GB Audio: Convert audio to mTiming

This commit is contained in:
Jeffrey Pfau 2016-10-22 18:59:10 -07:00
parent 5b50c43857
commit bb1c47c7e8
5 changed files with 212 additions and 255 deletions

View File

@ -35,11 +35,14 @@ static bool _updateSweep(struct GBAudioSquareChannel* sweep, bool initial);
static void _updateSquareSample(struct GBAudioSquareChannel* ch); static void _updateSquareSample(struct GBAudioSquareChannel* ch);
static int32_t _updateSquareChannel(struct GBAudioSquareChannel* ch); static int32_t _updateSquareChannel(struct GBAudioSquareChannel* ch);
static int32_t _updateWaveChannel(struct GBAudioWaveChannel* ch, enum GBAudioStyle style);
static int32_t _updateNoiseChannel(struct GBAudioNoiseChannel* ch);
static void _sample(struct GBAudio* audio, int32_t cycles); static void _updateFrame(struct mTiming* timing, void* user, uint32_t cyclesLate);
static void _scheduleEvent(struct GBAudio* audio); static void _updateChannel1(struct mTiming* timing, void* user, uint32_t cyclesLate);
static void _updateChannel2(struct mTiming* timing, void* user, uint32_t cyclesLate);
static void _updateChannel3(struct mTiming* timing, void* user, uint32_t cyclesLate);
static void _fadeChannel3(struct mTiming* timing, void* user, uint32_t cyclesLate);
static void _updateChannel4(struct mTiming* timing, void* user, uint32_t cyclesLate);
static void _sample(struct mTiming* timing, void* user, uint32_t cyclesLate);
void GBAudioInit(struct GBAudio* audio, size_t samples, uint8_t* nr52, enum GBAudioStyle style) { void GBAudioInit(struct GBAudio* audio, size_t samples, uint8_t* nr52, enum GBAudioStyle style) {
audio->samples = samples; audio->samples = samples;
@ -56,6 +59,33 @@ void GBAudioInit(struct GBAudio* audio, size_t samples, uint8_t* nr52, enum GBAu
audio->masterVolume = GB_AUDIO_VOLUME_MAX; audio->masterVolume = GB_AUDIO_VOLUME_MAX;
audio->nr52 = nr52; audio->nr52 = nr52;
audio->style = style; audio->style = style;
if (style == GB_AUDIO_GBA) {
audio->timingFactor = 4;
} else {
audio->timingFactor = 1;
}
audio->frameEvent.context = audio;
audio->frameEvent.name = "GB Audio Frame Sequencer";
audio->frameEvent.callback = _updateFrame;
audio->ch1Event.context = audio;
audio->ch1Event.name = "GB Audio Channel 1";
audio->ch1Event.callback = _updateChannel1;
audio->ch2Event.context = audio;
audio->ch2Event.name = "GB Audio Channel 2";
audio->ch2Event.callback = _updateChannel2;
audio->ch3Event.context = audio;
audio->ch3Event.name = "GB Audio Channel 3";
audio->ch3Event.callback = _updateChannel3;
audio->ch3Fade.context = audio;
audio->ch3Fade.name = "GB Audio Channel 3 Memory";
audio->ch3Fade.callback = _fadeChannel3;
audio->ch4Event.context = audio;
audio->ch4Event.name = "GB Audio Channel 4";
audio->ch4Event.callback = _updateChannel4;
audio->sampleEvent.context = audio;
audio->sampleEvent.name = "GB Audio Sample";
audio->sampleEvent.callback = _sample;
} }
void GBAudioDeinit(struct GBAudio* audio) { void GBAudioDeinit(struct GBAudio* audio) {
@ -64,12 +94,17 @@ void GBAudioDeinit(struct GBAudio* audio) {
} }
void GBAudioReset(struct GBAudio* audio) { void GBAudioReset(struct GBAudio* audio) {
audio->nextEvent = 0; mTimingDeschedule(audio->timing, &audio->frameEvent);
audio->nextCh1 = 0; mTimingDeschedule(audio->timing, &audio->ch1Event);
audio->nextCh2 = 0; mTimingDeschedule(audio->timing, &audio->ch2Event);
audio->nextCh3 = 0; mTimingDeschedule(audio->timing, &audio->ch3Event);
audio->fadeCh3 = 0; mTimingDeschedule(audio->timing, &audio->ch3Fade);
audio->nextCh4 = 0; mTimingDeschedule(audio->timing, &audio->ch4Event);
mTimingDeschedule(audio->timing, &audio->sampleEvent);
mTimingSchedule(audio->timing, &audio->frameEvent, 0);
if (audio->style != GB_AUDIO_GBA) {
mTimingSchedule(audio->timing, &audio->sampleEvent, 0);
}
audio->ch1 = (struct GBAudioSquareChannel) { .envelope = { .dead = 2 } }; audio->ch1 = (struct GBAudioSquareChannel) { .envelope = { .dead = 2 } };
audio->ch2 = (struct GBAudioSquareChannel) { .envelope = { .dead = 2 } }; audio->ch2 = (struct GBAudioSquareChannel) { .envelope = { .dead = 2 } };
audio->ch3 = (struct GBAudioWaveChannel) { .bank = 0 }; audio->ch3 = (struct GBAudioWaveChannel) { .bank = 0 };
@ -91,10 +126,7 @@ void GBAudioReset(struct GBAudio* audio) {
audio->ch3.wavedata8[14] = 0x00; audio->ch3.wavedata8[14] = 0x00;
audio->ch3.wavedata8[15] = 0xFF; audio->ch3.wavedata8[15] = 0xFF;
audio->ch4 = (struct GBAudioNoiseChannel) { .envelope = { .dead = 2 } }; audio->ch4 = (struct GBAudioNoiseChannel) { .envelope = { .dead = 2 } };
audio->eventDiff = 0;
audio->nextFrame = 0;
audio->frame = 0; audio->frame = 0;
audio->nextSample = 0;
audio->sampleInterval = 128; audio->sampleInterval = 128;
audio->lastLeft = 0; audio->lastLeft = 0;
audio->lastRight = 0; audio->lastRight = 0;
@ -126,6 +158,7 @@ void GBAudioResizeBuffer(struct GBAudio* audio, size_t samples) {
void GBAudioWriteNR10(struct GBAudio* audio, uint8_t value) { void GBAudioWriteNR10(struct GBAudio* audio, uint8_t value) {
if (!_writeSweep(&audio->ch1.sweep, value)) { if (!_writeSweep(&audio->ch1.sweep, value)) {
mTimingDeschedule(audio->timing, &audio->ch1Event);
audio->playingCh1 = false; audio->playingCh1 = false;
*audio->nr52 &= ~0x0001; *audio->nr52 &= ~0x0001;
} }
@ -138,6 +171,7 @@ void GBAudioWriteNR11(struct GBAudio* audio, uint8_t value) {
void GBAudioWriteNR12(struct GBAudio* audio, uint8_t value) { void GBAudioWriteNR12(struct GBAudio* audio, uint8_t value) {
if (!_writeEnvelope(&audio->ch1.envelope, value)) { if (!_writeEnvelope(&audio->ch1.envelope, value)) {
mTimingDeschedule(audio->timing, &audio->ch1Event);
audio->playingCh1 = false; audio->playingCh1 = false;
*audio->nr52 &= ~0x0001; *audio->nr52 &= ~0x0001;
} }
@ -156,20 +190,17 @@ void GBAudioWriteNR14(struct GBAudio* audio, uint8_t value) {
if (!wasStop && audio->ch1.control.stop && audio->ch1.control.length && !(audio->frame & 1)) { if (!wasStop && audio->ch1.control.stop && audio->ch1.control.length && !(audio->frame & 1)) {
--audio->ch1.control.length; --audio->ch1.control.length;
if (audio->ch1.control.length == 0) { if (audio->ch1.control.length == 0) {
mTimingDeschedule(audio->timing, &audio->ch1Event);
audio->playingCh1 = false; audio->playingCh1 = false;
} }
} }
if (GBAudioRegisterControlIsRestart(value << 8)) { if (GBAudioRegisterControlIsRestart(value << 8)) {
audio->playingCh1 = _resetEnvelope(&audio->ch1.envelope); audio->playingCh1 = _resetEnvelope(&audio->ch1.envelope);
if (audio->nextEvent == INT_MAX) {
audio->eventDiff = 0;
}
if (audio->playingCh1) { if (audio->playingCh1) {
audio->ch1.control.hi = 0; audio->ch1.control.hi = 0;
_updateSquareSample(&audio->ch1); _updateSquareSample(&audio->ch1);
} }
audio->nextCh1 = audio->eventDiff;
audio->ch1.sweep.realFrequency = audio->ch1.control.frequency; audio->ch1.sweep.realFrequency = audio->ch1.control.frequency;
_resetSweep(&audio->ch1.sweep); _resetSweep(&audio->ch1.sweep);
@ -182,7 +213,10 @@ void GBAudioWriteNR14(struct GBAudio* audio, uint8_t value) {
--audio->ch1.control.length; --audio->ch1.control.length;
} }
} }
_scheduleEvent(audio); mTimingDeschedule(audio->timing, &audio->ch1Event);
if (audio->playingCh1 && audio->ch1.envelope.dead != 2) {
mTimingSchedule(audio->timing, &audio->ch1Event, 0);
}
} }
*audio->nr52 &= ~0x0001; *audio->nr52 &= ~0x0001;
*audio->nr52 |= audio->playingCh1; *audio->nr52 |= audio->playingCh1;
@ -195,6 +229,7 @@ void GBAudioWriteNR21(struct GBAudio* audio, uint8_t value) {
void GBAudioWriteNR22(struct GBAudio* audio, uint8_t value) { void GBAudioWriteNR22(struct GBAudio* audio, uint8_t value) {
if (!_writeEnvelope(&audio->ch2.envelope, value)) { if (!_writeEnvelope(&audio->ch2.envelope, value)) {
mTimingDeschedule(audio->timing, &audio->ch2Event);
audio->playingCh2 = false; audio->playingCh2 = false;
*audio->nr52 &= ~0x0002; *audio->nr52 &= ~0x0002;
} }
@ -213,15 +248,13 @@ void GBAudioWriteNR24(struct GBAudio* audio, uint8_t value) {
if (!wasStop && audio->ch2.control.stop && audio->ch2.control.length && !(audio->frame & 1)) { if (!wasStop && audio->ch2.control.stop && audio->ch2.control.length && !(audio->frame & 1)) {
--audio->ch2.control.length; --audio->ch2.control.length;
if (audio->ch2.control.length == 0) { if (audio->ch2.control.length == 0) {
mTimingDeschedule(audio->timing, &audio->ch2Event);
audio->playingCh2 = false; audio->playingCh2 = false;
} }
} }
if (GBAudioRegisterControlIsRestart(value << 8)) { if (GBAudioRegisterControlIsRestart(value << 8)) {
audio->playingCh2 = _resetEnvelope(&audio->ch2.envelope); audio->playingCh2 = _resetEnvelope(&audio->ch2.envelope);
if (audio->nextEvent == INT_MAX) {
audio->eventDiff = 0;
}
if (audio->playingCh2) { if (audio->playingCh2) {
audio->ch2.control.hi = 0; audio->ch2.control.hi = 0;
_updateSquareSample(&audio->ch2); _updateSquareSample(&audio->ch2);
@ -233,8 +266,10 @@ void GBAudioWriteNR24(struct GBAudio* audio, uint8_t value) {
--audio->ch2.control.length; --audio->ch2.control.length;
} }
} }
audio->nextCh2 = audio->eventDiff; mTimingDeschedule(audio->timing, &audio->ch2Event);
_scheduleEvent(audio); if (audio->playingCh2 && audio->ch2.envelope.dead != 2) {
mTimingSchedule(audio->timing, &audio->ch2Event, 0);
}
} }
*audio->nr52 &= ~0x0002; *audio->nr52 &= ~0x0002;
*audio->nr52 |= audio->playingCh2 << 1; *audio->nr52 |= audio->playingCh2 << 1;
@ -294,14 +329,11 @@ void GBAudioWriteNR34(struct GBAudio* audio, uint8_t value) {
} }
audio->ch3.window = 0; audio->ch3.window = 0;
} }
mTimingDeschedule(audio->timing, &audio->ch3Event);
if (audio->playingCh3) { if (audio->playingCh3) {
if (audio->nextEvent == INT_MAX) {
audio->eventDiff = 0;
}
audio->ch3.readable = audio->style != GB_AUDIO_DMG; audio->ch3.readable = audio->style != GB_AUDIO_DMG;
_scheduleEvent(audio);
// TODO: Where does this cycle delay come from? // TODO: Where does this cycle delay come from?
audio->nextCh3 = audio->eventDiff + audio->nextEvent + 4 + 2 * (2048 - audio->ch3.rate); mTimingSchedule(audio->timing, &audio->ch3Event, audio->timingFactor * 4 + 2 * (2048 - audio->ch3.rate));
} }
*audio->nr52 &= ~0x0004; *audio->nr52 &= ~0x0004;
*audio->nr52 |= audio->playingCh3 << 2; *audio->nr52 |= audio->playingCh3 << 2;
@ -314,6 +346,7 @@ void GBAudioWriteNR41(struct GBAudio* audio, uint8_t value) {
void GBAudioWriteNR42(struct GBAudio* audio, uint8_t value) { void GBAudioWriteNR42(struct GBAudio* audio, uint8_t value) {
if (!_writeEnvelope(&audio->ch4.envelope, value)) { if (!_writeEnvelope(&audio->ch4.envelope, value)) {
mTimingDeschedule(audio->timing, &audio->ch4Event);
audio->playingCh4 = false; audio->playingCh4 = false;
*audio->nr52 &= ~0x0008; *audio->nr52 &= ~0x0008;
} }
@ -331,6 +364,7 @@ void GBAudioWriteNR44(struct GBAudio* audio, uint8_t value) {
if (!wasStop && audio->ch4.stop && audio->ch4.length && !(audio->frame & 1)) { if (!wasStop && audio->ch4.stop && audio->ch4.length && !(audio->frame & 1)) {
--audio->ch4.length; --audio->ch4.length;
if (audio->ch4.length == 0) { if (audio->ch4.length == 0) {
mTimingDeschedule(audio->timing, &audio->ch4Event);
audio->playingCh4 = false; audio->playingCh4 = false;
} }
} }
@ -342,17 +376,16 @@ void GBAudioWriteNR44(struct GBAudio* audio, uint8_t value) {
} else { } else {
audio->ch4.lfsr = 0x4000; audio->ch4.lfsr = 0x4000;
} }
if (audio->nextEvent == INT_MAX) {
audio->eventDiff = 0;
}
audio->nextCh4 = audio->eventDiff;
if (!audio->ch4.length) { if (!audio->ch4.length) {
audio->ch4.length = 64; audio->ch4.length = 64;
if (audio->ch4.stop && !(audio->frame & 1)) { if (audio->ch4.stop && !(audio->frame & 1)) {
--audio->ch4.length; --audio->ch4.length;
} }
} }
_scheduleEvent(audio); mTimingDeschedule(audio->timing, &audio->ch4Event);
if (audio->playingCh4 && audio->ch4.envelope.dead != 2) {
mTimingSchedule(audio->timing, &audio->ch4Event, 0);
}
} }
*audio->nr52 &= ~0x0008; *audio->nr52 &= ~0x0008;
*audio->nr52 |= audio->playingCh4 << 3; *audio->nr52 |= audio->playingCh4 << 3;
@ -438,171 +471,106 @@ void GBAudioWriteNR52(struct GBAudio* audio, uint8_t value) {
} }
} }
int32_t GBAudioProcessEvents(struct GBAudio* audio, int32_t cycles) { void _updateFrame(struct mTiming* timing, void* user, uint32_t cyclesLate) {
if (audio->nextEvent == INT_MAX) { struct GBAudio* audio = user;
return INT_MAX;
} int frame = (audio->frame + 1) & 7;
audio->nextEvent -= cycles;
audio->eventDiff += cycles;
while (audio->nextEvent <= 0) {
audio->nextEvent = INT_MAX;
if (audio->enable) {
audio->nextFrame -= audio->eventDiff;
int frame = -1;
if (audio->nextFrame <= 0) {
frame = (audio->frame + 1) & 7;
audio->frame = frame; audio->frame = frame;
audio->nextFrame += FRAME_CYCLES;
if (audio->nextFrame < audio->nextEvent) { switch (frame) {
audio->nextEvent = audio->nextFrame; case 2:
case 6:
if (audio->ch1.sweep.enable) {
--audio->ch1.sweep.step;
if (audio->ch1.sweep.step == 0) {
audio->playingCh1 = _updateSweep(&audio->ch1, false);
*audio->nr52 &= ~0x0001;
*audio->nr52 |= audio->playingCh1;
}
}
// Fall through
case 0:
case 4:
if (audio->ch1.control.length && audio->ch1.control.stop) {
--audio->ch1.control.length;
if (audio->ch1.control.length == 0) {
mTimingDeschedule(timing, &audio->ch1Event);
audio->playingCh1 = 0;
*audio->nr52 &= ~0x0001;
} }
} }
if (audio->playingCh1) { if (audio->ch2.control.length && audio->ch2.control.stop) {
audio->nextCh1 -= audio->eventDiff; --audio->ch2.control.length;
if (!audio->ch1.envelope.dead && frame == 7) { if (audio->ch2.control.length == 0) {
mTimingDeschedule(timing, &audio->ch2Event);
audio->playingCh2 = 0;
*audio->nr52 &= ~0x0002;
}
}
if (audio->ch3.length && audio->ch3.stop) {
--audio->ch3.length;
if (audio->ch3.length == 0) {
mTimingDeschedule(timing, &audio->ch3Event);
audio->playingCh3 = 0;
*audio->nr52 &= ~0x0004;
}
}
if (audio->ch4.length && audio->ch4.stop) {
--audio->ch4.length;
if (audio->ch4.length == 0) {
mTimingDeschedule(timing, &audio->ch4Event);
audio->playingCh4 = 0;
*audio->nr52 &= ~0x0008;
}
}
break;
case 7:
if (audio->playingCh1 && !audio->ch1.envelope.dead) {
--audio->ch1.envelope.nextStep; --audio->ch1.envelope.nextStep;
if (audio->ch1.envelope.nextStep == 0) { if (audio->ch1.envelope.nextStep == 0) {
_updateEnvelope(&audio->ch1.envelope); _updateEnvelope(&audio->ch1.envelope);
if (audio->ch1.envelope.dead == 2) {
mTimingDeschedule(timing, &audio->ch1Event);
}
_updateSquareSample(&audio->ch1); _updateSquareSample(&audio->ch1);
} }
} }
if (audio->ch1.sweep.enable && (frame & 3) == 2) { if (audio->playingCh2 && !audio->ch2.envelope.dead) {
--audio->ch1.sweep.step;
if (audio->ch1.sweep.step == 0) {
audio->playingCh1 = _updateSweep(&audio->ch1, false);
}
}
if (audio->ch1.envelope.dead != 2) {
if (audio->nextCh1 <= 0) {
audio->nextCh1 += _updateSquareChannel(&audio->ch1);
}
if (audio->nextCh1 < audio->nextEvent) {
audio->nextEvent = audio->nextCh1;
}
}
}
if (audio->ch1.control.length && audio->ch1.control.stop && !(frame & 1)) {
--audio->ch1.control.length;
if (audio->ch1.control.length == 0) {
audio->playingCh1 = 0;
}
}
if (audio->playingCh2) {
audio->nextCh2 -= audio->eventDiff;
if (!audio->ch2.envelope.dead && frame == 7) {
--audio->ch2.envelope.nextStep; --audio->ch2.envelope.nextStep;
if (audio->ch2.envelope.nextStep == 0) { if (audio->ch2.envelope.nextStep == 0) {
_updateEnvelope(&audio->ch2.envelope); _updateEnvelope(&audio->ch2.envelope);
_updateSquareSample(&audio->ch2); if (audio->ch2.envelope.dead == 2) {
mTimingDeschedule(timing, &audio->ch2Event);
}
_updateSquareSample(&audio->ch1);
} }
} }
if (audio->ch2.envelope.dead != 2) { if (audio->playingCh4 && !audio->ch4.envelope.dead) {
if (audio->nextCh2 <= 0) {
audio->nextCh2 += _updateSquareChannel(&audio->ch2);
}
if (audio->nextCh2 < audio->nextEvent) {
audio->nextEvent = audio->nextCh2;
}
}
}
if (audio->ch2.control.length && audio->ch2.control.stop && !(frame & 1)) {
--audio->ch2.control.length;
if (audio->ch2.control.length == 0) {
audio->playingCh2 = 0;
}
}
if (audio->playingCh3) {
audio->nextCh3 -= audio->eventDiff;
audio->fadeCh3 -= audio->eventDiff;
if (audio->fadeCh3 <= 0) {
audio->ch3.readable = false;
audio->fadeCh3 = INT_MAX;
}
if (audio->nextCh3 <= 0) {
if (audio->style == GB_AUDIO_DMG) {
audio->fadeCh3 = audio->nextCh3 + 2;
}
audio->nextCh3 += _updateWaveChannel(&audio->ch3, audio->style);
audio->ch3.readable = true;
}
if (audio->fadeCh3 < audio->nextEvent) {
audio->nextEvent = audio->fadeCh3;
}
if (audio->nextCh3 < audio->nextEvent) {
audio->nextEvent = audio->nextCh3;
}
}
if (audio->ch3.length && audio->ch3.stop && !(frame & 1)) {
--audio->ch3.length;
if (audio->ch3.length == 0) {
audio->playingCh3 = 0;
}
}
if (audio->playingCh4) {
audio->nextCh4 -= audio->eventDiff;
if (!audio->ch4.envelope.dead && frame == 7) {
--audio->ch4.envelope.nextStep; --audio->ch4.envelope.nextStep;
if (audio->ch4.envelope.nextStep == 0) { if (audio->ch4.envelope.nextStep == 0) {
int8_t sample = (audio->ch4.sample >> 7) * 0x8; int8_t sample = (audio->ch4.sample >> 7) * 0x8;
_updateEnvelope(&audio->ch4.envelope); _updateEnvelope(&audio->ch4.envelope);
if (audio->ch4.envelope.dead == 2) {
mTimingDeschedule(timing, &audio->ch4Event);
}
audio->ch4.sample = sample * audio->ch4.envelope.currentVolume; audio->ch4.sample = sample * audio->ch4.envelope.currentVolume;
} }
} }
break;
} }
if (audio->ch4.length && audio->ch4.stop && !(frame & 1)) { mTimingSchedule(timing, &audio->frameEvent, audio->timingFactor * FRAME_CYCLES - cyclesLate);
--audio->ch4.length;
if (audio->ch4.length == 0) {
audio->playingCh4 = 0;
}
}
}
*audio->nr52 &= ~0x000F;
*audio->nr52 |= audio->playingCh1;
*audio->nr52 |= audio->playingCh2 << 1;
*audio->nr52 |= audio->playingCh3 << 2;
*audio->nr52 |= audio->playingCh4 << 3;
if (audio->p) {
audio->nextSample -= audio->eventDiff;
if (audio->nextSample <= 0) {
_sample(audio, audio->sampleInterval);
audio->nextSample += audio->sampleInterval;
}
if (audio->nextSample < audio->nextEvent) {
audio->nextEvent = audio->nextSample;
}
}
audio->eventDiff = 0;
}
return audio->nextEvent;
} }
void GBAudioSamplePSG(struct GBAudio* audio, int16_t* left, int16_t* right) { void GBAudioSamplePSG(struct GBAudio* audio, int16_t* left, int16_t* right) {
int sampleLeft = 0; int sampleLeft = 0;
int sampleRight = 0; int sampleRight = 0;
if (audio->ch4.envelope.dead != 2) {
while (audio->nextCh4 <= 0) {
audio->nextCh4 += _updateNoiseChannel(&audio->ch4);
}
if (audio->nextCh4 < audio->nextEvent) {
audio->nextEvent = audio->nextCh4;
}
}
if (audio->playingCh1 && !audio->forceDisableCh[0]) { if (audio->playingCh1 && !audio->forceDisableCh[0]) {
if (audio->ch1Left) { if (audio->ch1Left) {
sampleLeft += audio->ch1.sample; sampleLeft += audio->ch1.sample;
@ -647,7 +615,8 @@ void GBAudioSamplePSG(struct GBAudio* audio, int16_t* left, int16_t* right) {
*right = sampleRight * (1 + audio->volumeRight); *right = sampleRight * (1 + audio->volumeRight);
} }
void _sample(struct GBAudio* audio, int32_t cycles) { static void _sample(struct mTiming* timing, void* user, uint32_t cyclesLate) {
struct GBAudio* audio = user;
int16_t sampleLeft = 0; int16_t sampleLeft = 0;
int16_t sampleRight = 0; int16_t sampleRight = 0;
GBAudioSamplePSG(audio, &sampleLeft, &sampleRight); GBAudioSamplePSG(audio, &sampleLeft, &sampleRight);
@ -661,7 +630,7 @@ void _sample(struct GBAudio* audio, int32_t cycles) {
blip_add_delta(audio->right, audio->clock, sampleRight - audio->lastRight); blip_add_delta(audio->right, audio->clock, sampleRight - audio->lastRight);
audio->lastLeft = sampleLeft; audio->lastLeft = sampleLeft;
audio->lastRight = sampleRight; audio->lastRight = sampleRight;
audio->clock += cycles; audio->clock += audio->sampleInterval;
if (audio->clock >= CLOCKS_PER_BLIP_FRAME) { if (audio->clock >= CLOCKS_PER_BLIP_FRAME) {
blip_end_frame(audio->left, audio->clock); blip_end_frame(audio->left, audio->clock);
blip_end_frame(audio->right, audio->clock); blip_end_frame(audio->right, audio->clock);
@ -678,6 +647,7 @@ void _sample(struct GBAudio* audio, int32_t cycles) {
if (wait && audio->p->stream && audio->p->stream->postAudioBuffer) { if (wait && audio->p->stream && audio->p->stream->postAudioBuffer) {
audio->p->stream->postAudioBuffer(audio->p->stream, audio->left, audio->right); audio->p->stream->postAudioBuffer(audio->p->stream, audio->left, audio->right);
} }
mTimingSchedule(timing, &audio->sampleEvent, audio->sampleInterval * audio->timingFactor - cyclesLate);
} }
bool _resetEnvelope(struct GBAudioEnvelope* envelope) { bool _resetEnvelope(struct GBAudioEnvelope* envelope) {
@ -722,7 +692,7 @@ bool _writeEnvelope(struct GBAudioEnvelope* envelope, uint8_t value) {
envelope->initialVolume = GBAudioRegisterSweepGetInitialVolume(value); envelope->initialVolume = GBAudioRegisterSweepGetInitialVolume(value);
_updateEnvelopeDead(envelope); _updateEnvelopeDead(envelope);
envelope->nextStep = envelope->stepTime; envelope->nextStep = envelope->stepTime;
return envelope->initialVolume || envelope->direction; return (envelope->initialVolume || envelope->direction) && envelope->dead != 2;
} }
static void _updateSquareSample(struct GBAudioSquareChannel* ch) { static void _updateSquareSample(struct GBAudioSquareChannel* ch) {
@ -806,7 +776,23 @@ static bool _updateSweep(struct GBAudioSquareChannel* ch, bool initial) {
return true; return true;
} }
static int32_t _updateWaveChannel(struct GBAudioWaveChannel* ch, enum GBAudioStyle style) { static void _updateChannel1(struct mTiming* timing, void* user, uint32_t cyclesLate) {
struct GBAudio* audio = user;
struct GBAudioSquareChannel* ch = &audio->ch1;
int cycles = _updateSquareChannel(ch);
mTimingSchedule(timing, &audio->ch1Event, audio->timingFactor * cycles - cyclesLate);
}
static void _updateChannel2(struct mTiming* timing, void* user, uint32_t cyclesLate) {
struct GBAudio* audio = user;
struct GBAudioSquareChannel* ch = &audio->ch2;
int cycles = _updateSquareChannel(ch);
mTimingSchedule(timing, &audio->ch2Event, audio->timingFactor * cycles - cyclesLate);
}
static void _updateChannel3(struct mTiming* timing, void* user, uint32_t cyclesLate) {
struct GBAudio* audio = user;
struct GBAudioWaveChannel* ch = &audio->ch3;
int i; int i;
int volume; int volume;
switch (ch->volume) { switch (ch->volume) {
@ -826,9 +812,9 @@ static int32_t _updateWaveChannel(struct GBAudioWaveChannel* ch, enum GBAudioSty
volume = 3; volume = 3;
break; break;
} }
switch (style) {
int start; int start;
int end; int end;
switch (audio->style) {
case GB_AUDIO_DMG: case GB_AUDIO_DMG:
default: default:
++ch->window; ++ch->window;
@ -863,29 +849,32 @@ static int32_t _updateWaveChannel(struct GBAudioWaveChannel* ch, enum GBAudioSty
} }
ch->sample -= 8; ch->sample -= 8;
ch->sample *= volume * 4; ch->sample *= volume * 4;
return 2 * (2048 - ch->rate); audio->ch3.readable = true;
if (audio->style == GB_AUDIO_DMG) {
mTimingSchedule(timing, &audio->ch3Fade, 2 - cyclesLate);
}
int cycles = 2 * (2048 - ch->rate);
mTimingSchedule(timing, &audio->ch3Event, audio->timingFactor * cycles - cyclesLate);
}
static void _fadeChannel3(struct mTiming* timing, void* user, uint32_t cyclesLate) {
UNUSED(timing);
UNUSED(cyclesLate);
struct GBAudio* audio = user;
audio->ch3.readable = false;
} }
static int32_t _updateNoiseChannel(struct GBAudioNoiseChannel* ch) { static void _updateChannel4(struct mTiming* timing, void* user, uint32_t cyclesLate) {
struct GBAudio* audio = user;
struct GBAudioNoiseChannel* ch = &audio->ch4;
int lsb = ch->lfsr & 1; int lsb = ch->lfsr & 1;
ch->sample = lsb * 0x10 - 0x8; ch->sample = lsb * 0x10 - 0x8;
ch->sample *= ch->envelope.currentVolume; ch->sample *= ch->envelope.currentVolume;
ch->lfsr >>= 1; ch->lfsr >>= 1;
ch->lfsr ^= (lsb * 0x60) << (ch->power ? 0 : 8); ch->lfsr ^= (lsb * 0x60) << (ch->power ? 0 : 8);
int timing = ch->ratio ? 2 * ch->ratio : 1; int cycles = ch->ratio ? 2 * ch->ratio : 1;
timing <<= ch->frequency; cycles <<= ch->frequency;
timing *= 8; cycles *= 8;
return timing; mTimingSchedule(timing, &audio->ch4Event, audio->timingFactor * cycles - cyclesLate);
}
void _scheduleEvent(struct GBAudio* audio) {
// TODO: Don't need p
if (audio->p) {
audio->nextEvent = audio->p->cpu->cycles >> audio->p->doubleSpeed;
audio->p->cpu->nextEvent = audio->p->cpu->cycles;
} else {
audio->nextEvent = 0;
}
} }
void GBAudioPSGSerialize(const struct GBAudio* audio, struct GBSerializedPSGState* state, uint32_t* flagsOut) { void GBAudioPSGSerialize(const struct GBAudio* audio, struct GBSerializedPSGState* state, uint32_t* flagsOut) {
@ -905,8 +894,6 @@ void GBAudioPSGSerialize(const struct GBAudio* audio, struct GBSerializedPSGStat
ch1Flags = GBSerializedAudioEnvelopeSetNextStep(ch1Flags, audio->ch1.envelope.nextStep); ch1Flags = GBSerializedAudioEnvelopeSetNextStep(ch1Flags, audio->ch1.envelope.nextStep);
ch1Flags = GBSerializedAudioEnvelopeSetFrequency(ch1Flags, audio->ch1.sweep.realFrequency); ch1Flags = GBSerializedAudioEnvelopeSetFrequency(ch1Flags, audio->ch1.sweep.realFrequency);
STORE_32LE(ch1Flags, 0, &state->ch1.envelope); STORE_32LE(ch1Flags, 0, &state->ch1.envelope);
STORE_32LE(audio->nextFrame, 0, &state->ch1.nextFrame);
STORE_32LE(audio->nextCh1, 0, &state->ch1.nextEvent);
flags = GBSerializedAudioFlagsSetCh2Volume(flags, audio->ch2.envelope.currentVolume); flags = GBSerializedAudioFlagsSetCh2Volume(flags, audio->ch2.envelope.currentVolume);
flags = GBSerializedAudioFlagsSetCh2Dead(flags, audio->ch2.envelope.dead); flags = GBSerializedAudioFlagsSetCh2Dead(flags, audio->ch2.envelope.dead);
@ -914,12 +901,9 @@ void GBAudioPSGSerialize(const struct GBAudio* audio, struct GBSerializedPSGStat
ch2Flags = GBSerializedAudioEnvelopeSetLength(ch2Flags, audio->ch2.control.length); ch2Flags = GBSerializedAudioEnvelopeSetLength(ch2Flags, audio->ch2.control.length);
ch2Flags = GBSerializedAudioEnvelopeSetNextStep(ch2Flags, audio->ch2.envelope.nextStep); ch2Flags = GBSerializedAudioEnvelopeSetNextStep(ch2Flags, audio->ch2.envelope.nextStep);
STORE_32LE(ch2Flags, 0, &state->ch2.envelope); STORE_32LE(ch2Flags, 0, &state->ch2.envelope);
STORE_32LE(audio->nextCh2, 0, &state->ch2.nextEvent);
memcpy(state->ch3.wavebanks, audio->ch3.wavedata32, sizeof(state->ch3.wavebanks)); memcpy(state->ch3.wavebanks, audio->ch3.wavedata32, sizeof(state->ch3.wavebanks));
STORE_16LE(audio->ch3.length, 0, &state->ch3.length); STORE_16LE(audio->ch3.length, 0, &state->ch3.length);
STORE_32LE(audio->nextCh3, 0, &state->ch3.nextEvent);
STORE_32LE(audio->fadeCh3, 0, &state->ch1.nextCh3Fade);
flags = GBSerializedAudioFlagsSetCh4Volume(flags, audio->ch4.envelope.currentVolume); flags = GBSerializedAudioFlagsSetCh4Volume(flags, audio->ch4.envelope.currentVolume);
flags = GBSerializedAudioFlagsSetCh4Dead(flags, audio->ch4.envelope.dead); flags = GBSerializedAudioFlagsSetCh4Dead(flags, audio->ch4.envelope.dead);
@ -927,7 +911,6 @@ void GBAudioPSGSerialize(const struct GBAudio* audio, struct GBSerializedPSGStat
ch4Flags = GBSerializedAudioEnvelopeSetLength(ch4Flags, audio->ch4.length); ch4Flags = GBSerializedAudioEnvelopeSetLength(ch4Flags, audio->ch4.length);
ch4Flags = GBSerializedAudioEnvelopeSetNextStep(ch4Flags, audio->ch4.envelope.nextStep); ch4Flags = GBSerializedAudioEnvelopeSetNextStep(ch4Flags, audio->ch4.envelope.nextStep);
STORE_32LE(ch4Flags, 0, &state->ch4.envelope); STORE_32LE(ch4Flags, 0, &state->ch4.envelope);
STORE_32LE(audio->nextCh4, 0, &state->ch4.nextEvent);
STORE_32LE(flags, 0, flagsOut); STORE_32LE(flags, 0, flagsOut);
} }
@ -954,8 +937,6 @@ void GBAudioPSGDeserialize(struct GBAudio* audio, const struct GBSerializedPSGSt
audio->ch1.control.length = GBSerializedAudioEnvelopeGetLength(ch1Flags); audio->ch1.control.length = GBSerializedAudioEnvelopeGetLength(ch1Flags);
audio->ch1.envelope.nextStep = GBSerializedAudioEnvelopeGetNextStep(ch1Flags); audio->ch1.envelope.nextStep = GBSerializedAudioEnvelopeGetNextStep(ch1Flags);
audio->ch1.sweep.realFrequency = GBSerializedAudioEnvelopeGetFrequency(ch1Flags); audio->ch1.sweep.realFrequency = GBSerializedAudioEnvelopeGetFrequency(ch1Flags);
LOAD_32LE(audio->nextFrame, 0, &state->ch1.nextFrame);
LOAD_32LE(audio->nextCh1, 0, &state->ch1.nextEvent);
LOAD_32LE(ch2Flags, 0, &state->ch2.envelope); LOAD_32LE(ch2Flags, 0, &state->ch2.envelope);
audio->ch2.envelope.currentVolume = GBSerializedAudioFlagsGetCh2Volume(flags); audio->ch2.envelope.currentVolume = GBSerializedAudioFlagsGetCh2Volume(flags);
@ -963,14 +944,11 @@ void GBAudioPSGDeserialize(struct GBAudio* audio, const struct GBSerializedPSGSt
audio->ch2.control.hi = GBSerializedAudioFlagsGetCh2Hi(flags); audio->ch2.control.hi = GBSerializedAudioFlagsGetCh2Hi(flags);
audio->ch2.control.length = GBSerializedAudioEnvelopeGetLength(ch2Flags); audio->ch2.control.length = GBSerializedAudioEnvelopeGetLength(ch2Flags);
audio->ch2.envelope.nextStep = GBSerializedAudioEnvelopeGetNextStep(ch2Flags); audio->ch2.envelope.nextStep = GBSerializedAudioEnvelopeGetNextStep(ch2Flags);
LOAD_32LE(audio->nextCh2, 0, &state->ch2.nextEvent);
audio->ch3.readable = GBSerializedAudioFlagsGetCh3Readable(flags); audio->ch3.readable = GBSerializedAudioFlagsGetCh3Readable(flags);
// TODO: Big endian? // TODO: Big endian?
memcpy(audio->ch3.wavedata32, state->ch3.wavebanks, sizeof(audio->ch3.wavedata32)); memcpy(audio->ch3.wavedata32, state->ch3.wavebanks, sizeof(audio->ch3.wavedata32));
LOAD_16LE(audio->ch3.length, 0, &state->ch3.length); LOAD_16LE(audio->ch3.length, 0, &state->ch3.length);
LOAD_32LE(audio->nextCh3, 0, &state->ch3.nextEvent);
LOAD_32LE(audio->fadeCh3, 0, &state->ch1.nextCh3Fade);
LOAD_32LE(ch4Flags, 0, &state->ch4.envelope); LOAD_32LE(ch4Flags, 0, &state->ch4.envelope);
audio->ch4.envelope.currentVolume = GBSerializedAudioFlagsGetCh4Volume(flags); audio->ch4.envelope.currentVolume = GBSerializedAudioFlagsGetCh4Volume(flags);
@ -978,21 +956,12 @@ void GBAudioPSGDeserialize(struct GBAudio* audio, const struct GBSerializedPSGSt
audio->ch4.length = GBSerializedAudioEnvelopeGetLength(ch4Flags); audio->ch4.length = GBSerializedAudioEnvelopeGetLength(ch4Flags);
audio->ch4.envelope.nextStep = GBSerializedAudioEnvelopeGetNextStep(ch4Flags); audio->ch4.envelope.nextStep = GBSerializedAudioEnvelopeGetNextStep(ch4Flags);
LOAD_32LE(audio->ch4.lfsr, 0, &state->ch4.lfsr); LOAD_32LE(audio->ch4.lfsr, 0, &state->ch4.lfsr);
LOAD_32LE(audio->nextCh4, 0, &state->ch4.nextEvent);
} }
void GBAudioSerialize(const struct GBAudio* audio, struct GBSerializedState* state) { void GBAudioSerialize(const struct GBAudio* audio, struct GBSerializedState* state) {
GBAudioPSGSerialize(audio, &state->audio.psg, &state->audio.flags); GBAudioPSGSerialize(audio, &state->audio.psg, &state->audio.flags);
STORE_32LE(audio->nextEvent, 0, &state->audio.nextEvent);
STORE_32LE(audio->eventDiff, 0, &state->audio.eventDiff);
STORE_32LE(audio->nextSample, 0, &state->audio.nextSample);
} }
void GBAudioDeserialize(struct GBAudio* audio, const struct GBSerializedState* state) { void GBAudioDeserialize(struct GBAudio* audio, const struct GBSerializedState* state) {
GBAudioPSGDeserialize(audio, &state->audio.psg, &state->audio.flags); GBAudioPSGDeserialize(audio, &state->audio.psg, &state->audio.flags);
LOAD_32LE(audio->nextEvent, 0, &state->audio.nextEvent);
LOAD_32LE(audio->eventDiff, 0, &state->audio.eventDiff);
LOAD_32LE(audio->nextSample, 0, &state->audio.nextSample);
} }

View File

@ -8,6 +8,7 @@
#include "util/common.h" #include "util/common.h"
#include "core/timing.h"
#include "third-party/blip_buf/blip_buf.h" #include "third-party/blip_buf/blip_buf.h"
DECL_BITFIELD(GBAudioRegisterDuty, uint8_t); DECL_BITFIELD(GBAudioRegisterDuty, uint8_t);
@ -147,6 +148,8 @@ enum GBAudioStyle {
struct GBAudio { struct GBAudio {
struct GB* p; struct GB* p;
struct mTiming* timing;
unsigned timingFactor;
struct GBAudioSquareChannel ch1; struct GBAudioSquareChannel ch1;
struct GBAudioSquareChannel ch2; struct GBAudioSquareChannel ch2;
struct GBAudioWaveChannel ch3; struct GBAudioWaveChannel ch3;
@ -176,20 +179,18 @@ struct GBAudio {
bool playingCh4; bool playingCh4;
uint8_t* nr52; uint8_t* nr52;
int32_t nextEvent;
int32_t eventDiff;
int32_t nextFrame;
int frame; int frame;
int32_t nextSample;
int32_t sampleInterval; int32_t sampleInterval;
enum GBAudioStyle style; enum GBAudioStyle style;
int32_t nextCh1; struct mTimingEvent frameEvent;
int32_t nextCh2; struct mTimingEvent ch1Event;
int32_t nextCh3; struct mTimingEvent ch2Event;
int32_t fadeCh3; struct mTimingEvent ch3Event;
int32_t nextCh4; struct mTimingEvent ch3Fade;
struct mTimingEvent ch4Event;
struct mTimingEvent sampleEvent;
bool enable; bool enable;
size_t samples; size_t samples;
@ -229,7 +230,6 @@ void GBAudioWriteNR50(struct GBAudio* audio, uint8_t);
void GBAudioWriteNR51(struct GBAudio* audio, uint8_t); void GBAudioWriteNR51(struct GBAudio* audio, uint8_t);
void GBAudioWriteNR52(struct GBAudio* audio, uint8_t); void GBAudioWriteNR52(struct GBAudio* audio, uint8_t);
int32_t GBAudioProcessEvents(struct GBAudio* audio, int32_t cycles);
void GBAudioSamplePSG(struct GBAudio* audio, int16_t* left, int16_t* right); void GBAudioSamplePSG(struct GBAudio* audio, int16_t* left, int16_t* right);
struct GBSerializedPSGState; struct GBSerializedPSGState;

View File

@ -84,6 +84,7 @@ static void GBInit(void* cpu, struct mCPUComponent* component) {
gb->stream = NULL; gb->stream = NULL;
mTimingInit(&gb->timing, &gb->cpu->cycles, &gb->cpu->nextEvent); mTimingInit(&gb->timing, &gb->cpu->cycles, &gb->cpu->nextEvent);
gb->audio.timing = &gb->timing;
} }
static void GBDeinit(struct mCPUComponent* component) { static void GBDeinit(struct mCPUComponent* component) {
@ -530,7 +531,6 @@ void GBProcessEvents(struct LR35902Core* cpu) {
do { do {
int32_t cycles = cpu->cycles; int32_t cycles = cpu->cycles;
int32_t nextEvent; int32_t nextEvent;
int32_t testEvent;
cpu->cycles = 0; cpu->cycles = 0;
cpu->nextEvent = INT_MAX; cpu->nextEvent = INT_MAX;
@ -549,14 +549,6 @@ void GBProcessEvents(struct LR35902Core* cpu) {
mTimingTick(&gb->timing, cycles); mTimingTick(&gb->timing, cycles);
nextEvent = cpu->nextEvent; nextEvent = cpu->nextEvent;
testEvent = GBAudioProcessEvents(&gb->audio, cycles >> gb->doubleSpeed);
if (testEvent != INT_MAX) {
testEvent <<= gb->doubleSpeed;
if (testEvent < nextEvent) {
nextEvent = testEvent;
}
}
cpu->nextEvent = nextEvent; cpu->nextEvent = nextEvent;
if (cpu->halted) { if (cpu->halted) {
@ -596,6 +588,7 @@ void GBStop(struct LR35902Core* cpu) {
} }
if (gb->memory.io[REG_KEY1] & 1) { if (gb->memory.io[REG_KEY1] & 1) {
gb->doubleSpeed ^= 1; gb->doubleSpeed ^= 1;
gb->audio.timingFactor = gb->doubleSpeed + 1;
gb->memory.io[REG_KEY1] = 0; gb->memory.io[REG_KEY1] = 0;
gb->memory.io[REG_KEY1] |= gb->doubleSpeed << 7; gb->memory.io[REG_KEY1] |= gb->doubleSpeed << 7;
} else if (cpu->bus) { } else if (cpu->bus) {

View File

@ -177,6 +177,7 @@ bool GBDeserialize(struct GB* gb, const struct GBSerializedState* state) {
gb->cpu->condition = GBSerializedCpuFlagsGetCondition(flags); gb->cpu->condition = GBSerializedCpuFlagsGetCondition(flags);
gb->cpu->irqPending = GBSerializedCpuFlagsGetIrqPending(flags); gb->cpu->irqPending = GBSerializedCpuFlagsGetIrqPending(flags);
gb->doubleSpeed = GBSerializedCpuFlagsGetDoubleSpeed(flags); gb->doubleSpeed = GBSerializedCpuFlagsGetDoubleSpeed(flags);
gb->audio.timingFactor = gb->doubleSpeed + 1;
LOAD_32LE(gb->cpu->cycles, 0, &state->cpu.cycles); LOAD_32LE(gb->cpu->cycles, 0, &state->cpu.cycles);
LOAD_32LE(gb->cpu->nextEvent, 0, &state->cpu.nextEvent); LOAD_32LE(gb->cpu->nextEvent, 0, &state->cpu.nextEvent);

View File

@ -33,8 +33,9 @@ void GBAAudioInit(struct GBAAudio* audio, size_t samples) {
++nr52; ++nr52;
#endif #endif
GBAudioInit(&audio->psg, 0, nr52, GB_AUDIO_GBA); GBAudioInit(&audio->psg, 0, nr52, GB_AUDIO_GBA);
audio->samples = samples; audio->psg.timing = &audio->p->timing;
audio->psg.clockRate = GBA_ARM7TDMI_FREQUENCY; audio->psg.clockRate = GBA_ARM7TDMI_FREQUENCY;
audio->samples = samples;
// Guess too large; we hang producing extra samples if we guess too low // Guess too large; we hang producing extra samples if we guess too low
blip_set_rates(audio->psg.left, GBA_ARM7TDMI_FREQUENCY, 96000); blip_set_rates(audio->psg.left, GBA_ARM7TDMI_FREQUENCY, 96000);
blip_set_rates(audio->psg.right, GBA_ARM7TDMI_FREQUENCY, 96000); blip_set_rates(audio->psg.right, GBA_ARM7TDMI_FREQUENCY, 96000);
@ -96,13 +97,6 @@ int32_t GBAAudioProcessEvents(struct GBAAudio* audio, int32_t cycles) {
audio->eventDiff += cycles; audio->eventDiff += cycles;
while (audio->nextEvent <= 0) { while (audio->nextEvent <= 0) {
audio->nextEvent = INT_MAX; audio->nextEvent = INT_MAX;
if (audio->enable) {
audio->nextEvent = GBAudioProcessEvents(&audio->psg, audio->eventDiff / 4);
if (audio->nextEvent != INT_MAX) {
audio->nextEvent *= 4;
}
}
audio->nextSample -= audio->eventDiff; audio->nextSample -= audio->eventDiff;
if (audio->nextSample <= 0) { if (audio->nextSample <= 0) {
_sample(audio); _sample(audio);