of texture coodinate. The linear (from fixed unit)
|
||
|
// interpolation could be slightly below the correct one.
|
||
|
return trunc(t * 255.0f + 0.05f);
|
||
|
}
|
||
|
|
||
|
vec4 tfx(vec4 T, vec4 C)
|
||
|
{
|
||
|
vec4 C_out;
|
||
|
vec4 FxT = trunc(trunc(C) * T / 128.0f);
|
||
|
|
||
|
#if (PS_TFX == 0)
|
||
|
C_out = FxT;
|
||
|
#elif (PS_TFX == 1)
|
||
|
C_out = T;
|
||
|
#elif (PS_TFX == 2)
|
||
|
C_out.rgb = FxT.rgb + C.a;
|
||
|
C_out.a = T.a + C.a;
|
||
|
#elif (PS_TFX == 3)
|
||
|
C_out.rgb = FxT.rgb + C.a;
|
||
|
C_out.a = T.a;
|
||
|
#else
|
||
|
C_out = C;
|
||
|
#endif
|
||
|
|
||
|
#if (PS_TCC == 0)
|
||
|
C_out.a = C.a;
|
||
|
#endif
|
||
|
|
||
|
#if (PS_TFX == 0) || (PS_TFX == 2) || (PS_TFX == 3)
|
||
|
// Clamp only when it is useful
|
||
|
C_out = min(C_out, 255.0f);
|
||
|
#endif
|
||
|
|
||
|
return C_out;
|
||
|
}
|
||
|
|
||
|
void atst(vec4 C)
|
||
|
{
|
||
|
// FIXME use integer cmp
|
||
|
float a = C.a;
|
||
|
|
||
|
#if (PS_ATST == 0) // never
|
||
|
discard;
|
||
|
#elif (PS_ATST == 1) // always
|
||
|
// nothing to do
|
||
|
#elif (PS_ATST == 2) // l
|
||
|
if ((AREF - a - 0.5f) < 0.0f)
|
||
|
discard;
|
||
|
#elif (PS_ATST == 3 ) // le
|
||
|
if ((AREF - a + 0.5f) < 0.0f)
|
||
|
discard;
|
||
|
#elif (PS_ATST == 4) // e
|
||
|
if ((0.5f - abs(a - AREF)) < 0.0f)
|
||
|
discard;
|
||
|
#elif (PS_ATST == 5) // ge
|
||
|
if ((a-AREF + 0.5f) < 0.0f)
|
||
|
discard;
|
||
|
#elif (PS_ATST == 6) // g
|
||
|
if ((a-AREF - 0.5f) < 0.0f)
|
||
|
discard;
|
||
|
#elif (PS_ATST == 7) // ne
|
||
|
if ((abs(a - AREF) - 0.5f) < 0.0f)
|
||
|
discard;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void fog(inout vec4 C, float f)
|
||
|
{
|
||
|
#if PS_FOG != 0
|
||
|
C.rgb = trunc(mix(FogColor, C.rgb, f));
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
vec4 ps_color()
|
||
|
{
|
||
|
//FIXME: maybe we can set gl_Position.w = q in VS
|
||
|
#if (PS_FST == 0)
|
||
|
vec4 T = sample_color(PSin.t_float.xy / vec2(PSin.t_float.w));
|
||
|
#else
|
||
|
// Note xy are normalized coordinate
|
||
|
vec4 T = sample_color(PSin.t_int.xy);
|
||
|
#endif
|
||
|
|
||
|
#if PS_IIP == 1
|
||
|
vec4 C = tfx(T, PSin_c);
|
||
|
#else
|
||
|
vec4 C = tfx(T, PSin_fc);
|
||
|
#endif
|
||
|
|
||
|
atst(C);
|
||
|
|
||
|
fog(C, PSin.t_float.z);
|
||
|
|
||
|
#if (PS_CLR1 != 0) // needed for Cd * (As/Ad/F + 1) blending modes
|
||
|
C.rgb = vec3(255.0f);
|
||
|
#endif
|
||
|
|
||
|
return C;
|
||
|
}
|
||
|
|
||
|
void ps_fbmask(inout vec4 C)
|
||
|
{
|
||
|
// FIXME do I need special case for 16 bits
|
||
|
#if PS_FBMASK
|
||
|
vec4 RT = trunc(texelFetch(RtSampler, ivec2(gl_FragCoord.xy), 0) * 255.0f + 0.1f);
|
||
|
C = vec4((uvec4(C) & ~FbMask) | (uvec4(RT) & FbMask));
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void ps_blend(inout vec4 Color, float As)
|
||
|
{
|
||
|
#if SW_BLEND
|
||
|
vec4 RT = trunc(texelFetch(RtSampler, ivec2(gl_FragCoord.xy), 0) * 255.0f + 0.1f);
|
||
|
|
||
|
#if PS_DFMT == FMT_24
|
||
|
float Ad = 1.0f;
|
||
|
#else
|
||
|
// FIXME FMT_16 case
|
||
|
// FIXME Ad or Ad * 2?
|
||
|
float Ad = RT.a / 128.0f;
|
||
|
#endif
|
||
|
|
||
|
// Let the compiler do its jobs !
|
||
|
vec3 Cd = RT.rgb;
|
||
|
vec3 Cs = Color.rgb;
|
||
|
|
||
|
#if PS_BLEND_A == 0
|
||
|
vec3 A = Cs;
|
||
|
#elif PS_BLEND_A == 1
|
||
|
vec3 A = Cd;
|
||
|
#else
|
||
|
vec3 A = vec3(0.0f);
|
||
|
#endif
|
||
|
|
||
|
#if PS_BLEND_B == 0
|
||
|
vec3 B = Cs;
|
||
|
#elif PS_BLEND_B == 1
|
||
|
vec3 B = Cd;
|
||
|
#else
|
||
|
vec3 B = vec3(0.0f);
|
||
|
#endif
|
||
|
|
||
|
#if PS_BLEND_C == 0
|
||
|
float C = As;
|
||
|
#elif PS_BLEND_C == 1
|
||
|
float C = Ad;
|
||
|
#else
|
||
|
float C = Af;
|
||
|
#endif
|
||
|
|
||
|
#if PS_BLEND_D == 0
|
||
|
vec3 D = Cs;
|
||
|
#elif PS_BLEND_D == 1
|
||
|
vec3 D = Cd;
|
||
|
#else
|
||
|
vec3 D = vec3(0.0f);
|
||
|
#endif
|
||
|
|
||
|
#if PS_BLEND_A == PS_BLEND_B
|
||
|
Color.rgb = D;
|
||
|
#else
|
||
|
Color.rgb = trunc((A - B) * C + D);
|
||
|
#endif
|
||
|
|
||
|
// FIXME dithering
|
||
|
|
||
|
// Correct the Color value based on the output format
|
||
|
#if PS_COLCLIP == 0 && PS_HDR == 0
|
||
|
// Standard Clamp
|
||
|
Color.rgb = clamp(Color.rgb, vec3(0.0f), vec3(255.0f));
|
||
|
#endif
|
||
|
|
||
|
// FIXME rouding of negative float?
|
||
|
// compiler uses trunc but it might need floor
|
||
|
|
||
|
// Warning: normally blending equation is mult(A, B) = A * B >> 7. GPU have the full accuracy
|
||
|
// GS: Color = 1, Alpha = 255 => output 1
|
||
|
// GPU: Color = 1/255, Alpha = 255/255 * 255/128 => output 1.9921875
|
||
|
#if PS_DFMT == FMT_16
|
||
|
// In 16 bits format, only 5 bits of colors are used. It impacts shadows computation of Castlevania
|
||
|
|
||
|
Color.rgb = vec3(ivec3(Color.rgb) & ivec3(0xF8));
|
||
|
#elif PS_COLCLIP == 1 && PS_HDR == 0
|
||
|
Color.rgb = vec3(ivec3(Color.rgb) & ivec3(0xFF));
|
||
|
#endif
|
||
|
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void ps_main()
|
||
|
{
|
||
|
#if ((PS_DATE & 3) == 1 || (PS_DATE & 3) == 2)
|
||
|
|
||
|
#if PS_WRITE_RG == 1
|
||
|
// Pseudo 16 bits access.
|
||
|
float rt_a = texelFetch(RtSampler, ivec2(gl_FragCoord.xy), 0).g;
|
||
|
#else
|
||
|
float rt_a = texelFetch(RtSampler, ivec2(gl_FragCoord.xy), 0).a;
|
||
|
#endif
|
||
|
|
||
|
#if (PS_DATE & 3) == 1
|
||
|
// DATM == 0: Pixel with alpha equal to 1 will failed
|
||
|
bool bad = (127.5f / 255.0f) < rt_a;
|
||
|
#elif (PS_DATE & 3) == 2
|
||
|
// DATM == 1: Pixel with alpha equal to 0 will failed
|
||
|
bool bad = rt_a < (127.5f / 255.0f);
|
||
|
#endif
|
||
|
|
||
|
if (bad) {
|
||
|
#if PS_DATE >= 5 || defined(DISABLE_GL42_image)
|
||
|
discard;
|
||
|
#else
|
||
|
imageStore(img_prim_min, ivec2(gl_FragCoord.xy), ivec4(-1));
|
||
|
return;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
#if PS_DATE == 3 && !defined(DISABLE_GL42_image)
|
||
|
int stencil_ceil = imageLoad(img_prim_min, ivec2(gl_FragCoord.xy)).r;
|
||
|
// Note gl_PrimitiveID == stencil_ceil will be the primitive that will update
|
||
|
// the bad alpha value so we must keep it.
|
||
|
|
||
|
if (gl_PrimitiveID > stencil_ceil) {
|
||
|
discard;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
vec4 C = ps_color();
|
||
|
#if (APITRACE_DEBUG & 1) == 1
|
||
|
C.r = 255f;
|
||
|
#endif
|
||
|
#if (APITRACE_DEBUG & 2) == 2
|
||
|
C.g = 255f;
|
||
|
#endif
|
||
|
#if (APITRACE_DEBUG & 4) == 4
|
||
|
C.b = 255f;
|
||
|
#endif
|
||
|
#if (APITRACE_DEBUG & 8) == 8
|
||
|
C.a = 128f;
|
||
|
#endif
|
||
|
|
||
|
#if PS_SHUFFLE
|
||
|
uvec4 denorm_c = uvec4(C);
|
||
|
uvec2 denorm_TA = uvec2(vec2(TA.xy) * 255.0f + 0.5f);
|
||
|
|
||
|
// Write RB part. Mask will take care of the correct destination
|
||
|
#if PS_READ_BA
|
||
|
C.rb = C.bb;
|
||
|
#else
|
||
|
C.rb = C.rr;
|
||
|
#endif
|
||
|
|
||
|
// FIXME precompute my_TA & 0x80
|
||
|
|
||
|
// Write GA part. Mask will take care of the correct destination
|
||
|
// Note: GLSL 4.50/GL_EXT_shader_integer_mix support a mix instruction to select a component\n"
|
||
|
// However Nvidia emulate it with an if (at least on kepler arch) ...\n"
|
||
|
#if PS_READ_BA
|
||
|
// bit field operation requires GL4 HW. Could be nice to merge it with step/mix below
|
||
|
// uint my_ta = (bool(bitfieldExtract(denorm_c.a, 7, 1))) ? denorm_TA.y : denorm_TA.x;
|
||
|
// denorm_c.a = bitfieldInsert(denorm_c.a, bitfieldExtract(my_ta, 7, 1), 7, 1);
|
||
|
// c.ga = vec2(float(denorm_c.a));
|
||
|
|
||
|
if (bool(denorm_c.a & 0x80u))
|
||
|
C.ga = vec2(float((denorm_c.a & 0x7Fu) | (denorm_TA.y & 0x80u)));
|
||
|
else
|
||
|
C.ga = vec2(float((denorm_c.a & 0x7Fu) | (denorm_TA.x & 0x80u)));
|
||
|
|
||
|
#else
|
||
|
if (bool(denorm_c.g & 0x80u))
|
||
|
C.ga = vec2(float((denorm_c.g & 0x7Fu) | (denorm_TA.y & 0x80u)));
|
||
|
else
|
||
|
C.ga = vec2(float((denorm_c.g & 0x7Fu) | (denorm_TA.x & 0x80u)));
|
||
|
|
||
|
// Nice idea but step/mix requires 4 instructions
|
||
|
// set / trunc / I2F / Mad
|
||
|
//
|
||
|
// float sel = step(128.0f, c.g);
|
||
|
// vec2 c_shuffle = vec2((denorm_c.gg & 0x7Fu) | (denorm_TA & 0x80u));
|
||
|
// c.ga = mix(c_shuffle.xx, c_shuffle.yy, sel);
|
||
|
#endif
|
||
|
|
||
|
#endif
|
||
|
|
||
|
// Must be done before alpha correction
|
||
|
float alpha_blend = C.a / 128.0f;
|
||
|
|
||
|
// Correct the ALPHA value based on the output format
|
||
|
#if (PS_DFMT == FMT_16)
|
||
|
float A_one = 128.0f; // alpha output will be 0x80
|
||
|
C.a = (PS_FBA != 0) ? A_one : step(128.0f, C.a) * A_one;
|
||
|
#elif (PS_DFMT == FMT_32) && (PS_FBA != 0)
|
||
|
if(C.a < 128.0f) C.a += 128.0f;
|
||
|
#endif
|
||
|
|
||
|
// Get first primitive that will write a failling alpha value
|
||
|
#if PS_DATE == 1 && !defined(DISABLE_GL42_image)
|
||
|
// DATM == 0
|
||
|
// Pixel with alpha equal to 1 will failed (128-255)
|
||
|
if (C.a > 127.5f) {
|
||
|
imageAtomicMin(img_prim_min, ivec2(gl_FragCoord.xy), gl_PrimitiveID);
|
||
|
}
|
||
|
return;
|
||
|
#elif PS_DATE == 2 && !defined(DISABLE_GL42_image)
|
||
|
// DATM == 1
|
||
|
// Pixel with alpha equal to 0 will failed (0-127)
|
||
|
if (C.a < 127.5f) {
|
||
|
imageAtomicMin(img_prim_min, ivec2(gl_FragCoord.xy), gl_PrimitiveID);
|
||
|
}
|
||
|
return;
|
||
|
#endif
|
||
|
|
||
|
ps_blend(C, alpha_blend);
|
||
|
|
||
|
ps_fbmask(C);
|
||
|
|
||
|
#if PS_HDR == 1
|
||
|
// Use negative value to avoid overflow of the texture (in accumulation mode)
|
||
|
// Note: code were initially done for an Half-Float texture. Due to overflow
|
||
|
// the texture was upgraded to a full float. Maybe this code is useless now!
|
||
|
// Good testcase is castlevania
|
||
|
if (any(greaterThan(C.rgb, vec3(128.0f)))) {
|
||
|
C.rgb = (C.rgb - 256.0f);
|
||
|
}
|
||
|
#endif
|
||
|
SV_Target0 = C / 255.0f;
|
||
|
SV_Target1 = vec4(alpha_blend);
|
||
|
}
|
||
|
|
||
|
#endif
|