mgba/src/gba/ereader.c

721 lines
23 KiB
C

/* Copyright (c) 2013-2020 Jeffrey Pfau
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <mgba/internal/gba/hardware.h>
#include <mgba/internal/arm/macros.h>
#include <mgba/internal/gba/gba.h>
#include <mgba-util/memory.h>
#define EREADER_BLOCK_SIZE 40
static void _eReaderReset(struct GBACartridgeHardware* hw);
static void _eReaderWriteControl0(struct GBACartridgeHardware* hw, uint8_t value);
static void _eReaderWriteControl1(struct GBACartridgeHardware* hw, uint8_t value);
static void _eReaderReadData(struct GBACartridgeHardware* hw);
static void _eReaderReedSolomon(const uint8_t* input, uint8_t* output);
const int EREADER_NYBBLE_5BIT[16][5] = {
{ 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 1 },
{ 0, 0, 0, 1, 0 },
{ 1, 0, 0, 1, 0 },
{ 0, 0, 1, 0, 0 },
{ 0, 0, 1, 0, 1 },
{ 0, 0, 1, 1, 0 },
{ 1, 0, 1, 1, 0 },
{ 0, 1, 0, 0, 0 },
{ 0, 1, 0, 0, 1 },
{ 0, 1, 0, 1, 0 },
{ 1, 0, 1, 0, 0 },
{ 0, 1, 1, 0, 0 },
{ 0, 1, 1, 0, 1 },
{ 1, 0, 0, 0, 1 },
{ 1, 0, 0, 0, 0 }
};
const uint8_t EREADER_CALIBRATION_TEMPLATE[] = {
0x43, 0x61, 0x72, 0x64, 0x2d, 0x45, 0x20, 0x52, 0x65, 0x61, 0x64, 0x65, 0x72, 0x20, 0x32, 0x30,
0x30, 0x31, 0x00, 0x00, 0xcf, 0x72, 0x2f, 0x37, 0x3a, 0x3a, 0x3a, 0x38, 0x33, 0x30, 0x30, 0x37,
0x3a, 0x39, 0x37, 0x35, 0x33, 0x2f, 0x2f, 0x34, 0x36, 0x36, 0x37, 0x36, 0x34, 0x31, 0x2d, 0x30,
0x32, 0x34, 0x35, 0x35, 0x34, 0x30, 0x2a, 0x2d, 0x2d, 0x2f, 0x31, 0x32, 0x31, 0x2f, 0x29, 0x2a,
0x2c, 0x2b, 0x2c, 0x2e, 0x2e, 0x2d, 0x18, 0x2d, 0x8f, 0x03, 0x00, 0x00, 0xc0, 0xfd, 0x77, 0x00,
0x00, 0x00, 0x01
};
const uint16_t EREADER_ADDRESS_CODES[] = {
1023,
1174,
2628,
3373,
4233,
6112,
6450,
7771,
8826,
9491,
11201,
11432,
12556,
13925,
14519,
16350,
16629,
18332,
18766,
20007,
21379,
21738,
23096,
23889,
24944,
26137,
26827,
28578,
29190,
30063,
31677,
31956,
33410,
34283,
35641,
35920,
37364,
38557,
38991,
40742,
41735,
42094,
43708,
44501,
45169,
46872,
47562,
48803,
49544,
50913,
51251,
53082,
54014,
54679
};
static const uint8_t DUMMY_HEADER_STRIP[2][0x10] = {
{ 0x00, 0x30, 0x01, 0x01, 0x00, 0x01, 0x05, 0x10, 0x00, 0x00, 0x10, 0x13, 0x00, 0x00, 0x02, 0x00 },
{ 0x00, 0x30, 0x01, 0x02, 0x00, 0x01, 0x08, 0x10, 0x00, 0x00, 0x10, 0x12, 0x00, 0x00, 0x01, 0x00 }
};
static const uint8_t DUMMY_HEADER_FIXED[0x16] = {
0x00, 0x00, 0x10, 0x00, 0x00, 0x19, 0x00, 0x00, 0x00, 0x08, 0x4e, 0x49, 0x4e, 0x54, 0x45, 0x4e,
0x44, 0x4f, 0x00, 0x22, 0x00, 0x09
};
static const uint8_t BLOCK_HEADER[2][0x18] = {
{ 0x00, 0x02, 0x00, 0x01, 0x40, 0x10, 0x00, 0x1c, 0x10, 0x6f, 0x40, 0xda, 0x39, 0x25, 0x8e, 0xe0, 0x7b, 0xb5, 0x98, 0xb6, 0x5b, 0xcf, 0x7f, 0x72 },
{ 0x00, 0x03, 0x00, 0x19, 0x40, 0x10, 0x00, 0x2c, 0x0e, 0x88, 0xed, 0x82, 0x50, 0x67, 0xfb, 0xd1, 0x43, 0xee, 0x03, 0xc6, 0xc6, 0x2b, 0x2c, 0x93 }
};
static const uint8_t RS_POW[] = {
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x87, 0x89, 0x95, 0xad, 0xdd, 0x3d, 0x7a, 0xf4,
0x6f, 0xde, 0x3b, 0x76, 0xec, 0x5f, 0xbe, 0xfb, 0x71, 0xe2, 0x43, 0x86, 0x8b, 0x91, 0xa5, 0xcd,
0x1d, 0x3a, 0x74, 0xe8, 0x57, 0xae, 0xdb, 0x31, 0x62, 0xc4, 0x0f, 0x1e, 0x3c, 0x78, 0xf0, 0x67,
0xce, 0x1b, 0x36, 0x6c, 0xd8, 0x37, 0x6e, 0xdc, 0x3f, 0x7e, 0xfc, 0x7f, 0xfe, 0x7b, 0xf6, 0x6b,
0xd6, 0x2b, 0x56, 0xac, 0xdf, 0x39, 0x72, 0xe4, 0x4f, 0x9e, 0xbb, 0xf1, 0x65, 0xca, 0x13, 0x26,
0x4c, 0x98, 0xb7, 0xe9, 0x55, 0xaa, 0xd3, 0x21, 0x42, 0x84, 0x8f, 0x99, 0xb5, 0xed, 0x5d, 0xba,
0xf3, 0x61, 0xc2, 0x03, 0x06, 0x0c, 0x18, 0x30, 0x60, 0xc0, 0x07, 0x0e, 0x1c, 0x38, 0x70, 0xe0,
0x47, 0x8e, 0x9b, 0xb1, 0xe5, 0x4d, 0x9a, 0xb3, 0xe1, 0x45, 0x8a, 0x93, 0xa1, 0xc5, 0x0d, 0x1a,
0x34, 0x68, 0xd0, 0x27, 0x4e, 0x9c, 0xbf, 0xf9, 0x75, 0xea, 0x53, 0xa6, 0xcb, 0x11, 0x22, 0x44,
0x88, 0x97, 0xa9, 0xd5, 0x2d, 0x5a, 0xb4, 0xef, 0x59, 0xb2, 0xe3, 0x41, 0x82, 0x83, 0x81, 0x85,
0x8d, 0x9d, 0xbd, 0xfd, 0x7d, 0xfa, 0x73, 0xe6, 0x4b, 0x96, 0xab, 0xd1, 0x25, 0x4a, 0x94, 0xaf,
0xd9, 0x35, 0x6a, 0xd4, 0x2f, 0x5e, 0xbc, 0xff, 0x79, 0xf2, 0x63, 0xc6, 0x0b, 0x16, 0x2c, 0x58,
0xb0, 0xe7, 0x49, 0x92, 0xa3, 0xc1, 0x05, 0x0a, 0x14, 0x28, 0x50, 0xa0, 0xc7, 0x09, 0x12, 0x24,
0x48, 0x90, 0xa7, 0xc9, 0x15, 0x2a, 0x54, 0xa8, 0xd7, 0x29, 0x52, 0xa4, 0xcf, 0x19, 0x32, 0x64,
0xc8, 0x17, 0x2e, 0x5c, 0xb8, 0xf7, 0x69, 0xd2, 0x23, 0x46, 0x8c, 0x9f, 0xb9, 0xf5, 0x6d, 0xda,
0x33, 0x66, 0xcc, 0x1f, 0x3e, 0x7c, 0xf8, 0x77, 0xee, 0x5b, 0xb6, 0xeb, 0x51, 0xa2, 0xc3, 0x00,
};
static const uint8_t RS_REV[] = {
0xff, 0x00, 0x01, 0x63, 0x02, 0xc6, 0x64, 0x6a, 0x03, 0xcd, 0xc7, 0xbc, 0x65, 0x7e, 0x6b, 0x2a,
0x04, 0x8d, 0xce, 0x4e, 0xc8, 0xd4, 0xbd, 0xe1, 0x66, 0xdd, 0x7f, 0x31, 0x6c, 0x20, 0x2b, 0xf3,
0x05, 0x57, 0x8e, 0xe8, 0xcf, 0xac, 0x4f, 0x83, 0xc9, 0xd9, 0xd5, 0x41, 0xbe, 0x94, 0xe2, 0xb4,
0x67, 0x27, 0xde, 0xf0, 0x80, 0xb1, 0x32, 0x35, 0x6d, 0x45, 0x21, 0x12, 0x2c, 0x0d, 0xf4, 0x38,
0x06, 0x9b, 0x58, 0x1a, 0x8f, 0x79, 0xe9, 0x70, 0xd0, 0xc2, 0xad, 0xa8, 0x50, 0x75, 0x84, 0x48,
0xca, 0xfc, 0xda, 0x8a, 0xd6, 0x54, 0x42, 0x24, 0xbf, 0x98, 0x95, 0xf9, 0xe3, 0x5e, 0xb5, 0x15,
0x68, 0x61, 0x28, 0xba, 0xdf, 0x4c, 0xf1, 0x2f, 0x81, 0xe6, 0xb2, 0x3f, 0x33, 0xee, 0x36, 0x10,
0x6e, 0x18, 0x46, 0xa6, 0x22, 0x88, 0x13, 0xf7, 0x2d, 0xb8, 0x0e, 0x3d, 0xf5, 0xa4, 0x39, 0x3b,
0x07, 0x9e, 0x9c, 0x9d, 0x59, 0x9f, 0x1b, 0x08, 0x90, 0x09, 0x7a, 0x1c, 0xea, 0xa0, 0x71, 0x5a,
0xd1, 0x1d, 0xc3, 0x7b, 0xae, 0x0a, 0xa9, 0x91, 0x51, 0x5b, 0x76, 0x72, 0x85, 0xa1, 0x49, 0xeb,
0xcb, 0x7c, 0xfd, 0xc4, 0xdb, 0x1e, 0x8b, 0xd2, 0xd7, 0x92, 0x55, 0xaa, 0x43, 0x0b, 0x25, 0xaf,
0xc0, 0x73, 0x99, 0x77, 0x96, 0x5c, 0xfa, 0x52, 0xe4, 0xec, 0x5f, 0x4a, 0xb6, 0xa2, 0x16, 0x86,
0x69, 0xc5, 0x62, 0xfe, 0x29, 0x7d, 0xbb, 0xcc, 0xe0, 0xd3, 0x4d, 0x8c, 0xf2, 0x1f, 0x30, 0xdc,
0x82, 0xab, 0xe7, 0x56, 0xb3, 0x93, 0x40, 0xd8, 0x34, 0xb0, 0xef, 0x26, 0x37, 0x0c, 0x11, 0x44,
0x6f, 0x78, 0x19, 0x9a, 0x47, 0x74, 0xa7, 0xc1, 0x23, 0x53, 0x89, 0xfb, 0x14, 0x5d, 0xf8, 0x97,
0x2e, 0x4b, 0xb9, 0x60, 0x0f, 0xed, 0x3e, 0xe5, 0xf6, 0x87, 0xa5, 0x17, 0x3a, 0xa3, 0x3c, 0xb7,
};
static const uint8_t RS_GG[] = {
0x00, 0x4b, 0xeb, 0xd5, 0xef, 0x4c, 0x71, 0x00, 0xf4, 0x00, 0x71, 0x4c, 0xef, 0xd5, 0xeb, 0x4b
};
void GBAHardwareInitEReader(struct GBACartridgeHardware* hw) {
hw->devices |= HW_EREADER;
_eReaderReset(hw);
if (hw->p->memory.savedata.data[0xD000] == 0xFF) {
memset(&hw->p->memory.savedata.data[0xD000], 0, 0x1000);
memcpy(&hw->p->memory.savedata.data[0xD000], EREADER_CALIBRATION_TEMPLATE, sizeof(EREADER_CALIBRATION_TEMPLATE));
}
if (hw->p->memory.savedata.data[0xE000] == 0xFF) {
memset(&hw->p->memory.savedata.data[0xE000], 0, 0x1000);
memcpy(&hw->p->memory.savedata.data[0xE000], EREADER_CALIBRATION_TEMPLATE, sizeof(EREADER_CALIBRATION_TEMPLATE));
}
}
void GBAHardwareEReaderWrite(struct GBACartridgeHardware* hw, uint32_t address, uint16_t value) {
address &= 0x700FF;
switch (address >> 17) {
case 0:
hw->eReaderRegisterUnk = value & 0xF;
break;
case 1:
hw->eReaderRegisterReset = (value & 0x8A) | 4;
if (value & 2) {
_eReaderReset(hw);
}
break;
case 2:
mLOG(GBA_HW, GAME_ERROR, "e-Reader write to read-only registers: %05X:%04X", address, value);
break;
default:
mLOG(GBA_HW, STUB, "Unimplemented e-Reader write: %05X:%04X", address, value);
}
}
void GBAHardwareEReaderWriteFlash(struct GBACartridgeHardware* hw, uint32_t address, uint8_t value) {
address &= 0xFFFF;
switch (address) {
case 0xFFB0:
_eReaderWriteControl0(hw, value);
break;
case 0xFFB1:
_eReaderWriteControl1(hw, value);
break;
case 0xFFB2:
hw->eReaderRegisterLed &= 0xFF00;
hw->eReaderRegisterLed |= value;
break;
case 0xFFB3:
hw->eReaderRegisterLed &= 0x00FF;
hw->eReaderRegisterLed |= value << 8;
break;
default:
mLOG(GBA_HW, STUB, "Unimplemented e-Reader write to flash: %04X:%02X", address, value);
}
}
uint16_t GBAHardwareEReaderRead(struct GBACartridgeHardware* hw, uint32_t address) {
address &= 0x700FF;
uint16_t value;
switch (address >> 17) {
case 0:
return hw->eReaderRegisterUnk;
case 1:
return hw->eReaderRegisterReset;
case 2:
if (address > 0x40088) {
return 0;
}
LOAD_16(value, address & 0xFE, hw->eReaderData);
return value;
}
mLOG(GBA_HW, STUB, "Unimplemented e-Reader read: %05X", address);
return 0;
}
uint8_t GBAHardwareEReaderReadFlash(struct GBACartridgeHardware* hw, uint32_t address) {
address &= 0xFFFF;
switch (address) {
case 0xFFB0:
return hw->eReaderRegisterControl0;
case 0xFFB1:
return hw->eReaderRegisterControl1;
default:
mLOG(GBA_HW, STUB, "Unimplemented e-Reader read from flash: %04X", address);
return 0;
}
}
static void _eReaderAnchor(uint8_t* origin) {
origin[EREADER_DOTCODE_STRIDE * 0 + 1] = 1;
origin[EREADER_DOTCODE_STRIDE * 0 + 2] = 1;
origin[EREADER_DOTCODE_STRIDE * 0 + 3] = 1;
origin[EREADER_DOTCODE_STRIDE * 1 + 0] = 1;
origin[EREADER_DOTCODE_STRIDE * 1 + 1] = 1;
origin[EREADER_DOTCODE_STRIDE * 1 + 2] = 1;
origin[EREADER_DOTCODE_STRIDE * 1 + 3] = 1;
origin[EREADER_DOTCODE_STRIDE * 1 + 4] = 1;
origin[EREADER_DOTCODE_STRIDE * 2 + 0] = 1;
origin[EREADER_DOTCODE_STRIDE * 2 + 1] = 1;
origin[EREADER_DOTCODE_STRIDE * 2 + 2] = 1;
origin[EREADER_DOTCODE_STRIDE * 2 + 3] = 1;
origin[EREADER_DOTCODE_STRIDE * 2 + 4] = 1;
origin[EREADER_DOTCODE_STRIDE * 3 + 0] = 1;
origin[EREADER_DOTCODE_STRIDE * 3 + 1] = 1;
origin[EREADER_DOTCODE_STRIDE * 3 + 2] = 1;
origin[EREADER_DOTCODE_STRIDE * 3 + 3] = 1;
origin[EREADER_DOTCODE_STRIDE * 3 + 4] = 1;
origin[EREADER_DOTCODE_STRIDE * 4 + 1] = 1;
origin[EREADER_DOTCODE_STRIDE * 4 + 2] = 1;
origin[EREADER_DOTCODE_STRIDE * 4 + 3] = 1;
}
static void _eReaderAlignment(uint8_t* origin) {
origin[8] = 1;
origin[10] = 1;
origin[12] = 1;
origin[14] = 1;
origin[16] = 1;
origin[18] = 1;
origin[21] = 1;
origin[23] = 1;
origin[25] = 1;
origin[27] = 1;
origin[29] = 1;
origin[31] = 1;
}
static void _eReaderAddress(uint8_t* origin, int a) {
origin[EREADER_DOTCODE_STRIDE * 7 + 2] = 1;
uint16_t addr = EREADER_ADDRESS_CODES[a];
int i;
for (i = 0; i < 16; ++i) {
origin[EREADER_DOTCODE_STRIDE * (16 + i) + 2] = (addr >> (15 - i)) & 1;
}
}
static void _eReaderReedSolomon(const uint8_t* input, uint8_t* output) {
uint8_t rsBuffer[64] = { 0 };
int i;
for (i = 0; i < 48; ++i) {
rsBuffer[63 - i] = input[i];
}
for (i = 0; i < 48; ++i) {
unsigned z = RS_REV[rsBuffer[63 - i] ^ rsBuffer[15]];
int j;
for (j = 15; j >= 0; --j) {
unsigned x = 0;
if (j != 0) {
x = rsBuffer[j - 1];
}
if (z != 0xFF) {
unsigned y = RS_GG[j];
if (y != 0xFF) {
y += z;
if (y >= 0xFF) {
y -= 0xFF;
}
x ^= RS_POW[y];
}
}
rsBuffer[j] = x;
}
}
for (i = 0; i < 16; ++i) {
output[15 - i] = ~rsBuffer[i];
}
}
void GBAHardwareEReaderScan(struct GBACartridgeHardware* hw, const void* data, size_t size) {
if (!hw->eReaderDots) {
hw->eReaderDots = anonymousMemoryMap(EREADER_DOTCODE_SIZE);
}
hw->eReaderX = -24;
memset(hw->eReaderDots, 0, EREADER_DOTCODE_SIZE);
uint8_t blockRS[44][0x10];
uint8_t block0[0x30];
bool parsed = false;
bool bitmap = false;
bool reducedHeader = false;
size_t blocks;
int base;
switch (size) {
// Raw sizes
case 2076:
memcpy(block0, DUMMY_HEADER_STRIP[1], sizeof(DUMMY_HEADER_STRIP[1]));
reducedHeader = true;
// Fallthrough
case 2112:
parsed = true;
// Fallthrough
case 2912:
base = 25;
blocks = 28;
break;
case 1308:
memcpy(block0, DUMMY_HEADER_STRIP[0], sizeof(DUMMY_HEADER_STRIP[0]));
reducedHeader = true;
// Fallthrough
case 1344:
parsed = true;
// Fallthrough
case 1872:
base = 1;
blocks = 18;
break;
// Bitmap sizes
case 5456:
bitmap = true;
break;
default:
return;
}
const uint8_t* cdata = data;
size_t i;
if (bitmap) {
size_t x;
for (i = 0; i < 40; ++i) {
const uint8_t* line = &cdata[(i + 2) * 124];
uint8_t* origin = &hw->eReaderDots[EREADER_DOTCODE_STRIDE * i + 200];
for (x = 0; x < 124; ++x) {
uint8_t byte = line[x];
if (x == 123) {
byte &= 0xE0;
}
origin[x * 8 + 0] = (byte >> 7) & 1;
origin[x * 8 + 1] = (byte >> 6) & 1;
origin[x * 8 + 2] = (byte >> 5) & 1;
origin[x * 8 + 3] = (byte >> 4) & 1;
origin[x * 8 + 4] = (byte >> 3) & 1;
origin[x * 8 + 5] = (byte >> 2) & 1;
origin[x * 8 + 6] = (byte >> 1) & 1;
origin[x * 8 + 7] = byte & 1;
}
}
return;
}
for (i = 0; i < blocks + 1; ++i) {
uint8_t* origin = &hw->eReaderDots[35 * i + 200];
_eReaderAnchor(&origin[EREADER_DOTCODE_STRIDE * 0]);
_eReaderAnchor(&origin[EREADER_DOTCODE_STRIDE * 35]);
_eReaderAddress(origin, base + i);
}
if (parsed) {
if (reducedHeader) {
memcpy(&block0[0x10], DUMMY_HEADER_FIXED, sizeof(DUMMY_HEADER_FIXED));
block0[0x0D] = cdata[0x0];
block0[0x0C] = cdata[0x1];
block0[0x10] = cdata[0x2];
block0[0x11] = cdata[0x3];
block0[0x26] = cdata[0x4];
block0[0x27] = cdata[0x5];
block0[0x28] = cdata[0x6];
block0[0x29] = cdata[0x7];
block0[0x2A] = cdata[0x8];
block0[0x2B] = cdata[0x9];
block0[0x2C] = cdata[0xA];
block0[0x2D] = cdata[0xB];
for (i = 0; i < 12; ++i) {
block0[0x2E] ^= cdata[i];
}
unsigned dataChecksum = 0;
int j;
for (i = 1; i < (size + 36) / 48; ++i) {
const uint8_t* block = &cdata[i * 48 - 36];
_eReaderReedSolomon(block, blockRS[i]);
unsigned fragmentChecksum = 0;
for (j = 0; j < 0x30; j += 2) {
uint16_t halfword;
fragmentChecksum ^= block[j];
fragmentChecksum ^= block[j + 1];
LOAD_16BE(halfword, j, block);
dataChecksum += halfword;
}
block0[0x2F] += fragmentChecksum;
}
block0[0x13] = (~dataChecksum) >> 8;
block0[0x14] = ~dataChecksum;
for (i = 0; i < 0x2F; ++i) {
block0[0x2F] += block0[i];
}
block0[0x2F] = ~block0[0x2F];
_eReaderReedSolomon(block0, blockRS[0]);
} else {
for (i = 0; i < size / 48; ++i) {
_eReaderReedSolomon(&cdata[i * 48], blockRS[i]);
}
}
}
size_t blockId = 0;
size_t byteOffset = 0;
for (i = 0; i < blocks; ++i) {
uint8_t block[1040];
uint8_t* origin = &hw->eReaderDots[35 * i + 200];
_eReaderAlignment(&origin[EREADER_DOTCODE_STRIDE * 2]);
_eReaderAlignment(&origin[EREADER_DOTCODE_STRIDE * 37]);
const uint8_t* blockData;
uint8_t parsedBlockData[104];
if (parsed) {
memset(parsedBlockData, 0, sizeof(*parsedBlockData));
const uint8_t* header = BLOCK_HEADER[size == 1344 ? 0 : 1];
parsedBlockData[0] = header[(2 * i) % 0x18];
parsedBlockData[1] = header[(2 * i) % 0x18 + 1];
int j;
for (j = 2; j < 104; ++j) {
if (byteOffset >= 0x40) {
break;
}
if (byteOffset >= 0x30) {
parsedBlockData[j] = blockRS[blockId][byteOffset - 0x30];
} else if (!reducedHeader) {
parsedBlockData[j] = cdata[blockId * 0x30 + byteOffset];
} else {
if (blockId > 0) {
parsedBlockData[j] = cdata[blockId * 0x30 + byteOffset - 36];
} else {
parsedBlockData[j] = block0[byteOffset];
}
}
++blockId;
if (blockId * 0x30 >= size) {
blockId = 0;
++byteOffset;
}
}
blockData = parsedBlockData;
} else {
blockData = &cdata[i * 104];
}
int b;
for (b = 0; b < 104; ++b) {
const int* nybble5;
nybble5 = EREADER_NYBBLE_5BIT[blockData[b] >> 4];
block[b * 10 + 0] = nybble5[0];
block[b * 10 + 1] = nybble5[1];
block[b * 10 + 2] = nybble5[2];
block[b * 10 + 3] = nybble5[3];
block[b * 10 + 4] = nybble5[4];
nybble5 = EREADER_NYBBLE_5BIT[blockData[b] & 0xF];
block[b * 10 + 5] = nybble5[0];
block[b * 10 + 6] = nybble5[1];
block[b * 10 + 7] = nybble5[2];
block[b * 10 + 8] = nybble5[3];
block[b * 10 + 9] = nybble5[4];
}
b = 0;
int y;
for (y = 0; y < 3; ++y) {
memcpy(&origin[EREADER_DOTCODE_STRIDE * (4 + y) + 7], &block[b], 26);
b += 26;
}
for (y = 0; y < 26; ++y) {
memcpy(&origin[EREADER_DOTCODE_STRIDE * (7 + y) + 3], &block[b], 34);
b += 34;
}
for (y = 0; y < 3; ++y) {
memcpy(&origin[EREADER_DOTCODE_STRIDE * (33 + y) + 7], &block[b], 26);
b += 26;
}
}
}
void _eReaderReset(struct GBACartridgeHardware* hw) {
memset(hw->eReaderData, 0, sizeof(hw->eReaderData));
hw->eReaderRegisterUnk = 0;
hw->eReaderRegisterReset = 4;
hw->eReaderRegisterControl0 = 0;
hw->eReaderRegisterControl1 = 0x80;
hw->eReaderRegisterLed = 0;
hw->eReaderState = 0;
hw->eReaderActiveRegister = 0;
}
void _eReaderWriteControl0(struct GBACartridgeHardware* hw, uint8_t value) {
EReaderControl0 control = value & 0x7F;
EReaderControl0 oldControl = hw->eReaderRegisterControl0;
if (hw->eReaderState == EREADER_SERIAL_INACTIVE) {
if (EReaderControl0IsClock(oldControl) && EReaderControl0IsData(oldControl) && !EReaderControl0IsData(control)) {
hw->eReaderState = EREADER_SERIAL_STARTING;
}
} else if (EReaderControl0IsClock(oldControl) && !EReaderControl0IsData(oldControl) && EReaderControl0IsData(control)) {
hw->eReaderState = EREADER_SERIAL_INACTIVE;
} else if (hw->eReaderState == EREADER_SERIAL_STARTING) {
if (EReaderControl0IsClock(oldControl) && !EReaderControl0IsData(oldControl) && !EReaderControl0IsClock(control)) {
hw->eReaderState = EREADER_SERIAL_BIT_0;
hw->eReaderCommand = EREADER_COMMAND_IDLE;
}
} else if (EReaderControl0IsClock(oldControl) && !EReaderControl0IsClock(control)) {
mLOG(GBA_HW, DEBUG, "[e-Reader] Serial falling edge: %c %i", EReaderControl0IsDirection(control) ? '>' : '<', EReaderControl0GetData(control));
// TODO: Improve direction control
if (EReaderControl0IsDirection(control)) {
hw->eReaderByte |= EReaderControl0GetData(control) << (7 - (hw->eReaderState - EREADER_SERIAL_BIT_0));
++hw->eReaderState;
if (hw->eReaderState == EREADER_SERIAL_END_BIT) {
mLOG(GBA_HW, DEBUG, "[e-Reader] Wrote serial byte: %02x", hw->eReaderByte);
switch (hw->eReaderCommand) {
case EREADER_COMMAND_IDLE:
hw->eReaderCommand = hw->eReaderByte;
break;
case EREADER_COMMAND_SET_INDEX:
hw->eReaderActiveRegister = hw->eReaderByte;
hw->eReaderCommand = EREADER_COMMAND_WRITE_DATA;
break;
case EREADER_COMMAND_WRITE_DATA:
switch (hw->eReaderActiveRegister & 0x7F) {
case 0:
case 0x57:
case 0x58:
case 0x59:
case 0x5A:
// Read-only
mLOG(GBA_HW, GAME_ERROR, "Writing to read-only e-Reader serial register: %02X", hw->eReaderActiveRegister);
break;
default:
if ((hw->eReaderActiveRegister & 0x7F) > 0x5A) {
mLOG(GBA_HW, GAME_ERROR, "Writing to non-existent e-Reader serial register: %02X", hw->eReaderActiveRegister);
break;
}
hw->eReaderSerial[hw->eReaderActiveRegister & 0x7F] = hw->eReaderByte;
break;
}
++hw->eReaderActiveRegister;
break;
default:
mLOG(GBA_HW, ERROR, "Hit undefined state %02X in e-Reader state machine", hw->eReaderCommand);
break;
}
hw->eReaderState = EREADER_SERIAL_BIT_0;
hw->eReaderByte = 0;
}
} else if (hw->eReaderCommand == EREADER_COMMAND_READ_DATA) {
int bit = hw->eReaderSerial[hw->eReaderActiveRegister & 0x7F] >> (7 - (hw->eReaderState - EREADER_SERIAL_BIT_0));
control = EReaderControl0SetData(control, bit);
++hw->eReaderState;
if (hw->eReaderState == EREADER_SERIAL_END_BIT) {
++hw->eReaderActiveRegister;
mLOG(GBA_HW, DEBUG, "[e-Reader] Read serial byte: %02x", hw->eReaderSerial[hw->eReaderActiveRegister & 0x7F]);
}
}
} else if (!EReaderControl0IsDirection(control)) {
// Clear the error bit
control = EReaderControl0ClearData(control);
}
hw->eReaderRegisterControl0 = control;
if (!EReaderControl0IsScan(oldControl) && EReaderControl0IsScan(control)) {
if (hw->eReaderX > 1000) {
if (hw->eReaderDots) {
memset(hw->eReaderDots, 0, EREADER_DOTCODE_SIZE);
}
int i;
for (i = 0; i < EREADER_CARDS_MAX; ++i) {
if (!hw->eReaderCards[i].data) {
continue;
}
GBAHardwareEReaderScan(hw, hw->eReaderCards[i].data, hw->eReaderCards[i].size);
free(hw->eReaderCards[i].data);
hw->eReaderCards[i].data = NULL;
hw->eReaderCards[i].size = 0;
break;
}
}
hw->eReaderX = 0;
hw->eReaderY = 0;
} else if (EReaderControl0IsLedEnable(control) && EReaderControl0IsScan(control) && !EReaderControl1IsScanline(hw->eReaderRegisterControl1)) {
_eReaderReadData(hw);
}
mLOG(GBA_HW, STUB, "Unimplemented e-Reader Control0 write: %02X", value);
}
void _eReaderWriteControl1(struct GBACartridgeHardware* hw, uint8_t value) {
EReaderControl1 control = (value & 0x32) | 0x80;
hw->eReaderRegisterControl1 = control;
if (EReaderControl0IsScan(hw->eReaderRegisterControl0) && !EReaderControl1IsScanline(control)) {
++hw->eReaderY;
if (hw->eReaderY == (hw->eReaderSerial[0x15] | (hw->eReaderSerial[0x14] << 8))) {
hw->eReaderY = 0;
if (hw->eReaderX < 3400) {
hw->eReaderX += 210;
}
}
_eReaderReadData(hw);
}
mLOG(GBA_HW, STUB, "Unimplemented e-Reader Control1 write: %02X", value);
}
void _eReaderReadData(struct GBACartridgeHardware* hw) {
memset(hw->eReaderData, 0, EREADER_BLOCK_SIZE);
if (!hw->eReaderDots) {
int i;
for (i = 0; i < EREADER_CARDS_MAX; ++i) {
if (!hw->eReaderCards[i].data) {
continue;
}
GBAHardwareEReaderScan(hw, hw->eReaderCards[i].data, hw->eReaderCards[i].size);
free(hw->eReaderCards[i].data);
hw->eReaderCards[i].data = NULL;
hw->eReaderCards[i].size = 0;
break;
}
}
if (hw->eReaderDots) {
int y = hw->eReaderY - 10;
if (y < 0 || y >= 120) {
memset(hw->eReaderData, 0, EREADER_BLOCK_SIZE);
} else {
int i;
uint8_t* origin = &hw->eReaderDots[EREADER_DOTCODE_STRIDE * (y / 3) + 16];
for (i = 0; i < 20; ++i) {
uint16_t word = 0;
int x = hw->eReaderX + i * 16;
word |= origin[(x + 0) / 3] << 8;
word |= origin[(x + 1) / 3] << 9;
word |= origin[(x + 2) / 3] << 10;
word |= origin[(x + 3) / 3] << 11;
word |= origin[(x + 4) / 3] << 12;
word |= origin[(x + 5) / 3] << 13;
word |= origin[(x + 6) / 3] << 14;
word |= origin[(x + 7) / 3] << 15;
word |= origin[(x + 8) / 3];
word |= origin[(x + 9) / 3] << 1;
word |= origin[(x + 10) / 3] << 2;
word |= origin[(x + 11) / 3] << 3;
word |= origin[(x + 12) / 3] << 4;
word |= origin[(x + 13) / 3] << 5;
word |= origin[(x + 14) / 3] << 6;
word |= origin[(x + 15) / 3] << 7;
STORE_16(word, (19 - i) << 1, hw->eReaderData);
}
}
}
hw->eReaderRegisterControl1 = EReaderControl1FillScanline(hw->eReaderRegisterControl1);
if (EReaderControl0IsLedEnable(hw->eReaderRegisterControl0)) {
uint16_t led = hw->eReaderRegisterLed * 2;
if (led > 0x4000) {
led = 0x4000;
}
GBARaiseIRQ(hw->p, IRQ_GAMEPAK, -led);
}
}
void GBAEReaderQueueCard(struct GBA* gba, const void* data, size_t size) {
int i;
for (i = 0; i < EREADER_CARDS_MAX; ++i) {
if (gba->memory.hw.eReaderCards[i].data) {
continue;
}
gba->memory.hw.eReaderCards[i].data = malloc(size);
memcpy(gba->memory.hw.eReaderCards[i].data, data, size);
gba->memory.hw.eReaderCards[i].size = size;
return;
}
}