mgba/src/gb/memory.c

848 lines
28 KiB
C

/* Copyright (c) 2013-2016 Jeffrey Pfau
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <mgba/internal/gb/memory.h>
#include <mgba/core/interface.h>
#include <mgba/internal/gb/gb.h>
#include <mgba/internal/gb/io.h>
#include <mgba/internal/gb/mbc.h>
#include <mgba/internal/gb/serialize.h>
#include <mgba/internal/sm83/sm83.h>
#include <mgba-util/memory.h>
mLOG_DEFINE_CATEGORY(GB_MEM, "GB Memory", "gb.memory");
static const uint8_t _yankBuffer[] = { 0xFF };
enum GBBus {
GB_BUS_CPU,
GB_BUS_MAIN,
GB_BUS_VRAM,
GB_BUS_RAM
};
static const enum GBBus _oamBlockDMG[] = {
GB_BUS_MAIN, // 0x0000
GB_BUS_MAIN, // 0x2000
GB_BUS_MAIN, // 0x4000
GB_BUS_MAIN, // 0x6000
GB_BUS_VRAM, // 0x8000
GB_BUS_MAIN, // 0xA000
GB_BUS_MAIN, // 0xC000
GB_BUS_CPU, // 0xE000
};
static const enum GBBus _oamBlockCGB[] = {
GB_BUS_MAIN, // 0x0000
GB_BUS_MAIN, // 0x2000
GB_BUS_MAIN, // 0x4000
GB_BUS_MAIN, // 0x6000
GB_BUS_VRAM, // 0x8000
GB_BUS_MAIN, // 0xA000
GB_BUS_RAM, // 0xC000
GB_BUS_CPU // 0xE000
};
static const uint8_t _blockedRegion[1] = { 0xFF };
static void _pristineCow(struct GB* gba);
static uint8_t GBFastLoad8(struct SM83Core* cpu, uint16_t address) {
if (UNLIKELY(address >= cpu->memory.activeRegionEnd)) {
cpu->memory.setActiveRegion(cpu, address);
return cpu->memory.cpuLoad8(cpu, address);
}
return cpu->memory.activeRegion[address & cpu->memory.activeMask];
}
static void GBSetActiveRegion(struct SM83Core* cpu, uint16_t address) {
struct GB* gb = (struct GB*) cpu->master;
struct GBMemory* memory = &gb->memory;
switch (address >> 12) {
case GB_REGION_CART_BANK0:
case GB_REGION_CART_BANK0 + 1:
case GB_REGION_CART_BANK0 + 2:
case GB_REGION_CART_BANK0 + 3:
cpu->memory.cpuLoad8 = GBFastLoad8;
cpu->memory.activeRegion = memory->romBase;
cpu->memory.activeRegionEnd = GB_BASE_CART_BANK1;
cpu->memory.activeMask = GB_SIZE_CART_BANK0 - 1;
if (gb->memory.romSize < GB_SIZE_CART_BANK0) {
if (address >= gb->memory.romSize) {
cpu->memory.activeRegion = _yankBuffer;
cpu->memory.activeMask = 0;
} else {
cpu->memory.activeRegionEnd = gb->memory.romSize;
}
}
break;
case GB_REGION_CART_BANK1:
case GB_REGION_CART_BANK1 + 1:
case GB_REGION_CART_BANK1 + 2:
case GB_REGION_CART_BANK1 + 3:
if ((gb->memory.mbcType & GB_UNL_BBD) == GB_UNL_BBD) {
cpu->memory.cpuLoad8 = GBLoad8;
break;
}
cpu->memory.cpuLoad8 = GBFastLoad8;
if (gb->memory.mbcType != GB_MBC6) {
cpu->memory.activeRegion = memory->romBank;
cpu->memory.activeRegionEnd = GB_BASE_VRAM;
cpu->memory.activeMask = GB_SIZE_CART_BANK0 - 1;
} else {
cpu->memory.activeMask = GB_SIZE_CART_HALFBANK - 1;
if (address & 0x2000) {
cpu->memory.activeRegion = memory->mbcState.mbc6.romBank1;
cpu->memory.activeRegionEnd = GB_BASE_VRAM;
} else {
cpu->memory.activeRegion = memory->romBank;
cpu->memory.activeRegionEnd = GB_BASE_CART_BANK1 + 0x2000;
}
}
if (gb->memory.romSize < GB_SIZE_CART_BANK0 * 2) {
if (address >= gb->memory.romSize) {
cpu->memory.activeRegion = _yankBuffer;
cpu->memory.activeMask = 0;
} else {
cpu->memory.activeRegionEnd = gb->memory.romSize;
}
}
break;
default:
cpu->memory.cpuLoad8 = GBLoad8;
break;
}
if (gb->memory.dmaRemaining) {
const enum GBBus* block = gb->model < GB_MODEL_CGB ? _oamBlockDMG : _oamBlockCGB;
enum GBBus dmaBus = block[memory->dmaSource >> 13];
enum GBBus accessBus = block[address >> 13];
if ((dmaBus != GB_BUS_CPU && dmaBus == accessBus) || (address >= GB_BASE_OAM && address < GB_BASE_UNUSABLE)) {
cpu->memory.activeRegion = _blockedRegion;
cpu->memory.activeMask = 0;
}
}
}
static void _GBMemoryDMAService(struct mTiming* timing, void* context, uint32_t cyclesLate);
static void _GBMemoryHDMAService(struct mTiming* timing, void* context, uint32_t cyclesLate);
void GBMemoryInit(struct GB* gb) {
struct SM83Core* cpu = gb->cpu;
cpu->memory.cpuLoad8 = GBLoad8;
cpu->memory.load8 = GBLoad8;
cpu->memory.store8 = GBStore8;
cpu->memory.currentSegment = GBCurrentSegment;
cpu->memory.setActiveRegion = GBSetActiveRegion;
gb->memory.wram = 0;
gb->memory.wramBank = 0;
gb->memory.rom = 0;
gb->memory.romBank = 0;
gb->memory.romSize = 0;
gb->memory.sram = 0;
gb->memory.mbcType = GB_MBC_AUTODETECT;
gb->memory.mbcRead = NULL;
gb->memory.mbcWrite = NULL;
gb->memory.rtc = NULL;
gb->memory.rotation = NULL;
gb->memory.rumble = NULL;
gb->memory.cam = NULL;
GBIOInit(gb);
}
void GBMemoryDeinit(struct GB* gb) {
mappedMemoryFree(gb->memory.wram, GB_SIZE_WORKING_RAM);
if (gb->memory.rom) {
mappedMemoryFree(gb->memory.rom, gb->memory.romSize);
}
}
void GBMemoryReset(struct GB* gb) {
if (gb->memory.wram) {
mappedMemoryFree(gb->memory.wram, GB_SIZE_WORKING_RAM);
}
gb->memory.wram = anonymousMemoryMap(GB_SIZE_WORKING_RAM);
if (gb->model >= GB_MODEL_CGB) {
uint32_t* base = (uint32_t*) gb->memory.wram;
size_t i;
uint32_t pattern = 0;
for (i = 0; i < GB_SIZE_WORKING_RAM / 4; i += 4) {
if ((i & 0x1FF) == 0) {
pattern = ~pattern;
}
base[i + 0] = pattern;
base[i + 1] = pattern;
base[i + 2] = ~pattern;
base[i + 3] = ~pattern;
}
}
GBMemorySwitchWramBank(&gb->memory, 1);
gb->memory.ime = false;
gb->memory.ie = 0;
gb->memory.dmaRemaining = 0;
gb->memory.dmaSource = 0;
gb->memory.dmaDest = 0;
gb->memory.hdmaRemaining = 0;
gb->memory.hdmaSource = 0;
gb->memory.hdmaDest = 0;
gb->memory.isHdma = false;
gb->memory.dmaEvent.context = gb;
gb->memory.dmaEvent.name = "GB DMA";
gb->memory.dmaEvent.callback = _GBMemoryDMAService;
gb->memory.dmaEvent.priority = 0x40;
gb->memory.hdmaEvent.context = gb;
gb->memory.hdmaEvent.name = "GB HDMA";
gb->memory.hdmaEvent.callback = _GBMemoryHDMAService;
gb->memory.hdmaEvent.priority = 0x41;
memset(&gb->memory.hram, 0, sizeof(gb->memory.hram));
GBMBCReset(gb);
}
void GBMemorySwitchWramBank(struct GBMemory* memory, int bank) {
bank &= 7;
if (!bank) {
bank = 1;
}
memory->wramBank = &memory->wram[GB_SIZE_WORKING_RAM_BANK0 * bank];
memory->wramCurrentBank = bank;
}
uint8_t GBLoad8(struct SM83Core* cpu, uint16_t address) {
struct GB* gb = (struct GB*) cpu->master;
struct GBMemory* memory = &gb->memory;
if (gb->memory.dmaRemaining) {
const enum GBBus* block = gb->model < GB_MODEL_CGB ? _oamBlockDMG : _oamBlockCGB;
enum GBBus dmaBus = block[memory->dmaSource >> 13];
enum GBBus accessBus = block[address >> 13];
if (dmaBus != GB_BUS_CPU && dmaBus == accessBus) {
return 0xFF;
}
if (address >= GB_BASE_OAM && address < GB_BASE_IO) {
return 0xFF;
}
}
switch (address >> 12) {
case GB_REGION_CART_BANK0:
case GB_REGION_CART_BANK0 + 1:
case GB_REGION_CART_BANK0 + 2:
case GB_REGION_CART_BANK0 + 3:
if (address >= memory->romSize) {
return 0xFF;
}
return memory->romBase[address & (GB_SIZE_CART_BANK0 - 1)];
case GB_REGION_CART_BANK1 + 2:
case GB_REGION_CART_BANK1 + 3:
if (memory->mbcType == GB_MBC6) {
return memory->mbcState.mbc6.romBank1[address & (GB_SIZE_CART_HALFBANK - 1)];
}
// Fall through
case GB_REGION_CART_BANK1:
case GB_REGION_CART_BANK1 + 1:
if (address >= memory->romSize) {
return 0xFF;
}
if ((memory->mbcType & GB_UNL_BBD) == GB_UNL_BBD) {
return memory->mbcRead(memory, address);
}
return memory->romBank[address & (GB_SIZE_CART_BANK0 - 1)];
case GB_REGION_VRAM:
case GB_REGION_VRAM + 1:
if (gb->video.mode != 3) {
return gb->video.vramBank[address & (GB_SIZE_VRAM_BANK0 - 1)];
}
return 0xFF;
case GB_REGION_EXTERNAL_RAM:
case GB_REGION_EXTERNAL_RAM + 1:
if (memory->rtcAccess) {
return memory->rtcRegs[memory->activeRtcReg];
} else if (memory->mbcRead) {
return memory->mbcRead(memory, address);
} else if (memory->sramAccess && memory->sram) {
return memory->sramBank[address & (GB_SIZE_EXTERNAL_RAM - 1)];
} else if (memory->mbcType == GB_HuC3) {
return 0x01; // TODO: Is this supposed to be the current SRAM bank?
}
return 0xFF;
case GB_REGION_WORKING_RAM_BANK0:
case GB_REGION_WORKING_RAM_BANK0 + 2:
return memory->wram[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
case GB_REGION_WORKING_RAM_BANK1:
return memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
default:
if (address < GB_BASE_OAM) {
return memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
}
if (address < GB_BASE_UNUSABLE) {
if (gb->video.mode < 2) {
return gb->video.oam.raw[address & 0xFF];
}
return 0xFF;
}
if (address < GB_BASE_IO) {
mLOG(GB_MEM, GAME_ERROR, "Attempt to read from unusable memory: %04X", address);
return 0xFF;
}
if (address < GB_BASE_HRAM) {
return GBIORead(gb, address & (GB_SIZE_IO - 1));
}
if (address < GB_BASE_IE) {
return memory->hram[address & GB_SIZE_HRAM];
}
return GBIORead(gb, GB_REG_IE);
}
}
void GBStore8(struct SM83Core* cpu, uint16_t address, int8_t value) {
struct GB* gb = (struct GB*) cpu->master;
struct GBMemory* memory = &gb->memory;
if (gb->memory.dmaRemaining) {
const enum GBBus* block = gb->model < GB_MODEL_CGB ? _oamBlockDMG : _oamBlockCGB;
enum GBBus dmaBus = block[memory->dmaSource >> 13];
enum GBBus accessBus = block[address >> 13];
if (dmaBus != GB_BUS_CPU && dmaBus == accessBus) {
return;
}
if (address >= GB_BASE_OAM && address < GB_BASE_UNUSABLE) {
return;
}
}
switch (address >> 12) {
case GB_REGION_CART_BANK0:
case GB_REGION_CART_BANK0 + 1:
case GB_REGION_CART_BANK0 + 2:
case GB_REGION_CART_BANK0 + 3:
case GB_REGION_CART_BANK1:
case GB_REGION_CART_BANK1 + 1:
case GB_REGION_CART_BANK1 + 2:
case GB_REGION_CART_BANK1 + 3:
memory->mbcWrite(gb, address, value);
cpu->memory.setActiveRegion(cpu, cpu->pc);
return;
case GB_REGION_VRAM:
case GB_REGION_VRAM + 1:
if (gb->video.mode != 3) {
gb->video.renderer->writeVRAM(gb->video.renderer, (address & (GB_SIZE_VRAM_BANK0 - 1)) | (GB_SIZE_VRAM_BANK0 * gb->video.vramCurrentBank));
gb->video.vramBank[address & (GB_SIZE_VRAM_BANK0 - 1)] = value;
}
return;
case GB_REGION_EXTERNAL_RAM:
case GB_REGION_EXTERNAL_RAM + 1:
if (memory->rtcAccess) {
memory->rtcRegs[memory->activeRtcReg] = value;
} else if (memory->sramAccess && memory->sram && memory->directSramAccess) {
memory->sramBank[address & (GB_SIZE_EXTERNAL_RAM - 1)] = value;
} else {
memory->mbcWrite(gb, address, value);
}
gb->sramDirty |= GB_SRAM_DIRT_NEW;
return;
case GB_REGION_WORKING_RAM_BANK0:
case GB_REGION_WORKING_RAM_BANK0 + 2:
memory->wram[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)] = value;
return;
case GB_REGION_WORKING_RAM_BANK1:
memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)] = value;
return;
default:
if (address < GB_BASE_OAM) {
memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)] = value;
} else if (address < GB_BASE_UNUSABLE) {
if (gb->video.mode < 2) {
gb->video.oam.raw[address & 0xFF] = value;
gb->video.renderer->writeOAM(gb->video.renderer, address & 0xFF);
}
} else if (address < GB_BASE_IO) {
mLOG(GB_MEM, GAME_ERROR, "Attempt to write to unusable memory: %04X:%02X", address, value);
} else if (address < GB_BASE_HRAM) {
GBIOWrite(gb, address & (GB_SIZE_IO - 1), value);
} else if (address < GB_BASE_IE) {
memory->hram[address & GB_SIZE_HRAM] = value;
} else {
GBIOWrite(gb, GB_REG_IE, value);
}
}
}
int GBCurrentSegment(struct SM83Core* cpu, uint16_t address) {
struct GB* gb = (struct GB*) cpu->master;
struct GBMemory* memory = &gb->memory;
switch (address >> 12) {
case GB_REGION_CART_BANK0:
case GB_REGION_CART_BANK0 + 1:
case GB_REGION_CART_BANK0 + 2:
case GB_REGION_CART_BANK0 + 3:
return 0;
case GB_REGION_CART_BANK1:
case GB_REGION_CART_BANK1 + 1:
case GB_REGION_CART_BANK1 + 2:
case GB_REGION_CART_BANK1 + 3:
return memory->currentBank;
case GB_REGION_VRAM:
case GB_REGION_VRAM + 1:
return gb->video.vramCurrentBank;
case GB_REGION_EXTERNAL_RAM:
case GB_REGION_EXTERNAL_RAM + 1:
return memory->sramCurrentBank;
case GB_REGION_WORKING_RAM_BANK0:
case GB_REGION_WORKING_RAM_BANK0 + 2:
return 0;
case GB_REGION_WORKING_RAM_BANK1:
return memory->wramCurrentBank;
default:
return 0;
}
}
uint8_t GBView8(struct SM83Core* cpu, uint16_t address, int segment) {
struct GB* gb = (struct GB*) cpu->master;
struct GBMemory* memory = &gb->memory;
switch (address >> 12) {
case GB_REGION_CART_BANK0:
case GB_REGION_CART_BANK0 + 1:
case GB_REGION_CART_BANK0 + 2:
case GB_REGION_CART_BANK0 + 3:
return memory->romBase[address & (GB_SIZE_CART_BANK0 - 1)];
case GB_REGION_CART_BANK1:
case GB_REGION_CART_BANK1 + 1:
case GB_REGION_CART_BANK1 + 2:
case GB_REGION_CART_BANK1 + 3:
if (segment < 0) {
return memory->romBank[address & (GB_SIZE_CART_BANK0 - 1)];
} else if ((size_t) segment * GB_SIZE_CART_BANK0 < memory->romSize) {
return memory->rom[(address & (GB_SIZE_CART_BANK0 - 1)) + segment * GB_SIZE_CART_BANK0];
} else {
return 0xFF;
}
case GB_REGION_VRAM:
case GB_REGION_VRAM + 1:
if (segment < 0) {
return gb->video.vramBank[address & (GB_SIZE_VRAM_BANK0 - 1)];
} else if (segment < 2) {
return gb->video.vram[(address & (GB_SIZE_VRAM_BANK0 - 1)) + segment *GB_SIZE_VRAM_BANK0];
} else {
return 0xFF;
}
case GB_REGION_EXTERNAL_RAM:
case GB_REGION_EXTERNAL_RAM + 1:
if (memory->rtcAccess) {
return memory->rtcRegs[memory->activeRtcReg];
} else if (memory->sramAccess) {
if (segment < 0 && memory->sram) {
return memory->sramBank[address & (GB_SIZE_EXTERNAL_RAM - 1)];
} else if ((size_t) segment * GB_SIZE_EXTERNAL_RAM < gb->sramSize) {
return memory->sram[(address & (GB_SIZE_EXTERNAL_RAM - 1)) + segment *GB_SIZE_EXTERNAL_RAM];
} else {
return 0xFF;
}
} else if (memory->mbcRead) {
return memory->mbcRead(memory, address);
} else if (memory->mbcType == GB_HuC3) {
return 0x01; // TODO: Is this supposed to be the current SRAM bank?
}
return 0xFF;
case GB_REGION_WORKING_RAM_BANK0:
case GB_REGION_WORKING_RAM_BANK0 + 2:
return memory->wram[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
case GB_REGION_WORKING_RAM_BANK1:
if (segment < 0) {
return memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
} else if (segment < 8) {
return memory->wram[(address & (GB_SIZE_WORKING_RAM_BANK0 - 1)) + segment *GB_SIZE_WORKING_RAM_BANK0];
} else {
return 0xFF;
}
default:
if (address < GB_BASE_OAM) {
return memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
}
if (address < GB_BASE_UNUSABLE) {
if (gb->video.mode < 2) {
return gb->video.oam.raw[address & 0xFF];
}
return 0xFF;
}
if (address < GB_BASE_IO) {
mLOG(GB_MEM, GAME_ERROR, "Attempt to read from unusable memory: %04X", address);
if (gb->video.mode < 2) {
switch (gb->model) {
case GB_MODEL_AGB:
return (address & 0xF0) | ((address >> 4) & 0xF);
case GB_MODEL_CGB:
// TODO: R/W behavior
return 0x00;
default:
return 0x00;
}
}
return 0xFF;
}
if (address < GB_BASE_HRAM) {
return GBIORead(gb, address & (GB_SIZE_IO - 1));
}
if (address < GB_BASE_IE) {
return memory->hram[address & GB_SIZE_HRAM];
}
return GBIORead(gb, GB_REG_IE);
}
}
void GBMemoryDMA(struct GB* gb, uint16_t base) {
if (base >= 0xE000) {
base &= 0xDFFF;
}
mTimingDeschedule(&gb->timing, &gb->memory.dmaEvent);
mTimingSchedule(&gb->timing, &gb->memory.dmaEvent, 8 * (2 - gb->doubleSpeed));
gb->memory.dmaSource = base;
gb->memory.dmaDest = 0;
gb->memory.dmaRemaining = 0xA0;
}
uint8_t GBMemoryWriteHDMA5(struct GB* gb, uint8_t value) {
gb->memory.hdmaSource = gb->memory.io[GB_REG_HDMA1] << 8;
gb->memory.hdmaSource |= gb->memory.io[GB_REG_HDMA2];
gb->memory.hdmaDest = gb->memory.io[GB_REG_HDMA3] << 8;
gb->memory.hdmaDest |= gb->memory.io[GB_REG_HDMA4];
gb->memory.hdmaSource &= 0xFFF0;
if (gb->memory.hdmaSource >= 0x8000 && gb->memory.hdmaSource < 0xA000) {
mLOG(GB_MEM, GAME_ERROR, "Invalid HDMA source: %04X", gb->memory.hdmaSource);
return value | 0x80;
}
gb->memory.hdmaDest &= 0x1FF0;
gb->memory.hdmaDest |= 0x8000;
bool wasHdma = gb->memory.isHdma;
gb->memory.isHdma = value & 0x80;
if ((!wasHdma && !gb->memory.isHdma) || (GBRegisterLCDCIsEnable(gb->memory.io[GB_REG_LCDC]) && gb->video.mode == 0)) {
if (gb->memory.isHdma) {
gb->memory.hdmaRemaining = 0x10;
} else {
gb->memory.hdmaRemaining = ((value & 0x7F) + 1) * 0x10;
}
gb->cpuBlocked = true;
mTimingSchedule(&gb->timing, &gb->memory.hdmaEvent, 0);
} else if (gb->memory.isHdma && !GBRegisterLCDCIsEnable(gb->memory.io[GB_REG_LCDC])) {
return 0x80 | ((value + 1) & 0x7F);
}
return value & 0x7F;
}
void _GBMemoryDMAService(struct mTiming* timing, void* context, uint32_t cyclesLate) {
struct GB* gb = context;
int dmaRemaining = gb->memory.dmaRemaining;
gb->memory.dmaRemaining = 0;
uint8_t b = GBLoad8(gb->cpu, gb->memory.dmaSource);
// TODO: Can DMA write OAM during modes 2-3?
gb->video.oam.raw[gb->memory.dmaDest] = b;
gb->video.renderer->writeOAM(gb->video.renderer, gb->memory.dmaDest);
++gb->memory.dmaSource;
++gb->memory.dmaDest;
gb->memory.dmaRemaining = dmaRemaining - 1;
if (gb->memory.dmaRemaining) {
mTimingSchedule(timing, &gb->memory.dmaEvent, 4 * (2 - gb->doubleSpeed) - cyclesLate);
}
}
void _GBMemoryHDMAService(struct mTiming* timing, void* context, uint32_t cyclesLate) {
struct GB* gb = context;
gb->cpuBlocked = true;
uint8_t b = gb->cpu->memory.load8(gb->cpu, gb->memory.hdmaSource);
gb->cpu->memory.store8(gb->cpu, gb->memory.hdmaDest, b);
++gb->memory.hdmaSource;
++gb->memory.hdmaDest;
--gb->memory.hdmaRemaining;
if (gb->memory.hdmaRemaining) {
mTimingDeschedule(timing, &gb->memory.hdmaEvent);
mTimingSchedule(timing, &gb->memory.hdmaEvent, 4 - cyclesLate);
} else {
gb->cpuBlocked = false;
gb->memory.io[GB_REG_HDMA1] = gb->memory.hdmaSource >> 8;
gb->memory.io[GB_REG_HDMA2] = gb->memory.hdmaSource;
gb->memory.io[GB_REG_HDMA3] = gb->memory.hdmaDest >> 8;
gb->memory.io[GB_REG_HDMA4] = gb->memory.hdmaDest;
if (gb->memory.isHdma) {
--gb->memory.io[GB_REG_HDMA5];
if (gb->memory.io[GB_REG_HDMA5] == 0xFF) {
gb->memory.isHdma = false;
}
} else {
gb->memory.io[GB_REG_HDMA5] = 0xFF;
}
}
}
void GBPatch8(struct SM83Core* cpu, uint16_t address, int8_t value, int8_t* old, int segment) {
struct GB* gb = (struct GB*) cpu->master;
struct GBMemory* memory = &gb->memory;
int8_t oldValue = -1;
switch (address >> 12) {
case GB_REGION_CART_BANK0:
case GB_REGION_CART_BANK0 + 1:
case GB_REGION_CART_BANK0 + 2:
case GB_REGION_CART_BANK0 + 3:
_pristineCow(gb);
oldValue = memory->romBase[address & (GB_SIZE_CART_BANK0 - 1)];
memory->romBase[address & (GB_SIZE_CART_BANK0 - 1)] = value;
break;
case GB_REGION_CART_BANK1:
case GB_REGION_CART_BANK1 + 1:
case GB_REGION_CART_BANK1 + 2:
case GB_REGION_CART_BANK1 + 3:
_pristineCow(gb);
if (segment < 0) {
oldValue = memory->romBank[address & (GB_SIZE_CART_BANK0 - 1)];
memory->romBank[address & (GB_SIZE_CART_BANK0 - 1)] = value;
} else if ((size_t) segment * GB_SIZE_CART_BANK0 < memory->romSize) {
oldValue = memory->rom[(address & (GB_SIZE_CART_BANK0 - 1)) + segment * GB_SIZE_CART_BANK0];
memory->rom[(address & (GB_SIZE_CART_BANK0 - 1)) + segment * GB_SIZE_CART_BANK0] = value;
} else {
return;
}
break;
case GB_REGION_VRAM:
case GB_REGION_VRAM + 1:
if (segment < 0) {
oldValue = gb->video.vramBank[address & (GB_SIZE_VRAM_BANK0 - 1)];
gb->video.vramBank[address & (GB_SIZE_VRAM_BANK0 - 1)] = value;
gb->video.renderer->writeVRAM(gb->video.renderer, (address & (GB_SIZE_VRAM_BANK0 - 1)) + GB_SIZE_VRAM_BANK0 * gb->video.vramCurrentBank);
} else if (segment < 2) {
oldValue = gb->video.vram[(address & (GB_SIZE_VRAM_BANK0 - 1)) + segment * GB_SIZE_VRAM_BANK0];
gb->video.vramBank[(address & (GB_SIZE_VRAM_BANK0 - 1)) + segment * GB_SIZE_VRAM_BANK0] = value;
gb->video.renderer->writeVRAM(gb->video.renderer, (address & (GB_SIZE_VRAM_BANK0 - 1)) + segment * GB_SIZE_VRAM_BANK0);
} else {
return;
}
break;
case GB_REGION_EXTERNAL_RAM:
case GB_REGION_EXTERNAL_RAM + 1:
if (memory->rtcAccess) {
memory->rtcRegs[memory->activeRtcReg] = value;
} else if (memory->sramAccess && memory->sram && memory->mbcType != GB_MBC2) {
// TODO: Remove sramAccess check?
memory->sramBank[address & (GB_SIZE_EXTERNAL_RAM - 1)] = value;
} else {
memory->mbcWrite(gb, address, value);
}
gb->sramDirty |= GB_SRAM_DIRT_NEW;
return;
case GB_REGION_WORKING_RAM_BANK0:
case GB_REGION_WORKING_RAM_BANK0 + 2:
oldValue = memory->wram[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
memory->wram[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)] = value;
break;
case GB_REGION_WORKING_RAM_BANK1:
if (segment < 0) {
oldValue = memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)] = value;
} else if (segment < 8) {
oldValue = memory->wram[(address & (GB_SIZE_WORKING_RAM_BANK0 - 1)) + segment * GB_SIZE_WORKING_RAM_BANK0];
memory->wram[(address & (GB_SIZE_WORKING_RAM_BANK0 - 1)) + segment * GB_SIZE_WORKING_RAM_BANK0] = value;
} else {
return;
}
break;
default:
if (address < GB_BASE_OAM) {
oldValue = memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)] = value;
} else if (address < GB_BASE_UNUSABLE) {
oldValue = gb->video.oam.raw[address & 0xFF];
gb->video.oam.raw[address & 0xFF] = value;
gb->video.renderer->writeOAM(gb->video.renderer, address & 0xFF);
} else if (address < GB_BASE_HRAM) {
mLOG(GB_MEM, STUB, "Unimplemented memory Patch8: 0x%08X", address);
return;
} else if (address < GB_BASE_IE) {
oldValue = memory->hram[address & GB_SIZE_HRAM];
memory->hram[address & GB_SIZE_HRAM] = value;
} else {
mLOG(GB_MEM, STUB, "Unimplemented memory Patch8: 0x%08X", address);
return;
}
}
if (old) {
*old = oldValue;
}
}
void GBMemorySerialize(const struct GB* gb, struct GBSerializedState* state) {
const struct GBMemory* memory = &gb->memory;
memcpy(state->wram, memory->wram, GB_SIZE_WORKING_RAM);
memcpy(state->hram, memory->hram, GB_SIZE_HRAM);
STORE_16LE(memory->currentBank, 0, &state->memory.currentBank);
state->memory.wramCurrentBank = memory->wramCurrentBank;
state->memory.sramCurrentBank = memory->sramCurrentBank;
STORE_16LE(memory->dmaSource, 0, &state->memory.dmaSource);
STORE_16LE(memory->dmaDest, 0, &state->memory.dmaDest);
STORE_16LE(memory->hdmaSource, 0, &state->memory.hdmaSource);
STORE_16LE(memory->hdmaDest, 0, &state->memory.hdmaDest);
STORE_16LE(memory->hdmaRemaining, 0, &state->memory.hdmaRemaining);
state->memory.dmaRemaining = memory->dmaRemaining;
memcpy(state->memory.rtcRegs, memory->rtcRegs, sizeof(state->memory.rtcRegs));
STORE_32LE(memory->dmaEvent.when - mTimingCurrentTime(&gb->timing), 0, &state->memory.dmaNext);
STORE_32LE(memory->hdmaEvent.when - mTimingCurrentTime(&gb->timing), 0, &state->memory.hdmaNext);
GBSerializedMemoryFlags flags = 0;
flags = GBSerializedMemoryFlagsSetSramAccess(flags, memory->sramAccess);
flags = GBSerializedMemoryFlagsSetRtcAccess(flags, memory->rtcAccess);
flags = GBSerializedMemoryFlagsSetRtcLatched(flags, memory->rtcLatched);
flags = GBSerializedMemoryFlagsSetIme(flags, memory->ime);
flags = GBSerializedMemoryFlagsSetIsHdma(flags, memory->isHdma);
flags = GBSerializedMemoryFlagsSetActiveRtcReg(flags, memory->activeRtcReg);
STORE_16LE(flags, 0, &state->memory.flags);
switch (memory->mbcType) {
case GB_MBC1:
state->memory.mbc1.mode = memory->mbcState.mbc1.mode;
state->memory.mbc1.multicartStride = memory->mbcState.mbc1.multicartStride;
state->memory.mbc1.bankLo = memory->mbcState.mbc1.bankLo;
state->memory.mbc1.bankHi = memory->mbcState.mbc1.bankHi;
break;
case GB_MBC3_RTC:
STORE_64LE(gb->memory.rtcLastLatch, 0, &state->memory.rtc.lastLatch);
break;
case GB_MBC7:
state->memory.mbc7.state = memory->mbcState.mbc7.state;
state->memory.mbc7.eeprom = memory->mbcState.mbc7.eeprom;
state->memory.mbc7.address = memory->mbcState.mbc7.address;
state->memory.mbc7.access = memory->mbcState.mbc7.access;
state->memory.mbc7.latch = memory->mbcState.mbc7.latch;
state->memory.mbc7.srBits = memory->mbcState.mbc7.srBits;
STORE_16LE(memory->mbcState.mbc7.sr, 0, &state->memory.mbc7.sr);
STORE_32LE(memory->mbcState.mbc7.writable, 0, &state->memory.mbc7.writable);
break;
case GB_MMM01:
state->memory.mmm01.locked = memory->mbcState.mmm01.locked;
state->memory.mmm01.bank0 = memory->mbcState.mmm01.currentBank0;
break;
case GB_UNL_BBD:
case GB_UNL_HITEK:
state->memory.bbd.dataSwapMode = memory->mbcState.bbd.dataSwapMode;
state->memory.bbd.bankSwapMode = memory->mbcState.bbd.bankSwapMode;
break;
default:
break;
}
}
void GBMemoryDeserialize(struct GB* gb, const struct GBSerializedState* state) {
struct GBMemory* memory = &gb->memory;
memcpy(memory->wram, state->wram, GB_SIZE_WORKING_RAM);
memcpy(memory->hram, state->hram, GB_SIZE_HRAM);
LOAD_16LE(memory->currentBank, 0, &state->memory.currentBank);
memory->wramCurrentBank = state->memory.wramCurrentBank;
memory->sramCurrentBank = state->memory.sramCurrentBank;
GBMBCSwitchBank(gb, memory->currentBank);
GBMemorySwitchWramBank(memory, memory->wramCurrentBank);
GBMBCSwitchSramBank(gb, memory->sramCurrentBank);
LOAD_16LE(memory->dmaSource, 0, &state->memory.dmaSource);
LOAD_16LE(memory->dmaDest, 0, &state->memory.dmaDest);
LOAD_16LE(memory->hdmaSource, 0, &state->memory.hdmaSource);
LOAD_16LE(memory->hdmaDest, 0, &state->memory.hdmaDest);
LOAD_16LE(memory->hdmaRemaining, 0, &state->memory.hdmaRemaining);
memory->dmaRemaining = state->memory.dmaRemaining;
memcpy(memory->rtcRegs, state->memory.rtcRegs, sizeof(state->memory.rtcRegs));
uint32_t when;
LOAD_32LE(when, 0, &state->memory.dmaNext);
if (memory->dmaRemaining) {
mTimingSchedule(&gb->timing, &memory->dmaEvent, when);
} else {
memory->dmaEvent.when = when + mTimingCurrentTime(&gb->timing);
}
LOAD_32LE(when, 0, &state->memory.hdmaNext);
if (memory->hdmaRemaining) {
mTimingSchedule(&gb->timing, &memory->hdmaEvent, when);
} else {
memory->hdmaEvent.when = when + mTimingCurrentTime(&gb->timing);
}
GBSerializedMemoryFlags flags;
LOAD_16LE(flags, 0, &state->memory.flags);
memory->sramAccess = GBSerializedMemoryFlagsGetSramAccess(flags);
memory->rtcAccess = GBSerializedMemoryFlagsGetRtcAccess(flags);
memory->rtcLatched = GBSerializedMemoryFlagsGetRtcLatched(flags);
memory->ime = GBSerializedMemoryFlagsGetIme(flags);
memory->isHdma = GBSerializedMemoryFlagsGetIsHdma(flags);
memory->activeRtcReg = GBSerializedMemoryFlagsGetActiveRtcReg(flags);
switch (memory->mbcType) {
case GB_MBC1:
memory->mbcState.mbc1.mode = state->memory.mbc1.mode;
memory->mbcState.mbc1.multicartStride = state->memory.mbc1.multicartStride;
memory->mbcState.mbc1.bankLo = state->memory.mbc1.bankLo;
memory->mbcState.mbc1.bankHi = state->memory.mbc1.bankHi;
if (!(memory->mbcState.mbc1.bankLo || memory->mbcState.mbc1.bankHi)) {
// Backwards compat
memory->mbcState.mbc1.bankLo = memory->currentBank & ((1 << memory->mbcState.mbc1.multicartStride) - 1);
memory->mbcState.mbc1.bankHi = memory->currentBank >> memory->mbcState.mbc1.multicartStride;
}
if (memory->mbcState.mbc1.mode) {
GBMBCSwitchBank0(gb, memory->mbcState.mbc1.bankHi);
}
break;
case GB_MBC3_RTC:
LOAD_64LE(gb->memory.rtcLastLatch, 0, &state->memory.rtc.lastLatch);
break;
case GB_MBC7:
memory->mbcState.mbc7.state = state->memory.mbc7.state;
memory->mbcState.mbc7.eeprom = state->memory.mbc7.eeprom;
memory->mbcState.mbc7.address = state->memory.mbc7.address & 0x7F;
memory->mbcState.mbc7.access = state->memory.mbc7.access;
memory->mbcState.mbc7.latch = state->memory.mbc7.latch;
memory->mbcState.mbc7.srBits = state->memory.mbc7.srBits;
LOAD_16LE(memory->mbcState.mbc7.sr, 0, &state->memory.mbc7.sr);
LOAD_32LE(memory->mbcState.mbc7.writable, 0, &state->memory.mbc7.writable);
break;
case GB_MMM01:
memory->mbcState.mmm01.locked = state->memory.mmm01.locked;
memory->mbcState.mmm01.currentBank0 = state->memory.mmm01.bank0;
if (memory->mbcState.mmm01.locked) {
GBMBCSwitchBank0(gb, memory->mbcState.mmm01.currentBank0);
} else {
GBMBCSwitchBank0(gb, gb->memory.romSize / GB_SIZE_CART_BANK0 - 2);
}
break;
case GB_UNL_BBD:
case GB_UNL_HITEK:
memory->mbcState.bbd.dataSwapMode = state->memory.bbd.dataSwapMode & 0x7;
memory->mbcState.bbd.bankSwapMode = state->memory.bbd.bankSwapMode & 0x7;
break;
default:
break;
}
}
void _pristineCow(struct GB* gb) {
if (!gb->isPristine) {
return;
}
void* newRom = anonymousMemoryMap(GB_SIZE_CART_MAX);
memcpy(newRom, gb->memory.rom, gb->memory.romSize);
memset(((uint8_t*) newRom) + gb->memory.romSize, 0xFF, GB_SIZE_CART_MAX - gb->memory.romSize);
if (gb->memory.rom == gb->memory.romBase) {
gb->memory.romBase = newRom;
}
gb->memory.rom = newRom;
GBMBCSwitchBank(gb, gb->memory.currentBank);
gb->isPristine = false;
}