mgba/src/gba/gba-audio.c

915 lines
28 KiB
C

/* Copyright (c) 2013-2014 Jeffrey Pfau
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "gba-audio.h"
#include "gba.h"
#include "gba-io.h"
#include "gba-serialize.h"
#include "gba-thread.h"
#include "gba-video.h"
const unsigned GBA_AUDIO_SAMPLES = 2048;
const unsigned BLIP_BUFFER_SIZE = 0x4000;
const unsigned GBA_AUDIO_FIFO_SIZE = 8 * sizeof(int32_t);
#define SWEEP_CYCLES (GBA_ARM7TDMI_FREQUENCY / 128)
static bool _writeEnvelope(struct GBAAudioEnvelope* envelope, uint16_t value);
static int32_t _updateSquareChannel(struct GBAAudioSquareControl* envelope, int duty);
static void _updateEnvelope(struct GBAAudioEnvelope* envelope);
static bool _updateSweep(struct GBAAudioChannel1* ch);
static int32_t _updateChannel1(struct GBAAudioChannel1* ch);
static int32_t _updateChannel2(struct GBAAudioChannel2* ch);
static int32_t _updateChannel3(struct GBAAudioChannel3* ch);
static int32_t _updateChannel4(struct GBAAudioChannel4* ch);
static int _applyBias(struct GBAAudio* audio, int sample);
static void _sample(struct GBAAudio* audio);
void GBAAudioInit(struct GBAAudio* audio, size_t samples) {
audio->samples = samples;
#if RESAMPLE_LIBRARY != RESAMPLE_BLIP_BUF
CircleBufferInit(&audio->left, samples * sizeof(int16_t));
CircleBufferInit(&audio->right, samples * sizeof(int16_t));
#else
audio->left = blip_new(BLIP_BUFFER_SIZE);
audio->right = blip_new(BLIP_BUFFER_SIZE);
// Guess too large; we hang producing extra samples if we guess too low
blip_set_rates(audio->left, GBA_ARM7TDMI_FREQUENCY, 96000);
blip_set_rates(audio->right, GBA_ARM7TDMI_FREQUENCY, 96000);
#endif
CircleBufferInit(&audio->chA.fifo, GBA_AUDIO_FIFO_SIZE);
CircleBufferInit(&audio->chB.fifo, GBA_AUDIO_FIFO_SIZE);
}
void GBAAudioReset(struct GBAAudio* audio) {
audio->nextEvent = 0;
audio->nextCh1 = 0;
audio->nextCh2 = 0;
audio->nextCh3 = 0;
audio->nextCh4 = 0;
audio->ch1 = (struct GBAAudioChannel1) { .envelope = { .nextStep = INT_MAX }, .nextSweep = INT_MAX };
audio->ch2 = (struct GBAAudioChannel2) { .envelope = { .nextStep = INT_MAX } };
audio->ch3 = (struct GBAAudioChannel3) { .bank = { .bank = 0 } };
audio->ch4 = (struct GBAAudioChannel4) { .envelope = { .nextStep = INT_MAX } };
audio->chA.dmaSource = 1;
audio->chB.dmaSource = 2;
audio->chA.sample = 0;
audio->chB.sample = 0;
audio->eventDiff = 0;
audio->nextSample = 0;
audio->sampleRate = 0x8000;
audio->soundbias = 0x200;
audio->volumeRight = 0;
audio->volumeLeft = 0;
audio->ch1Right = false;
audio->ch2Right = false;
audio->ch3Right = false;
audio->ch4Right = false;
audio->ch1Left = false;
audio->ch2Left = false;
audio->ch3Left = false;
audio->ch4Left = false;
audio->volume = 0;
audio->volumeChA = false;
audio->volumeChB = false;
audio->chARight = false;
audio->chALeft = false;
audio->chATimer = false;
audio->chBRight = false;
audio->chBLeft = false;
audio->chBTimer = false;
audio->playingCh1 = false;
audio->playingCh2 = false;
audio->playingCh3 = false;
audio->playingCh4 = false;
audio->enable = false;
audio->sampleInterval = GBA_ARM7TDMI_FREQUENCY / audio->sampleRate;
#if RESAMPLE_LIBRARY != RESAMPLE_BLIP_BUF
CircleBufferClear(&audio->left);
CircleBufferClear(&audio->right);
#else
blip_clear(audio->left);
blip_clear(audio->right);
audio->clock = 0;
#endif
CircleBufferClear(&audio->chA.fifo);
CircleBufferClear(&audio->chB.fifo);
}
void GBAAudioDeinit(struct GBAAudio* audio) {
#if RESAMPLE_LIBRARY != RESAMPLE_BLIP_BUF
CircleBufferDeinit(&audio->left);
CircleBufferDeinit(&audio->right);
#else
blip_delete(audio->left);
blip_delete(audio->right);
#endif
CircleBufferDeinit(&audio->chA.fifo);
CircleBufferDeinit(&audio->chB.fifo);
}
void GBAAudioResizeBuffer(struct GBAAudio* audio, size_t samples) {
GBASyncLockAudio(audio->p->sync);
audio->samples = samples;
#if RESAMPLE_LIBRARY != RESAMPLE_BLIP_BUF
size_t oldCapacity = audio->left.capacity;
int16_t* buffer = malloc(oldCapacity);
int16_t dummy;
size_t read;
size_t i;
read = CircleBufferDump(&audio->left, buffer, oldCapacity);
CircleBufferDeinit(&audio->left);
CircleBufferInit(&audio->left, samples * sizeof(int16_t));
for (i = 0; i * sizeof(int16_t) < read; ++i) {
if (!CircleBufferWrite16(&audio->left, buffer[i])) {
CircleBufferRead16(&audio->left, &dummy);
CircleBufferWrite16(&audio->left, buffer[i]);
}
}
read = CircleBufferDump(&audio->right, buffer, oldCapacity);
CircleBufferDeinit(&audio->right);
CircleBufferInit(&audio->right, samples * sizeof(int16_t));
for (i = 0; i * sizeof(int16_t) < read; ++i) {
if (!CircleBufferWrite16(&audio->right, buffer[i])) {
CircleBufferRead16(&audio->right, &dummy);
CircleBufferWrite16(&audio->right, buffer[i]);
}
}
free(buffer);
#else
blip_clear(audio->left);
blip_clear(audio->right);
audio->clock = 0;
#endif
GBASyncConsumeAudio(audio->p->sync);
}
int32_t GBAAudioProcessEvents(struct GBAAudio* audio, int32_t cycles) {
audio->nextEvent -= cycles;
audio->eventDiff += cycles;
if (audio->nextEvent <= 0) {
audio->nextEvent = INT_MAX;
if (audio->enable) {
if (audio->playingCh1 && !audio->ch1.envelope.dead) {
audio->nextCh1 -= audio->eventDiff;
if (audio->ch1.envelope.nextStep != INT_MAX) {
audio->ch1.envelope.nextStep -= audio->eventDiff;
if (audio->ch1.envelope.nextStep <= 0) {
int8_t sample = audio->ch1.control.hi * 0x10 - 0x8;
_updateEnvelope(&audio->ch1.envelope);
if (audio->ch1.envelope.nextStep < audio->nextEvent) {
audio->nextEvent = audio->ch1.envelope.nextStep;
}
audio->ch1.sample = sample * audio->ch1.envelope.currentVolume;
}
}
if (audio->ch1.nextSweep != INT_MAX) {
audio->ch1.nextSweep -= audio->eventDiff;
if (audio->ch1.nextSweep <= 0) {
audio->playingCh1 = _updateSweep(&audio->ch1);
if (audio->ch1.nextSweep < audio->nextEvent) {
audio->nextEvent = audio->ch1.nextSweep;
}
}
}
if (audio->nextCh1 <= 0) {
audio->nextCh1 += _updateChannel1(&audio->ch1);
if (audio->nextCh1 < audio->nextEvent) {
audio->nextEvent = audio->nextCh1;
}
}
if (audio->ch1.control.stop) {
audio->ch1.control.endTime -= audio->eventDiff;
if (audio->ch1.control.endTime <= 0) {
audio->playingCh1 = 0;
}
}
}
if (audio->playingCh2 && !audio->ch2.envelope.dead) {
audio->nextCh2 -= audio->eventDiff;
if (audio->ch2.envelope.nextStep != INT_MAX) {
audio->ch2.envelope.nextStep -= audio->eventDiff;
if (audio->ch2.envelope.nextStep <= 0) {
int8_t sample = audio->ch2.control.hi * 0x10 - 0x8;
_updateEnvelope(&audio->ch2.envelope);
if (audio->ch2.envelope.nextStep < audio->nextEvent) {
audio->nextEvent = audio->ch2.envelope.nextStep;
}
audio->ch2.sample = sample * audio->ch2.envelope.currentVolume;
}
}
if (audio->nextCh2 <= 0) {
audio->nextCh2 += _updateChannel2(&audio->ch2);
if (audio->nextCh2 < audio->nextEvent) {
audio->nextEvent = audio->nextCh2;
}
}
if (audio->ch2.control.stop) {
audio->ch2.control.endTime -= audio->eventDiff;
if (audio->ch2.control.endTime <= 0) {
audio->playingCh2 = 0;
}
}
}
if (audio->playingCh3) {
audio->nextCh3 -= audio->eventDiff;
if (audio->nextCh3 <= 0) {
audio->nextCh3 += _updateChannel3(&audio->ch3);
if (audio->nextCh3 < audio->nextEvent) {
audio->nextEvent = audio->nextCh3;
}
}
if (audio->ch3.control.stop) {
audio->ch3.control.endTime -= audio->eventDiff;
if (audio->ch3.control.endTime <= 0) {
audio->playingCh3 = 0;
}
}
}
if (audio->playingCh4 && !audio->ch4.envelope.dead) {
audio->nextCh4 -= audio->eventDiff;
if (audio->ch4.envelope.nextStep != INT_MAX) {
audio->ch4.envelope.nextStep -= audio->eventDiff;
if (audio->ch4.envelope.nextStep <= 0) {
int8_t sample = (audio->ch4.sample >> 31) * 0x8;
_updateEnvelope(&audio->ch4.envelope);
if (audio->ch4.envelope.nextStep < audio->nextEvent) {
audio->nextEvent = audio->ch4.envelope.nextStep;
}
audio->ch4.sample = sample * audio->ch4.envelope.currentVolume;
}
}
if (audio->nextCh4 <= 0) {
audio->nextCh4 += _updateChannel4(&audio->ch4);
if (audio->nextCh4 < audio->nextEvent) {
audio->nextEvent = audio->nextCh4;
}
}
if (audio->ch4.control.stop) {
audio->ch4.control.endTime -= audio->eventDiff;
if (audio->ch4.control.endTime <= 0) {
audio->playingCh4 = 0;
}
}
}
}
audio->nextSample -= audio->eventDiff;
if (audio->nextSample <= 0) {
_sample(audio);
audio->nextSample += audio->sampleInterval;
}
if (audio->nextSample < audio->nextEvent) {
audio->nextEvent = audio->nextSample;
}
audio->eventDiff = 0;
}
return audio->nextEvent;
}
void GBAAudioScheduleFifoDma(struct GBAAudio* audio, int number, struct GBADMA* info) {
switch (info->dest) {
case BASE_IO | REG_FIFO_A_LO:
audio->chA.dmaSource = number;
break;
case BASE_IO | REG_FIFO_B_LO:
audio->chB.dmaSource = number;
break;
default:
GBALog(audio->p, GBA_LOG_GAME_ERROR, "Invalid FIFO destination: 0x%08X", info->dest);
return;
}
info->reg = GBADMARegisterSetDestControl(info->reg, DMA_FIXED);
}
void GBAAudioWriteSOUND1CNT_LO(struct GBAAudio* audio, uint16_t value) {
audio->ch1.sweep.shift = GBAAudioRegisterSquareSweepGetShift(value);
audio->ch1.sweep.direction = GBAAudioRegisterSquareSweepGetDirection(value);
audio->ch1.sweep.time = GBAAudioRegisterSquareSweepGetTime(value);
if (audio->ch1.sweep.time) {
audio->ch1.nextSweep = audio->ch1.sweep.time * SWEEP_CYCLES;
} else {
audio->ch1.nextSweep = INT_MAX;
}
}
void GBAAudioWriteSOUND1CNT_HI(struct GBAAudio* audio, uint16_t value) {
if (!_writeEnvelope(&audio->ch1.envelope, value)) {
audio->ch1.sample = 0;
}
}
void GBAAudioWriteSOUND1CNT_X(struct GBAAudio* audio, uint16_t value) {
audio->ch1.control.frequency = GBAAudioRegisterControlGetFrequency(value);
audio->ch1.control.stop = GBAAudioRegisterControlGetStop(value);
audio->ch1.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch1.envelope.length)) >> 8;
if (GBAAudioRegisterControlIsRestart(value)) {
if (audio->ch1.sweep.time) {
audio->ch1.nextSweep = audio->ch1.sweep.time * SWEEP_CYCLES;
} else {
audio->ch1.nextSweep = INT_MAX;
}
if (!audio->playingCh1) {
audio->nextCh1 = 0;
}
audio->playingCh1 = 1;
if (audio->ch1.envelope.stepTime) {
audio->ch1.envelope.nextStep = 0;
} else {
audio->ch1.envelope.nextStep = INT_MAX;
}
audio->ch1.envelope.currentVolume = audio->ch1.envelope.initialVolume;
if (audio->ch1.envelope.stepTime) {
audio->ch1.envelope.nextStep = 0;
} else {
audio->ch1.envelope.nextStep = INT_MAX;
}
}
}
void GBAAudioWriteSOUND2CNT_LO(struct GBAAudio* audio, uint16_t value) {
if (!_writeEnvelope(&audio->ch2.envelope, value)) {
audio->ch2.sample = 0;
}
}
void GBAAudioWriteSOUND2CNT_HI(struct GBAAudio* audio, uint16_t value) {
audio->ch2.control.frequency = GBAAudioRegisterControlGetFrequency(value);
audio->ch2.control.stop = GBAAudioRegisterControlGetStop(value);
audio->ch2.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch2.envelope.length)) >> 8;
if (GBAAudioRegisterControlIsRestart(value)) {
audio->playingCh2 = 1;
audio->ch2.envelope.currentVolume = audio->ch2.envelope.initialVolume;
if (audio->ch2.envelope.stepTime) {
audio->ch2.envelope.nextStep = 0;
} else {
audio->ch2.envelope.nextStep = INT_MAX;
}
audio->nextCh2 = 0;
}
}
void GBAAudioWriteSOUND3CNT_LO(struct GBAAudio* audio, uint16_t value) {
audio->ch3.bank.size = GBAAudioRegisterBankGetSize(value);
audio->ch3.bank.bank = GBAAudioRegisterBankGetBank(value);
audio->ch3.bank.enable = GBAAudioRegisterBankGetEnable(value);
if (audio->ch3.control.endTime >= 0) {
audio->playingCh3 = audio->ch3.bank.enable;
}
}
void GBAAudioWriteSOUND3CNT_HI(struct GBAAudio* audio, uint16_t value) {
audio->ch3.wave.length = GBAAudioRegisterBankWaveGetLength(value);
audio->ch3.wave.volume = GBAAudioRegisterBankWaveGetVolume(value);
}
void GBAAudioWriteSOUND3CNT_X(struct GBAAudio* audio, uint16_t value) {
audio->ch3.control.rate = GBAAudioRegisterControlGetRate(value);
audio->ch3.control.stop = GBAAudioRegisterControlGetStop(value);
audio->ch3.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (256 - audio->ch3.wave.length)) >> 8;
if (GBAAudioRegisterControlIsRestart(value)) {
audio->playingCh3 = audio->ch3.bank.enable;
}
}
void GBAAudioWriteSOUND4CNT_LO(struct GBAAudio* audio, uint16_t value) {
if (!_writeEnvelope(&audio->ch4.envelope, value)) {
audio->ch4.sample = 0;
}
}
void GBAAudioWriteSOUND4CNT_HI(struct GBAAudio* audio, uint16_t value) {
audio->ch4.control.ratio = GBAAudioRegisterCh4ControlGetRatio(value);
audio->ch4.control.frequency = GBAAudioRegisterCh4ControlGetFrequency(value);
audio->ch4.control.power = GBAAudioRegisterCh4ControlGetPower(value);
audio->ch4.control.stop = GBAAudioRegisterCh4ControlGetStop(value);
audio->ch4.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch4.envelope.length)) >> 8;
if (GBAAudioRegisterCh4ControlIsRestart(value)) {
audio->playingCh4 = 1;
audio->ch4.envelope.currentVolume = audio->ch4.envelope.initialVolume;
if (audio->ch4.envelope.stepTime) {
audio->ch4.envelope.nextStep = 0;
} else {
audio->ch4.envelope.nextStep = INT_MAX;
}
if (audio->ch4.control.power) {
audio->ch4.lfsr = 0x40;
} else {
audio->ch4.lfsr = 0x4000;
}
audio->nextCh4 = 0;
}
}
void GBAAudioWriteSOUNDCNT_LO(struct GBAAudio* audio, uint16_t value) {
audio->volumeRight = GBARegisterSOUNDCNT_LOGetVolumeRight(value);
audio->volumeLeft = GBARegisterSOUNDCNT_LOGetVolumeLeft(value);
audio->ch1Right = GBARegisterSOUNDCNT_LOGetCh1Right(value);
audio->ch2Right = GBARegisterSOUNDCNT_LOGetCh2Right(value);
audio->ch3Right = GBARegisterSOUNDCNT_LOGetCh3Right(value);
audio->ch4Right = GBARegisterSOUNDCNT_LOGetCh4Right(value);
audio->ch1Left = GBARegisterSOUNDCNT_LOGetCh1Left(value);
audio->ch2Left = GBARegisterSOUNDCNT_LOGetCh2Left(value);
audio->ch3Left = GBARegisterSOUNDCNT_LOGetCh3Left(value);
audio->ch4Left = GBARegisterSOUNDCNT_LOGetCh4Left(value);
}
void GBAAudioWriteSOUNDCNT_HI(struct GBAAudio* audio, uint16_t value) {
audio->volume = GBARegisterSOUNDCNT_HIGetVolume(value);
audio->volumeChA = GBARegisterSOUNDCNT_HIGetVolumeChA(value);
audio->volumeChB = GBARegisterSOUNDCNT_HIGetVolumeChB(value);
audio->chARight = GBARegisterSOUNDCNT_HIGetChARight(value);
audio->chALeft = GBARegisterSOUNDCNT_HIGetChALeft(value);
audio->chATimer = GBARegisterSOUNDCNT_HIGetChATimer(value);
audio->chBRight = GBARegisterSOUNDCNT_HIGetChBRight(value);
audio->chBLeft = GBARegisterSOUNDCNT_HIGetChBLeft(value);
audio->chBTimer = GBARegisterSOUNDCNT_HIGetChBTimer(value);
// TODO: Implement channel reset
}
void GBAAudioWriteSOUNDCNT_X(struct GBAAudio* audio, uint16_t value) {
audio->enable = GBARegisterSOUNDCNT_XGetEnable(value);
}
void GBAAudioWriteSOUNDBIAS(struct GBAAudio* audio, uint16_t value) {
audio->soundbias = value;
}
void GBAAudioWriteWaveRAM(struct GBAAudio* audio, int address, uint32_t value) {
audio->ch3.wavedata[address | (!audio->ch3.bank.bank * 4)] = value;
}
void GBAAudioWriteFIFO(struct GBAAudio* audio, int address, uint32_t value) {
struct CircleBuffer* fifo;
switch (address) {
case REG_FIFO_A_LO:
fifo = &audio->chA.fifo;
break;
case REG_FIFO_B_LO:
fifo = &audio->chB.fifo;
break;
default:
GBALog(audio->p, GBA_LOG_ERROR, "Bad FIFO write to address 0x%03x", address);
return;
}
int i;
for (i = 0; i < 4; ++i) {
while (!CircleBufferWrite8(fifo, value >> (8 * i))) {
int8_t dummy;
CircleBufferRead8(fifo, &dummy);
}
}
}
void GBAAudioWriteFIFO16(struct GBAAudio* audio, int address, uint16_t value) {
struct CircleBuffer* fifo;
switch (address) {
case REG_FIFO_A_LO:
case REG_FIFO_A_HI:
fifo = &audio->chA.fifo;
break;
case REG_FIFO_B_LO:
case REG_FIFO_B_HI:
fifo = &audio->chB.fifo;
break;
default:
GBALog(audio->p, GBA_LOG_ERROR, "Bad FIFO write to address 0x%03x", address);
return;
}
int i;
for (i = 0; i < 2; ++i) {
while (!CircleBufferWrite8(fifo, value >> (8 * i))) {
int8_t dummy;
CircleBufferRead8(fifo, &dummy);
}
}
}
void GBAAudioSampleFIFO(struct GBAAudio* audio, int fifoId, int32_t cycles) {
struct GBAAudioFIFO* channel;
if (fifoId == 0) {
channel = &audio->chA;
} else if (fifoId == 1) {
channel = &audio->chB;
} else {
GBALog(audio->p, GBA_LOG_ERROR, "Bad FIFO write to address 0x%03x", fifoId);
return;
}
if (CircleBufferSize(&channel->fifo) <= 4 * sizeof(int32_t)) {
struct GBADMA* dma = &audio->p->memory.dma[channel->dmaSource];
dma->nextCount = 4;
dma->nextEvent = 0;
GBAMemoryUpdateDMAs(audio->p, -cycles);
}
CircleBufferRead8(&channel->fifo, &channel->sample);
}
#if RESAMPLE_LIBRARY != RESAMPLE_BLIP_BUF
unsigned GBAAudioCopy(struct GBAAudio* audio, void* left, void* right, unsigned nSamples) {
GBASyncLockAudio(audio->p->sync);
unsigned read = 0;
if (left) {
unsigned readL = CircleBufferRead(&audio->left, left, nSamples * sizeof(int16_t)) >> 1;
if (readL < nSamples) {
memset((int16_t*) left + readL, 0, nSamples - readL);
}
read = readL;
}
if (right) {
unsigned readR = CircleBufferRead(&audio->right, right, nSamples * sizeof(int16_t)) >> 1;
if (readR < nSamples) {
memset((int16_t*) right + readR, 0, nSamples - readR);
}
read = read >= readR ? read : readR;
}
GBASyncConsumeAudio(audio->p->sync);
return read;
}
unsigned GBAAudioResampleNN(struct GBAAudio* audio, float ratio, float* drift, struct GBAStereoSample* output, unsigned nSamples) {
int16_t left[GBA_AUDIO_SAMPLES];
int16_t right[GBA_AUDIO_SAMPLES];
// toRead is in GBA samples
// TODO: Do this with fixed-point math
unsigned toRead = ceilf(nSamples / ratio);
unsigned totalRead = 0;
while (nSamples) {
unsigned currentRead = GBA_AUDIO_SAMPLES;
if (currentRead > toRead) {
currentRead = toRead;
}
unsigned read = GBAAudioCopy(audio, left, right, currentRead);
toRead -= read;
unsigned i;
for (i = 0; i < read; ++i) {
*drift += ratio;
while (*drift >= 1.f) {
output->left = left[i];
output->right = right[i];
++output;
++totalRead;
--nSamples;
*drift -= 1.f;
if (!nSamples) {
return totalRead;
}
}
}
if (read < currentRead) {
memset(output, 0, nSamples * sizeof(struct GBAStereoSample));
break;
}
}
return totalRead;
}
#endif
bool _writeEnvelope(struct GBAAudioEnvelope* envelope, uint16_t value) {
envelope->length = GBAAudioRegisterEnvelopeGetLength(value);
envelope->duty = GBAAudioRegisterEnvelopeGetDuty(value);
envelope->stepTime = GBAAudioRegisterEnvelopeGetStepTime(value);
envelope->direction = GBAAudioRegisterEnvelopeGetDirection(value);
envelope->initialVolume = GBAAudioRegisterEnvelopeGetInitialVolume(value);
envelope->dead = 0;
if (envelope->stepTime) {
envelope->nextStep = 0;
} else {
envelope->nextStep = INT_MAX;
if (envelope->initialVolume == 0) {
envelope->dead = 1;
return false;
}
}
return true;
}
static int32_t _updateSquareChannel(struct GBAAudioSquareControl* control, int duty) {
control->hi = !control->hi;
int period = 16 * (2048 - control->frequency);
switch (duty) {
case 0:
return control->hi ? period : period * 7;
case 1:
return control->hi ? period * 2 : period * 6;
case 2:
return period * 4;
case 3:
return control->hi ? period * 6 : period * 2;
default:
// This should never be hit
return period * 4;
}
}
static void _updateEnvelope(struct GBAAudioEnvelope* envelope) {
if (envelope->direction) {
++envelope->currentVolume;
} else {
--envelope->currentVolume;
}
if (envelope->currentVolume >= 15) {
envelope->currentVolume = 15;
envelope->nextStep = INT_MAX;
} else if (envelope->currentVolume <= 0) {
envelope->currentVolume = 0;
envelope->dead = 1;
envelope->nextStep = INT_MAX;
} else {
envelope->nextStep += envelope->stepTime * (GBA_ARM7TDMI_FREQUENCY >> 6);
}
}
static bool _updateSweep(struct GBAAudioChannel1* ch) {
if (ch->sweep.direction) {
int frequency = ch->control.frequency;
frequency -= frequency >> ch->sweep.shift;
if (frequency >= 0) {
ch->control.frequency = frequency;
}
} else {
int frequency = ch->control.frequency;
frequency += frequency >> ch->sweep.shift;
if (frequency < 2048) {
ch->control.frequency = frequency;
} else {
return false;
}
}
ch->nextSweep += ch->sweep.time * SWEEP_CYCLES;
return true;
}
static int32_t _updateChannel1(struct GBAAudioChannel1* ch) {
int timing = _updateSquareChannel(&ch->control, ch->envelope.duty);
ch->sample = ch->control.hi * 0x10 - 0x8;
ch->sample *= ch->envelope.currentVolume;
return timing;
}
static int32_t _updateChannel2(struct GBAAudioChannel2* ch) {
int timing = _updateSquareChannel(&ch->control, ch->envelope.duty);
ch->sample = ch->control.hi * 0x10 - 0x8;
ch->sample *= ch->envelope.currentVolume;
return timing;
}
static int32_t _updateChannel3(struct GBAAudioChannel3* ch) {
int i;
int start;
int end;
int volume;
switch (ch->wave.volume) {
case 0:
volume = 0;
break;
case 1:
volume = 4;
break;
case 2:
volume = 2;
break;
case 3:
volume = 1;
break;
default:
volume = 3;
break;
}
if (ch->bank.size) {
start = 7;
end = 0;
} else if (ch->bank.bank) {
start = 7;
end = 4;
} else {
start = 3;
end = 0;
}
uint32_t bitsCarry = ch->wavedata[end] & 0x0F000000;
uint32_t bits;
for (i = start; i >= end; --i) {
bits = ch->wavedata[i] & 0x0F000000;
ch->wavedata[i] = ((ch->wavedata[i] & 0xF0F0F0F0) >> 4) | ((ch->wavedata[i] & 0x000F0F0F) << 12);
ch->wavedata[i] |= bitsCarry >> 20;
bitsCarry = bits;
}
ch->sample = bitsCarry >> 24;
ch->sample -= 8;
ch->sample *= volume * 4;
return 8 * (2048 - ch->control.rate);
}
static int32_t _updateChannel4(struct GBAAudioChannel4* ch) {
int lsb = ch->lfsr & 1;
ch->sample = lsb * 0x10 - 0x8;
ch->sample *= ch->envelope.currentVolume;
ch->lfsr >>= 1;
ch->lfsr ^= (lsb * 0x60) << (ch->control.power ? 0 : 8);
int timing = ch->control.ratio ? 2 * ch->control.ratio : 1;
timing <<= ch->control.frequency;
timing *= 32;
return timing;
}
static int _applyBias(struct GBAAudio* audio, int sample) {
sample += GBARegisterSOUNDBIASGetBias(audio->soundbias);
if (sample >= 0x400) {
sample = 0x3FF;
} else if (sample < 0) {
sample = 0;
}
return (sample - GBARegisterSOUNDBIASGetBias(audio->soundbias)) << 5;
}
static void _sample(struct GBAAudio* audio) {
int16_t sampleLeft = 0;
int16_t sampleRight = 0;
int psgShift = 5 - audio->volume;
if (audio->ch1Left) {
sampleLeft += audio->ch1.sample;
}
if (audio->ch1Right) {
sampleRight += audio->ch1.sample;
}
if (audio->ch2Left) {
sampleLeft += audio->ch2.sample;
}
if (audio->ch2Right) {
sampleRight += audio->ch2.sample;
}
if (audio->ch3Left) {
sampleLeft += audio->ch3.sample;
}
if (audio->ch3Right) {
sampleRight += audio->ch3.sample;
}
if (audio->ch4Left) {
sampleLeft += audio->ch4.sample;
}
if (audio->ch4Right) {
sampleRight += audio->ch4.sample;
}
sampleLeft = (sampleLeft * (1 + audio->volumeLeft)) >> psgShift;
sampleRight = (sampleRight * (1 + audio->volumeRight)) >> psgShift;
if (audio->chALeft) {
sampleLeft += (audio->chA.sample << 2) >> !audio->volumeChA;
}
if (audio->chARight) {
sampleRight += (audio->chA.sample << 2) >> !audio->volumeChA;
}
if (audio->chBLeft) {
sampleLeft += (audio->chB.sample << 2) >> !audio->volumeChB;
}
if (audio->chBRight) {
sampleRight += (audio->chB.sample << 2) >> !audio->volumeChB;
}
sampleLeft = _applyBias(audio, sampleLeft);
sampleRight = _applyBias(audio, sampleRight);
GBASyncLockAudio(audio->p->sync);
unsigned produced;
#if RESAMPLE_LIBRARY != RESAMPLE_BLIP_BUF
CircleBufferWrite16(&audio->left, sampleLeft);
CircleBufferWrite16(&audio->right, sampleRight);
produced = CircleBufferSize(&audio->left) / 2;
#else
if ((size_t) blip_samples_avail(audio->left) < audio->samples) {
blip_add_delta(audio->left, audio->clock, sampleLeft - audio->lastLeft);
blip_add_delta(audio->right, audio->clock, sampleRight - audio->lastRight);
audio->lastLeft = sampleLeft;
audio->lastRight = sampleRight;
audio->clock += audio->sampleInterval;
int clockNeeded = blip_clocks_needed(audio->left, audio->samples / 32);
if (audio->clock >= clockNeeded) {
blip_end_frame(audio->left, audio->clock);
blip_end_frame(audio->right, audio->clock);
audio->clock -= clockNeeded;
}
}
produced = blip_samples_avail(audio->left);
#endif
struct GBAThread* thread = GBAThreadGetContext();
if (thread && thread->stream) {
thread->stream->postAudioFrame(thread->stream, sampleLeft, sampleRight);
}
GBASyncProduceAudio(audio->p->sync, produced >= audio->samples);
}
void GBAAudioSerialize(const struct GBAAudio* audio, struct GBASerializedState* state) {
state->audio.ch1Volume = audio->ch1.envelope.currentVolume;
state->audio.ch1Dead = audio->ch1.envelope.dead;
state->audio.ch1Hi = audio->ch1.control.hi;
state->audio.ch1.envelopeNextStep = audio->ch1.envelope.nextStep;
state->audio.ch1.waveNextStep = audio->ch1.control.nextStep;
state->audio.ch1.sweepNextStep = audio->ch1.nextSweep;
state->audio.ch1.endTime = audio->ch1.control.endTime;
state->audio.ch1.nextEvent = audio->nextCh1;
state->audio.ch2Volume = audio->ch2.envelope.currentVolume;
state->audio.ch2Dead = audio->ch2.envelope.dead;
state->audio.ch2Hi = audio->ch2.control.hi;
state->audio.ch2.envelopeNextStep = audio->ch2.envelope.nextStep;
state->audio.ch2.waveNextStep = audio->ch2.control.nextStep;
state->audio.ch2.endTime = audio->ch2.control.endTime;
state->audio.ch2.nextEvent = audio->nextCh2;
memcpy(state->audio.ch3.wavebanks, audio->ch3.wavedata, sizeof(state->audio.ch3.wavebanks));
state->audio.ch3.endTime = audio->ch3.control.endTime;
state->audio.ch3.nextEvent = audio->nextCh3;
state->audio.ch4Volume = audio->ch4.envelope.currentVolume;
state->audio.ch4Dead = audio->ch4.envelope.dead;
state->audio.ch4.envelopeNextStep = audio->ch4.envelope.nextStep;
state->audio.ch4.lfsr = audio->ch4.lfsr;
state->audio.ch4.endTime = audio->ch4.control.endTime;
state->audio.ch4.nextEvent = audio->nextCh4;
CircleBufferDump(&audio->chA.fifo, state->audio.fifoA, sizeof(state->audio.fifoA));
CircleBufferDump(&audio->chB.fifo, state->audio.fifoB, sizeof(state->audio.fifoB));
state->audio.fifoSize = CircleBufferSize(&audio->chA.fifo);
state->audio.nextEvent = audio->nextEvent;
state->audio.eventDiff = audio->eventDiff;
state->audio.nextSample = audio->nextSample;
}
void GBAAudioDeserialize(struct GBAAudio* audio, const struct GBASerializedState* state) {
audio->ch1.envelope.currentVolume = state->audio.ch1Volume;
audio->ch1.envelope.dead = state->audio.ch1Dead;
audio->ch1.control.hi = state->audio.ch1Hi;
audio->ch1.envelope.nextStep = state->audio.ch1.envelopeNextStep;
audio->ch1.control.nextStep = state->audio.ch1.waveNextStep;
audio->ch1.nextSweep = state->audio.ch1.sweepNextStep;
audio->ch1.control.endTime = state->audio.ch1.endTime;
audio->nextCh1 = state->audio.ch1.nextEvent;
audio->ch2.envelope.currentVolume = state->audio.ch2Volume;
audio->ch2.envelope.dead = state->audio.ch2Dead;
audio->ch2.control.hi = state->audio.ch2Hi;
audio->ch2.envelope.nextStep = state->audio.ch2.envelopeNextStep;
audio->ch2.control.nextStep = state->audio.ch2.waveNextStep;
audio->ch2.control.endTime = state->audio.ch2.endTime;
audio->nextCh2 = state->audio.ch2.nextEvent;
memcpy(audio->ch3.wavedata, state->audio.ch3.wavebanks, sizeof(audio->ch3.wavedata));
audio->ch3.control.endTime = state->audio.ch3.endTime;
audio->nextCh3 = state->audio.ch3.nextEvent;
audio->ch4.envelope.currentVolume = state->audio.ch4Volume;
audio->ch4.envelope.dead = state->audio.ch4Dead;
audio->ch4.envelope.nextStep = state->audio.ch4.envelopeNextStep;
audio->ch4.lfsr = state->audio.ch4.lfsr;
audio->ch4.control.endTime = state->audio.ch4.endTime;
audio->nextCh4 = state->audio.ch4.nextEvent;
CircleBufferClear(&audio->chA.fifo);
CircleBufferClear(&audio->chB.fifo);
int i;
for (i = 0; i < state->audio.fifoSize; ++i) {
CircleBufferWrite8(&audio->chA.fifo, state->audio.fifoA[i]);
CircleBufferWrite8(&audio->chB.fifo, state->audio.fifoB[i]);
}
audio->nextEvent = state->audio.nextEvent;
audio->eventDiff = state->audio.eventDiff;
audio->nextSample = state->audio.nextSample;
}
float GBAAudioCalculateRatio(float inputSampleRate, float desiredFPS, float desiredSampleRate) {
return desiredSampleRate * GBA_ARM7TDMI_FREQUENCY / (VIDEO_TOTAL_LENGTH * desiredFPS * inputSampleRate);
}