/* Copyright (c) 2013-2016 Jeffrey Pfau * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "io.h" #include "gb/gb.h" mLOG_DEFINE_CATEGORY(GB_IO, "GB I/O"); static const uint8_t _registerMask[] = { [REG_SC] = 0x7E, // TODO: GBC differences [REG_IF] = 0xE0, [REG_TAC] = 0xF8, [REG_NR10] = 0x80, [REG_NR11] = 0x3F, [REG_NR12] = 0x00, [REG_NR13] = 0xFF, [REG_NR14] = 0xBF, [REG_NR21] = 0x3F, [REG_NR22] = 0x00, [REG_NR23] = 0xFF, [REG_NR24] = 0xBF, [REG_NR30] = 0x7F, [REG_NR31] = 0xFF, [REG_NR32] = 0x9F, [REG_NR33] = 0xFF, [REG_NR34] = 0xBF, [REG_NR41] = 0xFF, [REG_NR42] = 0x00, [REG_NR43] = 0x00, [REG_NR44] = 0xBF, [REG_NR50] = 0x00, [REG_NR51] = 0x00, [REG_NR52] = 0x70, [REG_STAT] = 0x80, [REG_KEY1] = 0x7E, [REG_VBK] = 0xFE, [REG_OCPS] = 0x40, [REG_BCPS] = 0x40, [REG_UNK6C] = 0xFE, [REG_SVBK] = 0xF8, [REG_UNK75] = 0x8F, [REG_IE] = 0xE0, }; void GBIOInit(struct GB* gb) { memset(gb->memory.io, 0, sizeof(gb->memory.io)); } void GBIOReset(struct GB* gb) { memset(gb->memory.io, 0, sizeof(gb->memory.io)); GBIOWrite(gb, REG_TIMA, 0); GBIOWrite(gb, REG_TMA, 0); GBIOWrite(gb, REG_TAC, 0); GBIOWrite(gb, REG_IF, 1); GBIOWrite(gb, REG_NR52, 0xF1); GBIOWrite(gb, REG_NR10, 0x80); GBIOWrite(gb, REG_NR11, 0xBF); GBIOWrite(gb, REG_NR12, 0xF3); GBIOWrite(gb, REG_NR13, 0xF3); GBIOWrite(gb, REG_NR14, 0xBF); GBIOWrite(gb, REG_NR21, 0x3F); GBIOWrite(gb, REG_NR22, 0x00); GBIOWrite(gb, REG_NR24, 0xBF); GBIOWrite(gb, REG_NR30, 0x7F); GBIOWrite(gb, REG_NR31, 0xFF); GBIOWrite(gb, REG_NR32, 0x9F); GBIOWrite(gb, REG_NR34, 0xBF); GBIOWrite(gb, REG_NR41, 0xFF); GBIOWrite(gb, REG_NR42, 0x00); GBIOWrite(gb, REG_NR43, 0x00); GBIOWrite(gb, REG_NR44, 0xBF); GBIOWrite(gb, REG_NR50, 0x77); GBIOWrite(gb, REG_NR51, 0xF3); GBIOWrite(gb, REG_LCDC, 0x91); GBIOWrite(gb, REG_SCY, 0x00); GBIOWrite(gb, REG_SCX, 0x00); GBIOWrite(gb, REG_LYC, 0x00); GBIOWrite(gb, REG_BGP, 0xFC); GBIOWrite(gb, REG_OBP0, 0xFF); GBIOWrite(gb, REG_OBP1, 0xFF); GBIOWrite(gb, REG_WY, 0x00); GBIOWrite(gb, REG_WX, 0x00); GBIOWrite(gb, REG_VBK, 0); GBIOWrite(gb, REG_BCPS, 0); GBIOWrite(gb, REG_OCPS, 0); GBIOWrite(gb, REG_SVBK, 1); GBIOWrite(gb, REG_HDMA1, 0xFF); GBIOWrite(gb, REG_HDMA2, 0xFF); GBIOWrite(gb, REG_HDMA3, 0xFF); GBIOWrite(gb, REG_HDMA4, 0xFF); gb->memory.io[REG_HDMA5] = 0xFF; GBIOWrite(gb, REG_IE, 0x00); } void GBIOWrite(struct GB* gb, unsigned address, uint8_t value) { switch (address) { case REG_DIV: GBTimerDivReset(&gb->timer); return; case REG_NR10: if (gb->audio.enable) { GBAudioWriteNR10(&gb->audio, value); } else { value = 0; } break; case REG_NR11: if (gb->audio.enable) { GBAudioWriteNR11(&gb->audio, value); } else { if (gb->audio.style == GB_AUDIO_DMG) { GBAudioWriteNR11(&gb->audio, value & _registerMask[REG_NR11]); } value = 0; } break; case REG_NR12: if (gb->audio.enable) { GBAudioWriteNR12(&gb->audio, value); } else { value = 0; } break; case REG_NR13: if (gb->audio.enable) { GBAudioWriteNR13(&gb->audio, value); } else { value = 0; } break; case REG_NR14: if (gb->audio.enable) { GBAudioWriteNR14(&gb->audio, value); } else { value = 0; } break; case REG_NR21: if (gb->audio.enable) { GBAudioWriteNR21(&gb->audio, value); } else { if (gb->audio.style == GB_AUDIO_DMG) { GBAudioWriteNR21(&gb->audio, value & _registerMask[REG_NR21]); } value = 0; } break; case REG_NR22: if (gb->audio.enable) { GBAudioWriteNR22(&gb->audio, value); } else { value = 0; } break; case REG_NR23: if (gb->audio.enable) { GBAudioWriteNR23(&gb->audio, value); } else { value = 0; } break; case REG_NR24: if (gb->audio.enable) { GBAudioWriteNR24(&gb->audio, value); } else { value = 0; } break; case REG_NR30: if (gb->audio.enable) { GBAudioWriteNR30(&gb->audio, value); } else { value = 0; } break; case REG_NR31: if (gb->audio.enable || gb->audio.style == GB_AUDIO_DMG) { GBAudioWriteNR31(&gb->audio, value); } else { value = 0; } break; case REG_NR32: if (gb->audio.enable) { GBAudioWriteNR32(&gb->audio, value); } else { value = 0; } break; case REG_NR33: if (gb->audio.enable) { GBAudioWriteNR33(&gb->audio, value); } else { value = 0; } break; case REG_NR34: if (gb->audio.enable) { GBAudioWriteNR34(&gb->audio, value); } else { value = 0; } break; case REG_NR41: if (gb->audio.enable || gb->audio.style == GB_AUDIO_DMG) { GBAudioWriteNR41(&gb->audio, value); } else { value = 0; } break; case REG_NR42: if (gb->audio.enable) { GBAudioWriteNR42(&gb->audio, value); } else { value = 0; } break; case REG_NR43: if (gb->audio.enable) { GBAudioWriteNR43(&gb->audio, value); } else { value = 0; } break; case REG_NR44: if (gb->audio.enable) { GBAudioWriteNR44(&gb->audio, value); } else { value = 0; } break; case REG_NR50: if (gb->audio.enable) { GBAudioWriteNR50(&gb->audio, value); } else { value = 0; } break; case REG_NR51: if (gb->audio.enable) { GBAudioWriteNR51(&gb->audio, value); } else { value = 0; } break; case REG_NR52: GBAudioWriteNR52(&gb->audio, value); value &= 0x80; value |= gb->memory.io[REG_NR52] & 0x0F; break; case REG_WAVE_0: case REG_WAVE_1: case REG_WAVE_2: case REG_WAVE_3: case REG_WAVE_4: case REG_WAVE_5: case REG_WAVE_6: case REG_WAVE_7: case REG_WAVE_8: case REG_WAVE_9: case REG_WAVE_A: case REG_WAVE_B: case REG_WAVE_C: case REG_WAVE_D: case REG_WAVE_E: case REG_WAVE_F: if (!gb->audio.playingCh3 || gb->audio.style != GB_AUDIO_DMG) { gb->audio.ch3.wavedata8[address - REG_WAVE_0] = value; } else if(gb->audio.ch3.readable) { gb->audio.ch3.wavedata8[gb->audio.ch3.window >> 1] = value; } break; case REG_JOYP: case REG_TIMA: case REG_TMA: case REG_LYC: // Handled transparently by the registers break; case REG_TAC: value = GBTimerUpdateTAC(&gb->timer, value); break; case REG_IF: gb->memory.io[REG_IF] = value | 0xE0; GBUpdateIRQs(gb); return; case REG_LCDC: // TODO: handle GBC differences value = gb->video.renderer->writeVideoRegister(gb->video.renderer, address, value); GBVideoWriteLCDC(&gb->video, value); break; case REG_DMA: GBMemoryDMA(gb, value << 8); break; case REG_SCY: case REG_SCX: case REG_WY: case REG_WX: GBVideoProcessDots(&gb->video); value = gb->video.renderer->writeVideoRegister(gb->video.renderer, address, value); break; case REG_BGP: case REG_OBP0: case REG_OBP1: GBVideoProcessDots(&gb->video); GBVideoWritePalette(&gb->video, address, value); break; case REG_STAT: GBVideoWriteSTAT(&gb->video, value); break; case 0x50: if (gb->memory.romBase != gb->memory.rom) { free(gb->memory.romBase); gb->memory.romBase = gb->memory.rom; } break; case REG_IE: gb->memory.ie = value; GBUpdateIRQs(gb); return; default: if (gb->model >= GB_MODEL_CGB) { switch (address) { case REG_KEY1: value &= 0x1; value |= gb->memory.io[address] & 0x80; break; case REG_VBK: GBVideoSwitchBank(&gb->video, value); break; case REG_HDMA1: case REG_HDMA2: case REG_HDMA3: case REG_HDMA4: // Handled transparently by the registers break; case REG_HDMA5: GBMemoryWriteHDMA5(gb, value); value &= 0x7F; break; case REG_BCPS: gb->video.bcpIndex = value & 0x3F; gb->video.bcpIncrement = value & 0x80; gb->memory.io[REG_BCPD] = gb->video.palette[gb->video.bcpIndex >> 1] >> (8 * (gb->video.bcpIndex & 1)); break; case REG_BCPD: GBVideoProcessDots(&gb->video); GBVideoWritePalette(&gb->video, address, value); break; case REG_OCPS: gb->video.ocpIndex = value & 0x3F; gb->video.ocpIncrement = value & 0x80; gb->memory.io[REG_OCPD] = gb->video.palette[8 * 4 + (gb->video.ocpIndex >> 1)] >> (8 * (gb->video.ocpIndex & 1)); break; case REG_OCPD: GBVideoProcessDots(&gb->video); GBVideoWritePalette(&gb->video, address, value); break; case REG_SVBK: GBMemorySwitchWramBank(&gb->memory, value); value = gb->memory.wramCurrentBank; break; default: goto failed; } goto success; } failed: mLOG(GB_IO, STUB, "Writing to unknown register FF%02X:%02X", address, value); if (address >= GB_SIZE_IO) { return; } break; } success: gb->memory.io[address] = value; } static uint8_t _readKeys(struct GB* gb) { uint8_t keys = *gb->keySource; switch (gb->memory.io[REG_JOYP] & 0x30) { case 0x30: keys = 0; break; case 0x20: keys >>= 4; break; case 0x10: break; case 0x00: keys |= keys >> 4; break; } return (0xC0 | (gb->memory.io[REG_JOYP] | 0xF)) ^ (keys & 0xF); } uint8_t GBIORead(struct GB* gb, unsigned address) { switch (address) { case REG_JOYP: return _readKeys(gb); case REG_SB: case REG_SC: // TODO break; case REG_IE: return gb->memory.ie; case REG_WAVE_0: case REG_WAVE_1: case REG_WAVE_2: case REG_WAVE_3: case REG_WAVE_4: case REG_WAVE_5: case REG_WAVE_6: case REG_WAVE_7: case REG_WAVE_8: case REG_WAVE_9: case REG_WAVE_A: case REG_WAVE_B: case REG_WAVE_C: case REG_WAVE_D: case REG_WAVE_E: case REG_WAVE_F: if (gb->audio.playingCh3) { if (gb->audio.ch3.readable || gb->audio.style != GB_AUDIO_DMG) { return gb->audio.ch3.wavedata8[gb->audio.ch3.window >> 1]; } else { return 0xFF; } } else { return gb->audio.ch3.wavedata8[address - REG_WAVE_0]; } break; case REG_IF: case REG_NR10: case REG_NR11: case REG_NR12: case REG_NR14: case REG_NR21: case REG_NR22: case REG_NR24: case REG_NR30: case REG_NR32: case REG_NR34: case REG_NR41: case REG_NR42: case REG_NR43: case REG_NR44: case REG_NR50: case REG_NR51: case REG_NR52: case REG_DIV: case REG_TIMA: case REG_TMA: case REG_TAC: case REG_STAT: case REG_LCDC: case REG_SCY: case REG_SCX: case REG_LY: case REG_LYC: case REG_BGP: case REG_OBP0: case REG_OBP1: case REG_WY: case REG_WX: // Handled transparently by the registers break; default: if (gb->model >= GB_MODEL_CGB) { switch (address) { case REG_KEY1: case REG_VBK: case REG_HDMA1: case REG_HDMA2: case REG_HDMA3: case REG_HDMA4: case REG_HDMA5: case REG_BCPD: case REG_OCPD: case REG_SVBK: // Handled transparently by the registers goto success; default: break; } } mLOG(GB_IO, STUB, "Reading from unknown register FF%02X", address); return 0xFF; } success: return gb->memory.io[address] | _registerMask[address]; }