GBA e-Reader: Split out into separate file

This commit is contained in:
Vicki Pfau 2020-02-23 13:23:33 -08:00
parent ba49e9f1ce
commit e2bc15192f
4 changed files with 456 additions and 444 deletions

View File

@ -16,6 +16,9 @@ CXX_GUARD_START
mLOG_DECLARE_CATEGORY(GBA_HW); mLOG_DECLARE_CATEGORY(GBA_HW);
#define EREADER_DOTCODE_STRIDE 1200
#define EREADER_DOTCODE_SIZE (EREADER_DOTCODE_STRIDE * 40 + 200)
#define IS_GPIO_REGISTER(reg) ((reg) == GPIO_REG_DATA || (reg) == GPIO_REG_DIRECTION || (reg) == GPIO_REG_CONTROL) #define IS_GPIO_REGISTER(reg) ((reg) == GPIO_REG_DATA || (reg) == GPIO_REG_DIRECTION || (reg) == GPIO_REG_CONTROL)
struct GBARTCGenericSource { struct GBARTCGenericSource {

View File

@ -9,6 +9,7 @@ set(SOURCE_FILES
cheats/parv3.c cheats/parv3.c
core.c core.c
dma.c dma.c
ereader.c
gba.c gba.c
hardware.c hardware.c
hle-bios.c hle-bios.c

452
src/gba/ereader.c Normal file
View File

@ -0,0 +1,452 @@
/* Copyright (c) 2013-2020 Jeffrey Pfau
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <mgba/internal/gba/hardware.h>
#include <mgba/internal/arm/macros.h>
#include <mgba/internal/gba/gba.h>
#include <mgba-util/memory.h>
#define EREADER_BLOCK_SIZE 40
static void _eReaderReset(struct GBACartridgeHardware* hw);
static void _eReaderWriteControl0(struct GBACartridgeHardware* hw, uint8_t value);
static void _eReaderWriteControl1(struct GBACartridgeHardware* hw, uint8_t value);
static void _eReaderReadData(struct GBACartridgeHardware* hw);
const int EREADER_NYBBLE_5BIT[16][5] = {
{ 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 1 },
{ 0, 0, 0, 1, 0 },
{ 1, 0, 0, 1, 0 },
{ 0, 0, 1, 0, 0 },
{ 0, 0, 1, 0, 1 },
{ 0, 0, 1, 1, 0 },
{ 1, 0, 1, 1, 0 },
{ 0, 1, 0, 0, 0 },
{ 0, 1, 0, 0, 1 },
{ 0, 1, 0, 1, 0 },
{ 1, 0, 1, 0, 0 },
{ 0, 1, 1, 0, 0 },
{ 0, 1, 1, 0, 1 },
{ 1, 0, 0, 0, 1 },
{ 1, 0, 0, 0, 0 }
};
const uint8_t EREADER_CALIBRATION_TEMPLATE[] = {
0x43, 0x61, 0x72, 0x64, 0x2d, 0x45, 0x20, 0x52, 0x65, 0x61, 0x64, 0x65, 0x72, 0x20, 0x32, 0x30,
0x30, 0x31, 0x00, 0x00, 0xcf, 0x72, 0x2f, 0x37, 0x3a, 0x3a, 0x3a, 0x38, 0x33, 0x30, 0x30, 0x37,
0x3a, 0x39, 0x37, 0x35, 0x33, 0x2f, 0x2f, 0x34, 0x36, 0x36, 0x37, 0x36, 0x34, 0x31, 0x2d, 0x30,
0x32, 0x34, 0x35, 0x35, 0x34, 0x30, 0x2a, 0x2d, 0x2d, 0x2f, 0x31, 0x32, 0x31, 0x2f, 0x29, 0x2a,
0x2c, 0x2b, 0x2c, 0x2e, 0x2e, 0x2d, 0x18, 0x2d, 0x8f, 0x03, 0x00, 0x00, 0xc0, 0xfd, 0x77, 0x00,
0x00, 0x00, 0x01
};
const uint16_t EREADER_ADDRESS_CODES[] = {
1023,
1174,
2628,
3373,
4233,
6112,
6450,
7771,
8826,
9491,
11201,
11432,
12556,
13925,
14519,
16350,
16629,
18332,
18766,
20007,
21379,
21738,
23096,
23889,
24944,
26137,
26827,
28578,
29190,
30063,
31677,
31956,
33410,
34283,
35641,
35920,
37364,
38557,
38991,
40742,
41735,
42094,
43708,
44501,
45169,
46872,
47562,
48803,
49544,
50913,
51251,
53082,
54014,
54679
};
void GBAHardwareInitEReader(struct GBACartridgeHardware* hw) {
hw->devices |= HW_EREADER;
_eReaderReset(hw);
if (hw->p->memory.savedata.data[0xD000] == 0xFF) {
memset(&hw->p->memory.savedata.data[0xD000], 0, 0x1000);
memcpy(&hw->p->memory.savedata.data[0xD000], EREADER_CALIBRATION_TEMPLATE, sizeof(EREADER_CALIBRATION_TEMPLATE));
}
if (hw->p->memory.savedata.data[0xE000] == 0xFF) {
memset(&hw->p->memory.savedata.data[0xE000], 0, 0x1000);
memcpy(&hw->p->memory.savedata.data[0xE000], EREADER_CALIBRATION_TEMPLATE, sizeof(EREADER_CALIBRATION_TEMPLATE));
}
}
void GBAHardwareEReaderWrite(struct GBACartridgeHardware* hw, uint32_t address, uint16_t value) {
address &= 0x700FF;
switch (address >> 17) {
case 0:
hw->eReaderRegisterUnk = value & 0xF;
break;
case 1:
hw->eReaderRegisterReset = (value & 0x8A) | 4;
if (value & 2) {
_eReaderReset(hw);
}
break;
case 2:
mLOG(GBA_HW, GAME_ERROR, "e-Reader write to read-only registers: %05X:%04X", address, value);
break;
default:
mLOG(GBA_HW, STUB, "Unimplemented e-Reader write: %05X:%04X", address, value);
}
}
void GBAHardwareEReaderWriteFlash(struct GBACartridgeHardware* hw, uint32_t address, uint8_t value) {
address &= 0xFFFF;
switch (address) {
case 0xFFB0:
_eReaderWriteControl0(hw, value);
break;
case 0xFFB1:
_eReaderWriteControl1(hw, value);
break;
case 0xFFB2:
hw->eReaderRegisterLed &= 0xFF00;
hw->eReaderRegisterLed |= value;
break;
case 0xFFB3:
hw->eReaderRegisterLed &= 0x00FF;
hw->eReaderRegisterLed |= value << 8;
break;
default:
mLOG(GBA_HW, STUB, "Unimplemented e-Reader write to flash: %04X:%02X", address, value);
}
}
uint16_t GBAHardwareEReaderRead(struct GBACartridgeHardware* hw, uint32_t address) {
address &= 0x700FF;
uint16_t value;
switch (address >> 17) {
case 0:
return hw->eReaderRegisterUnk;
case 1:
return hw->eReaderRegisterReset;
case 2:
if (address > 0x40088) {
return 0;
}
LOAD_16(value, address & 0xFE, hw->eReaderData);
return value;
}
mLOG(GBA_HW, STUB, "Unimplemented e-Reader read: %05X", address);
return 0;
}
uint8_t GBAHardwareEReaderReadFlash(struct GBACartridgeHardware* hw, uint32_t address) {
address &= 0xFFFF;
switch (address) {
case 0xFFB0:
return hw->eReaderRegisterControl0;
case 0xFFB1:
return hw->eReaderRegisterControl1;
default:
mLOG(GBA_HW, STUB, "Unimplemented e-Reader read from flash: %04X", address);
return 0;
}
}
static void _eReaderAnchor(uint8_t* origin) {
origin[EREADER_DOTCODE_STRIDE * 0 + 1] = 1;
origin[EREADER_DOTCODE_STRIDE * 0 + 2] = 1;
origin[EREADER_DOTCODE_STRIDE * 0 + 3] = 1;
origin[EREADER_DOTCODE_STRIDE * 1 + 0] = 1;
origin[EREADER_DOTCODE_STRIDE * 1 + 1] = 1;
origin[EREADER_DOTCODE_STRIDE * 1 + 2] = 1;
origin[EREADER_DOTCODE_STRIDE * 1 + 3] = 1;
origin[EREADER_DOTCODE_STRIDE * 1 + 4] = 1;
origin[EREADER_DOTCODE_STRIDE * 2 + 0] = 1;
origin[EREADER_DOTCODE_STRIDE * 2 + 1] = 1;
origin[EREADER_DOTCODE_STRIDE * 2 + 2] = 1;
origin[EREADER_DOTCODE_STRIDE * 2 + 3] = 1;
origin[EREADER_DOTCODE_STRIDE * 2 + 4] = 1;
origin[EREADER_DOTCODE_STRIDE * 3 + 0] = 1;
origin[EREADER_DOTCODE_STRIDE * 3 + 1] = 1;
origin[EREADER_DOTCODE_STRIDE * 3 + 2] = 1;
origin[EREADER_DOTCODE_STRIDE * 3 + 3] = 1;
origin[EREADER_DOTCODE_STRIDE * 3 + 4] = 1;
origin[EREADER_DOTCODE_STRIDE * 4 + 1] = 1;
origin[EREADER_DOTCODE_STRIDE * 4 + 2] = 1;
origin[EREADER_DOTCODE_STRIDE * 4 + 3] = 1;
}
static void _eReaderAlignment(uint8_t* origin) {
origin[8] = 1;
origin[10] = 1;
origin[12] = 1;
origin[14] = 1;
origin[16] = 1;
origin[18] = 1;
origin[21] = 1;
origin[23] = 1;
origin[25] = 1;
origin[27] = 1;
origin[29] = 1;
origin[31] = 1;
}
static void _eReaderAddress(uint8_t* origin, int a) {
origin[EREADER_DOTCODE_STRIDE * 7 + 2] = 1;
uint16_t addr = EREADER_ADDRESS_CODES[a];
int i;
for (i = 0; i < 16; ++i) {
origin[EREADER_DOTCODE_STRIDE * (16 + i) + 2] = (addr >> (15 - i)) & 1;
}
}
void GBAHardwareEReaderScan(struct GBACartridgeHardware* hw, const void* data, size_t size) {
if (!hw->eReaderDots) {
hw->eReaderDots = anonymousMemoryMap(EREADER_DOTCODE_SIZE);
}
memset(hw->eReaderDots, 0, EREADER_DOTCODE_SIZE);
int base;
switch (size) {
case 2912:
base = 25;
break;
case 1872:
base = 1;
break;
default:
return;
}
size_t i;
for (i = 0; i < (size / 104) + 1; ++i) {
uint8_t* origin = &hw->eReaderDots[35 * i + 200];
_eReaderAnchor(&origin[EREADER_DOTCODE_STRIDE * 0]);
_eReaderAnchor(&origin[EREADER_DOTCODE_STRIDE * 35]);
_eReaderAddress(origin, base + i);
}
for (i = 0; i < size / 104; ++i) {
uint8_t block[1040];
uint8_t* origin = &hw->eReaderDots[35 * i + 200];
_eReaderAlignment(&origin[EREADER_DOTCODE_STRIDE * 2]);
_eReaderAlignment(&origin[EREADER_DOTCODE_STRIDE * 37]);
int b;
for (b = 0; b < 104; ++b) {
const int* nybble5;
nybble5 = EREADER_NYBBLE_5BIT[((const uint8_t*) data)[i * 104 + b] >> 4];
block[b * 10 + 0] = nybble5[0];
block[b * 10 + 1] = nybble5[1];
block[b * 10 + 2] = nybble5[2];
block[b * 10 + 3] = nybble5[3];
block[b * 10 + 4] = nybble5[4];
nybble5 = EREADER_NYBBLE_5BIT[((const uint8_t*) data)[i * 104 + b] & 0xF];
block[b * 10 + 5] = nybble5[0];
block[b * 10 + 6] = nybble5[1];
block[b * 10 + 7] = nybble5[2];
block[b * 10 + 8] = nybble5[3];
block[b * 10 + 9] = nybble5[4];
}
b = 0;
int y;
for (y = 0; y < 3; ++y) {
memcpy(&origin[EREADER_DOTCODE_STRIDE * (4 + y) + 7], &block[b], 26);
b += 26;
}
for (y = 0; y < 26; ++y) {
memcpy(&origin[EREADER_DOTCODE_STRIDE * (7 + y) + 3], &block[b], 34);
b += 34;
}
for (y = 0; y < 3; ++y) {
memcpy(&origin[EREADER_DOTCODE_STRIDE * (33 + y) + 7], &block[b], 26);
b += 26;
}
}
hw->eReaderX = -24;
}
void _eReaderReset(struct GBACartridgeHardware* hw) {
memset(hw->eReaderData, 0, sizeof(hw->eReaderData));
hw->eReaderRegisterUnk = 0;
hw->eReaderRegisterReset = 4;
hw->eReaderRegisterControl0 = 0;
hw->eReaderRegisterControl1 = 0x80;
hw->eReaderRegisterLed = 0;
hw->eReaderState = 0;
hw->eReaderActiveRegister = 0;
}
void _eReaderWriteControl0(struct GBACartridgeHardware* hw, uint8_t value) {
EReaderControl0 control = value & 0x7F;
EReaderControl0 oldControl = hw->eReaderRegisterControl0;
if (hw->eReaderState == EREADER_SERIAL_INACTIVE) {
if (EReaderControl0IsClock(oldControl) && EReaderControl0IsData(oldControl) && !EReaderControl0IsData(control)) {
hw->eReaderState = EREADER_SERIAL_STARTING;
}
} else if (EReaderControl0IsClock(oldControl) && !EReaderControl0IsData(oldControl) && EReaderControl0IsData(control)) {
hw->eReaderState = EREADER_SERIAL_INACTIVE;
} else if (hw->eReaderState == EREADER_SERIAL_STARTING) {
if (EReaderControl0IsClock(oldControl) && !EReaderControl0IsData(oldControl) && !EReaderControl0IsClock(control)) {
hw->eReaderState = EREADER_SERIAL_BIT_0;
hw->eReaderCommand = EREADER_COMMAND_IDLE;
}
} else if (EReaderControl0IsClock(oldControl) && !EReaderControl0IsClock(control)) {
mLOG(GBA_HW, DEBUG, "[e-Reader] Serial falling edge: %c %i", EReaderControl0IsDirection(control) ? '>' : '<', EReaderControl0GetData(control));
// TODO: Improve direction control
if (EReaderControl0IsDirection(control)) {
hw->eReaderByte |= EReaderControl0GetData(control) << (7 - (hw->eReaderState - EREADER_SERIAL_BIT_0));
++hw->eReaderState;
if (hw->eReaderState == EREADER_SERIAL_END_BIT) {
mLOG(GBA_HW, DEBUG, "[e-Reader] Wrote serial byte: %02x", hw->eReaderByte);
switch (hw->eReaderCommand) {
case EREADER_COMMAND_IDLE:
hw->eReaderCommand = hw->eReaderByte;
break;
case EREADER_COMMAND_SET_INDEX:
hw->eReaderActiveRegister = hw->eReaderByte;
hw->eReaderCommand = EREADER_COMMAND_WRITE_DATA;
break;
case EREADER_COMMAND_WRITE_DATA:
switch (hw->eReaderActiveRegister & 0x7F) {
case 0:
case 0x57:
case 0x58:
case 0x59:
case 0x5A:
// Read-only
mLOG(GBA_HW, GAME_ERROR, "Writing to read-only e-Reader serial register: %02X", hw->eReaderActiveRegister);
break;
default:
if ((hw->eReaderActiveRegister & 0x7F) > 0x5A) {
mLOG(GBA_HW, GAME_ERROR, "Writing to non-existent e-Reader serial register: %02X", hw->eReaderActiveRegister);
break;
}
hw->eReaderSerial[hw->eReaderActiveRegister & 0x7F] = hw->eReaderByte;
break;
}
++hw->eReaderActiveRegister;
break;
default:
mLOG(GBA_HW, ERROR, "Hit undefined state %02X in e-Reader state machine", hw->eReaderCommand);
break;
}
hw->eReaderState = EREADER_SERIAL_BIT_0;
hw->eReaderByte = 0;
}
} else if (hw->eReaderCommand == EREADER_COMMAND_READ_DATA) {
int bit = hw->eReaderSerial[hw->eReaderActiveRegister & 0x7F] >> (7 - (hw->eReaderState - EREADER_SERIAL_BIT_0));
control = EReaderControl0SetData(control, bit);
++hw->eReaderState;
if (hw->eReaderState == EREADER_SERIAL_END_BIT) {
++hw->eReaderActiveRegister;
mLOG(GBA_HW, DEBUG, "[e-Reader] Read serial byte: %02x", hw->eReaderSerial[hw->eReaderActiveRegister & 0x7F]);
}
}
} else if (!EReaderControl0IsDirection(control)) {
// Clear the error bit
control = EReaderControl0ClearData(control);
}
hw->eReaderRegisterControl0 = control;
if (!EReaderControl0IsScan(oldControl) && EReaderControl0IsScan(control)) {
hw->eReaderX = 0;
hw->eReaderY = 0;
} else if (EReaderControl0IsLedEnable(control) && EReaderControl0IsScan(control) && !EReaderControl1IsScanline(hw->eReaderRegisterControl1)) {
_eReaderReadData(hw);
}
mLOG(GBA_HW, STUB, "Unimplemented e-Reader Control0 write: %02X", value);
}
void _eReaderWriteControl1(struct GBACartridgeHardware* hw, uint8_t value) {
EReaderControl1 control = (value & 0x32) | 0x80;
hw->eReaderRegisterControl1 = control;
if (EReaderControl0IsScan(hw->eReaderRegisterControl0) && !EReaderControl1IsScanline(control)) {
++hw->eReaderY;
if (hw->eReaderY == (hw->eReaderSerial[0x15] | (hw->eReaderSerial[0x14] << 8))) {
hw->eReaderY = 0;
if (hw->eReaderX < 3400) {
hw->eReaderX += 220;
}
}
_eReaderReadData(hw);
}
mLOG(GBA_HW, STUB, "Unimplemented e-Reader Control1 write: %02X", value);
}
void _eReaderReadData(struct GBACartridgeHardware* hw) {
memset(hw->eReaderData, 0, EREADER_BLOCK_SIZE);
if (hw->eReaderDots) {
int y = hw->eReaderY - 10;
if (y < 0 || y >= 120) {
memset(hw->eReaderData, 0, EREADER_BLOCK_SIZE);
} else {
int i;
uint8_t* origin = &hw->eReaderDots[EREADER_DOTCODE_STRIDE * (y / 3) + 16];
for (i = 0; i < 20; ++i) {
uint16_t word = 0;
int x = hw->eReaderX + i * 16;
word |= origin[(x + 0) / 3] << 8;
word |= origin[(x + 1) / 3] << 9;
word |= origin[(x + 2) / 3] << 10;
word |= origin[(x + 3) / 3] << 11;
word |= origin[(x + 4) / 3] << 12;
word |= origin[(x + 5) / 3] << 13;
word |= origin[(x + 6) / 3] << 14;
word |= origin[(x + 7) / 3] << 15;
word |= origin[(x + 8) / 3];
word |= origin[(x + 9) / 3] << 1;
word |= origin[(x + 10) / 3] << 2;
word |= origin[(x + 11) / 3] << 3;
word |= origin[(x + 12) / 3] << 4;
word |= origin[(x + 13) / 3] << 5;
word |= origin[(x + 14) / 3] << 6;
word |= origin[(x + 15) / 3] << 7;
STORE_16(word, (19 - i) << 1, hw->eReaderData);
}
}
}
hw->eReaderRegisterControl1 = EReaderControl1FillScanline(hw->eReaderRegisterControl1);
if (EReaderControl0IsLedEnable(hw->eReaderRegisterControl0)) {
uint16_t led = 2754; // TODO: Figure out why this breaks if using the LED register
GBARaiseIRQ(hw->p, IRQ_GAMEPAK, -led);
}
}

View File

@ -12,97 +12,9 @@
#include <mgba-util/hash.h> #include <mgba-util/hash.h>
#include <mgba-util/memory.h> #include <mgba-util/memory.h>
#define EREADER_BLOCK_SIZE 40
#define EREADER_DOTCODE_STRIDE 1200
#define EREADER_DOTCODE_SIZE (EREADER_DOTCODE_STRIDE * 40 + 200)
mLOG_DEFINE_CATEGORY(GBA_HW, "GBA Pak Hardware", "gba.hardware"); mLOG_DEFINE_CATEGORY(GBA_HW, "GBA Pak Hardware", "gba.hardware");
MGBA_EXPORT const int GBA_LUX_LEVELS[10] = { 5, 11, 18, 27, 42, 62, 84, 109, 139, 183 }; MGBA_EXPORT const int GBA_LUX_LEVELS[10] = { 5, 11, 18, 27, 42, 62, 84, 109, 139, 183 };
const uint16_t EREADER_ADDRESS_CODES[] = {
1023,
1174,
2628,
3373,
4233,
6112,
6450,
7771,
8826,
9491,
11201,
11432,
12556,
13925,
14519,
16350,
16629,
18332,
18766,
20007,
21379,
21738,
23096,
23889,
24944,
26137,
26827,
28578,
29190,
30063,
31677,
31956,
33410,
34283,
35641,
35920,
37364,
38557,
38991,
40742,
41735,
42094,
43708,
44501,
45169,
46872,
47562,
48803,
49544,
50913,
51251,
53082,
54014,
54679
};
const int EREADER_NYBBLE_5BIT[16][5] = {
{ 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 1 },
{ 0, 0, 0, 1, 0 },
{ 1, 0, 0, 1, 0 },
{ 0, 0, 1, 0, 0 },
{ 0, 0, 1, 0, 1 },
{ 0, 0, 1, 1, 0 },
{ 1, 0, 1, 1, 0 },
{ 0, 1, 0, 0, 0 },
{ 0, 1, 0, 0, 1 },
{ 0, 1, 0, 1, 0 },
{ 1, 0, 1, 0, 0 },
{ 0, 1, 1, 0, 0 },
{ 0, 1, 1, 0, 1 },
{ 1, 0, 0, 0, 1 },
{ 1, 0, 0, 0, 0 }
};
const uint8_t EREADER_CALIBRATION_TEMPLATE[] = {
0x43, 0x61, 0x72, 0x64, 0x2d, 0x45, 0x20, 0x52, 0x65, 0x61, 0x64, 0x65, 0x72, 0x20, 0x32, 0x30,
0x30, 0x31, 0x00, 0x00, 0xcf, 0x72, 0x2f, 0x37, 0x3a, 0x3a, 0x3a, 0x38, 0x33, 0x30, 0x30, 0x37,
0x3a, 0x39, 0x37, 0x35, 0x33, 0x2f, 0x2f, 0x34, 0x36, 0x36, 0x37, 0x36, 0x34, 0x31, 0x2d, 0x30,
0x32, 0x34, 0x35, 0x35, 0x34, 0x30, 0x2a, 0x2d, 0x2d, 0x2f, 0x31, 0x32, 0x31, 0x2f, 0x29, 0x2a,
0x2c, 0x2b, 0x2c, 0x2e, 0x2e, 0x2d, 0x18, 0x2d, 0x8f, 0x03, 0x00, 0x00, 0xc0, 0xfd, 0x77, 0x00,
0x00, 0x00, 0x01
};
static void _readPins(struct GBACartridgeHardware* hw); static void _readPins(struct GBACartridgeHardware* hw);
static void _outputPins(struct GBACartridgeHardware* hw, unsigned pins); static void _outputPins(struct GBACartridgeHardware* hw, unsigned pins);
@ -125,11 +37,6 @@ static uint16_t _gbpRead(struct mKeyCallback*);
static uint16_t _gbpSioWriteRegister(struct GBASIODriver* driver, uint32_t address, uint16_t value); static uint16_t _gbpSioWriteRegister(struct GBASIODriver* driver, uint32_t address, uint16_t value);
static void _gbpSioProcessEvents(struct mTiming* timing, void* user, uint32_t cyclesLate); static void _gbpSioProcessEvents(struct mTiming* timing, void* user, uint32_t cyclesLate);
static void _eReaderReset(struct GBACartridgeHardware* hw);
static void _eReaderWriteControl0(struct GBACartridgeHardware* hw, uint8_t value);
static void _eReaderWriteControl1(struct GBACartridgeHardware* hw, uint8_t value);
static void _eReaderReadData(struct GBACartridgeHardware* hw);
static const int RTC_BYTES[8] = { static const int RTC_BYTES[8] = {
0, // Force reset 0, // Force reset
0, // Empty 0, // Empty
@ -691,357 +598,6 @@ void _gbpSioProcessEvents(struct mTiming* timing, void* user, uint32_t cyclesLat
gbp->p->p->memory.io[REG_SIOCNT >> 1] = gbp->d.p->siocnt & ~0x0080; gbp->p->p->memory.io[REG_SIOCNT >> 1] = gbp->d.p->siocnt & ~0x0080;
} }
// == e-Reader
void GBAHardwareInitEReader(struct GBACartridgeHardware* hw) {
hw->devices |= HW_EREADER;
_eReaderReset(hw);
if (hw->p->memory.savedata.data[0xD000] == 0xFF) {
memset(&hw->p->memory.savedata.data[0xD000], 0, 0x1000);
memcpy(&hw->p->memory.savedata.data[0xD000], EREADER_CALIBRATION_TEMPLATE, sizeof(EREADER_CALIBRATION_TEMPLATE));
}
if (hw->p->memory.savedata.data[0xE000] == 0xFF) {
memset(&hw->p->memory.savedata.data[0xE000], 0, 0x1000);
memcpy(&hw->p->memory.savedata.data[0xE000], EREADER_CALIBRATION_TEMPLATE, sizeof(EREADER_CALIBRATION_TEMPLATE));
}
}
void GBAHardwareEReaderWrite(struct GBACartridgeHardware* hw, uint32_t address, uint16_t value) {
address &= 0x700FF;
switch (address >> 17) {
case 0:
hw->eReaderRegisterUnk = value & 0xF;
break;
case 1:
hw->eReaderRegisterReset = (value & 0x8A) | 4;
if (value & 2) {
_eReaderReset(hw);
}
break;
case 2:
mLOG(GBA_HW, GAME_ERROR, "e-Reader write to read-only registers: %05X:%04X", address, value);
break;
default:
mLOG(GBA_HW, STUB, "Unimplemented e-Reader write: %05X:%04X", address, value);
}
}
void GBAHardwareEReaderWriteFlash(struct GBACartridgeHardware* hw, uint32_t address, uint8_t value) {
address &= 0xFFFF;
switch (address) {
case 0xFFB0:
_eReaderWriteControl0(hw, value);
break;
case 0xFFB1:
_eReaderWriteControl1(hw, value);
break;
case 0xFFB2:
hw->eReaderRegisterLed &= 0xFF00;
hw->eReaderRegisterLed |= value;
break;
case 0xFFB3:
hw->eReaderRegisterLed &= 0x00FF;
hw->eReaderRegisterLed |= value << 8;
break;
default:
mLOG(GBA_HW, STUB, "Unimplemented e-Reader write to flash: %04X:%02X", address, value);
}
}
uint16_t GBAHardwareEReaderRead(struct GBACartridgeHardware* hw, uint32_t address) {
address &= 0x700FF;
uint16_t value;
switch (address >> 17) {
case 0:
return hw->eReaderRegisterUnk;
case 1:
return hw->eReaderRegisterReset;
case 2:
if (address > 0x40088) {
return 0;
}
LOAD_16(value, address & 0xFE, hw->eReaderData);
return value;
}
mLOG(GBA_HW, STUB, "Unimplemented e-Reader read: %05X", address);
return 0;
}
uint8_t GBAHardwareEReaderReadFlash(struct GBACartridgeHardware* hw, uint32_t address) {
address &= 0xFFFF;
switch (address) {
case 0xFFB0:
return hw->eReaderRegisterControl0;
case 0xFFB1:
return hw->eReaderRegisterControl1;
default:
mLOG(GBA_HW, STUB, "Unimplemented e-Reader read from flash: %04X", address);
return 0;
}
}
static void _eReaderAnchor(uint8_t* origin) {
origin[EREADER_DOTCODE_STRIDE * 0 + 1] = 1;
origin[EREADER_DOTCODE_STRIDE * 0 + 2] = 1;
origin[EREADER_DOTCODE_STRIDE * 0 + 3] = 1;
origin[EREADER_DOTCODE_STRIDE * 1 + 0] = 1;
origin[EREADER_DOTCODE_STRIDE * 1 + 1] = 1;
origin[EREADER_DOTCODE_STRIDE * 1 + 2] = 1;
origin[EREADER_DOTCODE_STRIDE * 1 + 3] = 1;
origin[EREADER_DOTCODE_STRIDE * 1 + 4] = 1;
origin[EREADER_DOTCODE_STRIDE * 2 + 0] = 1;
origin[EREADER_DOTCODE_STRIDE * 2 + 1] = 1;
origin[EREADER_DOTCODE_STRIDE * 2 + 2] = 1;
origin[EREADER_DOTCODE_STRIDE * 2 + 3] = 1;
origin[EREADER_DOTCODE_STRIDE * 2 + 4] = 1;
origin[EREADER_DOTCODE_STRIDE * 3 + 0] = 1;
origin[EREADER_DOTCODE_STRIDE * 3 + 1] = 1;
origin[EREADER_DOTCODE_STRIDE * 3 + 2] = 1;
origin[EREADER_DOTCODE_STRIDE * 3 + 3] = 1;
origin[EREADER_DOTCODE_STRIDE * 3 + 4] = 1;
origin[EREADER_DOTCODE_STRIDE * 4 + 1] = 1;
origin[EREADER_DOTCODE_STRIDE * 4 + 2] = 1;
origin[EREADER_DOTCODE_STRIDE * 4 + 3] = 1;
}
static void _eReaderAlignment(uint8_t* origin) {
origin[8] = 1;
origin[10] = 1;
origin[12] = 1;
origin[14] = 1;
origin[16] = 1;
origin[18] = 1;
origin[21] = 1;
origin[23] = 1;
origin[25] = 1;
origin[27] = 1;
origin[29] = 1;
origin[31] = 1;
}
static void _eReaderAddress(uint8_t* origin, int a) {
origin[EREADER_DOTCODE_STRIDE * 7 + 2] = 1;
uint16_t addr = EREADER_ADDRESS_CODES[a];
int i;
for (i = 0; i < 16; ++i) {
origin[EREADER_DOTCODE_STRIDE * (16 + i) + 2] = (addr >> (15 - i)) & 1;
}
}
void GBAHardwareEReaderScan(struct GBACartridgeHardware* hw, const void* data, size_t size) {
if (!hw->eReaderDots) {
hw->eReaderDots = anonymousMemoryMap(EREADER_DOTCODE_SIZE);
}
memset(hw->eReaderDots, 0, EREADER_DOTCODE_SIZE);
int base;
switch (size) {
case 2912:
base = 25;
break;
case 1872:
base = 1;
break;
default:
return;
}
size_t i;
for (i = 0; i < (size / 104) + 1; ++i) {
uint8_t* origin = &hw->eReaderDots[35 * i + 200];
_eReaderAnchor(&origin[EREADER_DOTCODE_STRIDE * 0]);
_eReaderAnchor(&origin[EREADER_DOTCODE_STRIDE * 35]);
_eReaderAddress(origin, base + i);
}
for (i = 0; i < size / 104; ++i) {
uint8_t block[1040];
uint8_t* origin = &hw->eReaderDots[35 * i + 200];
_eReaderAlignment(&origin[EREADER_DOTCODE_STRIDE * 2]);
_eReaderAlignment(&origin[EREADER_DOTCODE_STRIDE * 37]);
int b;
for (b = 0; b < 104; ++b) {
const int* nybble5;
nybble5 = EREADER_NYBBLE_5BIT[((const uint8_t*) data)[i * 104 + b] >> 4];
block[b * 10 + 0] = nybble5[0];
block[b * 10 + 1] = nybble5[1];
block[b * 10 + 2] = nybble5[2];
block[b * 10 + 3] = nybble5[3];
block[b * 10 + 4] = nybble5[4];
nybble5 = EREADER_NYBBLE_5BIT[((const uint8_t*) data)[i * 104 + b] & 0xF];
block[b * 10 + 5] = nybble5[0];
block[b * 10 + 6] = nybble5[1];
block[b * 10 + 7] = nybble5[2];
block[b * 10 + 8] = nybble5[3];
block[b * 10 + 9] = nybble5[4];
}
b = 0;
int y;
for (y = 0; y < 3; ++y) {
memcpy(&origin[EREADER_DOTCODE_STRIDE * (4 + y) + 7], &block[b], 26);
b += 26;
}
for (y = 0; y < 26; ++y) {
memcpy(&origin[EREADER_DOTCODE_STRIDE * (7 + y) + 3], &block[b], 34);
b += 34;
}
for (y = 0; y < 3; ++y) {
memcpy(&origin[EREADER_DOTCODE_STRIDE * (33 + y) + 7], &block[b], 26);
b += 26;
}
}
hw->eReaderX = -24;
}
void _eReaderReset(struct GBACartridgeHardware* hw) {
memset(hw->eReaderData, 0, sizeof(hw->eReaderData));
hw->eReaderRegisterUnk = 0;
hw->eReaderRegisterReset = 4;
hw->eReaderRegisterControl0 = 0;
hw->eReaderRegisterControl1 = 0x80;
hw->eReaderRegisterLed = 0;
hw->eReaderState = 0;
hw->eReaderActiveRegister = 0;
}
void _eReaderWriteControl0(struct GBACartridgeHardware* hw, uint8_t value) {
EReaderControl0 control = value & 0x7F;
EReaderControl0 oldControl = hw->eReaderRegisterControl0;
if (hw->eReaderState == EREADER_SERIAL_INACTIVE) {
if (EReaderControl0IsClock(oldControl) && EReaderControl0IsData(oldControl) && !EReaderControl0IsData(control)) {
hw->eReaderState = EREADER_SERIAL_STARTING;
}
} else if (EReaderControl0IsClock(oldControl) && !EReaderControl0IsData(oldControl) && EReaderControl0IsData(control)) {
hw->eReaderState = EREADER_SERIAL_INACTIVE;
} else if (hw->eReaderState == EREADER_SERIAL_STARTING) {
if (EReaderControl0IsClock(oldControl) && !EReaderControl0IsData(oldControl) && !EReaderControl0IsClock(control)) {
hw->eReaderState = EREADER_SERIAL_BIT_0;
hw->eReaderCommand = EREADER_COMMAND_IDLE;
}
} else if (EReaderControl0IsClock(oldControl) && !EReaderControl0IsClock(control)) {
mLOG(GBA_HW, DEBUG, "[e-Reader] Serial falling edge: %c %i", EReaderControl0IsDirection(control) ? '>' : '<', EReaderControl0GetData(control));
// TODO: Improve direction control
if (EReaderControl0IsDirection(control)) {
hw->eReaderByte |= EReaderControl0GetData(control) << (7 - (hw->eReaderState - EREADER_SERIAL_BIT_0));
++hw->eReaderState;
if (hw->eReaderState == EREADER_SERIAL_END_BIT) {
mLOG(GBA_HW, DEBUG, "[e-Reader] Wrote serial byte: %02x", hw->eReaderByte);
switch (hw->eReaderCommand) {
case EREADER_COMMAND_IDLE:
hw->eReaderCommand = hw->eReaderByte;
break;
case EREADER_COMMAND_SET_INDEX:
hw->eReaderActiveRegister = hw->eReaderByte;
hw->eReaderCommand = EREADER_COMMAND_WRITE_DATA;
break;
case EREADER_COMMAND_WRITE_DATA:
switch (hw->eReaderActiveRegister & 0x7F) {
case 0:
case 0x57:
case 0x58:
case 0x59:
case 0x5A:
// Read-only
mLOG(GBA_HW, GAME_ERROR, "Writing to read-only e-Reader serial register: %02X", hw->eReaderActiveRegister);
break;
default:
if ((hw->eReaderActiveRegister & 0x7F) > 0x5A) {
mLOG(GBA_HW, GAME_ERROR, "Writing to non-existent e-Reader serial register: %02X", hw->eReaderActiveRegister);
break;
}
hw->eReaderSerial[hw->eReaderActiveRegister & 0x7F] = hw->eReaderByte;
break;
}
++hw->eReaderActiveRegister;
break;
default:
mLOG(GBA_HW, ERROR, "Hit undefined state %02X in e-Reader state machine", hw->eReaderCommand);
break;
}
hw->eReaderState = EREADER_SERIAL_BIT_0;
hw->eReaderByte = 0;
}
} else if (hw->eReaderCommand == EREADER_COMMAND_READ_DATA) {
int bit = hw->eReaderSerial[hw->eReaderActiveRegister & 0x7F] >> (7 - (hw->eReaderState - EREADER_SERIAL_BIT_0));
control = EReaderControl0SetData(control, bit);
++hw->eReaderState;
if (hw->eReaderState == EREADER_SERIAL_END_BIT) {
++hw->eReaderActiveRegister;
mLOG(GBA_HW, DEBUG, "[e-Reader] Read serial byte: %02x", hw->eReaderSerial[hw->eReaderActiveRegister & 0x7F]);
}
}
} else if (!EReaderControl0IsDirection(control)) {
// Clear the error bit
control = EReaderControl0ClearData(control);
}
hw->eReaderRegisterControl0 = control;
if (!EReaderControl0IsScan(oldControl) && EReaderControl0IsScan(control)) {
hw->eReaderX = 0;
hw->eReaderY = 0;
} else if (EReaderControl0IsLedEnable(control) && EReaderControl0IsScan(control) && !EReaderControl1IsScanline(hw->eReaderRegisterControl1)) {
_eReaderReadData(hw);
}
mLOG(GBA_HW, STUB, "Unimplemented e-Reader Control0 write: %02X", value);
}
void _eReaderWriteControl1(struct GBACartridgeHardware* hw, uint8_t value) {
EReaderControl1 control = (value & 0x32) | 0x80;
hw->eReaderRegisterControl1 = control;
if (EReaderControl0IsScan(hw->eReaderRegisterControl0) && !EReaderControl1IsScanline(control)) {
++hw->eReaderY;
if (hw->eReaderY == (hw->eReaderSerial[0x15] | (hw->eReaderSerial[0x14] << 8))) {
hw->eReaderY = 0;
if (hw->eReaderX < 3400) {
hw->eReaderX += 220;
}
}
_eReaderReadData(hw);
}
mLOG(GBA_HW, STUB, "Unimplemented e-Reader Control1 write: %02X", value);
}
void _eReaderReadData(struct GBACartridgeHardware* hw) {
memset(hw->eReaderData, 0, EREADER_BLOCK_SIZE);
if (hw->eReaderDots) {
int y = hw->eReaderY - 10;
if (y < 0 || y >= 120) {
memset(hw->eReaderData, 0, EREADER_BLOCK_SIZE);
} else {
int i;
uint8_t* origin = &hw->eReaderDots[EREADER_DOTCODE_STRIDE * (y / 3) + 16];
for (i = 0; i < 20; ++i) {
uint16_t word = 0;
int x = hw->eReaderX + i * 16;
word |= origin[(x + 0) / 3] << 8;
word |= origin[(x + 1) / 3] << 9;
word |= origin[(x + 2) / 3] << 10;
word |= origin[(x + 3) / 3] << 11;
word |= origin[(x + 4) / 3] << 12;
word |= origin[(x + 5) / 3] << 13;
word |= origin[(x + 6) / 3] << 14;
word |= origin[(x + 7) / 3] << 15;
word |= origin[(x + 8) / 3];
word |= origin[(x + 9) / 3] << 1;
word |= origin[(x + 10) / 3] << 2;
word |= origin[(x + 11) / 3] << 3;
word |= origin[(x + 12) / 3] << 4;
word |= origin[(x + 13) / 3] << 5;
word |= origin[(x + 14) / 3] << 6;
word |= origin[(x + 15) / 3] << 7;
STORE_16(word, (19 - i) << 1, hw->eReaderData);
}
}
}
hw->eReaderRegisterControl1 = EReaderControl1FillScanline(hw->eReaderRegisterControl1);
if (EReaderControl0IsLedEnable(hw->eReaderRegisterControl0)) {
uint16_t led = 2754; // TODO: Figure out why this breaks if using the LED register
GBARaiseIRQ(hw->p, IRQ_GAMEPAK, -led);
}
}
// == Serialization // == Serialization
void GBAHardwareSerialize(const struct GBACartridgeHardware* hw, struct GBASerializedState* state) { void GBAHardwareSerialize(const struct GBACartridgeHardware* hw, struct GBASerializedState* state) {