GB I/O: Finally rename registers to have a prefix

This commit is contained in:
Vicki Pfau 2020-10-21 20:57:06 -07:00
parent 659b929f3e
commit ac8d1e2bf6
16 changed files with 547 additions and 547 deletions

View File

@ -15,98 +15,98 @@ CXX_GUARD_START
mLOG_DECLARE_CATEGORY(GB_IO); mLOG_DECLARE_CATEGORY(GB_IO);
enum GBIORegisters { enum GBIORegisters {
REG_JOYP = 0x00, GB_REG_JOYP = 0x00,
REG_SB = 0x01, GB_REG_SB = 0x01,
REG_SC = 0x02, GB_REG_SC = 0x02,
// Timing // Timing
REG_DIV = 0x04, GB_REG_DIV = 0x04,
REG_TIMA = 0x05, GB_REG_TIMA = 0x05,
REG_TMA = 0x06, GB_REG_TMA = 0x06,
REG_TAC = 0x07, GB_REG_TAC = 0x07,
// Interrupts // Interrupts
REG_IF = 0x0F, GB_REG_IF = 0x0F,
REG_IE = 0xFF, GB_REG_IE = 0xFF,
// Audio // Audio
REG_NR10 = 0x10, GB_REG_NR10 = 0x10,
REG_NR11 = 0x11, GB_REG_NR11 = 0x11,
REG_NR12 = 0x12, GB_REG_NR12 = 0x12,
REG_NR13 = 0x13, GB_REG_NR13 = 0x13,
REG_NR14 = 0x14, GB_REG_NR14 = 0x14,
REG_NR21 = 0x16, GB_REG_NR21 = 0x16,
REG_NR22 = 0x17, GB_REG_NR22 = 0x17,
REG_NR23 = 0x18, GB_REG_NR23 = 0x18,
REG_NR24 = 0x19, GB_REG_NR24 = 0x19,
REG_NR30 = 0x1A, GB_REG_NR30 = 0x1A,
REG_NR31 = 0x1B, GB_REG_NR31 = 0x1B,
REG_NR32 = 0x1C, GB_REG_NR32 = 0x1C,
REG_NR33 = 0x1D, GB_REG_NR33 = 0x1D,
REG_NR34 = 0x1E, GB_REG_NR34 = 0x1E,
REG_NR41 = 0x20, GB_REG_NR41 = 0x20,
REG_NR42 = 0x21, GB_REG_NR42 = 0x21,
REG_NR43 = 0x22, GB_REG_NR43 = 0x22,
REG_NR44 = 0x23, GB_REG_NR44 = 0x23,
REG_NR50 = 0x24, GB_REG_NR50 = 0x24,
REG_NR51 = 0x25, GB_REG_NR51 = 0x25,
REG_NR52 = 0x26, GB_REG_NR52 = 0x26,
REG_WAVE_0 = 0x30, GB_REG_WAVE_0 = 0x30,
REG_WAVE_1 = 0x31, GB_REG_WAVE_1 = 0x31,
REG_WAVE_2 = 0x32, GB_REG_WAVE_2 = 0x32,
REG_WAVE_3 = 0x33, GB_REG_WAVE_3 = 0x33,
REG_WAVE_4 = 0x34, GB_REG_WAVE_4 = 0x34,
REG_WAVE_5 = 0x35, GB_REG_WAVE_5 = 0x35,
REG_WAVE_6 = 0x36, GB_REG_WAVE_6 = 0x36,
REG_WAVE_7 = 0x37, GB_REG_WAVE_7 = 0x37,
REG_WAVE_8 = 0x38, GB_REG_WAVE_8 = 0x38,
REG_WAVE_9 = 0x39, GB_REG_WAVE_9 = 0x39,
REG_WAVE_A = 0x3A, GB_REG_WAVE_A = 0x3A,
REG_WAVE_B = 0x3B, GB_REG_WAVE_B = 0x3B,
REG_WAVE_C = 0x3C, GB_REG_WAVE_C = 0x3C,
REG_WAVE_D = 0x3D, GB_REG_WAVE_D = 0x3D,
REG_WAVE_E = 0x3E, GB_REG_WAVE_E = 0x3E,
REG_WAVE_F = 0x3F, GB_REG_WAVE_F = 0x3F,
// Video // Video
REG_LCDC = 0x40, GB_REG_LCDC = 0x40,
REG_STAT = 0x41, GB_REG_STAT = 0x41,
REG_SCY = 0x42, GB_REG_SCY = 0x42,
REG_SCX = 0x43, GB_REG_SCX = 0x43,
REG_LY = 0x44, GB_REG_LY = 0x44,
REG_LYC = 0x45, GB_REG_LYC = 0x45,
REG_DMA = 0x46, GB_REG_DMA = 0x46,
REG_BGP = 0x47, GB_REG_BGP = 0x47,
REG_OBP0 = 0x48, GB_REG_OBP0 = 0x48,
REG_OBP1 = 0x49, GB_REG_OBP1 = 0x49,
REG_WY = 0x4A, GB_REG_WY = 0x4A,
REG_WX = 0x4B, GB_REG_WX = 0x4B,
// CGB // CGB
REG_KEY0 = 0x4C, GB_REG_KEY0 = 0x4C,
REG_KEY1 = 0x4D, GB_REG_KEY1 = 0x4D,
REG_VBK = 0x4F, GB_REG_VBK = 0x4F,
REG_BANK = 0x50, GB_REG_BANK = 0x50,
REG_HDMA1 = 0x51, GB_REG_HDMA1 = 0x51,
REG_HDMA2 = 0x52, GB_REG_HDMA2 = 0x52,
REG_HDMA3 = 0x53, GB_REG_HDMA3 = 0x53,
REG_HDMA4 = 0x54, GB_REG_HDMA4 = 0x54,
REG_HDMA5 = 0x55, GB_REG_HDMA5 = 0x55,
REG_RP = 0x56, GB_REG_RP = 0x56,
REG_BCPS = 0x68, GB_REG_BCPS = 0x68,
REG_BCPD = 0x69, GB_REG_BCPD = 0x69,
REG_OCPS = 0x6A, GB_REG_OCPS = 0x6A,
REG_OCPD = 0x6B, GB_REG_OCPD = 0x6B,
REG_OPRI = 0x6C, GB_REG_OPRI = 0x6C,
REG_SVBK = 0x70, GB_REG_SVBK = 0x70,
REG_UNK72 = 0x72, GB_REG_UNK72 = 0x72,
REG_UNK73 = 0x73, GB_REG_UNK73 = 0x73,
REG_UNK74 = 0x74, GB_REG_UNK74 = 0x74,
REG_UNK75 = 0x75, GB_REG_UNK75 = 0x75,
REG_PCM12 = 0x76, GB_REG_PCM12 = 0x76,
REG_PCM34 = 0x77, GB_REG_PCM34 = 0x77,
REG_MAX = 0x100 GB_REG_MAX = 0x100
}; };
extern MGBA_EXPORT const char* const GBIORegisterNames[]; extern MGBA_EXPORT const char* const GBIORegisterNames[];

View File

@ -446,30 +446,30 @@ void GBAudioWriteNR52(struct GBAudio* audio, uint8_t value) {
} }
if (audio->p) { if (audio->p) {
audio->p->memory.io[REG_NR10] = 0; audio->p->memory.io[GB_REG_NR10] = 0;
audio->p->memory.io[REG_NR11] = 0; audio->p->memory.io[GB_REG_NR11] = 0;
audio->p->memory.io[REG_NR12] = 0; audio->p->memory.io[GB_REG_NR12] = 0;
audio->p->memory.io[REG_NR13] = 0; audio->p->memory.io[GB_REG_NR13] = 0;
audio->p->memory.io[REG_NR14] = 0; audio->p->memory.io[GB_REG_NR14] = 0;
audio->p->memory.io[REG_NR21] = 0; audio->p->memory.io[GB_REG_NR21] = 0;
audio->p->memory.io[REG_NR22] = 0; audio->p->memory.io[GB_REG_NR22] = 0;
audio->p->memory.io[REG_NR23] = 0; audio->p->memory.io[GB_REG_NR23] = 0;
audio->p->memory.io[REG_NR24] = 0; audio->p->memory.io[GB_REG_NR24] = 0;
audio->p->memory.io[REG_NR30] = 0; audio->p->memory.io[GB_REG_NR30] = 0;
audio->p->memory.io[REG_NR31] = 0; audio->p->memory.io[GB_REG_NR31] = 0;
audio->p->memory.io[REG_NR32] = 0; audio->p->memory.io[GB_REG_NR32] = 0;
audio->p->memory.io[REG_NR33] = 0; audio->p->memory.io[GB_REG_NR33] = 0;
audio->p->memory.io[REG_NR34] = 0; audio->p->memory.io[GB_REG_NR34] = 0;
audio->p->memory.io[REG_NR42] = 0; audio->p->memory.io[GB_REG_NR42] = 0;
audio->p->memory.io[REG_NR43] = 0; audio->p->memory.io[GB_REG_NR43] = 0;
audio->p->memory.io[REG_NR44] = 0; audio->p->memory.io[GB_REG_NR44] = 0;
audio->p->memory.io[REG_NR50] = 0; audio->p->memory.io[GB_REG_NR50] = 0;
audio->p->memory.io[REG_NR51] = 0; audio->p->memory.io[GB_REG_NR51] = 0;
if (audio->style != GB_AUDIO_DMG) { if (audio->style != GB_AUDIO_DMG) {
audio->p->memory.io[REG_NR11] = 0; audio->p->memory.io[GB_REG_NR11] = 0;
audio->p->memory.io[REG_NR21] = 0; audio->p->memory.io[GB_REG_NR21] = 0;
audio->p->memory.io[REG_NR31] = 0; audio->p->memory.io[GB_REG_NR31] = 0;
audio->p->memory.io[REG_NR41] = 0; audio->p->memory.io[GB_REG_NR41] = 0;
} }
} }
*audio->nr52 &= ~0x000F; *audio->nr52 &= ~0x000F;

View File

@ -838,7 +838,7 @@ static bool _GBCoreLookupIdentifier(struct mCore* core, const char* name, int32_
UNUSED(core); UNUSED(core);
*segment = -1; *segment = -1;
int i; int i;
for (i = 0; i < REG_MAX; ++i) { for (i = 0; i < GB_REG_MAX; ++i) {
const char* reg = GBIORegisterNames[i]; const char* reg = GBIORegisterNames[i];
if (reg && strcasecmp(reg, name) == 0) { if (reg && strcasecmp(reg, name) == 0) {
*value = GB_BASE_IO | i; *value = GB_BASE_IO | i;

View File

@ -57,12 +57,12 @@ static bool _GBCLIDebuggerCustom(struct CLIDebuggerSystem* debugger) {
struct GBCLIDebugger* gbDebugger = (struct GBCLIDebugger*) debugger; struct GBCLIDebugger* gbDebugger = (struct GBCLIDebugger*) debugger;
if (gbDebugger->frameAdvance) { if (gbDebugger->frameAdvance) {
if (!gbDebugger->inVblank && GBRegisterSTATGetMode(((struct GB*) gbDebugger->core->board)->memory.io[REG_STAT]) == 1) { if (!gbDebugger->inVblank && GBRegisterSTATGetMode(((struct GB*) gbDebugger->core->board)->memory.io[GB_REG_STAT]) == 1) {
mDebuggerEnter(&gbDebugger->d.p->d, DEBUGGER_ENTER_MANUAL, 0); mDebuggerEnter(&gbDebugger->d.p->d, DEBUGGER_ENTER_MANUAL, 0);
gbDebugger->frameAdvance = false; gbDebugger->frameAdvance = false;
return false; return false;
} }
gbDebugger->inVblank = GBRegisterSTATGetMode(((struct GB*) gbDebugger->core->board)->memory.io[REG_STAT]) == 1; gbDebugger->inVblank = GBRegisterSTATGetMode(((struct GB*) gbDebugger->core->board)->memory.io[GB_REG_STAT]) == 1;
return true; return true;
} }
return true; return true;
@ -74,7 +74,7 @@ static void _frame(struct CLIDebugger* debugger, struct CLIDebugVector* dv) {
struct GBCLIDebugger* gbDebugger = (struct GBCLIDebugger*) debugger->system; struct GBCLIDebugger* gbDebugger = (struct GBCLIDebugger*) debugger->system;
gbDebugger->frameAdvance = true; gbDebugger->frameAdvance = true;
gbDebugger->inVblank = GBRegisterSTATGetMode(((struct GB*) gbDebugger->core->board)->memory.io[REG_STAT]) == 1; gbDebugger->inVblank = GBRegisterSTATGetMode(((struct GB*) gbDebugger->core->board)->memory.io[GB_REG_STAT]) == 1;
} }
#if !defined(MINIMAL_CORE) || MINIMAL_CORE < 2 #if !defined(MINIMAL_CORE) || MINIMAL_CORE < 2

View File

@ -29,8 +29,8 @@ static const struct SM83Segment _GBCSegments[] = {
static void _printStatus(struct CLIDebuggerSystem* debugger) { static void _printStatus(struct CLIDebuggerSystem* debugger) {
struct CLIDebuggerBackend* be = debugger->p->backend; struct CLIDebuggerBackend* be = debugger->p->backend;
struct GB* gb = debugger->p->d.core->board; struct GB* gb = debugger->p->d.core->board;
be->printf(be, "IE: %02X IF: %02X IME: %i\n", gb->memory.ie, gb->memory.io[REG_IF], gb->memory.ime); be->printf(be, "IE: %02X IF: %02X IME: %i\n", gb->memory.ie, gb->memory.io[GB_REG_IF], gb->memory.ime);
be->printf(be, "LCDC: %02X STAT: %02X LY: %02X\n", gb->memory.io[REG_LCDC], gb->memory.io[REG_STAT] | 0x80, gb->memory.io[REG_LY]); be->printf(be, "LCDC: %02X STAT: %02X LY: %02X\n", gb->memory.io[GB_REG_LCDC], gb->memory.io[GB_REG_STAT] | 0x80, gb->memory.io[GB_REG_LY]);
be->printf(be, "Next video mode: %i\n", mTimingUntil(&gb->timing, &gb->video.modeEvent) / 4); be->printf(be, "Next video mode: %i\n", mTimingUntil(&gb->timing, &gb->video.modeEvent) / 4);
} }
@ -43,4 +43,4 @@ struct mDebuggerPlatform* GBDebuggerCreate(struct GB* gb) {
} }
platform->printStatus = _printStatus; platform->printStatus = _printStatus;
return &platform->d; return &platform->d;
} }

View File

@ -64,7 +64,7 @@ static void GBInit(void* cpu, struct mCPUComponent* component) {
GBVideoInit(&gb->video); GBVideoInit(&gb->video);
gb->audio.p = gb; gb->audio.p = gb;
GBAudioInit(&gb->audio, 2048, &gb->memory.io[REG_NR52], GB_AUDIO_DMG); // TODO: Remove magic constant GBAudioInit(&gb->audio, 2048, &gb->memory.io[GB_REG_NR52], GB_AUDIO_DMG); // TODO: Remove magic constant
gb->sio.p = gb; gb->sio.p = gb;
GBSIOInit(&gb->sio); GBSIOInit(&gb->sio);
@ -567,7 +567,7 @@ void GBSkipBIOS(struct GB* gb) {
mTimingDeschedule(&gb->timing, &gb->timer.event); mTimingDeschedule(&gb->timing, &gb->timer.event);
mTimingSchedule(&gb->timing, &gb->timer.event, gb->timer.nextDiv); mTimingSchedule(&gb->timing, &gb->timer.event, gb->timer.nextDiv);
GBIOWrite(gb, REG_LCDC, 0x91); GBIOWrite(gb, GB_REG_LCDC, 0x91);
GBVideoSkipBIOS(&gb->video); GBVideoSkipBIOS(&gb->video);
if (gb->biosVf) { if (gb->biosVf) {
@ -673,7 +673,7 @@ int GBValidModels(const uint8_t* bank0) {
} }
void GBUpdateIRQs(struct GB* gb) { void GBUpdateIRQs(struct GB* gb) {
int irqs = gb->memory.ie & gb->memory.io[REG_IF] & 0x1F; int irqs = gb->memory.ie & gb->memory.io[GB_REG_IF] & 0x1F;
if (!irqs) { if (!irqs) {
gb->cpu->irqPending = false; gb->cpu->irqPending = false;
return; return;
@ -737,26 +737,26 @@ void GBSetInterrupts(struct SM83Core* cpu, bool enable) {
uint16_t GBIRQVector(struct SM83Core* cpu) { uint16_t GBIRQVector(struct SM83Core* cpu) {
struct GB* gb = (struct GB*) cpu->master; struct GB* gb = (struct GB*) cpu->master;
int irqs = gb->memory.ie & gb->memory.io[REG_IF]; int irqs = gb->memory.ie & gb->memory.io[GB_REG_IF];
if (irqs & (1 << GB_IRQ_VBLANK)) { if (irqs & (1 << GB_IRQ_VBLANK)) {
gb->memory.io[REG_IF] &= ~(1 << GB_IRQ_VBLANK); gb->memory.io[GB_REG_IF] &= ~(1 << GB_IRQ_VBLANK);
return GB_VECTOR_VBLANK; return GB_VECTOR_VBLANK;
} }
if (irqs & (1 << GB_IRQ_LCDSTAT)) { if (irqs & (1 << GB_IRQ_LCDSTAT)) {
gb->memory.io[REG_IF] &= ~(1 << GB_IRQ_LCDSTAT); gb->memory.io[GB_REG_IF] &= ~(1 << GB_IRQ_LCDSTAT);
return GB_VECTOR_LCDSTAT; return GB_VECTOR_LCDSTAT;
} }
if (irqs & (1 << GB_IRQ_TIMER)) { if (irqs & (1 << GB_IRQ_TIMER)) {
gb->memory.io[REG_IF] &= ~(1 << GB_IRQ_TIMER); gb->memory.io[GB_REG_IF] &= ~(1 << GB_IRQ_TIMER);
return GB_VECTOR_TIMER; return GB_VECTOR_TIMER;
} }
if (irqs & (1 << GB_IRQ_SIO)) { if (irqs & (1 << GB_IRQ_SIO)) {
gb->memory.io[REG_IF] &= ~(1 << GB_IRQ_SIO); gb->memory.io[GB_REG_IF] &= ~(1 << GB_IRQ_SIO);
return GB_VECTOR_SIO; return GB_VECTOR_SIO;
} }
if (irqs & (1 << GB_IRQ_KEYPAD)) { if (irqs & (1 << GB_IRQ_KEYPAD)) {
gb->memory.io[REG_IF] &= ~(1 << GB_IRQ_KEYPAD); gb->memory.io[GB_REG_IF] &= ~(1 << GB_IRQ_KEYPAD);
return GB_VECTOR_KEYPAD; return GB_VECTOR_KEYPAD;
} }
return 0; return 0;
@ -772,7 +772,7 @@ static void _enableInterrupts(struct mTiming* timing, void* user, uint32_t cycle
void GBHalt(struct SM83Core* cpu) { void GBHalt(struct SM83Core* cpu) {
struct GB* gb = (struct GB*) cpu->master; struct GB* gb = (struct GB*) cpu->master;
if (!(gb->memory.ie & gb->memory.io[REG_IF] & 0x1F)) { if (!(gb->memory.ie & gb->memory.io[GB_REG_IF] & 0x1F)) {
cpu->cycles = cpu->nextEvent; cpu->cycles = cpu->nextEvent;
cpu->halted = true; cpu->halted = true;
} else if (!gb->memory.ime) { } else if (!gb->memory.ime) {
@ -783,13 +783,13 @@ void GBHalt(struct SM83Core* cpu) {
void GBStop(struct SM83Core* cpu) { void GBStop(struct SM83Core* cpu) {
struct GB* gb = (struct GB*) cpu->master; struct GB* gb = (struct GB*) cpu->master;
if (gb->model >= GB_MODEL_CGB && gb->memory.io[REG_KEY1] & 1) { if (gb->model >= GB_MODEL_CGB && gb->memory.io[GB_REG_KEY1] & 1) {
gb->doubleSpeed ^= 1; gb->doubleSpeed ^= 1;
gb->audio.timingFactor = gb->doubleSpeed + 1; gb->audio.timingFactor = gb->doubleSpeed + 1;
gb->memory.io[REG_KEY1] = 0; gb->memory.io[GB_REG_KEY1] = 0;
gb->memory.io[REG_KEY1] |= gb->doubleSpeed << 7; gb->memory.io[GB_REG_KEY1] |= gb->doubleSpeed << 7;
} else { } else {
int sleep = ~(gb->memory.io[REG_JOYP] & 0x30); int sleep = ~(gb->memory.io[GB_REG_JOYP] & 0x30);
size_t c; size_t c;
for (c = 0; c < mCoreCallbacksListSize(&gb->coreCallbacks); ++c) { for (c = 0; c < mCoreCallbacksListSize(&gb->coreCallbacks); ++c) {
struct mCoreCallbacks* callbacks = mCoreCallbacksListGetPointer(&gb->coreCallbacks, c); struct mCoreCallbacks* callbacks = mCoreCallbacksListGetPointer(&gb->coreCallbacks, c);

View File

@ -12,99 +12,99 @@
mLOG_DEFINE_CATEGORY(GB_IO, "GB I/O", "gb.io"); mLOG_DEFINE_CATEGORY(GB_IO, "GB I/O", "gb.io");
MGBA_EXPORT const char* const GBIORegisterNames[] = { MGBA_EXPORT const char* const GBIORegisterNames[] = {
[REG_JOYP] = "JOYP", [GB_REG_JOYP] = "JOYP",
[REG_SB] = "SB", [GB_REG_SB] = "SB",
[REG_SC] = "SC", [GB_REG_SC] = "SC",
[REG_DIV] = "DIV", [GB_REG_DIV] = "DIV",
[REG_TIMA] = "TIMA", [GB_REG_TIMA] = "TIMA",
[REG_TMA] = "TMA", [GB_REG_TMA] = "TMA",
[REG_TAC] = "TAC", [GB_REG_TAC] = "TAC",
[REG_IF] = "IF", [GB_REG_IF] = "IF",
[REG_NR10] = "NR10", [GB_REG_NR10] = "NR10",
[REG_NR11] = "NR11", [GB_REG_NR11] = "NR11",
[REG_NR12] = "NR12", [GB_REG_NR12] = "NR12",
[REG_NR13] = "NR13", [GB_REG_NR13] = "NR13",
[REG_NR14] = "NR14", [GB_REG_NR14] = "NR14",
[REG_NR21] = "NR21", [GB_REG_NR21] = "NR21",
[REG_NR22] = "NR22", [GB_REG_NR22] = "NR22",
[REG_NR23] = "NR23", [GB_REG_NR23] = "NR23",
[REG_NR24] = "NR24", [GB_REG_NR24] = "NR24",
[REG_NR30] = "NR30", [GB_REG_NR30] = "NR30",
[REG_NR31] = "NR31", [GB_REG_NR31] = "NR31",
[REG_NR32] = "NR32", [GB_REG_NR32] = "NR32",
[REG_NR33] = "NR33", [GB_REG_NR33] = "NR33",
[REG_NR34] = "NR34", [GB_REG_NR34] = "NR34",
[REG_NR41] = "NR41", [GB_REG_NR41] = "NR41",
[REG_NR42] = "NR42", [GB_REG_NR42] = "NR42",
[REG_NR43] = "NR43", [GB_REG_NR43] = "NR43",
[REG_NR44] = "NR44", [GB_REG_NR44] = "NR44",
[REG_NR50] = "NR50", [GB_REG_NR50] = "NR50",
[REG_NR51] = "NR51", [GB_REG_NR51] = "NR51",
[REG_NR52] = "NR52", [GB_REG_NR52] = "NR52",
[REG_LCDC] = "LCDC", [GB_REG_LCDC] = "LCDC",
[REG_STAT] = "STAT", [GB_REG_STAT] = "STAT",
[REG_SCY] = "SCY", [GB_REG_SCY] = "SCY",
[REG_SCX] = "SCX", [GB_REG_SCX] = "SCX",
[REG_LY] = "LY", [GB_REG_LY] = "LY",
[REG_LYC] = "LYC", [GB_REG_LYC] = "LYC",
[REG_DMA] = "DMA", [GB_REG_DMA] = "DMA",
[REG_BGP] = "BGP", [GB_REG_BGP] = "BGP",
[REG_OBP0] = "OBP0", [GB_REG_OBP0] = "OBP0",
[REG_OBP1] = "OBP1", [GB_REG_OBP1] = "OBP1",
[REG_WY] = "WY", [GB_REG_WY] = "WY",
[REG_WX] = "WX", [GB_REG_WX] = "WX",
[REG_KEY0] = "KEY0", [GB_REG_KEY0] = "KEY0",
[REG_KEY1] = "KEY1", [GB_REG_KEY1] = "KEY1",
[REG_VBK] = "VBK", [GB_REG_VBK] = "VBK",
[REG_BANK] = "BANK", [GB_REG_BANK] = "BANK",
[REG_HDMA1] = "HDMA1", [GB_REG_HDMA1] = "HDMA1",
[REG_HDMA2] = "HDMA2", [GB_REG_HDMA2] = "HDMA2",
[REG_HDMA3] = "HDMA3", [GB_REG_HDMA3] = "HDMA3",
[REG_HDMA4] = "HDMA4", [GB_REG_HDMA4] = "HDMA4",
[REG_HDMA5] = "HDMA5", [GB_REG_HDMA5] = "HDMA5",
[REG_RP] = "RP", [GB_REG_RP] = "RP",
[REG_BCPS] = "BCPS", [GB_REG_BCPS] = "BCPS",
[REG_BCPD] = "BCPD", [GB_REG_BCPD] = "BCPD",
[REG_OCPS] = "OCPS", [GB_REG_OCPS] = "OCPS",
[REG_OCPD] = "OCPD", [GB_REG_OCPD] = "OCPD",
[REG_OPRI] = "OPRI", [GB_REG_OPRI] = "OPRI",
[REG_SVBK] = "SVBK", [GB_REG_SVBK] = "SVBK",
[REG_IE] = "IE", [GB_REG_IE] = "IE",
}; };
static const uint8_t _registerMask[] = { static const uint8_t _registerMask[] = {
[REG_SC] = 0x7E, // TODO: GBC differences [GB_REG_SC] = 0x7E, // TODO: GBC differences
[REG_IF] = 0xE0, [GB_REG_IF] = 0xE0,
[REG_TAC] = 0xF8, [GB_REG_TAC] = 0xF8,
[REG_NR10] = 0x80, [GB_REG_NR10] = 0x80,
[REG_NR11] = 0x3F, [GB_REG_NR11] = 0x3F,
[REG_NR12] = 0x00, [GB_REG_NR12] = 0x00,
[REG_NR13] = 0xFF, [GB_REG_NR13] = 0xFF,
[REG_NR14] = 0xBF, [GB_REG_NR14] = 0xBF,
[REG_NR21] = 0x3F, [GB_REG_NR21] = 0x3F,
[REG_NR22] = 0x00, [GB_REG_NR22] = 0x00,
[REG_NR23] = 0xFF, [GB_REG_NR23] = 0xFF,
[REG_NR24] = 0xBF, [GB_REG_NR24] = 0xBF,
[REG_NR30] = 0x7F, [GB_REG_NR30] = 0x7F,
[REG_NR31] = 0xFF, [GB_REG_NR31] = 0xFF,
[REG_NR32] = 0x9F, [GB_REG_NR32] = 0x9F,
[REG_NR33] = 0xFF, [GB_REG_NR33] = 0xFF,
[REG_NR34] = 0xBF, [GB_REG_NR34] = 0xBF,
[REG_NR41] = 0xFF, [GB_REG_NR41] = 0xFF,
[REG_NR42] = 0x00, [GB_REG_NR42] = 0x00,
[REG_NR43] = 0x00, [GB_REG_NR43] = 0x00,
[REG_NR44] = 0xBF, [GB_REG_NR44] = 0xBF,
[REG_NR50] = 0x00, [GB_REG_NR50] = 0x00,
[REG_NR51] = 0x00, [GB_REG_NR51] = 0x00,
[REG_NR52] = 0x70, [GB_REG_NR52] = 0x70,
[REG_STAT] = 0x80, [GB_REG_STAT] = 0x80,
[REG_KEY1] = 0x7E, [GB_REG_KEY1] = 0x7E,
[REG_VBK] = 0xFE, [GB_REG_VBK] = 0xFE,
[REG_OCPS] = 0x40, [GB_REG_OCPS] = 0x40,
[REG_BCPS] = 0x40, [GB_REG_BCPS] = 0x40,
[REG_OPRI] = 0xFE, [GB_REG_OPRI] = 0xFE,
[REG_SVBK] = 0xF8, [GB_REG_SVBK] = 0xF8,
[REG_IE] = 0xE0, [GB_REG_IE] = 0xE0,
}; };
static uint8_t _readKeys(struct GB* gb); static uint8_t _readKeys(struct GB* gb);
@ -161,257 +161,257 @@ void GBIOInit(struct GB* gb) {
void GBIOReset(struct GB* gb) { void GBIOReset(struct GB* gb) {
memset(gb->memory.io, 0, sizeof(gb->memory.io)); memset(gb->memory.io, 0, sizeof(gb->memory.io));
GBIOWrite(gb, REG_TIMA, 0); GBIOWrite(gb, GB_REG_TIMA, 0);
GBIOWrite(gb, REG_TMA, 0); GBIOWrite(gb, GB_REG_TMA, 0);
GBIOWrite(gb, REG_TAC, 0); GBIOWrite(gb, GB_REG_TAC, 0);
GBIOWrite(gb, REG_IF, 1); GBIOWrite(gb, GB_REG_IF, 1);
GBIOWrite(gb, REG_NR52, 0xF1); GBIOWrite(gb, GB_REG_NR52, 0xF1);
GBIOWrite(gb, REG_NR14, 0x3F); GBIOWrite(gb, GB_REG_NR14, 0x3F);
GBIOWrite(gb, REG_NR10, 0x80); GBIOWrite(gb, GB_REG_NR10, 0x80);
GBIOWrite(gb, REG_NR11, 0xBF); GBIOWrite(gb, GB_REG_NR11, 0xBF);
GBIOWrite(gb, REG_NR12, 0xF3); GBIOWrite(gb, GB_REG_NR12, 0xF3);
GBIOWrite(gb, REG_NR13, 0xF3); GBIOWrite(gb, GB_REG_NR13, 0xF3);
GBIOWrite(gb, REG_NR24, 0x3F); GBIOWrite(gb, GB_REG_NR24, 0x3F);
GBIOWrite(gb, REG_NR21, 0x3F); GBIOWrite(gb, GB_REG_NR21, 0x3F);
GBIOWrite(gb, REG_NR22, 0x00); GBIOWrite(gb, GB_REG_NR22, 0x00);
GBIOWrite(gb, REG_NR34, 0x3F); GBIOWrite(gb, GB_REG_NR34, 0x3F);
GBIOWrite(gb, REG_NR30, 0x7F); GBIOWrite(gb, GB_REG_NR30, 0x7F);
GBIOWrite(gb, REG_NR31, 0xFF); GBIOWrite(gb, GB_REG_NR31, 0xFF);
GBIOWrite(gb, REG_NR32, 0x9F); GBIOWrite(gb, GB_REG_NR32, 0x9F);
GBIOWrite(gb, REG_NR44, 0x3F); GBIOWrite(gb, GB_REG_NR44, 0x3F);
GBIOWrite(gb, REG_NR41, 0xFF); GBIOWrite(gb, GB_REG_NR41, 0xFF);
GBIOWrite(gb, REG_NR42, 0x00); GBIOWrite(gb, GB_REG_NR42, 0x00);
GBIOWrite(gb, REG_NR43, 0x00); GBIOWrite(gb, GB_REG_NR43, 0x00);
GBIOWrite(gb, REG_NR50, 0x77); GBIOWrite(gb, GB_REG_NR50, 0x77);
GBIOWrite(gb, REG_NR51, 0xF3); GBIOWrite(gb, GB_REG_NR51, 0xF3);
if (!gb->biosVf) { if (!gb->biosVf) {
GBIOWrite(gb, REG_LCDC, 0x91); GBIOWrite(gb, GB_REG_LCDC, 0x91);
gb->memory.io[REG_BANK] = 1; gb->memory.io[GB_REG_BANK] = 1;
} else { } else {
GBIOWrite(gb, REG_LCDC, 0x00); GBIOWrite(gb, GB_REG_LCDC, 0x00);
gb->memory.io[REG_BANK] = 0xFF; gb->memory.io[GB_REG_BANK] = 0xFF;
} }
GBIOWrite(gb, REG_SCY, 0x00); GBIOWrite(gb, GB_REG_SCY, 0x00);
GBIOWrite(gb, REG_SCX, 0x00); GBIOWrite(gb, GB_REG_SCX, 0x00);
GBIOWrite(gb, REG_LYC, 0x00); GBIOWrite(gb, GB_REG_LYC, 0x00);
gb->memory.io[REG_DMA] = 0xFF; gb->memory.io[GB_REG_DMA] = 0xFF;
GBIOWrite(gb, REG_BGP, 0xFC); GBIOWrite(gb, GB_REG_BGP, 0xFC);
if (gb->model < GB_MODEL_CGB) { if (gb->model < GB_MODEL_CGB) {
GBIOWrite(gb, REG_OBP0, 0xFF); GBIOWrite(gb, GB_REG_OBP0, 0xFF);
GBIOWrite(gb, REG_OBP1, 0xFF); GBIOWrite(gb, GB_REG_OBP1, 0xFF);
} }
GBIOWrite(gb, REG_WY, 0x00); GBIOWrite(gb, GB_REG_WY, 0x00);
GBIOWrite(gb, REG_WX, 0x00); GBIOWrite(gb, GB_REG_WX, 0x00);
if (gb->model & GB_MODEL_CGB) { if (gb->model & GB_MODEL_CGB) {
GBIOWrite(gb, REG_KEY0, 0); GBIOWrite(gb, GB_REG_KEY0, 0);
GBIOWrite(gb, REG_JOYP, 0xFF); GBIOWrite(gb, GB_REG_JOYP, 0xFF);
GBIOWrite(gb, REG_VBK, 0); GBIOWrite(gb, GB_REG_VBK, 0);
GBIOWrite(gb, REG_BCPS, 0x80); GBIOWrite(gb, GB_REG_BCPS, 0x80);
GBIOWrite(gb, REG_OCPS, 0); GBIOWrite(gb, GB_REG_OCPS, 0);
GBIOWrite(gb, REG_SVBK, 1); GBIOWrite(gb, GB_REG_SVBK, 1);
GBIOWrite(gb, REG_HDMA1, 0xFF); GBIOWrite(gb, GB_REG_HDMA1, 0xFF);
GBIOWrite(gb, REG_HDMA2, 0xFF); GBIOWrite(gb, GB_REG_HDMA2, 0xFF);
GBIOWrite(gb, REG_HDMA3, 0xFF); GBIOWrite(gb, GB_REG_HDMA3, 0xFF);
GBIOWrite(gb, REG_HDMA4, 0xFF); GBIOWrite(gb, GB_REG_HDMA4, 0xFF);
gb->memory.io[REG_HDMA5] = 0xFF; gb->memory.io[GB_REG_HDMA5] = 0xFF;
} else if (gb->model & GB_MODEL_SGB) { } else if (gb->model & GB_MODEL_SGB) {
GBIOWrite(gb, REG_JOYP, 0xFF); GBIOWrite(gb, GB_REG_JOYP, 0xFF);
} }
GBIOWrite(gb, REG_IE, 0x00); GBIOWrite(gb, GB_REG_IE, 0x00);
} }
void GBIOWrite(struct GB* gb, unsigned address, uint8_t value) { void GBIOWrite(struct GB* gb, unsigned address, uint8_t value) {
switch (address) { switch (address) {
case REG_SB: case GB_REG_SB:
GBSIOWriteSB(&gb->sio, value); GBSIOWriteSB(&gb->sio, value);
break; break;
case REG_SC: case GB_REG_SC:
GBSIOWriteSC(&gb->sio, value); GBSIOWriteSC(&gb->sio, value);
break; break;
case REG_DIV: case GB_REG_DIV:
GBTimerDivReset(&gb->timer); GBTimerDivReset(&gb->timer);
return; return;
case REG_NR10: case GB_REG_NR10:
if (gb->audio.enable) { if (gb->audio.enable) {
GBAudioWriteNR10(&gb->audio, value); GBAudioWriteNR10(&gb->audio, value);
} else { } else {
value = 0; value = 0;
} }
break; break;
case REG_NR11: case GB_REG_NR11:
if (gb->audio.enable) { if (gb->audio.enable) {
GBAudioWriteNR11(&gb->audio, value); GBAudioWriteNR11(&gb->audio, value);
} else { } else {
if (gb->audio.style == GB_AUDIO_DMG) { if (gb->audio.style == GB_AUDIO_DMG) {
GBAudioWriteNR11(&gb->audio, value & _registerMask[REG_NR11]); GBAudioWriteNR11(&gb->audio, value & _registerMask[GB_REG_NR11]);
} }
value = 0; value = 0;
} }
break; break;
case REG_NR12: case GB_REG_NR12:
if (gb->audio.enable) { if (gb->audio.enable) {
GBAudioWriteNR12(&gb->audio, value); GBAudioWriteNR12(&gb->audio, value);
} else { } else {
value = 0; value = 0;
} }
break; break;
case REG_NR13: case GB_REG_NR13:
if (gb->audio.enable) { if (gb->audio.enable) {
GBAudioWriteNR13(&gb->audio, value); GBAudioWriteNR13(&gb->audio, value);
} else { } else {
value = 0; value = 0;
} }
break; break;
case REG_NR14: case GB_REG_NR14:
if (gb->audio.enable) { if (gb->audio.enable) {
GBAudioWriteNR14(&gb->audio, value); GBAudioWriteNR14(&gb->audio, value);
} else { } else {
value = 0; value = 0;
} }
break; break;
case REG_NR21: case GB_REG_NR21:
if (gb->audio.enable) { if (gb->audio.enable) {
GBAudioWriteNR21(&gb->audio, value); GBAudioWriteNR21(&gb->audio, value);
} else { } else {
if (gb->audio.style == GB_AUDIO_DMG) { if (gb->audio.style == GB_AUDIO_DMG) {
GBAudioWriteNR21(&gb->audio, value & _registerMask[REG_NR21]); GBAudioWriteNR21(&gb->audio, value & _registerMask[GB_REG_NR21]);
} }
value = 0; value = 0;
} }
break; break;
case REG_NR22: case GB_REG_NR22:
if (gb->audio.enable) { if (gb->audio.enable) {
GBAudioWriteNR22(&gb->audio, value); GBAudioWriteNR22(&gb->audio, value);
} else { } else {
value = 0; value = 0;
} }
break; break;
case REG_NR23: case GB_REG_NR23:
if (gb->audio.enable) { if (gb->audio.enable) {
GBAudioWriteNR23(&gb->audio, value); GBAudioWriteNR23(&gb->audio, value);
} else { } else {
value = 0; value = 0;
} }
break; break;
case REG_NR24: case GB_REG_NR24:
if (gb->audio.enable) { if (gb->audio.enable) {
GBAudioWriteNR24(&gb->audio, value); GBAudioWriteNR24(&gb->audio, value);
} else { } else {
value = 0; value = 0;
} }
break; break;
case REG_NR30: case GB_REG_NR30:
if (gb->audio.enable) { if (gb->audio.enable) {
GBAudioWriteNR30(&gb->audio, value); GBAudioWriteNR30(&gb->audio, value);
} else { } else {
value = 0; value = 0;
} }
break; break;
case REG_NR31: case GB_REG_NR31:
if (gb->audio.enable || gb->audio.style == GB_AUDIO_DMG) { if (gb->audio.enable || gb->audio.style == GB_AUDIO_DMG) {
GBAudioWriteNR31(&gb->audio, value); GBAudioWriteNR31(&gb->audio, value);
} else { } else {
value = 0; value = 0;
} }
break; break;
case REG_NR32: case GB_REG_NR32:
if (gb->audio.enable) { if (gb->audio.enable) {
GBAudioWriteNR32(&gb->audio, value); GBAudioWriteNR32(&gb->audio, value);
} else { } else {
value = 0; value = 0;
} }
break; break;
case REG_NR33: case GB_REG_NR33:
if (gb->audio.enable) { if (gb->audio.enable) {
GBAudioWriteNR33(&gb->audio, value); GBAudioWriteNR33(&gb->audio, value);
} else { } else {
value = 0; value = 0;
} }
break; break;
case REG_NR34: case GB_REG_NR34:
if (gb->audio.enable) { if (gb->audio.enable) {
GBAudioWriteNR34(&gb->audio, value); GBAudioWriteNR34(&gb->audio, value);
} else { } else {
value = 0; value = 0;
} }
break; break;
case REG_NR41: case GB_REG_NR41:
if (gb->audio.enable || gb->audio.style == GB_AUDIO_DMG) { if (gb->audio.enable || gb->audio.style == GB_AUDIO_DMG) {
GBAudioWriteNR41(&gb->audio, value); GBAudioWriteNR41(&gb->audio, value);
} else { } else {
value = 0; value = 0;
} }
break; break;
case REG_NR42: case GB_REG_NR42:
if (gb->audio.enable) { if (gb->audio.enable) {
GBAudioWriteNR42(&gb->audio, value); GBAudioWriteNR42(&gb->audio, value);
} else { } else {
value = 0; value = 0;
} }
break; break;
case REG_NR43: case GB_REG_NR43:
if (gb->audio.enable) { if (gb->audio.enable) {
GBAudioWriteNR43(&gb->audio, value); GBAudioWriteNR43(&gb->audio, value);
} else { } else {
value = 0; value = 0;
} }
break; break;
case REG_NR44: case GB_REG_NR44:
if (gb->audio.enable) { if (gb->audio.enable) {
GBAudioWriteNR44(&gb->audio, value); GBAudioWriteNR44(&gb->audio, value);
} else { } else {
value = 0; value = 0;
} }
break; break;
case REG_NR50: case GB_REG_NR50:
if (gb->audio.enable) { if (gb->audio.enable) {
GBAudioWriteNR50(&gb->audio, value); GBAudioWriteNR50(&gb->audio, value);
} else { } else {
value = 0; value = 0;
} }
break; break;
case REG_NR51: case GB_REG_NR51:
if (gb->audio.enable) { if (gb->audio.enable) {
GBAudioWriteNR51(&gb->audio, value); GBAudioWriteNR51(&gb->audio, value);
} else { } else {
value = 0; value = 0;
} }
break; break;
case REG_NR52: case GB_REG_NR52:
GBAudioWriteNR52(&gb->audio, value); GBAudioWriteNR52(&gb->audio, value);
value &= 0x80; value &= 0x80;
value |= gb->memory.io[REG_NR52] & 0x0F; value |= gb->memory.io[GB_REG_NR52] & 0x0F;
break; break;
case REG_WAVE_0: case GB_REG_WAVE_0:
case REG_WAVE_1: case GB_REG_WAVE_1:
case REG_WAVE_2: case GB_REG_WAVE_2:
case REG_WAVE_3: case GB_REG_WAVE_3:
case REG_WAVE_4: case GB_REG_WAVE_4:
case REG_WAVE_5: case GB_REG_WAVE_5:
case REG_WAVE_6: case GB_REG_WAVE_6:
case REG_WAVE_7: case GB_REG_WAVE_7:
case REG_WAVE_8: case GB_REG_WAVE_8:
case REG_WAVE_9: case GB_REG_WAVE_9:
case REG_WAVE_A: case GB_REG_WAVE_A:
case REG_WAVE_B: case GB_REG_WAVE_B:
case REG_WAVE_C: case GB_REG_WAVE_C:
case REG_WAVE_D: case GB_REG_WAVE_D:
case REG_WAVE_E: case GB_REG_WAVE_E:
case REG_WAVE_F: case GB_REG_WAVE_F:
if (!gb->audio.playingCh3 || gb->audio.style != GB_AUDIO_DMG) { if (!gb->audio.playingCh3 || gb->audio.style != GB_AUDIO_DMG) {
gb->audio.ch3.wavedata8[address - REG_WAVE_0] = value; gb->audio.ch3.wavedata8[address - GB_REG_WAVE_0] = value;
} else if(gb->audio.ch3.readable) { } else if(gb->audio.ch3.readable) {
gb->audio.ch3.wavedata8[gb->audio.ch3.window >> 1] = value; gb->audio.ch3.wavedata8[gb->audio.ch3.window >> 1] = value;
} }
break; break;
case REG_JOYP: case GB_REG_JOYP:
gb->memory.io[REG_JOYP] = value | 0x0F; gb->memory.io[GB_REG_JOYP] = value | 0x0F;
_readKeys(gb); _readKeys(gb);
if (gb->model & GB_MODEL_SGB) { if (gb->model & GB_MODEL_SGB) {
_writeSGBBits(gb, (value >> 4) & 3); _writeSGBBits(gb, (value >> 4) & 3);
} }
return; return;
case REG_TIMA: case GB_REG_TIMA:
if (value && mTimingUntil(&gb->timing, &gb->timer.irq) > 1) { if (value && mTimingUntil(&gb->timing, &gb->timer.irq) > 1) {
mTimingDeschedule(&gb->timing, &gb->timer.irq); mTimingDeschedule(&gb->timing, &gb->timer.irq);
} }
@ -419,105 +419,105 @@ void GBIOWrite(struct GB* gb, unsigned address, uint8_t value) {
return; return;
} }
break; break;
case REG_TMA: case GB_REG_TMA:
if (mTimingUntil(&gb->timing, &gb->timer.irq) == -1) { if (mTimingUntil(&gb->timing, &gb->timer.irq) == -1) {
gb->memory.io[REG_TIMA] = value; gb->memory.io[GB_REG_TIMA] = value;
} }
break; break;
case REG_TAC: case GB_REG_TAC:
value = GBTimerUpdateTAC(&gb->timer, value); value = GBTimerUpdateTAC(&gb->timer, value);
break; break;
case REG_IF: case GB_REG_IF:
gb->memory.io[REG_IF] = value | 0xE0; gb->memory.io[GB_REG_IF] = value | 0xE0;
GBUpdateIRQs(gb); GBUpdateIRQs(gb);
return; return;
case REG_LCDC: case GB_REG_LCDC:
// TODO: handle GBC differences // TODO: handle GBC differences
GBVideoProcessDots(&gb->video, 0); GBVideoProcessDots(&gb->video, 0);
value = gb->video.renderer->writeVideoRegister(gb->video.renderer, address, value); value = gb->video.renderer->writeVideoRegister(gb->video.renderer, address, value);
GBVideoWriteLCDC(&gb->video, value); GBVideoWriteLCDC(&gb->video, value);
break; break;
case REG_LYC: case GB_REG_LYC:
GBVideoWriteLYC(&gb->video, value); GBVideoWriteLYC(&gb->video, value);
break; break;
case REG_DMA: case GB_REG_DMA:
GBMemoryDMA(gb, value << 8); GBMemoryDMA(gb, value << 8);
break; break;
case REG_SCY: case GB_REG_SCY:
case REG_SCX: case GB_REG_SCX:
case REG_WY: case GB_REG_WY:
case REG_WX: case GB_REG_WX:
GBVideoProcessDots(&gb->video, 0); GBVideoProcessDots(&gb->video, 0);
value = gb->video.renderer->writeVideoRegister(gb->video.renderer, address, value); value = gb->video.renderer->writeVideoRegister(gb->video.renderer, address, value);
break; break;
case REG_BGP: case GB_REG_BGP:
case REG_OBP0: case GB_REG_OBP0:
case REG_OBP1: case GB_REG_OBP1:
GBVideoProcessDots(&gb->video, 0); GBVideoProcessDots(&gb->video, 0);
GBVideoWritePalette(&gb->video, address, value); GBVideoWritePalette(&gb->video, address, value);
break; break;
case REG_STAT: case GB_REG_STAT:
GBVideoWriteSTAT(&gb->video, value); GBVideoWriteSTAT(&gb->video, value);
value = gb->video.stat; value = gb->video.stat;
break; break;
case REG_BANK: case GB_REG_BANK:
if (gb->memory.io[REG_BANK] != 0xFF) { if (gb->memory.io[GB_REG_BANK] != 0xFF) {
break; break;
} }
GBUnmapBIOS(gb); GBUnmapBIOS(gb);
if (gb->model >= GB_MODEL_CGB && gb->memory.io[REG_KEY0] < 0x80) { if (gb->model >= GB_MODEL_CGB && gb->memory.io[GB_REG_KEY0] < 0x80) {
gb->model = GB_MODEL_DMG; gb->model = GB_MODEL_DMG;
GBVideoDisableCGB(&gb->video); GBVideoDisableCGB(&gb->video);
} }
break; break;
case REG_IE: case GB_REG_IE:
gb->memory.ie = value; gb->memory.ie = value;
GBUpdateIRQs(gb); GBUpdateIRQs(gb);
return; return;
default: default:
if (gb->model >= GB_MODEL_CGB) { if (gb->model >= GB_MODEL_CGB) {
switch (address) { switch (address) {
case REG_KEY0: case GB_REG_KEY0:
break; break;
case REG_KEY1: case GB_REG_KEY1:
value &= 0x1; value &= 0x1;
value |= gb->memory.io[address] & 0x80; value |= gb->memory.io[address] & 0x80;
break; break;
case REG_VBK: case GB_REG_VBK:
GBVideoSwitchBank(&gb->video, value); GBVideoSwitchBank(&gb->video, value);
break; break;
case REG_HDMA1: case GB_REG_HDMA1:
case REG_HDMA2: case GB_REG_HDMA2:
case REG_HDMA3: case GB_REG_HDMA3:
case REG_HDMA4: case GB_REG_HDMA4:
// Handled transparently by the registers // Handled transparently by the registers
break; break;
case REG_HDMA5: case GB_REG_HDMA5:
value = GBMemoryWriteHDMA5(gb, value); value = GBMemoryWriteHDMA5(gb, value);
break; break;
case REG_BCPS: case GB_REG_BCPS:
gb->video.bcpIndex = value & 0x3F; gb->video.bcpIndex = value & 0x3F;
gb->video.bcpIncrement = value & 0x80; gb->video.bcpIncrement = value & 0x80;
gb->memory.io[REG_BCPD] = gb->video.palette[gb->video.bcpIndex >> 1] >> (8 * (gb->video.bcpIndex & 1)); gb->memory.io[GB_REG_BCPD] = gb->video.palette[gb->video.bcpIndex >> 1] >> (8 * (gb->video.bcpIndex & 1));
break; break;
case REG_BCPD: case GB_REG_BCPD:
if (gb->video.mode != 3) { if (gb->video.mode != 3) {
GBVideoProcessDots(&gb->video, 0); GBVideoProcessDots(&gb->video, 0);
} }
GBVideoWritePalette(&gb->video, address, value); GBVideoWritePalette(&gb->video, address, value);
return; return;
case REG_OCPS: case GB_REG_OCPS:
gb->video.ocpIndex = value & 0x3F; gb->video.ocpIndex = value & 0x3F;
gb->video.ocpIncrement = value & 0x80; gb->video.ocpIncrement = value & 0x80;
gb->memory.io[REG_OCPD] = gb->video.palette[8 * 4 + (gb->video.ocpIndex >> 1)] >> (8 * (gb->video.ocpIndex & 1)); gb->memory.io[GB_REG_OCPD] = gb->video.palette[8 * 4 + (gb->video.ocpIndex >> 1)] >> (8 * (gb->video.ocpIndex & 1));
break; break;
case REG_OCPD: case GB_REG_OCPD:
if (gb->video.mode != 3) { if (gb->video.mode != 3) {
GBVideoProcessDots(&gb->video, 0); GBVideoProcessDots(&gb->video, 0);
} }
GBVideoWritePalette(&gb->video, address, value); GBVideoWritePalette(&gb->video, address, value);
return; return;
case REG_SVBK: case GB_REG_SVBK:
GBMemorySwitchWramBank(&gb->memory, value); GBMemorySwitchWramBank(&gb->memory, value);
value = gb->memory.wramCurrentBank; value = gb->memory.wramCurrentBank;
break; break;
@ -542,7 +542,7 @@ static uint8_t _readKeys(struct GB* gb) {
if (gb->sgbCurrentController != 0) { if (gb->sgbCurrentController != 0) {
keys = 0; keys = 0;
} }
uint8_t joyp = gb->memory.io[REG_JOYP]; uint8_t joyp = gb->memory.io[GB_REG_JOYP];
switch (joyp & 0x30) { switch (joyp & 0x30) {
case 0x30: case 0x30:
keys = gb->sgbCurrentController; keys = gb->sgbCurrentController;
@ -556,12 +556,12 @@ static uint8_t _readKeys(struct GB* gb) {
keys |= keys >> 4; keys |= keys >> 4;
break; break;
} }
gb->memory.io[REG_JOYP] = (0xCF | joyp) ^ (keys & 0xF); gb->memory.io[GB_REG_JOYP] = (0xCF | joyp) ^ (keys & 0xF);
if (joyp & ~gb->memory.io[REG_JOYP] & 0xF) { if (joyp & ~gb->memory.io[GB_REG_JOYP] & 0xF) {
gb->memory.io[REG_IF] |= (1 << GB_IRQ_KEYPAD); gb->memory.io[GB_REG_IF] |= (1 << GB_IRQ_KEYPAD);
GBUpdateIRQs(gb); GBUpdateIRQs(gb);
} }
return gb->memory.io[REG_JOYP]; return gb->memory.io[GB_REG_JOYP];
} }
static uint8_t _readKeysFiltered(struct GB* gb) { static uint8_t _readKeysFiltered(struct GB* gb) {
@ -581,7 +581,7 @@ static uint8_t _readKeysFiltered(struct GB* gb) {
uint8_t GBIORead(struct GB* gb, unsigned address) { uint8_t GBIORead(struct GB* gb, unsigned address) {
switch (address) { switch (address) {
case REG_JOYP: case GB_REG_JOYP:
{ {
size_t c; size_t c;
for (c = 0; c < mCoreCallbacksListSize(&gb->coreCallbacks); ++c) { for (c = 0; c < mCoreCallbacksListSize(&gb->coreCallbacks); ++c) {
@ -592,24 +592,24 @@ uint8_t GBIORead(struct GB* gb, unsigned address) {
} }
} }
return _readKeysFiltered(gb); return _readKeysFiltered(gb);
case REG_IE: case GB_REG_IE:
return gb->memory.ie; return gb->memory.ie;
case REG_WAVE_0: case GB_REG_WAVE_0:
case REG_WAVE_1: case GB_REG_WAVE_1:
case REG_WAVE_2: case GB_REG_WAVE_2:
case REG_WAVE_3: case GB_REG_WAVE_3:
case REG_WAVE_4: case GB_REG_WAVE_4:
case REG_WAVE_5: case GB_REG_WAVE_5:
case REG_WAVE_6: case GB_REG_WAVE_6:
case REG_WAVE_7: case GB_REG_WAVE_7:
case REG_WAVE_8: case GB_REG_WAVE_8:
case REG_WAVE_9: case GB_REG_WAVE_9:
case REG_WAVE_A: case GB_REG_WAVE_A:
case REG_WAVE_B: case GB_REG_WAVE_B:
case REG_WAVE_C: case GB_REG_WAVE_C:
case REG_WAVE_D: case GB_REG_WAVE_D:
case REG_WAVE_E: case GB_REG_WAVE_E:
case REG_WAVE_F: case GB_REG_WAVE_F:
if (gb->audio.playingCh3) { if (gb->audio.playingCh3) {
if (gb->audio.ch3.readable || gb->audio.style != GB_AUDIO_DMG) { if (gb->audio.ch3.readable || gb->audio.style != GB_AUDIO_DMG) {
return gb->audio.ch3.wavedata8[gb->audio.ch3.window >> 1]; return gb->audio.ch3.wavedata8[gb->audio.ch3.window >> 1];
@ -617,62 +617,62 @@ uint8_t GBIORead(struct GB* gb, unsigned address) {
return 0xFF; return 0xFF;
} }
} else { } else {
return gb->audio.ch3.wavedata8[address - REG_WAVE_0]; return gb->audio.ch3.wavedata8[address - GB_REG_WAVE_0];
} }
break; break;
case REG_SB: case GB_REG_SB:
case REG_SC: case GB_REG_SC:
case REG_IF: case GB_REG_IF:
case REG_NR10: case GB_REG_NR10:
case REG_NR11: case GB_REG_NR11:
case REG_NR12: case GB_REG_NR12:
case REG_NR14: case GB_REG_NR14:
case REG_NR21: case GB_REG_NR21:
case REG_NR22: case GB_REG_NR22:
case REG_NR24: case GB_REG_NR24:
case REG_NR30: case GB_REG_NR30:
case REG_NR32: case GB_REG_NR32:
case REG_NR34: case GB_REG_NR34:
case REG_NR41: case GB_REG_NR41:
case REG_NR42: case GB_REG_NR42:
case REG_NR43: case GB_REG_NR43:
case REG_NR44: case GB_REG_NR44:
case REG_NR50: case GB_REG_NR50:
case REG_NR51: case GB_REG_NR51:
case REG_NR52: case GB_REG_NR52:
case REG_DIV: case GB_REG_DIV:
case REG_TIMA: case GB_REG_TIMA:
case REG_TMA: case GB_REG_TMA:
case REG_TAC: case GB_REG_TAC:
case REG_STAT: case GB_REG_STAT:
case REG_LCDC: case GB_REG_LCDC:
case REG_SCY: case GB_REG_SCY:
case REG_SCX: case GB_REG_SCX:
case REG_LY: case GB_REG_LY:
case REG_LYC: case GB_REG_LYC:
case REG_DMA: case GB_REG_DMA:
case REG_BGP: case GB_REG_BGP:
case REG_OBP0: case GB_REG_OBP0:
case REG_OBP1: case GB_REG_OBP1:
case REG_WY: case GB_REG_WY:
case REG_WX: case GB_REG_WX:
// Handled transparently by the registers // Handled transparently by the registers
break; break;
default: default:
if (gb->model >= GB_MODEL_CGB) { if (gb->model >= GB_MODEL_CGB) {
switch (address) { switch (address) {
case REG_KEY1: case GB_REG_KEY1:
case REG_VBK: case GB_REG_VBK:
case REG_HDMA1: case GB_REG_HDMA1:
case REG_HDMA2: case GB_REG_HDMA2:
case REG_HDMA3: case GB_REG_HDMA3:
case REG_HDMA4: case GB_REG_HDMA4:
case REG_HDMA5: case GB_REG_HDMA5:
case REG_BCPS: case GB_REG_BCPS:
case REG_BCPD: case GB_REG_BCPD:
case REG_OCPS: case GB_REG_OCPS:
case REG_OCPD: case GB_REG_OCPD:
case REG_SVBK: case GB_REG_SVBK:
// Handled transparently by the registers // Handled transparently by the registers
goto success; goto success;
default: default:
@ -702,43 +702,43 @@ void GBIODeserialize(struct GB* gb, const struct GBSerializedState* state) {
gb->audio.enable = GBAudioEnableGetEnable(*gb->audio.nr52); gb->audio.enable = GBAudioEnableGetEnable(*gb->audio.nr52);
if (gb->audio.enable) { if (gb->audio.enable) {
GBIOWrite(gb, REG_NR10, gb->memory.io[REG_NR10]); GBIOWrite(gb, GB_REG_NR10, gb->memory.io[GB_REG_NR10]);
GBIOWrite(gb, REG_NR11, gb->memory.io[REG_NR11]); GBIOWrite(gb, GB_REG_NR11, gb->memory.io[GB_REG_NR11]);
GBIOWrite(gb, REG_NR12, gb->memory.io[REG_NR12]); GBIOWrite(gb, GB_REG_NR12, gb->memory.io[GB_REG_NR12]);
GBIOWrite(gb, REG_NR13, gb->memory.io[REG_NR13]); GBIOWrite(gb, GB_REG_NR13, gb->memory.io[GB_REG_NR13]);
gb->audio.ch1.control.frequency &= 0xFF; gb->audio.ch1.control.frequency &= 0xFF;
gb->audio.ch1.control.frequency |= GBAudioRegisterControlGetFrequency(gb->memory.io[REG_NR14] << 8); gb->audio.ch1.control.frequency |= GBAudioRegisterControlGetFrequency(gb->memory.io[GB_REG_NR14] << 8);
gb->audio.ch1.control.stop = GBAudioRegisterControlGetStop(gb->memory.io[REG_NR14] << 8); gb->audio.ch1.control.stop = GBAudioRegisterControlGetStop(gb->memory.io[GB_REG_NR14] << 8);
GBIOWrite(gb, REG_NR21, gb->memory.io[REG_NR21]); GBIOWrite(gb, GB_REG_NR21, gb->memory.io[GB_REG_NR21]);
GBIOWrite(gb, REG_NR22, gb->memory.io[REG_NR22]); GBIOWrite(gb, GB_REG_NR22, gb->memory.io[GB_REG_NR22]);
GBIOWrite(gb, REG_NR23, gb->memory.io[REG_NR23]); GBIOWrite(gb, GB_REG_NR23, gb->memory.io[GB_REG_NR23]);
gb->audio.ch2.control.frequency &= 0xFF; gb->audio.ch2.control.frequency &= 0xFF;
gb->audio.ch2.control.frequency |= GBAudioRegisterControlGetFrequency(gb->memory.io[REG_NR24] << 8); gb->audio.ch2.control.frequency |= GBAudioRegisterControlGetFrequency(gb->memory.io[GB_REG_NR24] << 8);
gb->audio.ch2.control.stop = GBAudioRegisterControlGetStop(gb->memory.io[REG_NR24] << 8); gb->audio.ch2.control.stop = GBAudioRegisterControlGetStop(gb->memory.io[GB_REG_NR24] << 8);
GBIOWrite(gb, REG_NR30, gb->memory.io[REG_NR30]); GBIOWrite(gb, GB_REG_NR30, gb->memory.io[GB_REG_NR30]);
GBIOWrite(gb, REG_NR31, gb->memory.io[REG_NR31]); GBIOWrite(gb, GB_REG_NR31, gb->memory.io[GB_REG_NR31]);
GBIOWrite(gb, REG_NR32, gb->memory.io[REG_NR32]); GBIOWrite(gb, GB_REG_NR32, gb->memory.io[GB_REG_NR32]);
GBIOWrite(gb, REG_NR33, gb->memory.io[REG_NR33]); GBIOWrite(gb, GB_REG_NR33, gb->memory.io[GB_REG_NR33]);
gb->audio.ch3.rate &= 0xFF; gb->audio.ch3.rate &= 0xFF;
gb->audio.ch3.rate |= GBAudioRegisterControlGetRate(gb->memory.io[REG_NR34] << 8); gb->audio.ch3.rate |= GBAudioRegisterControlGetRate(gb->memory.io[GB_REG_NR34] << 8);
gb->audio.ch3.stop = GBAudioRegisterControlGetStop(gb->memory.io[REG_NR34] << 8); gb->audio.ch3.stop = GBAudioRegisterControlGetStop(gb->memory.io[GB_REG_NR34] << 8);
GBIOWrite(gb, REG_NR41, gb->memory.io[REG_NR41]); GBIOWrite(gb, GB_REG_NR41, gb->memory.io[GB_REG_NR41]);
GBIOWrite(gb, REG_NR42, gb->memory.io[REG_NR42]); GBIOWrite(gb, GB_REG_NR42, gb->memory.io[GB_REG_NR42]);
GBIOWrite(gb, REG_NR43, gb->memory.io[REG_NR43]); GBIOWrite(gb, GB_REG_NR43, gb->memory.io[GB_REG_NR43]);
gb->audio.ch4.stop = GBAudioRegisterNoiseControlGetStop(gb->memory.io[REG_NR44]); gb->audio.ch4.stop = GBAudioRegisterNoiseControlGetStop(gb->memory.io[GB_REG_NR44]);
GBIOWrite(gb, REG_NR50, gb->memory.io[REG_NR50]); GBIOWrite(gb, GB_REG_NR50, gb->memory.io[GB_REG_NR50]);
GBIOWrite(gb, REG_NR51, gb->memory.io[REG_NR51]); GBIOWrite(gb, GB_REG_NR51, gb->memory.io[GB_REG_NR51]);
} }
gb->video.renderer->writeVideoRegister(gb->video.renderer, REG_LCDC, state->io[REG_LCDC]); gb->video.renderer->writeVideoRegister(gb->video.renderer, GB_REG_LCDC, state->io[GB_REG_LCDC]);
gb->video.renderer->writeVideoRegister(gb->video.renderer, REG_SCY, state->io[REG_SCY]); gb->video.renderer->writeVideoRegister(gb->video.renderer, GB_REG_SCY, state->io[GB_REG_SCY]);
gb->video.renderer->writeVideoRegister(gb->video.renderer, REG_SCX, state->io[REG_SCX]); gb->video.renderer->writeVideoRegister(gb->video.renderer, GB_REG_SCX, state->io[GB_REG_SCX]);
gb->video.renderer->writeVideoRegister(gb->video.renderer, REG_WY, state->io[REG_WY]); gb->video.renderer->writeVideoRegister(gb->video.renderer, GB_REG_WY, state->io[GB_REG_WY]);
gb->video.renderer->writeVideoRegister(gb->video.renderer, REG_WX, state->io[REG_WX]); gb->video.renderer->writeVideoRegister(gb->video.renderer, GB_REG_WX, state->io[GB_REG_WX]);
if (gb->model & GB_MODEL_SGB) { if (gb->model & GB_MODEL_SGB) {
gb->video.renderer->writeVideoRegister(gb->video.renderer, REG_BGP, state->io[REG_BGP]); gb->video.renderer->writeVideoRegister(gb->video.renderer, GB_REG_BGP, state->io[GB_REG_BGP]);
gb->video.renderer->writeVideoRegister(gb->video.renderer, REG_OBP0, state->io[REG_OBP0]); gb->video.renderer->writeVideoRegister(gb->video.renderer, GB_REG_OBP0, state->io[GB_REG_OBP0]);
gb->video.renderer->writeVideoRegister(gb->video.renderer, REG_OBP1, state->io[REG_OBP1]); gb->video.renderer->writeVideoRegister(gb->video.renderer, GB_REG_OBP1, state->io[GB_REG_OBP1]);
} }
gb->video.stat = state->io[REG_STAT]; gb->video.stat = state->io[GB_REG_STAT];
} }

View File

@ -328,7 +328,7 @@ uint8_t GBLoad8(struct SM83Core* cpu, uint16_t address) {
if (address < GB_BASE_IE) { if (address < GB_BASE_IE) {
return memory->hram[address & GB_SIZE_HRAM]; return memory->hram[address & GB_SIZE_HRAM];
} }
return GBIORead(gb, REG_IE); return GBIORead(gb, GB_REG_IE);
} }
} }
@ -398,7 +398,7 @@ void GBStore8(struct SM83Core* cpu, uint16_t address, int8_t value) {
} else if (address < GB_BASE_IE) { } else if (address < GB_BASE_IE) {
memory->hram[address & GB_SIZE_HRAM] = value; memory->hram[address & GB_SIZE_HRAM] = value;
} else { } else {
GBIOWrite(gb, REG_IE, value); GBIOWrite(gb, GB_REG_IE, value);
} }
} }
} }
@ -522,7 +522,7 @@ uint8_t GBView8(struct SM83Core* cpu, uint16_t address, int segment) {
if (address < GB_BASE_IE) { if (address < GB_BASE_IE) {
return memory->hram[address & GB_SIZE_HRAM]; return memory->hram[address & GB_SIZE_HRAM];
} }
return GBIORead(gb, REG_IE); return GBIORead(gb, GB_REG_IE);
} }
} }
@ -541,10 +541,10 @@ void GBMemoryDMA(struct GB* gb, uint16_t base) {
} }
uint8_t GBMemoryWriteHDMA5(struct GB* gb, uint8_t value) { uint8_t GBMemoryWriteHDMA5(struct GB* gb, uint8_t value) {
gb->memory.hdmaSource = gb->memory.io[REG_HDMA1] << 8; gb->memory.hdmaSource = gb->memory.io[GB_REG_HDMA1] << 8;
gb->memory.hdmaSource |= gb->memory.io[REG_HDMA2]; gb->memory.hdmaSource |= gb->memory.io[GB_REG_HDMA2];
gb->memory.hdmaDest = gb->memory.io[REG_HDMA3] << 8; gb->memory.hdmaDest = gb->memory.io[GB_REG_HDMA3] << 8;
gb->memory.hdmaDest |= gb->memory.io[REG_HDMA4]; gb->memory.hdmaDest |= gb->memory.io[GB_REG_HDMA4];
gb->memory.hdmaSource &= 0xFFF0; gb->memory.hdmaSource &= 0xFFF0;
if (gb->memory.hdmaSource >= 0x8000 && gb->memory.hdmaSource < 0xA000) { if (gb->memory.hdmaSource >= 0x8000 && gb->memory.hdmaSource < 0xA000) {
mLOG(GB_MEM, GAME_ERROR, "Invalid HDMA source: %04X", gb->memory.hdmaSource); mLOG(GB_MEM, GAME_ERROR, "Invalid HDMA source: %04X", gb->memory.hdmaSource);
@ -554,7 +554,7 @@ uint8_t GBMemoryWriteHDMA5(struct GB* gb, uint8_t value) {
gb->memory.hdmaDest |= 0x8000; gb->memory.hdmaDest |= 0x8000;
bool wasHdma = gb->memory.isHdma; bool wasHdma = gb->memory.isHdma;
gb->memory.isHdma = value & 0x80; gb->memory.isHdma = value & 0x80;
if ((!wasHdma && !gb->memory.isHdma) || (GBRegisterLCDCIsEnable(gb->memory.io[REG_LCDC]) && gb->video.mode == 0)) { if ((!wasHdma && !gb->memory.isHdma) || (GBRegisterLCDCIsEnable(gb->memory.io[GB_REG_LCDC]) && gb->video.mode == 0)) {
if (gb->memory.isHdma) { if (gb->memory.isHdma) {
gb->memory.hdmaRemaining = 0x10; gb->memory.hdmaRemaining = 0x10;
} else { } else {
@ -562,7 +562,7 @@ uint8_t GBMemoryWriteHDMA5(struct GB* gb, uint8_t value) {
} }
gb->cpuBlocked = true; gb->cpuBlocked = true;
mTimingSchedule(&gb->timing, &gb->memory.hdmaEvent, 0); mTimingSchedule(&gb->timing, &gb->memory.hdmaEvent, 0);
} else if (gb->memory.isHdma && !GBRegisterLCDCIsEnable(gb->memory.io[REG_LCDC])) { } else if (gb->memory.isHdma && !GBRegisterLCDCIsEnable(gb->memory.io[GB_REG_LCDC])) {
return 0x80 | ((value + 1) & 0x7F); return 0x80 | ((value + 1) & 0x7F);
} }
return value & 0x7F; return value & 0x7F;
@ -597,17 +597,17 @@ void _GBMemoryHDMAService(struct mTiming* timing, void* context, uint32_t cycles
mTimingSchedule(timing, &gb->memory.hdmaEvent, 2 - cyclesLate); mTimingSchedule(timing, &gb->memory.hdmaEvent, 2 - cyclesLate);
} else { } else {
gb->cpuBlocked = false; gb->cpuBlocked = false;
gb->memory.io[REG_HDMA1] = gb->memory.hdmaSource >> 8; gb->memory.io[GB_REG_HDMA1] = gb->memory.hdmaSource >> 8;
gb->memory.io[REG_HDMA2] = gb->memory.hdmaSource; gb->memory.io[GB_REG_HDMA2] = gb->memory.hdmaSource;
gb->memory.io[REG_HDMA3] = gb->memory.hdmaDest >> 8; gb->memory.io[GB_REG_HDMA3] = gb->memory.hdmaDest >> 8;
gb->memory.io[REG_HDMA4] = gb->memory.hdmaDest; gb->memory.io[GB_REG_HDMA4] = gb->memory.hdmaDest;
if (gb->memory.isHdma) { if (gb->memory.isHdma) {
--gb->memory.io[REG_HDMA5]; --gb->memory.io[GB_REG_HDMA5];
if (gb->memory.io[REG_HDMA5] == 0xFF) { if (gb->memory.io[GB_REG_HDMA5] == 0xFF) {
gb->memory.isHdma = false; gb->memory.isHdma = false;
} }
} else { } else {
gb->memory.io[REG_HDMA5] = 0xFF; gb->memory.io[GB_REG_HDMA5] = 0xFF;
} }
} }
} }

View File

@ -38,7 +38,7 @@ void GBVideoCacheAssociate(struct mCacheSet* cache, struct GBVideo* video) {
mMapCacheConfigureSystem(mMapCacheSetGetPointer(&cache->maps, 0), sysconfig); mMapCacheConfigureSystem(mMapCacheSetGetPointer(&cache->maps, 0), sysconfig);
mMapCacheConfigureSystem(mMapCacheSetGetPointer(&cache->maps, 1), sysconfig); mMapCacheConfigureSystem(mMapCacheSetGetPointer(&cache->maps, 1), sysconfig);
GBVideoCacheWriteVideoRegister(cache, REG_LCDC, video->p->memory.io[REG_LCDC]); GBVideoCacheWriteVideoRegister(cache, GB_REG_LCDC, video->p->memory.io[GB_REG_LCDC]);
} }
static void mapParserDMG0(struct mMapCache* cache, struct mMapCacheEntry* entry, void* vram) { static void mapParserDMG0(struct mMapCache* cache, struct mMapCacheEntry* entry, void* vram) {
@ -80,7 +80,7 @@ static void mapParserCGB1(struct mMapCache* cache, struct mMapCacheEntry* entry,
} }
void GBVideoCacheWriteVideoRegister(struct mCacheSet* cache, uint16_t address, uint8_t value) { void GBVideoCacheWriteVideoRegister(struct mCacheSet* cache, uint16_t address, uint8_t value) {
if (address != REG_LCDC) { if (address != GB_REG_LCDC) {
return; return;
} }
struct mMapCache* map = mMapCacheSetGetPointer(&cache->maps, 0); struct mMapCache* map = mMapCacheSetGetPointer(&cache->maps, 0);

View File

@ -257,37 +257,37 @@ static uint8_t GBVideoSoftwareRendererWriteVideoRegister(struct GBVideoRenderer*
bool wasWindow = _inWindow(softwareRenderer); bool wasWindow = _inWindow(softwareRenderer);
uint8_t wy = softwareRenderer->wy; uint8_t wy = softwareRenderer->wy;
switch (address) { switch (address) {
case REG_LCDC: case GB_REG_LCDC:
softwareRenderer->lcdc = value; softwareRenderer->lcdc = value;
GBVideoSoftwareRendererUpdateWindow(softwareRenderer, wasWindow, _inWindow(softwareRenderer), wy); GBVideoSoftwareRendererUpdateWindow(softwareRenderer, wasWindow, _inWindow(softwareRenderer), wy);
break; break;
case REG_SCY: case GB_REG_SCY:
softwareRenderer->scy = value; softwareRenderer->scy = value;
break; break;
case REG_SCX: case GB_REG_SCX:
softwareRenderer->scx = value; softwareRenderer->scx = value;
break; break;
case REG_WY: case GB_REG_WY:
softwareRenderer->wy = value; softwareRenderer->wy = value;
GBVideoSoftwareRendererUpdateWindow(softwareRenderer, wasWindow, _inWindow(softwareRenderer), wy); GBVideoSoftwareRendererUpdateWindow(softwareRenderer, wasWindow, _inWindow(softwareRenderer), wy);
break; break;
case REG_WX: case GB_REG_WX:
softwareRenderer->wx = value; softwareRenderer->wx = value;
GBVideoSoftwareRendererUpdateWindow(softwareRenderer, wasWindow, _inWindow(softwareRenderer), wy); GBVideoSoftwareRendererUpdateWindow(softwareRenderer, wasWindow, _inWindow(softwareRenderer), wy);
break; break;
case REG_BGP: case GB_REG_BGP:
softwareRenderer->lookup[0] = value & 3; softwareRenderer->lookup[0] = value & 3;
softwareRenderer->lookup[1] = (value >> 2) & 3; softwareRenderer->lookup[1] = (value >> 2) & 3;
softwareRenderer->lookup[2] = (value >> 4) & 3; softwareRenderer->lookup[2] = (value >> 4) & 3;
softwareRenderer->lookup[3] = (value >> 6) & 3; softwareRenderer->lookup[3] = (value >> 6) & 3;
break; break;
case REG_OBP0: case GB_REG_OBP0:
softwareRenderer->lookup[0x20 + 0] = value & 3; softwareRenderer->lookup[0x20 + 0] = value & 3;
softwareRenderer->lookup[0x20 + 1] = (value >> 2) & 3; softwareRenderer->lookup[0x20 + 1] = (value >> 2) & 3;
softwareRenderer->lookup[0x20 + 2] = (value >> 4) & 3; softwareRenderer->lookup[0x20 + 2] = (value >> 4) & 3;
softwareRenderer->lookup[0x20 + 3] = (value >> 6) & 3; softwareRenderer->lookup[0x20 + 3] = (value >> 6) & 3;
break; break;
case REG_OBP1: case GB_REG_OBP1:
softwareRenderer->lookup[0x24 + 0] = value & 3; softwareRenderer->lookup[0x24 + 0] = value & 3;
softwareRenderer->lookup[0x24 + 1] = (value >> 2) & 3; softwareRenderer->lookup[0x24 + 1] = (value >> 2) & 3;
softwareRenderer->lookup[0x24 + 2] = (value >> 4) & 3; softwareRenderer->lookup[0x24 + 2] = (value >> 4) & 3;

View File

@ -139,7 +139,7 @@ bool GBDeserialize(struct GB* gb, const struct GBSerializedState* state) {
mLOG(GB_STATE, WARN, "Savestate is corrupted: OCPS is out of range"); mLOG(GB_STATE, WARN, "Savestate is corrupted: OCPS is out of range");
} }
bool differentBios = !gb->biosVf || gb->model != state->model; bool differentBios = !gb->biosVf || gb->model != state->model;
if (state->io[REG_BANK] == 0xFF) { if (state->io[GB_REG_BANK] == 0xFF) {
if (differentBios) { if (differentBios) {
mLOG(GB_STATE, WARN, "Incompatible savestate, please restart with correct BIOS in %s mode", GBModelToName(state->model)); mLOG(GB_STATE, WARN, "Incompatible savestate, please restart with correct BIOS in %s mode", GBModelToName(state->model));
error = true; error = true;
@ -206,7 +206,7 @@ bool GBDeserialize(struct GB* gb, const struct GBSerializedState* state) {
GBTimerDeserialize(&gb->timer, state); GBTimerDeserialize(&gb->timer, state);
GBAudioDeserialize(&gb->audio, state); GBAudioDeserialize(&gb->audio, state);
if (gb->memory.io[REG_BANK] == 0xFF) { if (gb->memory.io[GB_REG_BANK] == 0xFF) {
GBMapBIOS(gb); GBMapBIOS(gb);
} else { } else {
GBUnmapBIOS(gb); GBUnmapBIOS(gb);

View File

@ -66,13 +66,13 @@ void _GBSIOProcessEvents(struct mTiming* timing, void* context, uint32_t cyclesL
if (sio->remainingBits) { if (sio->remainingBits) {
doIRQ = true; doIRQ = true;
--sio->remainingBits; --sio->remainingBits;
sio->p->memory.io[REG_SB] &= ~(128 >> sio->remainingBits); sio->p->memory.io[GB_REG_SB] &= ~(128 >> sio->remainingBits);
sio->p->memory.io[REG_SB] |= sio->pendingSB & (128 >> sio->remainingBits); sio->p->memory.io[GB_REG_SB] |= sio->pendingSB & (128 >> sio->remainingBits);
} }
if (!sio->remainingBits) { if (!sio->remainingBits) {
sio->p->memory.io[REG_SC] = GBRegisterSCClearEnable(sio->p->memory.io[REG_SC]); sio->p->memory.io[GB_REG_SC] = GBRegisterSCClearEnable(sio->p->memory.io[GB_REG_SC]);
if (doIRQ) { if (doIRQ) {
sio->p->memory.io[REG_IF] |= (1 << GB_IRQ_SIO); sio->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_SIO);
GBUpdateIRQs(sio->p); GBUpdateIRQs(sio->p);
sio->pendingSB = 0xFF; sio->pendingSB = 0xFF;
} }

View File

@ -90,7 +90,7 @@ static void _finishTransfer(struct GBSIOLockstepNode* node) {
} }
struct GBSIO* sio = node->d.p; struct GBSIO* sio = node->d.p;
sio->pendingSB = node->p->pendingSB[!node->id]; sio->pendingSB = node->p->pendingSB[!node->id];
if (GBRegisterSCIsEnable(sio->p->memory.io[REG_SC])) { if (GBRegisterSCIsEnable(sio->p->memory.io[GB_REG_SC])) {
sio->remainingBits = 8; sio->remainingBits = 8;
mTimingDeschedule(&sio->p->timing, &sio->event); mTimingDeschedule(&sio->p->timing, &sio->event);
mTimingSchedule(&sio->p->timing, &sio->event, 0); mTimingSchedule(&sio->p->timing, &sio->event, 0);

View File

@ -14,8 +14,8 @@ void _GBTimerIRQ(struct mTiming* timing, void* context, uint32_t cyclesLate) {
UNUSED(timing); UNUSED(timing);
UNUSED(cyclesLate); UNUSED(cyclesLate);
struct GBTimer* timer = context; struct GBTimer* timer = context;
timer->p->memory.io[REG_TIMA] = timer->p->memory.io[REG_TMA]; timer->p->memory.io[GB_REG_TIMA] = timer->p->memory.io[GB_REG_TMA];
timer->p->memory.io[REG_IF] |= (1 << GB_IRQ_TIMER); timer->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_TIMER);
GBUpdateIRQs(timer->p); GBUpdateIRQs(timer->p);
} }
@ -25,8 +25,8 @@ static void _GBTimerDivIncrement(struct GBTimer* timer, uint32_t cyclesLate) {
// Make sure to trigger when the correct bit is a falling edge // Make sure to trigger when the correct bit is a falling edge
if (timer->timaPeriod > 0 && (timer->internalDiv & (timer->timaPeriod - 1)) == timer->timaPeriod - 1) { if (timer->timaPeriod > 0 && (timer->internalDiv & (timer->timaPeriod - 1)) == timer->timaPeriod - 1) {
++timer->p->memory.io[REG_TIMA]; ++timer->p->memory.io[GB_REG_TIMA];
if (!timer->p->memory.io[REG_TIMA]) { if (!timer->p->memory.io[GB_REG_TIMA]) {
mTimingSchedule(&timer->p->timing, &timer->irq, 7 - ((timer->p->cpu->executionState - cyclesLate) & 3)); mTimingSchedule(&timer->p->timing, &timer->irq, 7 - ((timer->p->cpu->executionState - cyclesLate) & 3));
} }
} }
@ -35,7 +35,7 @@ static void _GBTimerDivIncrement(struct GBTimer* timer, uint32_t cyclesLate) {
GBAudioUpdateFrame(&timer->p->audio, &timer->p->timing); GBAudioUpdateFrame(&timer->p->audio, &timer->p->timing);
} }
++timer->internalDiv; ++timer->internalDiv;
timer->p->memory.io[REG_DIV] = timer->internalDiv >> 4; timer->p->memory.io[GB_REG_DIV] = timer->internalDiv >> 4;
} }
} }
@ -75,8 +75,8 @@ void GBTimerDivReset(struct GBTimer* timer) {
mTimingDeschedule(&timer->p->timing, &timer->event); mTimingDeschedule(&timer->p->timing, &timer->event);
_GBTimerDivIncrement(timer, 0); _GBTimerDivIncrement(timer, 0);
if (((timer->internalDiv << 1) | ((timer->nextDiv >> 3) & 1)) & timer->timaPeriod) { if (((timer->internalDiv << 1) | ((timer->nextDiv >> 3) & 1)) & timer->timaPeriod) {
++timer->p->memory.io[REG_TIMA]; ++timer->p->memory.io[GB_REG_TIMA];
if (!timer->p->memory.io[REG_TIMA]) { if (!timer->p->memory.io[GB_REG_TIMA]) {
mTimingSchedule(&timer->p->timing, &timer->irq, 7 - (timer->p->cpu->executionState & 3)); mTimingSchedule(&timer->p->timing, &timer->irq, 7 - (timer->p->cpu->executionState & 3));
} }
} }
@ -84,7 +84,7 @@ void GBTimerDivReset(struct GBTimer* timer) {
if (timer->internalDiv & timingFactor) { if (timer->internalDiv & timingFactor) {
GBAudioUpdateFrame(&timer->p->audio, &timer->p->timing); GBAudioUpdateFrame(&timer->p->audio, &timer->p->timing);
} }
timer->p->memory.io[REG_DIV] = 0; timer->p->memory.io[GB_REG_DIV] = 0;
timer->internalDiv = 0; timer->internalDiv = 0;
timer->nextDiv = GB_DMG_DIV_PERIOD; timer->nextDiv = GB_DMG_DIV_PERIOD;
mTimingSchedule(&timer->p->timing, &timer->event, timer->nextDiv - ((timer->p->cpu->executionState + 1) & 3)); mTimingSchedule(&timer->p->timing, &timer->event, timer->nextDiv - ((timer->p->cpu->executionState + 1) & 3));

View File

@ -239,19 +239,19 @@ void GBVideoSkipBIOS(struct GBVideo* video) {
int32_t next; int32_t next;
if (video->p->model == GB_MODEL_CGB) { if (video->p->model == GB_MODEL_CGB) {
video->ly = GB_VIDEO_VERTICAL_PIXELS; video->ly = GB_VIDEO_VERTICAL_PIXELS;
video->p->memory.io[REG_LY] = video->ly; video->p->memory.io[GB_REG_LY] = video->ly;
video->stat = GBRegisterSTATClearLYC(video->stat); video->stat = GBRegisterSTATClearLYC(video->stat);
next = 20; next = 20;
} else { } else {
video->ly = GB_VIDEO_VERTICAL_TOTAL_PIXELS; video->ly = GB_VIDEO_VERTICAL_TOTAL_PIXELS;
video->p->memory.io[REG_LY] = 0; video->p->memory.io[GB_REG_LY] = 0;
next = 56; next = 56;
} }
video->stat = GBRegisterSTATSetMode(video->stat, video->mode); video->stat = GBRegisterSTATSetMode(video->stat, video->mode);
video->p->memory.io[REG_IF] |= (1 << GB_IRQ_VBLANK); video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_VBLANK);
GBUpdateIRQs(video->p); GBUpdateIRQs(video->p);
video->p->memory.io[REG_STAT] = video->stat; video->p->memory.io[GB_REG_STAT] = video->stat;
mTimingDeschedule(&video->p->timing, &video->modeEvent); mTimingDeschedule(&video->p->timing, &video->modeEvent);
mTimingSchedule(&video->p->timing, &video->modeEvent, next); mTimingSchedule(&video->p->timing, &video->modeEvent, next);
} }
@ -261,10 +261,10 @@ void _endMode0(struct mTiming* timing, void* context, uint32_t cyclesLate) {
if (video->frameskipCounter <= 0) { if (video->frameskipCounter <= 0) {
video->renderer->finishScanline(video->renderer, video->ly); video->renderer->finishScanline(video->renderer, video->ly);
} }
int lyc = video->p->memory.io[REG_LYC]; int lyc = video->p->memory.io[GB_REG_LYC];
int32_t next; int32_t next;
++video->ly; ++video->ly;
video->p->memory.io[REG_LY] = video->ly; video->p->memory.io[GB_REG_LY] = video->ly;
GBRegisterSTAT oldStat = video->stat; GBRegisterSTAT oldStat = video->stat;
if (video->ly < GB_VIDEO_VERTICAL_PIXELS) { if (video->ly < GB_VIDEO_VERTICAL_PIXELS) {
next = GB_VIDEO_MODE_2_LENGTH; next = GB_VIDEO_MODE_2_LENGTH;
@ -279,68 +279,68 @@ void _endMode0(struct mTiming* timing, void* context, uint32_t cyclesLate) {
mTimingSchedule(&video->p->timing, &video->frameEvent, -cyclesLate); mTimingSchedule(&video->p->timing, &video->frameEvent, -cyclesLate);
if (!_statIRQAsserted(oldStat) && GBRegisterSTATIsOAMIRQ(video->stat)) { if (!_statIRQAsserted(oldStat) && GBRegisterSTATIsOAMIRQ(video->stat)) {
video->p->memory.io[REG_IF] |= (1 << GB_IRQ_LCDSTAT); video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_LCDSTAT);
} }
video->p->memory.io[REG_IF] |= (1 << GB_IRQ_VBLANK); video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_VBLANK);
} }
video->stat = GBRegisterSTATSetMode(video->stat, video->mode); video->stat = GBRegisterSTATSetMode(video->stat, video->mode);
if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) { if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) {
video->p->memory.io[REG_IF] |= (1 << GB_IRQ_LCDSTAT); video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_LCDSTAT);
} }
// LYC stat is delayed 1 T-cycle // LYC stat is delayed 1 T-cycle
oldStat = video->stat; oldStat = video->stat;
video->stat = GBRegisterSTATSetLYC(video->stat, lyc == video->ly); video->stat = GBRegisterSTATSetLYC(video->stat, lyc == video->ly);
if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) { if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) {
video->p->memory.io[REG_IF] |= (1 << GB_IRQ_LCDSTAT); video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_LCDSTAT);
} }
GBUpdateIRQs(video->p); GBUpdateIRQs(video->p);
video->p->memory.io[REG_STAT] = video->stat; video->p->memory.io[GB_REG_STAT] = video->stat;
mTimingSchedule(timing, &video->modeEvent, (next << video->p->doubleSpeed) - cyclesLate); mTimingSchedule(timing, &video->modeEvent, (next << video->p->doubleSpeed) - cyclesLate);
} }
void _endMode1(struct mTiming* timing, void* context, uint32_t cyclesLate) { void _endMode1(struct mTiming* timing, void* context, uint32_t cyclesLate) {
struct GBVideo* video = context; struct GBVideo* video = context;
if (!GBRegisterLCDCIsEnable(video->p->memory.io[REG_LCDC])) { if (!GBRegisterLCDCIsEnable(video->p->memory.io[GB_REG_LCDC])) {
return; return;
} }
int lyc = video->p->memory.io[REG_LYC]; int lyc = video->p->memory.io[GB_REG_LYC];
// TODO: One M-cycle delay // TODO: One M-cycle delay
++video->ly; ++video->ly;
int32_t next; int32_t next;
if (video->ly == GB_VIDEO_VERTICAL_TOTAL_PIXELS + 1) { if (video->ly == GB_VIDEO_VERTICAL_TOTAL_PIXELS + 1) {
video->ly = 0; video->ly = 0;
video->p->memory.io[REG_LY] = video->ly; video->p->memory.io[GB_REG_LY] = video->ly;
next = GB_VIDEO_MODE_2_LENGTH; next = GB_VIDEO_MODE_2_LENGTH;
video->mode = 2; video->mode = 2;
video->modeEvent.callback = _endMode2; video->modeEvent.callback = _endMode2;
} else if (video->ly == GB_VIDEO_VERTICAL_TOTAL_PIXELS) { } else if (video->ly == GB_VIDEO_VERTICAL_TOTAL_PIXELS) {
video->p->memory.io[REG_LY] = 0; video->p->memory.io[GB_REG_LY] = 0;
next = GB_VIDEO_HORIZONTAL_LENGTH - 8; next = GB_VIDEO_HORIZONTAL_LENGTH - 8;
} else if (video->ly == GB_VIDEO_VERTICAL_TOTAL_PIXELS - 1) { } else if (video->ly == GB_VIDEO_VERTICAL_TOTAL_PIXELS - 1) {
video->p->memory.io[REG_LY] = video->ly; video->p->memory.io[GB_REG_LY] = video->ly;
next = 8; next = 8;
} else { } else {
video->p->memory.io[REG_LY] = video->ly; video->p->memory.io[GB_REG_LY] = video->ly;
next = GB_VIDEO_HORIZONTAL_LENGTH; next = GB_VIDEO_HORIZONTAL_LENGTH;
} }
GBRegisterSTAT oldStat = video->stat; GBRegisterSTAT oldStat = video->stat;
video->stat = GBRegisterSTATSetMode(video->stat, video->mode); video->stat = GBRegisterSTATSetMode(video->stat, video->mode);
video->stat = GBRegisterSTATSetLYC(video->stat, lyc == video->p->memory.io[REG_LY]); video->stat = GBRegisterSTATSetLYC(video->stat, lyc == video->p->memory.io[GB_REG_LY]);
if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) { if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) {
video->p->memory.io[REG_IF] |= (1 << GB_IRQ_LCDSTAT); video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_LCDSTAT);
GBUpdateIRQs(video->p); GBUpdateIRQs(video->p);
} }
video->p->memory.io[REG_STAT] = video->stat; video->p->memory.io[GB_REG_STAT] = video->stat;
mTimingSchedule(timing, &video->modeEvent, (next << video->p->doubleSpeed) - cyclesLate); mTimingSchedule(timing, &video->modeEvent, (next << video->p->doubleSpeed) - cyclesLate);
} }
void _endMode2(struct mTiming* timing, void* context, uint32_t cyclesLate) { void _endMode2(struct mTiming* timing, void* context, uint32_t cyclesLate) {
struct GBVideo* video = context; struct GBVideo* video = context;
_cleanOAM(video, video->ly); _cleanOAM(video, video->ly);
video->x = -(video->p->memory.io[REG_SCX] & 7); video->x = -(video->p->memory.io[GB_REG_SCX] & 7);
video->dotClock = mTimingCurrentTime(timing) - cyclesLate + 5 - (video->x << video->p->doubleSpeed); video->dotClock = mTimingCurrentTime(timing) - cyclesLate + 5 - (video->x << video->p->doubleSpeed);
int32_t next = GB_VIDEO_MODE_3_LENGTH_BASE + video->objMax * 6 - video->x; int32_t next = GB_VIDEO_MODE_3_LENGTH_BASE + video->objMax * 6 - video->x;
video->mode = 3; video->mode = 3;
@ -348,17 +348,17 @@ void _endMode2(struct mTiming* timing, void* context, uint32_t cyclesLate) {
GBRegisterSTAT oldStat = video->stat; GBRegisterSTAT oldStat = video->stat;
video->stat = GBRegisterSTATSetMode(video->stat, video->mode); video->stat = GBRegisterSTATSetMode(video->stat, video->mode);
if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) { if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) {
video->p->memory.io[REG_IF] |= (1 << GB_IRQ_LCDSTAT); video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_LCDSTAT);
GBUpdateIRQs(video->p); GBUpdateIRQs(video->p);
} }
video->p->memory.io[REG_STAT] = video->stat; video->p->memory.io[GB_REG_STAT] = video->stat;
mTimingSchedule(timing, &video->modeEvent, (next << video->p->doubleSpeed) - cyclesLate); mTimingSchedule(timing, &video->modeEvent, (next << video->p->doubleSpeed) - cyclesLate);
} }
void _endMode3(struct mTiming* timing, void* context, uint32_t cyclesLate) { void _endMode3(struct mTiming* timing, void* context, uint32_t cyclesLate) {
struct GBVideo* video = context; struct GBVideo* video = context;
GBVideoProcessDots(video, cyclesLate); GBVideoProcessDots(video, cyclesLate);
if (video->ly < GB_VIDEO_VERTICAL_PIXELS && video->p->memory.isHdma && video->p->memory.io[REG_HDMA5] != 0xFF) { if (video->ly < GB_VIDEO_VERTICAL_PIXELS && video->p->memory.isHdma && video->p->memory.io[GB_REG_HDMA5] != 0xFF) {
video->p->memory.hdmaRemaining = 0x10; video->p->memory.hdmaRemaining = 0x10;
video->p->cpuBlocked = true; video->p->cpuBlocked = true;
mTimingDeschedule(timing, &video->p->memory.hdmaEvent); mTimingDeschedule(timing, &video->p->memory.hdmaEvent);
@ -369,12 +369,12 @@ void _endMode3(struct mTiming* timing, void* context, uint32_t cyclesLate) {
GBRegisterSTAT oldStat = video->stat; GBRegisterSTAT oldStat = video->stat;
video->stat = GBRegisterSTATSetMode(video->stat, video->mode); video->stat = GBRegisterSTATSetMode(video->stat, video->mode);
if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) { if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) {
video->p->memory.io[REG_IF] |= (1 << GB_IRQ_LCDSTAT); video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_LCDSTAT);
GBUpdateIRQs(video->p); GBUpdateIRQs(video->p);
} }
video->p->memory.io[REG_STAT] = video->stat; video->p->memory.io[GB_REG_STAT] = video->stat;
// TODO: Cache SCX & 7 in case it changes // TODO: Cache SCX & 7 in case it changes
int32_t next = GB_VIDEO_MODE_0_LENGTH_BASE - video->objMax * 6 - (video->p->memory.io[REG_SCX] & 7); int32_t next = GB_VIDEO_MODE_0_LENGTH_BASE - video->objMax * 6 - (video->p->memory.io[GB_REG_SCX] & 7);
mTimingSchedule(timing, &video->modeEvent, (next << video->p->doubleSpeed) - cyclesLate); mTimingSchedule(timing, &video->modeEvent, (next << video->p->doubleSpeed) - cyclesLate);
} }
@ -385,7 +385,7 @@ void _updateFrameCount(struct mTiming* timing, void* context, uint32_t cyclesLat
mTimingSchedule(timing, &video->frameEvent, 4 - ((video->p->cpu->executionState + 1) & 3)); mTimingSchedule(timing, &video->frameEvent, 4 - ((video->p->cpu->executionState + 1) & 3));
return; return;
} }
if (!GBRegisterLCDCIsEnable(video->p->memory.io[REG_LCDC])) { if (!GBRegisterLCDCIsEnable(video->p->memory.io[GB_REG_LCDC])) {
mTimingSchedule(timing, &video->frameEvent, GB_VIDEO_TOTAL_LENGTH); mTimingSchedule(timing, &video->frameEvent, GB_VIDEO_TOTAL_LENGTH);
} }
@ -404,7 +404,7 @@ void _updateFrameCount(struct mTiming* timing, void* context, uint32_t cyclesLat
static void _cleanOAM(struct GBVideo* video, int y) { static void _cleanOAM(struct GBVideo* video, int y) {
int spriteHeight = 8; int spriteHeight = 8;
if (GBRegisterLCDCIsObjSize(video->p->memory.io[REG_LCDC])) { if (GBRegisterLCDCIsObjSize(video->p->memory.io[GB_REG_LCDC])) {
spriteHeight = 16; spriteHeight = 16;
} }
int o = 0; int o = 0;
@ -439,7 +439,7 @@ void GBVideoProcessDots(struct GBVideo* video, uint32_t cyclesLate) {
} }
void GBVideoWriteLCDC(struct GBVideo* video, GBRegisterLCDC value) { void GBVideoWriteLCDC(struct GBVideo* video, GBRegisterLCDC value) {
if (!GBRegisterLCDCIsEnable(video->p->memory.io[REG_LCDC]) && GBRegisterLCDCIsEnable(value)) { if (!GBRegisterLCDCIsEnable(video->p->memory.io[GB_REG_LCDC]) && GBRegisterLCDCIsEnable(value)) {
video->mode = 2; video->mode = 2;
video->modeEvent.callback = _endMode2; video->modeEvent.callback = _endMode2;
int32_t next = GB_VIDEO_MODE_2_LENGTH - 5; // TODO: Why is this fudge factor needed? Might be related to T-cycles for load/store differing int32_t next = GB_VIDEO_MODE_2_LENGTH - 5; // TODO: Why is this fudge factor needed? Might be related to T-cycles for load/store differing
@ -447,64 +447,64 @@ void GBVideoWriteLCDC(struct GBVideo* video, GBRegisterLCDC value) {
mTimingSchedule(&video->p->timing, &video->modeEvent, next << video->p->doubleSpeed); mTimingSchedule(&video->p->timing, &video->modeEvent, next << video->p->doubleSpeed);
video->ly = 0; video->ly = 0;
video->p->memory.io[REG_LY] = 0; video->p->memory.io[GB_REG_LY] = 0;
GBRegisterSTAT oldStat = video->stat; GBRegisterSTAT oldStat = video->stat;
video->stat = GBRegisterSTATSetMode(video->stat, 0); video->stat = GBRegisterSTATSetMode(video->stat, 0);
video->stat = GBRegisterSTATSetLYC(video->stat, video->ly == video->p->memory.io[REG_LYC]); video->stat = GBRegisterSTATSetLYC(video->stat, video->ly == video->p->memory.io[GB_REG_LYC]);
if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) { if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) {
video->p->memory.io[REG_IF] |= (1 << GB_IRQ_LCDSTAT); video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_LCDSTAT);
GBUpdateIRQs(video->p); GBUpdateIRQs(video->p);
} }
video->p->memory.io[REG_STAT] = video->stat; video->p->memory.io[GB_REG_STAT] = video->stat;
video->renderer->writePalette(video->renderer, 0, video->palette[0]); video->renderer->writePalette(video->renderer, 0, video->palette[0]);
mTimingDeschedule(&video->p->timing, &video->frameEvent); mTimingDeschedule(&video->p->timing, &video->frameEvent);
} }
if (GBRegisterLCDCIsEnable(video->p->memory.io[REG_LCDC]) && !GBRegisterLCDCIsEnable(value)) { if (GBRegisterLCDCIsEnable(video->p->memory.io[GB_REG_LCDC]) && !GBRegisterLCDCIsEnable(value)) {
// TODO: Fix serialization; this gets internal and visible modes out of sync // TODO: Fix serialization; this gets internal and visible modes out of sync
video->mode = 0; video->mode = 0;
video->stat = GBRegisterSTATSetMode(video->stat, 0); video->stat = GBRegisterSTATSetMode(video->stat, 0);
video->p->memory.io[REG_STAT] = video->stat; video->p->memory.io[GB_REG_STAT] = video->stat;
video->ly = 0; video->ly = 0;
video->p->memory.io[REG_LY] = 0; video->p->memory.io[GB_REG_LY] = 0;
video->renderer->writePalette(video->renderer, 0, video->dmgPalette[0]); video->renderer->writePalette(video->renderer, 0, video->dmgPalette[0]);
mTimingDeschedule(&video->p->timing, &video->modeEvent); mTimingDeschedule(&video->p->timing, &video->modeEvent);
mTimingDeschedule(&video->p->timing, &video->frameEvent); mTimingDeschedule(&video->p->timing, &video->frameEvent);
mTimingSchedule(&video->p->timing, &video->frameEvent, GB_VIDEO_TOTAL_LENGTH); mTimingSchedule(&video->p->timing, &video->frameEvent, GB_VIDEO_TOTAL_LENGTH);
} }
video->p->memory.io[REG_STAT] = video->stat; video->p->memory.io[GB_REG_STAT] = video->stat;
} }
void GBVideoWriteSTAT(struct GBVideo* video, GBRegisterSTAT value) { void GBVideoWriteSTAT(struct GBVideo* video, GBRegisterSTAT value) {
GBRegisterSTAT oldStat = video->stat; GBRegisterSTAT oldStat = video->stat;
video->stat = (video->stat & 0x7) | (value & 0x78); video->stat = (video->stat & 0x7) | (value & 0x78);
if (!GBRegisterLCDCIsEnable(video->p->memory.io[REG_LCDC]) || video->p->model >= GB_MODEL_CGB) { if (!GBRegisterLCDCIsEnable(video->p->memory.io[GB_REG_LCDC]) || video->p->model >= GB_MODEL_CGB) {
return; return;
} }
if (!_statIRQAsserted(oldStat) && video->mode < 3) { if (!_statIRQAsserted(oldStat) && video->mode < 3) {
// TODO: variable for the IRQ line value? // TODO: variable for the IRQ line value?
video->p->memory.io[REG_IF] |= (1 << GB_IRQ_LCDSTAT); video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_LCDSTAT);
GBUpdateIRQs(video->p); GBUpdateIRQs(video->p);
} }
} }
void GBVideoWriteLYC(struct GBVideo* video, uint8_t value) { void GBVideoWriteLYC(struct GBVideo* video, uint8_t value) {
GBRegisterSTAT oldStat = video->stat; GBRegisterSTAT oldStat = video->stat;
if (GBRegisterLCDCIsEnable(video->p->memory.io[REG_LCDC])) { if (GBRegisterLCDCIsEnable(video->p->memory.io[GB_REG_LCDC])) {
video->stat = GBRegisterSTATSetLYC(video->stat, value == video->ly); video->stat = GBRegisterSTATSetLYC(video->stat, value == video->ly);
if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) { if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) {
video->p->memory.io[REG_IF] |= (1 << GB_IRQ_LCDSTAT); video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_LCDSTAT);
GBUpdateIRQs(video->p); GBUpdateIRQs(video->p);
} }
} }
video->p->memory.io[REG_STAT] = video->stat; video->p->memory.io[GB_REG_STAT] = video->stat;
} }
void GBVideoWritePalette(struct GBVideo* video, uint16_t address, uint8_t value) { void GBVideoWritePalette(struct GBVideo* video, uint16_t address, uint8_t value) {
if (video->p->model < GB_MODEL_SGB) { if (video->p->model < GB_MODEL_SGB) {
switch (address) { switch (address) {
case REG_BGP: case GB_REG_BGP:
video->palette[0] = video->dmgPalette[value & 3]; video->palette[0] = video->dmgPalette[value & 3];
video->palette[1] = video->dmgPalette[(value >> 2) & 3]; video->palette[1] = video->dmgPalette[(value >> 2) & 3];
video->palette[2] = video->dmgPalette[(value >> 4) & 3]; video->palette[2] = video->dmgPalette[(value >> 4) & 3];
@ -514,7 +514,7 @@ void GBVideoWritePalette(struct GBVideo* video, uint16_t address, uint8_t value)
video->renderer->writePalette(video->renderer, 2, video->palette[2]); video->renderer->writePalette(video->renderer, 2, video->palette[2]);
video->renderer->writePalette(video->renderer, 3, video->palette[3]); video->renderer->writePalette(video->renderer, 3, video->palette[3]);
break; break;
case REG_OBP0: case GB_REG_OBP0:
video->palette[8 * 4 + 0] = video->dmgPalette[(value & 3) + 4]; video->palette[8 * 4 + 0] = video->dmgPalette[(value & 3) + 4];
video->palette[8 * 4 + 1] = video->dmgPalette[((value >> 2) & 3) + 4]; video->palette[8 * 4 + 1] = video->dmgPalette[((value >> 2) & 3) + 4];
video->palette[8 * 4 + 2] = video->dmgPalette[((value >> 4) & 3) + 4]; video->palette[8 * 4 + 2] = video->dmgPalette[((value >> 4) & 3) + 4];
@ -524,7 +524,7 @@ void GBVideoWritePalette(struct GBVideo* video, uint16_t address, uint8_t value)
video->renderer->writePalette(video->renderer, 8 * 4 + 2, video->palette[8 * 4 + 2]); video->renderer->writePalette(video->renderer, 8 * 4 + 2, video->palette[8 * 4 + 2]);
video->renderer->writePalette(video->renderer, 8 * 4 + 3, video->palette[8 * 4 + 3]); video->renderer->writePalette(video->renderer, 8 * 4 + 3, video->palette[8 * 4 + 3]);
break; break;
case REG_OBP1: case GB_REG_OBP1:
video->palette[9 * 4 + 0] = video->dmgPalette[(value & 3) + 8]; video->palette[9 * 4 + 0] = video->dmgPalette[(value & 3) + 8];
video->palette[9 * 4 + 1] = video->dmgPalette[((value >> 2) & 3) + 8]; video->palette[9 * 4 + 1] = video->dmgPalette[((value >> 2) & 3) + 8];
video->palette[9 * 4 + 2] = video->dmgPalette[((value >> 4) & 3) + 8]; video->palette[9 * 4 + 2] = video->dmgPalette[((value >> 4) & 3) + 8];
@ -539,7 +539,7 @@ void GBVideoWritePalette(struct GBVideo* video, uint16_t address, uint8_t value)
video->renderer->writeVideoRegister(video->renderer, address, value); video->renderer->writeVideoRegister(video->renderer, address, value);
} else { } else {
switch (address) { switch (address) {
case REG_BCPD: case GB_REG_BCPD:
if (video->mode != 3) { if (video->mode != 3) {
if (video->bcpIndex & 1) { if (video->bcpIndex & 1) {
video->palette[video->bcpIndex >> 1] &= 0x00FF; video->palette[video->bcpIndex >> 1] &= 0x00FF;
@ -553,12 +553,12 @@ void GBVideoWritePalette(struct GBVideo* video, uint16_t address, uint8_t value)
if (video->bcpIncrement) { if (video->bcpIncrement) {
++video->bcpIndex; ++video->bcpIndex;
video->bcpIndex &= 0x3F; video->bcpIndex &= 0x3F;
video->p->memory.io[REG_BCPS] &= 0x80; video->p->memory.io[GB_REG_BCPS] &= 0x80;
video->p->memory.io[REG_BCPS] |= video->bcpIndex; video->p->memory.io[GB_REG_BCPS] |= video->bcpIndex;
} }
video->p->memory.io[REG_BCPD] = video->palette[video->bcpIndex >> 1] >> (8 * (video->bcpIndex & 1)); video->p->memory.io[GB_REG_BCPD] = video->palette[video->bcpIndex >> 1] >> (8 * (video->bcpIndex & 1));
break; break;
case REG_OCPD: case GB_REG_OCPD:
if (video->mode != 3) { if (video->mode != 3) {
if (video->ocpIndex & 1) { if (video->ocpIndex & 1) {
video->palette[8 * 4 + (video->ocpIndex >> 1)] &= 0x00FF; video->palette[8 * 4 + (video->ocpIndex >> 1)] &= 0x00FF;
@ -572,10 +572,10 @@ void GBVideoWritePalette(struct GBVideo* video, uint16_t address, uint8_t value)
if (video->ocpIncrement) { if (video->ocpIncrement) {
++video->ocpIndex; ++video->ocpIndex;
video->ocpIndex &= 0x3F; video->ocpIndex &= 0x3F;
video->p->memory.io[REG_OCPS] &= 0x80; video->p->memory.io[GB_REG_OCPS] &= 0x80;
video->p->memory.io[REG_OCPS] |= video->ocpIndex; video->p->memory.io[GB_REG_OCPS] |= video->ocpIndex;
} }
video->p->memory.io[REG_OCPD] = video->palette[8 * 4 + (video->ocpIndex >> 1)] >> (8 * (video->ocpIndex & 1)); video->p->memory.io[GB_REG_OCPD] = video->palette[8 * 4 + (video->ocpIndex >> 1)] >> (8 * (video->ocpIndex & 1));
break; break;
} }
} }

View File

@ -237,7 +237,7 @@ bool AssetView::lookupObjGB(int id, struct ObjInfo* info) {
const GBObj* obj = &gb->video.oam.obj[id]; const GBObj* obj = &gb->video.oam.obj[id];
unsigned height = 8; unsigned height = 8;
GBRegisterLCDC lcdc = gb->memory.io[REG_LCDC]; GBRegisterLCDC lcdc = gb->memory.io[GB_REG_LCDC];
if (GBRegisterLCDCIsObjSize(lcdc)) { if (GBRegisterLCDCIsObjSize(lcdc)) {
height = 16; height = 16;
} }
@ -280,4 +280,4 @@ bool AssetView::ObjInfo::operator!=(const ObjInfo& other) const {
other.stride != stride || other.stride != stride ||
other.paletteId != paletteId || other.paletteId != paletteId ||
other.paletteSet != paletteSet; other.paletteSet != paletteSet;
} }