mgba/src/ds/ds.c

929 lines
25 KiB
C

/* Copyright (c) 2013-2016 Jeffrey Pfau
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <mgba/internal/ds/ds.h>
#include <mgba/core/interface.h>
#include <mgba/internal/arm/decoder.h>
#include <mgba/internal/arm/debugger/debugger.h>
#include <mgba/internal/arm/isa-inlines.h>
#include <mgba/internal/ds/bios.h>
#include <mgba-util/crc32.h>
#include <mgba-util/memory.h>
#include <mgba-util/math.h>
#include <mgba-util/vfs.h>
#define SLICE_CYCLES 2048
mLOG_DEFINE_CATEGORY(DS, "DS", "ds");
const uint32_t DS_ARM946ES_FREQUENCY = 0x1FF61FE;
const uint32_t DS_ARM7TDMI_FREQUENCY = 0xFFB0FF;
const uint32_t DS_COMPONENT_MAGIC = 0x1FF61FE;
const uint8_t DS_CHIP_ID[4] = { 0xC2, 0x0F, 0x00, 0x00 };
static const size_t DS_ROM_MAGIC_OFFSET = 0x15C;
static const uint8_t DS_ROM_MAGIC[] = { 0x56, 0xCF };
static const uint8_t DS_ROM_MAGIC_2[] = { 0x1A, 0x9E };
static const size_t DS_FIRMWARE_MAGIC_OFFSET = 0x8;
static const uint8_t DS_FIRMWARE_MAGIC[] = { 0x4D, 0x41, 0x43 };
enum {
DS7_SP_BASE = 0x380FD80,
DS7_SP_BASE_IRQ = 0x380FF80,
DS7_SP_BASE_SVC = 0x380FFC0,
DS9_SP_BASE = 0x3002F7C,
DS9_SP_BASE_IRQ = 0x3003F80,
DS9_SP_BASE_SVC = 0x3003FC0,
};
static void DSInit(void* cpu, struct mCPUComponent* component);
static void DS7Reset(struct ARMCore* cpu);
static void DS7TestIRQ(struct ARMCore* cpu);
static void DS7InterruptHandlerInit(struct ARMInterruptHandler* irqh);
static void DS7ProcessEvents(struct ARMCore* cpu);
static void DS9Reset(struct ARMCore* cpu);
static void DS9TestIRQ(struct ARMCore* cpu);
static void DS9WriteCP15(struct ARMCore* cpu, int crn, int crm, int opcode1, int opcode2, uint32_t value);
static uint32_t DS9ReadCP15(struct ARMCore* cpu, int crn, int crm, int opcode1, int opcode2);
static void DS9InterruptHandlerInit(struct ARMInterruptHandler* irqh);
static void DS9ProcessEvents(struct ARMCore* cpu);
static void DSProcessEvents(struct DSCommon* dscore);
static void DSHitStub(struct ARMCore* cpu, uint32_t opcode);
static void DSIllegal(struct ARMCore* cpu, uint32_t opcode);
static void DSBreakpoint(struct ARMCore* cpu, int immediate);
static void _slice(struct mTiming* timing, void* context, uint32_t cyclesLate) {
UNUSED(cyclesLate);
struct DS* ds = context;
uint32_t cycles = mTimingCurrentTime(timing) - ds->sliceStart;
if (ds->activeCpu == ds->ds9.cpu) {
ds->activeCpu = ds->ds7.cpu;
ds->cycleDrift += cycles;
cycles = ds->cycleDrift >> 1;
timing = &ds->ds7.timing;
} else {
ds->activeCpu = ds->ds9.cpu;
ds->cycleDrift -= cycles << 1;
cycles = ds->cycleDrift + SLICE_CYCLES;
timing = &ds->ds9.timing;
}
mTimingSchedule(timing, &ds->slice, cycles);
ds->sliceStart = mTimingCurrentTime(timing);
ds->earlyExit = true;
}
static void _divide(struct mTiming* timing, void* context, uint32_t cyclesLate) {
UNUSED(timing);
UNUSED(cyclesLate);
struct DS* ds = context;
ds->memory.io9[DS9_REG_DIVCNT >> 1] &= ~0x8000;
int64_t numerator;
int64_t denominator;
LOAD_64LE(numerator, DS9_REG_DIV_NUMER_0, ds->memory.io9);
LOAD_64LE(denominator, DS9_REG_DIV_DENOM_0, ds->memory.io9);
bool max = false;
switch (ds->memory.io9[DS9_REG_DIVCNT >> 1] & 0x3) {
case 0:
numerator = (int64_t)(int32_t) numerator;
case 1:
case 3:
denominator = (int64_t)(int32_t) denominator;
break;
}
if (numerator == INT64_MIN) {
max = true;
}
if (!denominator) {
ds->memory.io9[DS9_REG_DIVCNT >> 1] |= 0x4000;
STORE_64LE(numerator, DS9_REG_DIVREM_RESULT_0, ds->memory.io9);
numerator >>= 63LL;
numerator = -numerator;
STORE_64LE(numerator, DS9_REG_DIV_RESULT_0, ds->memory.io9);
return;
}
if (denominator == -1LL && max) {
ds->memory.io9[DS9_REG_DIVCNT >> 1] |= 0x4000;
STORE_64LE(numerator, DS9_REG_DIV_RESULT_0, ds->memory.io9);
return;
}
ds->memory.io9[DS9_REG_DIVCNT >> 1] &= ~0x4000;
int64_t result = numerator / denominator;
int64_t remainder = numerator % denominator; // TODO: defined behavior for negative denominator?
STORE_64LE(result, DS9_REG_DIV_RESULT_0, ds->memory.io9);
STORE_64LE(remainder, DS9_REG_DIVREM_RESULT_0, ds->memory.io9);
}
static void _sqrt(struct mTiming* timing, void* context, uint32_t cyclesLate) {
UNUSED(timing);
UNUSED(cyclesLate);
struct DS* ds = context;
ds->memory.io9[DS9_REG_SQRTCNT >> 1] &= ~0x8000;
uint64_t param;
LOAD_64LE(param, DS9_REG_SQRT_PARAM_0, ds->memory.io9);
if (!(ds->memory.io9[DS9_REG_SQRTCNT >> 1] & 1)) {
param &= 0xFFFFFFFFULL;
}
uint64_t result = 0;
uint64_t bit = 0x4000000000000000ULL; // The second-to-top bit is set: 1 << 30 for 32 bits
// "bit" starts at the highest power of four <= the argument.
while (bit > param) {
bit >>= 2;
}
while (bit != 0) {
if (param >= result + bit) {
param -= result + bit;
result = (result >> 1) + bit;
} else {
result >>= 1;
}
bit >>= 2;
}
STORE_32LE(result, DS9_REG_SQRT_RESULT_LO, ds->memory.io9);
}
void DSCreate(struct DS* ds) {
ds->d.id = DS_COMPONENT_MAGIC;
ds->d.init = DSInit;
ds->d.deinit = NULL;
ds->ds7.p = ds;
ds->ds9.p = ds;
ds->ds7.cpu = NULL;
ds->ds9.cpu = NULL;
ds->ds7.ipc = &ds->ds9;
ds->ds9.ipc = &ds->ds7;
}
static void DSInit(void* cpu, struct mCPUComponent* component) {
struct DS* ds = (struct DS*) component;
struct ARMCore* core = cpu;
if (!ds->ds7.cpu) {
// The ARM7 must get initialized first
ds->ds7.cpu = core;
ds->debugger = 0;
ds->sync = 0;
return;
}
ds->ds9.cpu = cpu;
ds->activeCpu = NULL;
ds->ds9.cpu->cp15.r1.c0 = ARMControlRegFillVE(0);
ds->slice.name = "DS CPU Time Slicing";
ds->slice.callback = _slice;
ds->slice.context = ds;
ds->slice.priority = UINT_MAX;
CircleBufferInit(&ds->ds7.fifo, 64);
CircleBufferInit(&ds->ds9.fifo, 64);
DS7InterruptHandlerInit(&ds->ds7.cpu->irqh);
DS9InterruptHandlerInit(&ds->ds9.cpu->irqh);
DSMemoryInit(ds);
DSDMAInit(ds);
DSVideoInit(&ds->video);
ds->video.p = ds;
DSGXInit(&ds->gx);
ds->gx.p = ds;
DSAudioInit(&ds->audio, 2048);
ds->audio.p = ds;
ds->ds7.springIRQ = 0;
ds->ds9.springIRQ = 0;
DSTimerInit(ds);
ds->keySource = NULL;
ds->rtcSource = NULL;
ds->rumble = NULL;
ds->romVf = NULL;
DSSlot1SPIInit(ds, NULL);
ds->stream = NULL;
ds->keyCallback = NULL;
mCoreCallbacksListInit(&ds->coreCallbacks, 0);
ds->divEvent.name = "DS Hardware Divide";
ds->divEvent.callback = _divide;
ds->divEvent.context = ds;
ds->divEvent.priority = 0x50;
ds->sqrtEvent.name = "DS Hardware Sqrt";
ds->sqrtEvent.callback = _sqrt;
ds->sqrtEvent.context = ds;
ds->sqrtEvent.priority = 0x51;
mTimingInit(&ds->ds7.timing, &ds->ds7.cpu->cycles, &ds->ds7.cpu->nextEvent);
mTimingInit(&ds->ds9.timing, &ds->ds9.cpu->cycles, &ds->ds9.cpu->nextEvent);
}
void DSUnloadROM(struct DS* ds) {
if (ds->romVf) {
ds->romVf->close(ds->romVf);
ds->romVf = NULL;
}
}
void DSDestroy(struct DS* ds) {
CircleBufferDeinit(&ds->ds7.fifo);
CircleBufferDeinit(&ds->ds9.fifo);
DSUnloadROM(ds);
DSMemoryDeinit(ds);
DSGXDeinit(&ds->gx);
DSAudioDeinit(&ds->audio);
mTimingDeinit(&ds->ds7.timing);
mTimingDeinit(&ds->ds9.timing);
mCoreCallbacksListDeinit(&ds->coreCallbacks);
}
void DS7InterruptHandlerInit(struct ARMInterruptHandler* irqh) {
irqh->reset = DS7Reset;
irqh->processEvents = DS7ProcessEvents;
irqh->swi16 = DS7Swi16;
irqh->swi32 = DS7Swi32;
irqh->hitIllegal = DSIllegal;
irqh->readCPSR = DS7TestIRQ;
irqh->writeCP15 = NULL;
irqh->readCP15 = NULL;
irqh->hitStub = DSHitStub;
irqh->bkpt16 = DSBreakpoint;
irqh->bkpt32 = DSBreakpoint;
}
void DS9InterruptHandlerInit(struct ARMInterruptHandler* irqh) {
irqh->reset = DS9Reset;
irqh->processEvents = DS9ProcessEvents;
irqh->swi16 = DS9Swi16;
irqh->swi32 = DS9Swi32;
irqh->hitIllegal = DSIllegal;
irqh->readCPSR = DS9TestIRQ;
irqh->writeCP15 = DS9WriteCP15;
irqh->readCP15 = DS9ReadCP15;
irqh->hitStub = DSHitStub;
irqh->bkpt16 = DSBreakpoint;
irqh->bkpt32 = DSBreakpoint;
}
void DS7Reset(struct ARMCore* cpu) {
ARMSetPrivilegeMode(cpu, MODE_IRQ);
cpu->gprs[ARM_SP] = DS7_SP_BASE_IRQ;
ARMSetPrivilegeMode(cpu, MODE_SUPERVISOR);
cpu->gprs[ARM_SP] = DS7_SP_BASE_SVC;
ARMSetPrivilegeMode(cpu, MODE_SYSTEM);
cpu->gprs[ARM_SP] = DS7_SP_BASE;
struct DS* ds = (struct DS*) cpu->master;
mTimingClear(&ds->ds7.timing);
CircleBufferInit(&ds->ds7.fifo, 64);
DSMemoryReset(ds);
DSDMAReset(&ds->ds7);
DSAudioReset(&ds->audio);
DS7IOInit(ds);
DSConfigureWRAM(&ds->memory, 3);
struct DSCartridge* header = ds->romVf->map(ds->romVf, sizeof(*header), MAP_READ);
if (header) {
memcpy(&ds->memory.ram[0x3FF800 >> 2], DS_CHIP_ID, 4);
memcpy(&ds->memory.ram[0x3FF804 >> 2], DS_CHIP_ID, 4);
memcpy(&ds->memory.ram[0x3FFC00 >> 2], DS_CHIP_ID, 4);
memcpy(&ds->memory.ram[0x3FFC04 >> 2], DS_CHIP_ID, 4);
memcpy(&ds->memory.ram[0x3FFE00 >> 2], header, 0x170);
DS7IOWrite32(ds, DS_REG_ROMCNT_LO, header->busTiming | 0x2700000);
// TODO: Error check
ds->romVf->seek(ds->romVf, header->arm7Offset, SEEK_SET);
uint32_t base = header->arm7Base;
if (base >> DS_BASE_OFFSET == DS_REGION_RAM) {
base -= DS_BASE_RAM;
uint32_t* basePointer = &ds->memory.ram[base >> 2];
if (base < DS_SIZE_RAM && base + header->arm7Size <= DS_SIZE_RAM) {
ds->romVf->read(ds->romVf, basePointer, header->arm7Size);
}
} else {
uint32_t size;
for (size = header->arm7Size; size; --size) {
uint8_t b = 0;
ds->romVf->read(ds->romVf, &b, 1);
cpu->memory.store8(cpu, base, b, NULL);
++base;
}
}
cpu->gprs[12] = header->arm7Entry;
cpu->gprs[ARM_LR] = header->arm7Entry;
cpu->gprs[ARM_PC] = header->arm7Entry;
int currentCycles = 0;
ARM_WRITE_PC;
ds->romVf->unmap(ds->romVf, header, sizeof(*header));
}
}
void DS9Reset(struct ARMCore* cpu) {
ARMSetPrivilegeMode(cpu, MODE_IRQ);
cpu->gprs[ARM_SP] = DS9_SP_BASE_IRQ;
ARMSetPrivilegeMode(cpu, MODE_SUPERVISOR);
cpu->gprs[ARM_SP] = DS9_SP_BASE_SVC;
ARMSetPrivilegeMode(cpu, MODE_SYSTEM);
cpu->gprs[ARM_SP] = DS9_SP_BASE;
struct DS* ds = (struct DS*) cpu->master;
mTimingClear(&ds->ds9.timing);
CircleBufferInit(&ds->ds9.fifo, 64);
DSVideoReset(&ds->video);
DSGXReset(&ds->gx);
DSDMAReset(&ds->ds9);
DS9IOInit(ds);
ds->activeCpu = cpu;
mTimingSchedule(&ds->ds9.timing, &ds->slice, SLICE_CYCLES);
ds->cycleDrift = 0;
ds->sliceStart = mTimingCurrentTime(&ds->ds9.timing);
struct DSCartridge* header = ds->romVf->map(ds->romVf, sizeof(*header), MAP_READ);
if (header) {
// TODO: Error check
ds->romVf->seek(ds->romVf, header->arm9Offset, SEEK_SET);
uint32_t base = header->arm9Base - DS_BASE_RAM;
uint32_t* basePointer = &ds->memory.ram[base >> 2];
if (base < DS_SIZE_RAM && base + header->arm9Size <= DS_SIZE_RAM) {
ds->romVf->read(ds->romVf, basePointer, header->arm9Size);
}
cpu->gprs[12] = header->arm9Entry;
cpu->gprs[ARM_LR] = header->arm9Entry;
cpu->gprs[ARM_PC] = header->arm9Entry;
int currentCycles = 0;
ARM_WRITE_PC;
ds->romVf->unmap(ds->romVf, header, sizeof(*header));
}
}
static void DS7ProcessEvents(struct ARMCore* cpu) {
struct DS* ds = (struct DS*) cpu->master;
DSProcessEvents(&ds->ds7);
}
static void DS9ProcessEvents(struct ARMCore* cpu) {
struct DS* ds = (struct DS*) cpu->master;
DSProcessEvents(&ds->ds9);
}
static void DSProcessEvents(struct DSCommon* dscore) {
struct ARMCore* cpu = dscore->cpu;
struct DS* ds = dscore->p;
if (dscore->springIRQ && !cpu->cpsr.i) {
ARMRaiseIRQ(cpu);
dscore->springIRQ = 0;
}
int32_t nextEvent = cpu->nextEvent;
while (cpu->cycles >= nextEvent) {
int32_t cycles = cpu->cycles;
cpu->cycles = 0;
cpu->nextEvent = 0;
#ifndef NDEBUG
if (cycles < 0) {
mLOG(DS, FATAL, "Negative cycles passed: %i", cycles);
}
#endif
nextEvent = cycles;
do {
nextEvent = mTimingTick(&dscore->timing, nextEvent);
} while (ds->cpuBlocked && !ds->earlyExit);
if (ds->earlyExit) {
ds->earlyExit = false;
break;
}
cpu->nextEvent = nextEvent;
if (cpu->halted) {
cpu->cycles = nextEvent;
}
#ifndef NDEBUG
else if (nextEvent < 0) {
mLOG(DS, FATAL, "Negative cycles will pass: %i", nextEvent);
}
#endif
}
}
void DSRunLoop(struct DS* ds) {
if (ds->activeCpu == ds->ds9.cpu) {
ARMv5RunLoop(ds->ds9.cpu);
} else {
ARMv4RunLoop(ds->ds7.cpu);
}
}
void DS7Step(struct DS* ds) {
int32_t pc = ds->ds7.cpu->gprs[ARM_PC];
do {
while (ds->activeCpu == ds->ds9.cpu) {
ARMv5RunLoop(ds->ds9.cpu);
}
ARMv4Run(ds->ds7.cpu);
} while (ds->ds7.cpu->halted || ds->ds7.cpu->gprs[ARM_PC] == pc);
}
void DS9Step(struct DS* ds) {
int32_t pc = ds->ds9.cpu->gprs[ARM_PC];
do {
while (ds->activeCpu == ds->ds7.cpu) {
ARMv4RunLoop(ds->ds7.cpu);
}
ARMv5Run(ds->ds9.cpu);
} while (ds->ds9.cpu->halted || ds->ds9.cpu->gprs[ARM_PC] == pc);
}
void DSAttachDebugger(struct DS* ds, struct mDebugger* debugger) {
ds->debugger = (struct ARMDebugger*) debugger->platform;
ds->ds7.cpu->components[CPU_COMPONENT_DEBUGGER] = &debugger->d;
ds->ds9.cpu->components[CPU_COMPONENT_DEBUGGER] = &debugger->d;
ARMHotplugAttach(ds->ds7.cpu, CPU_COMPONENT_DEBUGGER);
ARMHotplugAttach(ds->ds9.cpu, CPU_COMPONENT_DEBUGGER);
}
void DSDetachDebugger(struct DS* ds) {
ds->debugger = NULL;
ARMHotplugDetach(ds->ds7.cpu, CPU_COMPONENT_DEBUGGER);
ARMHotplugDetach(ds->ds9.cpu, CPU_COMPONENT_DEBUGGER);
ds->ds7.cpu->components[CPU_COMPONENT_DEBUGGER] = NULL;
ds->ds9.cpu->components[CPU_COMPONENT_DEBUGGER] = NULL;
}
bool DSLoadROM(struct DS* ds, struct VFile* vf) {
DSUnloadROM(ds);
ds->romVf = vf;
// TODO: error check
return true;
}
bool DSLoadSave(struct DS* ds, struct VFile* sav) {
DSSlot1SPIInit(ds, sav);
return true;
}
bool DSIsROM(struct VFile* vf) {
if (vf->seek(vf, DS_ROM_MAGIC_OFFSET, SEEK_SET) < 0) {
return false;
}
uint8_t signature[sizeof(DS_ROM_MAGIC)];
if (vf->read(vf, &signature, sizeof(signature)) != sizeof(signature)) {
return false;
}
return memcmp(signature, DS_ROM_MAGIC, sizeof(signature)) == 0 || memcmp(signature, DS_ROM_MAGIC_2, sizeof(signature)) == 0;
}
bool DSIsBIOS7(struct VFile* vf) {
size_t size = vf->size(vf);
void* data = NULL;
uint32_t crc;
if (size == DS7_SIZE_BIOS) {
data = vf->map(vf, size, MAP_READ);
}
if (!data) {
return false;
}
crc = doCrc32(data, size);
vf->unmap(vf, data, size);
return crc == DS7_BIOS_CHECKSUM;
}
bool DSIsBIOS9(struct VFile* vf) {
size_t size = vf->size(vf);
void* data = NULL;
uint32_t crc;
if (size == DS9_SIZE_BIOS) {
data = vf->map(vf, 0x1000, MAP_READ);
} else if (size == 0x1000) {
data = vf->map(vf, 0x1000, MAP_READ);
}
if (!data) {
return false;
}
crc = doCrc32(data, 0x1000);
vf->unmap(vf, data, 0x1000);
return crc == DS9_BIOS_CHECKSUM;
}
bool DSIsFirmware(struct VFile* vf) {
if (vf->seek(vf, DS_FIRMWARE_MAGIC_OFFSET, SEEK_SET) < 0) {
return false;
}
uint8_t signature[sizeof(DS_FIRMWARE_MAGIC)];
if (vf->read(vf, &signature, sizeof(signature)) != sizeof(signature)) {
return false;
}
return memcmp(signature, DS_FIRMWARE_MAGIC, sizeof(signature)) == 0;
}
bool DSLoadBIOS(struct DS* ds, struct VFile* vf) {
size_t size = vf->size(vf);
void* data = NULL;
uint32_t crc;
if (size == DS7_SIZE_BIOS) {
data = vf->map(vf, size, MAP_READ);
} else if (size == 0x1000) {
data = calloc(DS9_SIZE_BIOS, 1);
vf->read(vf, data, size);
} else if (size == DS9_SIZE_BIOS) {
data = vf->map(vf, size, MAP_READ);
} else if (size == DS_SIZE_FIRMWARE) {
return DSLoadFirmware(ds, vf);
}
if (!data) {
return false;
}
crc = doCrc32(data, size);
if (crc == DS7_BIOS_CHECKSUM) {
ds->bios7Vf = vf;
ds->memory.bios7 = data;
mLOG(DS, INFO, "Official DS ARM7 BIOS detected");
} else if (crc == DS9_BIOS_CHECKSUM) {
ds->bios9Vf = vf;
ds->memory.bios9 = data;
mLOG(DS, INFO, "Official DS ARM9 BIOS detected");
} else {
mLOG(DS, WARN, "BIOS checksum incorrect");
vf->unmap(vf, data, size);
return false;
}
return true;
}
bool DSLoadFirmware(struct DS* ds, struct VFile* vf) {
size_t size = vf->size(vf);
void* data = NULL;
if (!DSIsFirmware(vf)) {
return false;
}
if (size == DS_SIZE_FIRMWARE) {
data = vf->map(vf, size, MAP_WRITE);
}
if (!data) {
return false;
}
mLOG(DS, INFO, "Found DS firmware");
ds->firmwareVf = vf;
return true;
}
void DSGetGameCode(struct DS* ds, char* out) {
memset(out, 0, 8);
if (!ds->romVf) {
return;
}
struct DSCartridge* cart = ds->romVf->map(ds->romVf, sizeof(*cart), MAP_READ);
// TODO: TWL-?
memcpy(out, "NTR-", 4);
memcpy(&out[4], &cart->id, 4);
ds->romVf->unmap(ds->romVf, cart, sizeof(*cart));
}
void DSGetGameTitle(struct DS* ds, char* out) {
memset(out, 0, 12);
if (!ds->romVf) {
return;
}
struct DSCartridge* cart = ds->romVf->map(ds->romVf, sizeof(*cart), MAP_READ);
memcpy(out, &cart->title, 12);
ds->romVf->unmap(ds->romVf, cart, sizeof(*cart));
}
void DSHitStub(struct ARMCore* cpu, uint32_t opcode) {
struct DS* ds = (struct DS*) cpu->master;
if (ds->debugger) {
struct mDebuggerEntryInfo info = {
.address = _ARMPCAddress(cpu),
.opcode = opcode
};
mDebuggerEnter(ds->debugger->d.p, DEBUGGER_ENTER_ILLEGAL_OP, &info);
}
// TODO: More sensible category?
mLOG(DS, ERROR, "Stub opcode: %08x", opcode);
}
void DSIllegal(struct ARMCore* cpu, uint32_t opcode) {
struct DS* ds = (struct DS*) cpu->master;
if ((opcode & 0xFFFF) == (redzoneInstruction & 0xFFFF)) {
int currentCycles = 0;
if (cpu->executionMode == MODE_THUMB) {
cpu->gprs[ARM_PC] -= WORD_SIZE_THUMB * 2;
THUMB_WRITE_PC;
} else {
cpu->gprs[ARM_PC] -= WORD_SIZE_ARM * 2;
ARM_WRITE_PC;
}
} else if (ds->debugger) {
struct mDebuggerEntryInfo info = {
.address = _ARMPCAddress(cpu),
.opcode = opcode
};
mDebuggerEnter(ds->debugger->d.p, DEBUGGER_ENTER_ILLEGAL_OP, &info);
} else {
ARMRaiseUndefined(cpu);
}
}
void DSBreakpoint(struct ARMCore* cpu, int immediate) {
struct DS* ds = (struct DS*) cpu->master;
if (immediate >= CPU_COMPONENT_MAX) {
return;
}
switch (immediate) {
case CPU_COMPONENT_DEBUGGER:
if (ds->debugger) {
struct mDebuggerEntryInfo info = {
.address = _ARMPCAddress(cpu)
};
mDebuggerEnter(ds->debugger->d.p, DEBUGGER_ENTER_BREAKPOINT, &info);
}
break;
default:
break;
}
}
void DS7TestIRQ(struct ARMCore* cpu) {
struct DS* ds = (struct DS*) cpu->master;
if (!ds->memory.io7[DS_REG_IME >> 1]) {
return;
}
uint32_t test = (ds->memory.io7[DS_REG_IE_LO >> 1] & ds->memory.io7[DS_REG_IF_LO >> 1]);
test |= (ds->memory.io7[DS_REG_IE_HI >> 1] & ds->memory.io7[DS_REG_IF_HI >> 1]) << 16;
if (test) {
ds->ds7.springIRQ = test;
cpu->nextEvent = cpu->cycles;
}
}
void DS9TestIRQ(struct ARMCore* cpu) {
struct DS* ds = (struct DS*) cpu->master;
if (!ds->memory.io9[DS_REG_IME >> 1]) {
return;
}
uint32_t test = (ds->memory.io9[DS_REG_IE_LO >> 1] & ds->memory.io9[DS_REG_IF_LO >> 1]);
test |= (ds->memory.io9[DS_REG_IE_HI >> 1] & ds->memory.io9[DS_REG_IF_HI >> 1]) << 16;
if (test) {
ds->ds9.springIRQ = test;
cpu->nextEvent = cpu->cycles;
}
}
static void _writeSysControl(struct ARMCore* cpu, int crm, int opcode2, uint32_t value) {
mLOG(DS, STUB, "CP15 system control write: CRm: %i, Op2: %i, Value: 0x%08X", crm, opcode2, value);
}
static void _writeCacheControl(struct ARMCore* cpu, int crm, int opcode2, uint32_t value) {
mLOG(DS, STUB, "CP15 cache control control write: CRm: %i, Op2: %i, Value: 0x%08X", crm, opcode2, value);
switch (opcode2) {
case 0:
cpu->cp15.r2.d = value;
break;
case 1:
cpu->cp15.r2.i = value;
break;
default:
mLOG(DS, GAME_ERROR, "CP15 cache control control bad op2: %i", opcode2);
break;
}
}
static void _writeWriteBufferControl(struct ARMCore* cpu, int crm, int opcode2, uint32_t value) {
mLOG(DS, STUB, "CP15 write buffer control write: CRm: %i, Op2: %i, Value: 0x%08X", crm, opcode2, value);
switch (opcode2) {
case 0:
cpu->cp15.r3.d = value;
break;
default:
mLOG(DS, GAME_ERROR, "CP15 cache control control bad op2: %i", opcode2);
break;
}
}
static void _writeAccessControl(struct ARMCore* cpu, int crm, int opcode2, uint32_t value) {
mLOG(DS, STUB, "CP15 access control write: CRm: %i, Op2: %i, Value: 0x%08X", crm, opcode2, value);
}
static void _writeRegionConfiguration(struct ARMCore* cpu, int crm, int opcode2, uint32_t value) {
cpu->cp15.r6.region[crm] = value;
uint32_t base = ARMProtectionGetBase(value) << 12;
uint32_t size = 2 << ARMProtectionGetSize(value);
mLOG(DS, STUB, "CP15 region configuration write: Region: %i, Insn: %i, Base: %08X, Size: %08X", crm, opcode2, base, size);
}
static void _writeCache(struct ARMCore* cpu, int crm, int opcode2, uint32_t value) {
switch (crm) {
case 0:
if (opcode2 == 4) {
ARMHalt(cpu);
return;
}
break;
}
mLOG(DS, STUB, "CP15 cache write: CRm: %i, Op2: %i, Value: 0x%08X", crm, opcode2, value);
}
static void _writeTCMControl(struct ARMCore* cpu, int crm, int opcode2, uint32_t value) {
uint32_t base = ARMTCMControlGetBase(value) << 12;
uint32_t size = 512 << ARMTCMControlGetVirtualSize(value);
struct DS* ds = (struct DS*) cpu->master;
mLOG(DS, DEBUG, "CP15 TCM control write: CRm: %i, Op2: %i, Base: %08X, Size: %08X", crm, opcode2, base, size);
switch (opcode2) {
case 0:
cpu->cp15.r9.d = value;
ds->memory.dtcmBase = base;
ds->memory.dtcmSize = size;
break;
case 1:
cpu->cp15.r9.i = value;
ds->memory.itcmSize = size;
break;
default:
mLOG(DS, GAME_ERROR, "CP15 TCM control bad op2: %i", opcode2);
break;
}
}
void DS9WriteCP15(struct ARMCore* cpu, int crn, int crm, int opcode1, int opcode2, uint32_t value) {
switch (crn) {
default:
mLOG(DS, STUB, "CP15 unknown write: CRn: %i, CRm: %i, Op1: %i, Op2: %i, Value: 0x%08X", crn, crm, opcode1, opcode2, value);
break;
case 0:
mLOG(DS, GAME_ERROR, "Attempted to write to read-only cp15 register");
ARMRaiseUndefined(cpu);
break;
case 1:
_writeSysControl(cpu, crm, opcode2, value);
break;
case 2:
_writeCacheControl(cpu, crm, opcode2, value);
break;
case 3:
_writeWriteBufferControl(cpu, crm, opcode2, value);
break;
case 5:
_writeAccessControl(cpu, crm, opcode2, value);
break;
case 6:
_writeRegionConfiguration(cpu, crm, opcode2, value);
break;
case 7:
_writeCache(cpu, crm, opcode2, value);
break;
case 9:
_writeTCMControl(cpu, crm, opcode2, value);
break;
}
}
static uint32_t _readTCMControl(struct ARMCore* cpu, int crm, int opcode2) {
switch (opcode2) {
case 0:
return cpu->cp15.r9.d;
case 1:
return cpu->cp15.r9.i;
default:
mLOG(DS, GAME_ERROR, "CP15 TCM control bad op2: %i", opcode2);
return 0;
}
}
uint32_t DS9ReadCP15(struct ARMCore* cpu, int crn, int crm, int opcode1, int opcode2) {
switch (crn) {
default:
mLOG(DS, STUB, "CP15 unknown read: CRn: %i, CRm: %i, Op1: %i, Op2: %i", crn, crm, opcode1, opcode2);
return 0;
case 9:
return _readTCMControl(cpu, crm, opcode2);
}
}
void DSWriteIE(struct ARMCore* cpu, uint16_t* io, uint32_t value) {
if (io[DS_REG_IME >> 1] && (value & io[DS_REG_IF_LO >> 1] || (value >> 16) & io[DS_REG_IF_HI >> 1])) {
ARMRaiseIRQ(cpu);
}
}
void DSWriteIME(struct ARMCore* cpu, uint16_t* io, uint16_t value) {
if (value && (io[DS_REG_IE_LO >> 1] & io[DS_REG_IF_LO >> 1] || io[DS_REG_IE_HI >> 1] & io[DS_REG_IF_HI >> 1])) {
ARMRaiseIRQ(cpu);
}
}
void DSRaiseIRQ(struct ARMCore* cpu, uint16_t* io, enum DSIRQ irq) {
if (irq < 16) {
io[DS_REG_IF_LO >> 1] |= 1 << irq;
} else {
io[DS_REG_IF_HI >> 1] |= 1 << (irq - 16);
}
if ((irq < 16 && (io[DS_REG_IE_LO >> 1] & 1 << irq)) || (io[DS_REG_IE_HI >> 1] & (1 << (irq - 16)))) {
cpu->halted = 0;
if (io[DS_REG_IME >> 1]) {
ARMRaiseIRQ(cpu);
}
}
}
void DSFrameStarted(struct DS* ds) {
size_t c;
for (c = 0; c < mCoreCallbacksListSize(&ds->coreCallbacks); ++c) {
struct mCoreCallbacks* callbacks = mCoreCallbacksListGetPointer(&ds->coreCallbacks, c);
if (callbacks->videoFrameStarted) {
callbacks->videoFrameStarted(callbacks->context);
}
}
}
void DSFrameEnded(struct DS* ds) {
size_t c;
for (c = 0; c < mCoreCallbacksListSize(&ds->coreCallbacks); ++c) {
struct mCoreCallbacks* callbacks = mCoreCallbacksListGetPointer(&ds->coreCallbacks, c);
if (callbacks->videoFrameEnded) {
callbacks->videoFrameEnded(callbacks->context);
}
}
if (ds->stream && ds->stream->postVideoFrame) {
const color_t* pixels;
size_t stride;
ds->video.renderer->getPixels(ds->video.renderer, &stride, (const void**) &pixels);
ds->stream->postVideoFrame(ds->stream, pixels, stride);
}
}
uint16_t DSWriteRTC(struct DS* ds, DSRegisterRTC value) {
switch (ds->rtc.transferStep) {
case 0:
if ((value & 6) == 2) {
ds->rtc.transferStep = 1;
}
break;
case 1:
if ((value & 6) == 6) {
ds->rtc.transferStep = 2;
}
break;
case 2:
if (!DSRegisterRTCIsClock(value)) {
if (DSRegisterRTCIsDataDirection(value)) {
ds->rtc.bits &= ~(1 << ds->rtc.bitsRead);
ds->rtc.bits |= DSRegisterRTCGetData(value) << ds->rtc.bitsRead;
} else {
value = DSRegisterRTCSetData(value, GBARTCOutput(&ds->rtc));
}
} else {
if (DSRegisterRTCIsSelect(value)) {
// GPIO direction should always != reading
if (DSRegisterRTCIsDataDirection(value)) {
if (RTCCommandDataIsReading(ds->rtc.command)) {
mLOG(DS, GAME_ERROR, "Attempting to write to RTC while in read mode");
}
++ds->rtc.bitsRead;
if (ds->rtc.bitsRead == 8) {
GBARTCProcessByte(&ds->rtc, ds->rtcSource);
}
} else {
value = DSRegisterRTCSetData(value, GBARTCOutput(&ds->rtc));
++ds->rtc.bitsRead;
if (ds->rtc.bitsRead == 8) {
--ds->rtc.bytesRemaining;
if (ds->rtc.bytesRemaining <= 0) {
ds->rtc.commandActive = 0;
ds->rtc.command = RTCCommandDataClearReading(ds->rtc.command);
}
ds->rtc.bitsRead = 0;
}
}
} else {
ds->rtc.bitsRead = 0;
ds->rtc.bytesRemaining = 0;
ds->rtc.commandActive = 0;
ds->rtc.command = RTCCommandDataClearReading(ds->rtc.command);
ds->rtc.transferStep = 0;
}
}
break;
}
return value;
}