pcsx2/common/boost_spsc_queue.hpp

211 lines
6.8 KiB
C++
Raw Normal View History

// This version is a stripped down version of boost/lockfree/spsc_queue.hpp boost_spsc_queue.hpp
// Rational
// * Performance is better on linux than the standard std::queue
// * Performance in the same on windows
// => 100-200MB of dependency feel rather unfriendly
// Potential optimization
// * plug condition variable into the queue directly to avoid redundant m_count
// * Restore boost optimization
// => unlikely or replace it with a % (if size is 2^n)
// lock-free single-producer/single-consumer ringbuffer
// this algorithm is implemented in various projects (linux kernel)
//
// Copyright (C) 2009-2013 Tim Blechmann
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Boost Software License - Version 1.0 - August 17th, 2003
//
// Permission is hereby granted, free of charge, to any person or organization
// obtaining a copy of the software and accompanying documentation covered by
// this license (the "Software") to use, reproduce, display, distribute,
// execute, and transmit the Software, and to prepare derivative works of the
// Software, and to permit third-parties to whom the Software is furnished to
// do so, all subject to the following:
//
// The copyright notices in the Software and this entire statement, including
// the above license grant, this restriction and the following disclaimer,
// must be included in all copies of the Software, in whole or in part, and
// all derivative works of the Software, unless such copies or derivative
// works are solely in the form of machine-executable object code generated by
// a source language processor.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
#include <atomic>
#include "AlignedMalloc.h"
2024-03-21 06:43:50 +00:00
#include "Pcsx2Defs.h"
template <typename T, size_t max_size>
class ringbuffer_base
{
2024-03-21 06:43:50 +00:00
static const int padding_size = __cachelinesize - sizeof(size_t);
std::atomic<size_t> write_index_;
char padding1[padding_size]; /* force read_index and write_index to different cache lines */
std::atomic<size_t> read_index_;
char padding2[padding_size]; /* force read_index and pending_pop_read_index to different cache lines */
size_t pending_pop_read_index;
T *buffer;
ringbuffer_base(ringbuffer_base const &) = delete;
ringbuffer_base(ringbuffer_base &&) = delete;
const ringbuffer_base& operator=( const ringbuffer_base& ) = delete;
public:
ringbuffer_base(void):
2017-01-22 15:43:35 +00:00
write_index_(0), read_index_(0), pending_pop_read_index(0)
{
// Use dynamically allocation here with no T object dependency
// Otherwise the ringbuffer_base destructor will call the destructor
// of T which crash if T is a (invalid) shared_ptr.
//
// Note another solution will be to create a char buffer as union of T
buffer = (T*)_aligned_malloc(sizeof(T)*max_size, 32);
}
~ringbuffer_base(void) {
// destroy all remaining items
T out;
while (pop(out)) {};
_aligned_free(buffer);
}
static size_t next_index(size_t arg)
{
size_t ret = arg + 1;
#if 0
// Initial boost code
while (unlikely(ret >= max_size))
ret -= max_size;
#else
ret %= max_size;
#endif
return ret;
}
bool push(T const & t)
{
const size_t write_index = write_index_.load(std::memory_order_relaxed); // only written from push thread
const size_t next = next_index(write_index);
if (next == read_index_.load(std::memory_order_acquire))
return false; /* ringbuffer is full */
new (buffer + write_index) T(t); // copy-construct
write_index_.store(next, std::memory_order_release);
return true;
}
bool pop (T & ret)
{
const size_t write_index = write_index_.load(std::memory_order_acquire);
const size_t read_index = read_index_.load(std::memory_order_relaxed); // only written from pop thread
if (empty(write_index, read_index))
return false;
ret = buffer[read_index];
buffer[read_index].~T();
size_t next = next_index(read_index);
read_index_.store(next, std::memory_order_release);
return true;
}
T& front()
{
pending_pop_read_index = read_index_.load(std::memory_order_relaxed); // only written from pop thread
return buffer[pending_pop_read_index];
}
void pop()
{
buffer[pending_pop_read_index].~T();
size_t next = next_index(pending_pop_read_index);
read_index_.store(next, std::memory_order_release);
}
template <typename Functor>
bool consume_one(Functor & f)
{
const size_t write_index = write_index_.load(std::memory_order_acquire);
const size_t read_index = read_index_.load(std::memory_order_relaxed); // only written from pop thread
if (empty(write_index, read_index))
return false;
f(buffer[read_index]);
buffer[read_index].~T();
size_t next = next_index(read_index);
read_index_.store(next, std::memory_order_release);
return true;
}
public:
/** reset the ringbuffer
*
* \note Not thread-safe
* */
void reset(void)
{
write_index_.store(0, std::memory_order_relaxed);
read_index_.store(0, std::memory_order_release);
}
/** Check if the ringbuffer is empty
*
* \return true, if the ringbuffer is empty, false otherwise
* \note Due to the concurrent nature of the ringbuffer the result may be inaccurate.
* */
bool empty(void)
{
return empty(write_index_.load(std::memory_order_relaxed), read_index_.load(std::memory_order_relaxed));
}
/**
* \return true, if implementation is lock-free.
*
* */
bool is_lock_free(void) const
{
return write_index_.is_lock_free() && read_index_.is_lock_free();
}
size_t size() const
{
const size_t write_index = write_index_.load(std::memory_order_relaxed);
const size_t read_index = read_index_.load(std::memory_order_relaxed);
if (read_index > write_index) {
return (write_index + max_size) - read_index;
} else {
return write_index - read_index;
}
}
private:
bool empty(size_t write_index, size_t read_index)
{
return write_index == read_index;
}
};