#include "gba-audio.h" #include "gba.h" #include "gba-io.h" #include "gba-serialize.h" #include "gba-thread.h" #include "gba-video.h" const unsigned GBA_AUDIO_SAMPLES = 512; const unsigned GBA_AUDIO_FIFO_SIZE = 8 * sizeof(int32_t); #define SWEEP_CYCLES (GBA_ARM7TDMI_FREQUENCY / 128) static int32_t _updateSquareChannel(struct GBAAudioSquareControl* envelope, int duty); static void _updateEnvelope(struct GBAAudioEnvelope* envelope); static bool _updateSweep(struct GBAAudioChannel1* ch); static int32_t _updateChannel1(struct GBAAudioChannel1* ch); static int32_t _updateChannel2(struct GBAAudioChannel2* ch); static int32_t _updateChannel3(struct GBAAudioChannel3* ch); static int32_t _updateChannel4(struct GBAAudioChannel4* ch); static int _applyBias(struct GBAAudio* audio, int sample); static void _sample(struct GBAAudio* audio); void GBAAudioInit(struct GBAAudio* audio, size_t samples) { CircleBufferInit(&audio->left, samples * sizeof(int32_t)); CircleBufferInit(&audio->right, samples * sizeof(int32_t)); CircleBufferInit(&audio->chA.fifo, GBA_AUDIO_FIFO_SIZE); CircleBufferInit(&audio->chB.fifo, GBA_AUDIO_FIFO_SIZE); } void GBAAudioReset(struct GBAAudio* audio) { audio->nextEvent = 0; audio->nextCh1 = 0; audio->nextCh2 = 0; audio->nextCh3 = 0; audio->nextCh4 = 0; audio->ch1.sweep.time = 0; audio->ch1.envelope.nextStep = INT_MAX; audio->ch1.control.nextStep = 0; audio->ch1.control.endTime = 0; audio->ch1.nextSweep = INT_MAX; audio->ch1.sample = 0; audio->ch2.envelope.nextStep = INT_MAX; audio->ch2.control.nextStep = 0; audio->ch2.control.endTime = 0; audio->ch2.sample = 0; audio->ch3.bank.packed = 0; audio->ch3.control.endTime = 0; audio->ch3.sample = 0; audio->ch4.sample = 0; audio->ch4.envelope.nextStep = INT_MAX; audio->eventDiff = 0; audio->nextSample = 0; audio->sampleRate = 0x8000; audio->soundbias = 0x200; audio->soundcntLo = 0; audio->soundcntHi = 0; audio->soundcntX = 0; audio->sampleInterval = GBA_ARM7TDMI_FREQUENCY / audio->sampleRate; CircleBufferClear(&audio->left); CircleBufferClear(&audio->right); CircleBufferClear(&audio->chA.fifo); CircleBufferClear(&audio->chB.fifo); } void GBAAudioDeinit(struct GBAAudio* audio) { CircleBufferDeinit(&audio->left); CircleBufferDeinit(&audio->right); CircleBufferDeinit(&audio->chA.fifo); CircleBufferDeinit(&audio->chB.fifo); } void GBAAudioResizeBuffer(struct GBAAudio* audio, size_t samples) { if (samples >= GBA_AUDIO_SAMPLES) { return; } GBASyncLockAudio(audio->p->sync); int32_t buffer[GBA_AUDIO_SAMPLES]; int32_t dummy; size_t read; size_t i; read = CircleBufferDump(&audio->left, buffer, sizeof(buffer)); CircleBufferDeinit(&audio->left); CircleBufferInit(&audio->left, samples * sizeof(int32_t)); for (i = 0; i * sizeof(int32_t) < read; ++i) { if (!CircleBufferWrite32(&audio->left, buffer[i])) { CircleBufferRead32(&audio->left, &dummy); CircleBufferWrite32(&audio->left, buffer[i]); } } read = CircleBufferDump(&audio->right, buffer, sizeof(buffer)); CircleBufferDeinit(&audio->right); CircleBufferInit(&audio->right, samples * sizeof(int32_t)); for (i = 0; i * sizeof(int32_t) < read; ++i) { if (!CircleBufferWrite32(&audio->right, buffer[i])) { CircleBufferRead32(&audio->right, &dummy); CircleBufferWrite32(&audio->right, buffer[i]); } } GBASyncUnlockAudio(audio->p->sync); } int32_t GBAAudioProcessEvents(struct GBAAudio* audio, int32_t cycles) { audio->nextEvent -= cycles; audio->eventDiff += cycles; if (audio->nextEvent <= 0) { audio->nextEvent = INT_MAX; if (audio->enable) { if (audio->playingCh1 && !audio->ch1.envelope.dead) { audio->nextCh1 -= audio->eventDiff; if (audio->ch1.envelope.nextStep != INT_MAX) { audio->ch1.envelope.nextStep -= audio->eventDiff; if (audio->ch1.envelope.nextStep <= 0) { int8_t sample = audio->ch1.control.hi * 0x10 - 0x8; _updateEnvelope(&audio->ch1.envelope); if (audio->ch1.envelope.nextStep < audio->nextEvent) { audio->nextEvent = audio->ch1.envelope.nextStep; } audio->ch1.sample = sample * audio->ch1.envelope.currentVolume; } } if (audio->ch1.nextSweep != INT_MAX) { audio->ch1.nextSweep -= audio->eventDiff; if (audio->ch1.nextSweep <= 0) { audio->playingCh1 = _updateSweep(&audio->ch1); if (audio->ch1.nextSweep < audio->nextEvent) { audio->nextEvent = audio->ch1.nextSweep; } } } if (audio->nextCh1 <= 0) { audio->nextCh1 += _updateChannel1(&audio->ch1); if (audio->nextCh1 < audio->nextEvent) { audio->nextEvent = audio->nextCh1; } } if (audio->ch1.control.stop) { audio->ch1.control.endTime -= audio->eventDiff; if (audio->ch1.control.endTime <= 0) { audio->playingCh1 = 0; } } } if (audio->playingCh2 && !audio->ch2.envelope.dead) { audio->nextCh2 -= audio->eventDiff; if (audio->ch2.envelope.nextStep != INT_MAX) { audio->ch2.envelope.nextStep -= audio->eventDiff; if (audio->ch2.envelope.nextStep <= 0) { int8_t sample = audio->ch2.control.hi * 0x10 - 0x8; _updateEnvelope(&audio->ch2.envelope); if (audio->ch2.envelope.nextStep < audio->nextEvent) { audio->nextEvent = audio->ch2.envelope.nextStep; } audio->ch2.sample = sample * audio->ch2.envelope.currentVolume; } } if (audio->nextCh2 <= 0) { audio->nextCh2 += _updateChannel2(&audio->ch2); if (audio->nextCh2 < audio->nextEvent) { audio->nextEvent = audio->nextCh2; } } if (audio->ch2.control.stop) { audio->ch2.control.endTime -= audio->eventDiff; if (audio->ch2.control.endTime <= 0) { audio->playingCh2 = 0; } } } if (audio->playingCh3) { audio->nextCh3 -= audio->eventDiff; if (audio->nextCh3 <= 0) { audio->nextCh3 += _updateChannel3(&audio->ch3); if (audio->nextCh3 < audio->nextEvent) { audio->nextEvent = audio->nextCh3; } } if (audio->ch3.control.stop) { audio->ch3.control.endTime -= audio->eventDiff; if (audio->ch3.control.endTime <= 0) { audio->playingCh3 = 0; } } } if (audio->playingCh4 && !audio->ch4.envelope.dead) { audio->nextCh4 -= audio->eventDiff; if (audio->ch4.envelope.nextStep != INT_MAX) { audio->ch4.envelope.nextStep -= audio->eventDiff; if (audio->ch4.envelope.nextStep <= 0) { int8_t sample = (audio->ch4.sample >> 31) * 0x8; _updateEnvelope(&audio->ch4.envelope); if (audio->ch4.envelope.nextStep < audio->nextEvent) { audio->nextEvent = audio->ch4.envelope.nextStep; } audio->ch4.sample = sample * audio->ch4.envelope.currentVolume; } } if (audio->nextCh4 <= 0) { audio->nextCh4 += _updateChannel4(&audio->ch4); if (audio->nextCh4 < audio->nextEvent) { audio->nextEvent = audio->nextCh4; } } if (audio->ch4.control.stop) { audio->ch4.control.endTime -= audio->eventDiff; if (audio->ch4.control.endTime <= 0) { audio->playingCh4 = 0; } } } } audio->nextSample -= audio->eventDiff; if (audio->nextSample <= 0) { _sample(audio); audio->nextSample += audio->sampleInterval; } if (audio->nextSample < audio->nextEvent) { audio->nextEvent = audio->nextSample; } audio->eventDiff = 0; } return audio->nextEvent; } void GBAAudioScheduleFifoDma(struct GBAAudio* audio, int number, struct GBADMA* info) { switch (info->dest) { case BASE_IO | REG_FIFO_A_LO: audio->chA.dmaSource = number; break; case BASE_IO | REG_FIFO_B_LO: audio->chB.dmaSource = number; break; default: GBALog(audio->p, GBA_LOG_GAME_ERROR, "Invalid FIFO destination: 0x%08X", info->dest); return; } info->dstControl = DMA_FIXED; } void GBAAudioWriteSOUND1CNT_LO(struct GBAAudio* audio, uint16_t value) { audio->ch1.sweep.packed = value; if (audio->ch1.sweep.time) { audio->ch1.nextSweep = audio->ch1.sweep.time * SWEEP_CYCLES; } else { audio->ch1.nextSweep = INT_MAX; } } void GBAAudioWriteSOUND1CNT_HI(struct GBAAudio* audio, uint16_t value) { audio->ch1.envelope.packed = value; audio->ch1.envelope.dead = 0; if (audio->ch1.envelope.stepTime) { audio->ch1.envelope.nextStep = 0; } else { audio->ch1.envelope.nextStep = INT_MAX; if (audio->ch1.envelope.initialVolume == 0) { audio->ch1.envelope.dead = 1; audio->ch1.sample = 0; } } } void GBAAudioWriteSOUND1CNT_X(struct GBAAudio* audio, uint16_t value) { audio->ch1.control.packed = value; audio->ch1.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch1.envelope.length)) >> 8; if (audio->ch1.control.restart) { if (audio->ch1.sweep.time) { audio->ch1.nextSweep = audio->ch1.sweep.time * SWEEP_CYCLES; } else { audio->ch1.nextSweep = INT_MAX; } if (!audio->playingCh1) { audio->nextCh1 = 0; } audio->playingCh1 = 1; if (audio->ch1.envelope.stepTime) { audio->ch1.envelope.nextStep = 0; } else { audio->ch1.envelope.nextStep = INT_MAX; } audio->ch1.envelope.currentVolume = audio->ch1.envelope.initialVolume; if (audio->ch1.envelope.stepTime) { audio->ch1.envelope.nextStep = 0; } else { audio->ch1.envelope.nextStep = INT_MAX; } } } void GBAAudioWriteSOUND2CNT_LO(struct GBAAudio* audio, uint16_t value) { audio->ch2.envelope.packed = value; audio->ch2.envelope.dead = 0; if (audio->ch2.envelope.stepTime) { audio->ch2.envelope.nextStep = 0; } else { audio->ch2.envelope.nextStep = INT_MAX; if (audio->ch2.envelope.initialVolume == 0) { audio->ch2.envelope.dead = 1; audio->ch2.sample = 0; } } } void GBAAudioWriteSOUND2CNT_HI(struct GBAAudio* audio, uint16_t value) { audio->ch2.control.packed = value; audio->ch1.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch2.envelope.length)) >> 8; if (audio->ch2.control.restart) { audio->playingCh2 = 1; audio->ch2.envelope.currentVolume = audio->ch2.envelope.initialVolume; if (audio->ch2.envelope.stepTime) { audio->ch2.envelope.nextStep = 0; } else { audio->ch2.envelope.nextStep = INT_MAX; } audio->nextCh2 = 0; } } void GBAAudioWriteSOUND3CNT_LO(struct GBAAudio* audio, uint16_t value) { audio->ch3.bank.packed = value; if (audio->ch3.control.endTime >= 0) { audio->playingCh3 = audio->ch3.bank.enable; } } void GBAAudioWriteSOUND3CNT_HI(struct GBAAudio* audio, uint16_t value) { audio->ch3.wave.packed = value; } void GBAAudioWriteSOUND3CNT_X(struct GBAAudio* audio, uint16_t value) { audio->ch3.control.packed = value; audio->ch3.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (256 - audio->ch3.wave.length)) >> 8; if (audio->ch3.control.restart) { audio->playingCh3 = audio->ch3.bank.enable; } } void GBAAudioWriteSOUND4CNT_LO(struct GBAAudio* audio, uint16_t value) { audio->ch4.envelope.packed = value; audio->ch4.envelope.dead = 0; if (audio->ch4.envelope.stepTime) { audio->ch4.envelope.nextStep = 0; } else { audio->ch4.envelope.nextStep = INT_MAX; if (audio->ch4.envelope.initialVolume == 0) { audio->ch4.envelope.dead = 1; audio->ch4.sample = 0; } } } void GBAAudioWriteSOUND4CNT_HI(struct GBAAudio* audio, uint16_t value) { audio->ch4.control.packed = value; audio->ch4.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch4.envelope.length)) >> 8; if (audio->ch4.control.restart) { audio->playingCh4 = 1; audio->ch4.envelope.currentVolume = audio->ch4.envelope.initialVolume; if (audio->ch4.envelope.stepTime) { audio->ch4.envelope.nextStep = 0; } else { audio->ch4.envelope.nextStep = INT_MAX; } if (audio->ch4.control.power) { audio->ch4.lfsr = 0x40; } else { audio->ch4.lfsr = 0x4000; } audio->nextCh4 = 0; } } void GBAAudioWriteSOUNDCNT_LO(struct GBAAudio* audio, uint16_t value) { audio->soundcntLo = value; } void GBAAudioWriteSOUNDCNT_HI(struct GBAAudio* audio, uint16_t value) { audio->soundcntHi = value; } void GBAAudioWriteSOUNDCNT_X(struct GBAAudio* audio, uint16_t value) { audio->soundcntX = (value & 0x80) | (audio->soundcntX & 0x0F); } void GBAAudioWriteSOUNDBIAS(struct GBAAudio* audio, uint16_t value) { audio->soundbias = value; } void GBAAudioWriteWaveRAM(struct GBAAudio* audio, int address, uint32_t value) { audio->ch3.wavedata[address | (!audio->ch3.bank.bank * 4)] = value; } void GBAAudioWriteFIFO(struct GBAAudio* audio, int address, uint32_t value) { struct CircleBuffer* fifo; switch (address) { case REG_FIFO_A_LO: fifo = &audio->chA.fifo; break; case REG_FIFO_B_LO: fifo = &audio->chB.fifo; break; default: GBALog(audio->p, GBA_LOG_ERROR, "Bad FIFO write to address 0x%03x", address); return; } while (!CircleBufferWrite32(fifo, value)) { int32_t dummy; CircleBufferRead32(fifo, &dummy); } } void GBAAudioSampleFIFO(struct GBAAudio* audio, int fifoId, int32_t cycles) { struct GBAAudioFIFO* channel; if (fifoId == 0) { channel = &audio->chA; } else if (fifoId == 1) { channel = &audio->chB; } else { GBALog(audio->p, GBA_LOG_ERROR, "Bad FIFO write to address 0x%03x", fifoId); return; } if (CircleBufferSize(&channel->fifo) <= 4 * sizeof(int32_t)) { struct GBADMA* dma = &audio->p->memory.dma[channel->dmaSource]; dma->nextCount = 4; dma->nextEvent = 0; GBAMemoryUpdateDMAs(audio->p, -cycles); } CircleBufferRead8(&channel->fifo, &channel->sample); } unsigned GBAAudioCopy(struct GBAAudio* audio, void* left, void* right, unsigned nSamples) { GBASyncLockAudio(audio->p->sync); unsigned read = 0; if (left) { unsigned readL = CircleBufferRead(&audio->left, left, nSamples * sizeof(int32_t)) >> 2; if (readL < nSamples) { memset((int32_t*) left + readL, 0, nSamples - readL); } read = readL; } if (right) { unsigned readR = CircleBufferRead(&audio->right, right, nSamples * sizeof(int32_t)) >> 2; if (readR < nSamples) { memset((int32_t*) right + readR, 0, nSamples - readR); } read = read >= readR ? read : readR; } GBASyncConsumeAudio(audio->p->sync); return read; } unsigned GBAAudioResampleNN(struct GBAAudio* audio, float ratio, float* drift, struct GBAStereoSample* output, unsigned nSamples) { int32_t left[GBA_AUDIO_SAMPLES]; int32_t right[GBA_AUDIO_SAMPLES]; // toRead is in GBA samples // TODO: Do this with fixed-point math unsigned toRead = ceilf(nSamples / ratio); unsigned totalRead = 0; while (nSamples) { unsigned currentRead = GBA_AUDIO_SAMPLES; if (currentRead > toRead) { currentRead = toRead; } unsigned read = GBAAudioCopy(audio, left, right, currentRead); toRead -= read; unsigned i; for (i = 0; i < read; ++i) { *drift += ratio; while (*drift >= 1.f) { output->left = left[i]; output->right = right[i]; ++output; ++totalRead; --nSamples; *drift -= 1.f; if (!nSamples) { return totalRead; } } } if (read < currentRead) { memset(output, 0, nSamples * sizeof(struct GBAStereoSample)); break; } } return totalRead; } static int32_t _updateSquareChannel(struct GBAAudioSquareControl* control, int duty) { control->hi = !control->hi; int period = 16 * (2048 - control->frequency); switch (duty) { case 0: return control->hi ? period : period * 7; case 1: return control->hi ? period * 2 : period * 6; case 2: return period * 4; case 3: return control->hi ? period * 6 : period * 2; default: // This should never be hit return period * 4; } } static void _updateEnvelope(struct GBAAudioEnvelope* envelope) { if (envelope->direction) { ++envelope->currentVolume; } else { --envelope->currentVolume; } if (envelope->currentVolume >= 15) { envelope->currentVolume = 15; envelope->nextStep = INT_MAX; } else if (envelope->currentVolume <= 0) { envelope->currentVolume = 0; envelope->dead = 1; envelope->nextStep = INT_MAX; } else { envelope->nextStep += envelope->stepTime * (GBA_ARM7TDMI_FREQUENCY >> 6); } } static bool _updateSweep(struct GBAAudioChannel1* ch) { if (ch->sweep.direction) { int frequency = ch->control.frequency; frequency -= frequency >> ch->sweep.shift; if (frequency >= 0) { ch->control.frequency = frequency; } } else { int frequency = ch->control.frequency; frequency += frequency >> ch->sweep.shift; if (frequency < 2048) { ch->control.frequency = frequency; } else { return false; } } ch->nextSweep += ch->sweep.time * SWEEP_CYCLES; return true; } static int32_t _updateChannel1(struct GBAAudioChannel1* ch) { int timing = _updateSquareChannel(&ch->control, ch->envelope.duty); ch->sample = ch->control.hi * 0x10 - 0x8; ch->sample *= ch->envelope.currentVolume; return timing; } static int32_t _updateChannel2(struct GBAAudioChannel2* ch) { int timing = _updateSquareChannel(&ch->control, ch->envelope.duty); ch->sample = ch->control.hi * 0x10 - 0x8; ch->sample *= ch->envelope.currentVolume; return timing; } static int32_t _updateChannel3(struct GBAAudioChannel3* ch) { int i; int start; int end; int volume; switch (ch->wave.volume) { case 0: volume = 0; break; case 1: volume = 4; break; case 2: volume = 2; break; case 3: volume = 1; break; default: volume = 3; break; } if (ch->bank.size) { start = 7; end = 0; } else if (ch->bank.bank) { start = 7; end = 4; } else { start = 3; end = 0; } uint32_t bitsCarry = ch->wavedata[end] & 0x0F000000; uint32_t bits; for (i = start; i >= end; --i) { bits = ch->wavedata[i] & 0x0F000000; ch->wavedata[i] = ((ch->wavedata[i] & 0xF0F0F0F0) >> 4) | ((ch->wavedata[i] & 0x000F0F0F) << 12); ch->wavedata[i] |= bitsCarry >> 20; bitsCarry = bits; } ch->sample = (bitsCarry >> 20); ch->sample >>= 2; ch->sample *= volume; return 8 * (2048 - ch->control.rate); } static int32_t _updateChannel4(struct GBAAudioChannel4* ch) { int lsb = ch->lfsr & 1; ch->sample = lsb * 0x10 - 0x8; ch->sample *= ch->envelope.currentVolume; ch->lfsr >>= 1; ch->lfsr ^= (lsb * 0x60) << (ch->control.power ? 0 : 8); int timing = ch->control.ratio ? 2 * ch->control.ratio : 1; timing <<= ch->control.frequency; timing *= 32; return timing; } static int _applyBias(struct GBAAudio* audio, int sample) { sample += audio->bias; if (sample >= 0x400) { sample = 0x3FF; } else if (sample < 0) { sample = 0; } return (sample - audio->bias) << 6; } static void _sample(struct GBAAudio* audio) { int32_t sampleLeft = 0; int32_t sampleRight = 0; int psgShift = 6 - audio->volume; if (audio->ch1Left) { sampleLeft += audio->ch1.sample; } if (audio->ch1Right) { sampleRight += audio->ch1.sample; } if (audio->ch2Left) { sampleLeft += audio->ch2.sample; } if (audio->ch2Right) { sampleRight += audio->ch2.sample; } if (audio->ch3Left) { sampleLeft += audio->ch3.sample; } if (audio->ch3Right) { sampleRight += audio->ch3.sample; } if (audio->ch4Left) { sampleLeft += audio->ch4.sample; } if (audio->ch4Right) { sampleRight += audio->ch4.sample; } sampleLeft = (sampleLeft * (1 + audio->volumeLeft)) >> psgShift; sampleRight = (sampleRight * (1 + audio->volumeRight)) >> psgShift; if (audio->chALeft) { sampleLeft += (audio->chA.sample << 2) >> !audio->volumeChA; } if (audio->chARight) { sampleRight += (audio->chA.sample << 2) >> !audio->volumeChA; } if (audio->chBLeft) { sampleLeft += (audio->chB.sample << 2) >> !audio->volumeChB; } if (audio->chBRight) { sampleRight += (audio->chB.sample << 2) >> !audio->volumeChB; } sampleLeft = _applyBias(audio, sampleLeft); sampleRight = _applyBias(audio, sampleRight); GBASyncLockAudio(audio->p->sync); CircleBufferWrite32(&audio->left, sampleLeft); CircleBufferWrite32(&audio->right, sampleRight); unsigned produced = CircleBufferSize(&audio->left); GBASyncProduceAudio(audio->p->sync, produced >= CircleBufferCapacity(&audio->left) / sizeof(int32_t) * 3); } void GBAAudioSerialize(const struct GBAAudio* audio, struct GBASerializedState* state) { state->audio.ch1Volume = audio->ch1.envelope.currentVolume; state->audio.ch1Dead = audio->ch1.envelope.dead; state->audio.ch1Hi = audio->ch1.control.hi; state->audio.ch1.envelopeNextStep = audio->ch1.envelope.nextStep; state->audio.ch1.waveNextStep = audio->ch1.control.nextStep; state->audio.ch1.sweepNextStep = audio->ch1.nextSweep; state->audio.ch1.endTime = audio->ch1.control.endTime; state->audio.ch1.nextEvent = audio->nextCh1; state->audio.ch2Volume = audio->ch2.envelope.currentVolume; state->audio.ch2Dead = audio->ch2.envelope.dead; state->audio.ch2Hi = audio->ch2.control.hi; state->audio.ch2.envelopeNextStep = audio->ch2.envelope.nextStep; state->audio.ch2.waveNextStep = audio->ch2.control.nextStep; state->audio.ch2.endTime = audio->ch2.control.endTime; state->audio.ch2.nextEvent = audio->nextCh2; memcpy(state->audio.ch3.wavebanks, audio->ch3.wavedata, sizeof(state->audio.ch3.wavebanks)); state->audio.ch3.endTime = audio->ch3.control.endTime; state->audio.ch3.nextEvent = audio->nextCh3; state->audio.ch4Volume = audio->ch4.envelope.currentVolume; state->audio.ch4Dead = audio->ch4.envelope.dead; state->audio.ch4.envelopeNextStep = audio->ch4.envelope.nextStep; state->audio.ch4.lfsr = audio->ch4.lfsr; state->audio.ch4.endTime = audio->ch4.control.endTime; state->audio.ch4.nextEvent = audio->nextCh4; CircleBufferDump(&audio->chA.fifo, state->audio.fifoA, sizeof(state->audio.fifoA)); CircleBufferDump(&audio->chB.fifo, state->audio.fifoB, sizeof(state->audio.fifoB)); state->audio.fifoSize = CircleBufferSize(&audio->chA.fifo); state->audio.nextEvent = audio->nextEvent; state->audio.eventDiff = audio->eventDiff; state->audio.nextSample = audio->nextSample; } void GBAAudioDeserialize(struct GBAAudio* audio, const struct GBASerializedState* state) { audio->ch1.envelope.currentVolume = state->audio.ch1Volume; audio->ch1.envelope.dead = state->audio.ch1Dead; audio->ch1.control.hi = state->audio.ch1Hi; audio->ch1.envelope.nextStep = state->audio.ch1.envelopeNextStep; audio->ch1.control.nextStep = state->audio.ch1.waveNextStep; audio->ch1.nextSweep = state->audio.ch1.sweepNextStep; audio->ch1.control.endTime = state->audio.ch1.endTime; audio->nextCh1 = state->audio.ch1.nextEvent; audio->ch2.envelope.currentVolume = state->audio.ch2Volume; audio->ch2.envelope.dead = state->audio.ch2Dead; audio->ch2.control.hi = state->audio.ch2Hi; audio->ch2.envelope.nextStep = state->audio.ch2.envelopeNextStep; audio->ch2.control.nextStep = state->audio.ch2.waveNextStep; audio->ch2.control.endTime = state->audio.ch2.endTime; audio->nextCh2 = state->audio.ch2.nextEvent; memcpy(audio->ch3.wavedata, state->audio.ch3.wavebanks, sizeof(audio->ch3.wavedata)); audio->ch3.control.endTime = state->audio.ch3.endTime; audio->nextCh3 = state->audio.ch3.nextEvent; audio->ch4.envelope.currentVolume = state->audio.ch4Volume; audio->ch4.envelope.dead = state->audio.ch4Dead; audio->ch4.envelope.nextStep = state->audio.ch4.envelopeNextStep; audio->ch4.lfsr = state->audio.ch4.lfsr; audio->ch4.control.endTime = state->audio.ch4.endTime; audio->nextCh4 = state->audio.ch4.nextEvent; CircleBufferClear(&audio->chA.fifo); CircleBufferClear(&audio->chB.fifo); int i; for (i = 0; i < state->audio.fifoSize; ++i) { CircleBufferWrite8(&audio->chA.fifo, state->audio.fifoA[i]); CircleBufferWrite8(&audio->chB.fifo, state->audio.fifoB[i]); } audio->nextEvent = state->audio.nextEvent; audio->eventDiff = state->audio.eventDiff; audio->nextSample = state->audio.nextSample; } float GBAAudioCalculateRatio(struct GBAAudio* audio, float desiredFPS, float desiredSampleRate) { return desiredSampleRate * GBA_ARM7TDMI_FREQUENCY / (VIDEO_TOTAL_LENGTH * desiredFPS * audio->sampleRate); }