GB MBC: Split out MBC implementations into files

This commit is contained in:
Vicki Pfau 2022-10-16 03:20:34 -07:00
parent ca0baae821
commit 1cc32c0785
9 changed files with 1989 additions and 1905 deletions

View File

@ -7,6 +7,12 @@ set(SOURCE_FILES
input.c
io.c
mbc.c
mbc/huc-3.c
mbc/licensed.c
mbc/mbc.c
mbc/pocket-cam.c
mbc/tama5.c
mbc/unlicensed.c
memory.c
overrides.c
serialize.c

File diff suppressed because it is too large Load Diff

218
src/gb/mbc/huc-3.c Normal file
View File

@ -0,0 +1,218 @@
/* Copyright (c) 2013-2016 Jeffrey Pfau
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "gb/mbc/mbc-private.h"
#include <mgba/internal/gb/gb.h>
#include <mgba-util/vfs.h>
static void _latchHuC3Rtc(struct mRTCSource* rtc, uint8_t* huc3Regs, time_t* rtcLastLatch) {
time_t t;
if (rtc) {
if (rtc->sample) {
rtc->sample(rtc);
}
t = rtc->unixTime(rtc);
} else {
t = time(0);
}
t -= *rtcLastLatch;
t /= 60;
if (!t) {
return;
}
*rtcLastLatch += t * 60;
int minutes = huc3Regs[GBHUC3_RTC_MINUTES_HI] << 8;
minutes |= huc3Regs[GBHUC3_RTC_MINUTES_MI] << 4;
minutes |= huc3Regs[GBHUC3_RTC_MINUTES_LO];
minutes += t % 1440;
t /= 1440;
if (minutes >= 1440) {
minutes -= 1440;
++t;
} else if (minutes < 0) {
minutes += 1440;
--t;
}
huc3Regs[GBHUC3_RTC_MINUTES_LO] = minutes & 0xF;
huc3Regs[GBHUC3_RTC_MINUTES_MI] = (minutes >> 4) & 0xF;
huc3Regs[GBHUC3_RTC_MINUTES_HI] = (minutes >> 8) & 0xF;
int days = huc3Regs[GBHUC3_RTC_DAYS_LO];
days |= huc3Regs[GBHUC3_RTC_DAYS_MI] << 4;
days |= huc3Regs[GBHUC3_RTC_DAYS_HI] << 8;
days += t;
huc3Regs[GBHUC3_RTC_DAYS_LO] = days & 0xF;
huc3Regs[GBHUC3_RTC_DAYS_MI] = (days >> 4) & 0xF;
huc3Regs[GBHUC3_RTC_DAYS_HI] = (days >> 8) & 0xF;
}
static void _huc3Commit(struct GB* gb, struct GBHuC3State* state) {
size_t c;
switch (state->value & 0x70) {
case 0x10:
if ((state->index & 0xF8) == 0x10) {
_latchHuC3Rtc(gb->memory.rtc, state->registers, &gb->memory.rtcLastLatch);
}
state->value &= 0xF0;
state->value |= state->registers[state->index] & 0xF;
mLOG(GB_MBC, DEBUG, "HuC-3 read: %02X:%X", state->index, state->value & 0xF);
if (state->value & 0x10) {
++state->index;
}
break;
case 0x30:
mLOG(GB_MBC, DEBUG, "HuC-3 write: %02X:%X", state->index, state->value & 0xF);
state->registers[state->index] = state->value & 0xF;
if (state->value & 0x10) {
++state->index;
}
break;
case 0x40:
state->index &= 0xF0;
state->index |= (state->value) & 0xF;
mLOG(GB_MBC, DEBUG, "HuC-3 index (low): %02X", state->index);
break;
case 0x50:
state->index &= 0x0F;
state->index |= ((state->value) & 0xF) << 4;
mLOG(GB_MBC, DEBUG, "HuC-3 index (high): %02X", state->index);
break;
case 0x60:
switch (state->value & 0xF) {
case GBHUC3_CMD_LATCH:
_latchHuC3Rtc(gb->memory.rtc, state->registers, &gb->memory.rtcLastLatch);
memcpy(state->registers, &state->registers[GBHUC3_RTC_MINUTES_LO], 6);
mLOG(GB_MBC, DEBUG, "HuC-3 RTC latch");
break;
case GBHUC3_CMD_SET_RTC:
memcpy(&state->registers[GBHUC3_RTC_MINUTES_LO], state->registers, 6);
mLOG(GB_MBC, DEBUG, "HuC-3 set RTC");
break;
case GBHUC3_CMD_RO:
mLOG(GB_MBC, STUB, "HuC-3 unimplemented read-only mode");
break;
case GBHUC3_CMD_TONE:
if (state->registers[GBHUC3_SPEAKER_ENABLE] == 1) {
for (c = 0; c < mCoreCallbacksListSize(&gb->coreCallbacks); ++c) {
struct mCoreCallbacks* callbacks = mCoreCallbacksListGetPointer(&gb->coreCallbacks, c);
if (callbacks->alarm) {
callbacks->alarm(callbacks->context);
}
}
mLOG(GB_MBC, DEBUG, "HuC-3 tone %i", state->registers[GBHUC3_SPEAKER_TONE] & 3);
}
break;
default:
mLOG(GB_MBC, STUB, "HuC-3 unknown command: %X", state->value & 0xF);
break;
}
state->value = 0xE1;
break;
default:
mLOG(GB_MBC, STUB, "HuC-3 unknown mode commit: %02X:%02X", state->index, state->value);
break;
}
}
void _GBHuC3(struct GB* gb, uint16_t address, uint8_t value) {
struct GBMemory* memory = &gb->memory;
struct GBHuC3State* state = &memory->mbcState.huc3;
int bank = value & 0x7F;
if (address & 0x1FFF) {
mLOG(GB_MBC, STUB, "HuC-3 unknown value %04X:%02X", address, value);
}
switch (address >> 13) {
case 0x0:
switch (value) {
case 0xA:
memory->sramAccess = true;
GBMBCSwitchSramBank(gb, memory->sramCurrentBank);
break;
default:
memory->sramAccess = false;
break;
}
state->mode = value;
break;
case 0x1:
GBMBCSwitchBank(gb, bank);
break;
case 0x2:
GBMBCSwitchSramBank(gb, bank);
break;
case 0x5:
switch (state->mode) {
case GBHUC3_MODE_IN:
state->value = 0x80 | value;
break;
case GBHUC3_MODE_COMMIT:
_huc3Commit(gb, state);
break;
default:
mLOG(GB_MBC, STUB, "HuC-3 unknown mode write: %02X:%02X", state->mode, value);
}
break;
default:
// TODO
mLOG(GB_MBC, STUB, "HuC-3 unknown address: %04X:%02X", address, value);
break;
}
}
uint8_t _GBHuC3Read(struct GBMemory* memory, uint16_t address) {
struct GBHuC3State* state = &memory->mbcState.huc3;
switch (state->mode) {
case GBHUC3_MODE_SRAM_RO:
case GBHUC3_MODE_SRAM_RW:
return memory->sramBank[address & (GB_SIZE_EXTERNAL_RAM - 1)];
case GBHUC3_MODE_IN:
case GBHUC3_MODE_OUT:
return 0x80 | state->value;
default:
return 0xFF;
}
}
void GBMBCHuC3Read(struct GB* gb) {
struct GBMBCHuC3SaveBuffer buffer;
struct VFile* vf = gb->sramVf;
if (!vf) {
return;
}
vf->seek(vf, gb->sramSize, SEEK_SET);
if (vf->read(vf, &buffer, sizeof(buffer)) < (ssize_t) sizeof(buffer)) {
return;
}
size_t i;
for (i = 0; i < 0x80; ++i) {
gb->memory.mbcState.huc3.registers[i * 2] = buffer.regs[i] & 0xF;
gb->memory.mbcState.huc3.registers[i * 2 + 1] = buffer.regs[i] >> 4;
}
LOAD_64LE(gb->memory.rtcLastLatch, 0, &buffer.latchedUnix);
}
void GBMBCHuC3Write(struct GB* gb) {
struct VFile* vf = gb->sramVf;
if (!vf) {
return;
}
struct GBMBCHuC3SaveBuffer buffer;
size_t i;
for (i = 0; i < 0x80; ++i) {
buffer.regs[i] = gb->memory.mbcState.huc3.registers[i * 2] & 0xF;
buffer.regs[i] |= gb->memory.mbcState.huc3.registers[i * 2 + 1] << 4;
}
STORE_64LE(gb->memory.rtcLastLatch, 0, &buffer.latchedUnix);
_GBMBCAppendSaveSuffix(gb, &buffer, sizeof(buffer));
}

84
src/gb/mbc/licensed.c Normal file
View File

@ -0,0 +1,84 @@
/* Copyright (c) 2013-2016 Jeffrey Pfau
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "gb/mbc/mbc-private.h"
#include <mgba/internal/gb/gb.h>
void _GBMMM01(struct GB* gb, uint16_t address, uint8_t value) {
struct GBMemory* memory = &gb->memory;
if (!memory->mbcState.mmm01.locked) {
switch (address >> 13) {
case 0x0:
memory->mbcState.mmm01.locked = true;
GBMBCSwitchBank0(gb, memory->mbcState.mmm01.currentBank0);
break;
case 0x1:
memory->mbcState.mmm01.currentBank0 &= ~0x7F;
memory->mbcState.mmm01.currentBank0 |= value & 0x7F;
break;
case 0x2:
memory->mbcState.mmm01.currentBank0 &= ~0x180;
memory->mbcState.mmm01.currentBank0 |= (value & 0x30) << 3;
break;
default:
// TODO
mLOG(GB_MBC, STUB, "MMM01 unknown address: %04X:%02X", address, value);
break;
}
return;
}
switch (address >> 13) {
case 0x0:
switch (value) {
case 0xA:
memory->sramAccess = true;
GBMBCSwitchSramBank(gb, memory->sramCurrentBank);
break;
default:
memory->sramAccess = false;
break;
}
break;
case 0x1:
GBMBCSwitchBank(gb, value + memory->mbcState.mmm01.currentBank0);
break;
case 0x2:
GBMBCSwitchSramBank(gb, value);
break;
default:
// TODO
mLOG(GB_MBC, STUB, "MMM01 unknown address: %04X:%02X", address, value);
break;
}
}
void _GBHuC1(struct GB* gb, uint16_t address, uint8_t value) {
struct GBMemory* memory = &gb->memory;
int bank = value & 0x3F;
switch (address >> 13) {
case 0x0:
switch (value) {
case 0xE:
memory->sramAccess = false;
break;
default:
memory->sramAccess = true;
GBMBCSwitchSramBank(gb, memory->sramCurrentBank);
break;
}
break;
case 0x1:
GBMBCSwitchBank(gb, bank);
break;
case 0x2:
GBMBCSwitchSramBank(gb, value);
break;
default:
// TODO
mLOG(GB_MBC, STUB, "HuC-1 unknown address: %04X:%02X", address, value);
break;
}
}

61
src/gb/mbc/mbc-private.h Normal file
View File

@ -0,0 +1,61 @@
/* Copyright (c) 2013-2016 Jeffrey Pfau
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef GB_MBC_PRIVATE_H
#define GB_MBC_PRIVATE_H
#include <mgba/internal/gb/mbc.h>
CXX_GUARD_START
struct GB;
struct GBMemory;
struct mRTCSource;
void _GBMBC1(struct GB*, uint16_t address, uint8_t value);
void _GBMBC2(struct GB*, uint16_t address, uint8_t value);
void _GBMBC3(struct GB*, uint16_t address, uint8_t value);
void _GBMBC5(struct GB*, uint16_t address, uint8_t value);
void _GBMBC6(struct GB*, uint16_t address, uint8_t value);
void _GBMBC7(struct GB*, uint16_t address, uint8_t value);
void _GBMMM01(struct GB*, uint16_t address, uint8_t value);
void _GBPocketCam(struct GB* gb, uint16_t address, uint8_t value);
void _GBTAMA5(struct GB* gb, uint16_t address, uint8_t value);
void _GBHuC1(struct GB*, uint16_t address, uint8_t value);
void _GBHuC3(struct GB*, uint16_t address, uint8_t value);
void _GBWisdomTree(struct GB* gb, uint16_t address, uint8_t value);
void _GBPKJD(struct GB* gb, uint16_t address, uint8_t value);
void _GBNTOld1(struct GB* gb, uint16_t address, uint8_t value);
void _GBNTOld2(struct GB* gb, uint16_t address, uint8_t value);
void _GBNTNew(struct GB* gb, uint16_t address, uint8_t value);
void _GBBBD(struct GB* gb, uint16_t address, uint8_t value);
void _GBHitek(struct GB* gb, uint16_t address, uint8_t value);
void _GBLiCheng(struct GB* gb, uint16_t address, uint8_t value);
void _GBSachen(struct GB* gb, uint16_t address, uint8_t value);
uint8_t _GBMBC2Read(struct GBMemory*, uint16_t address);
uint8_t _GBMBC6Read(struct GBMemory*, uint16_t address);
uint8_t _GBMBC7Read(struct GBMemory*, uint16_t address);
void _GBMBC7Write(struct GBMemory* memory, uint16_t address, uint8_t value);
uint8_t _GBPocketCamRead(struct GBMemory*, uint16_t address);
uint8_t _GBTAMA5Read(struct GBMemory*, uint16_t address);
uint8_t _GBHuC3Read(struct GBMemory*, uint16_t address);
uint8_t _GBPKJDRead(struct GBMemory*, uint16_t address);
uint8_t _GBBBDRead(struct GBMemory*, uint16_t address);
uint8_t _GBHitekRead(struct GBMemory*, uint16_t address);
uint8_t _GBSachenMMC1Read(struct GBMemory*, uint16_t address);
uint8_t _GBSachenMMC2Read(struct GBMemory*, uint16_t address);
void _GBMBCLatchRTC(struct mRTCSource* rtc, uint8_t* rtcRegs, time_t* rtcLastLatch);
void _GBMBCAppendSaveSuffix(struct GB* gb, const void* buffer, size_t size);
CXX_GUARD_END
#endif

565
src/gb/mbc/mbc.c Normal file
View File

@ -0,0 +1,565 @@
/* Copyright (c) 2013-2016 Jeffrey Pfau
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "gb/mbc/mbc-private.h"
#include <mgba/core/interface.h>
#include <mgba/internal/defines.h>
#include <mgba/internal/gb/gb.h>
static void _GBMBC6MapChip(struct GB*, int half, uint8_t value);
void _GBMBCLatchRTC(struct mRTCSource* rtc, uint8_t* rtcRegs, time_t* rtcLastLatch) {
time_t t;
if (rtc) {
if (rtc->sample) {
rtc->sample(rtc);
}
t = rtc->unixTime(rtc);
} else {
t = time(0);
}
time_t currentLatch = t;
t -= *rtcLastLatch;
*rtcLastLatch = currentLatch;
int64_t diff;
diff = rtcRegs[0] + t % 60;
if (diff < 0) {
diff += 60;
t -= 60;
}
rtcRegs[0] = diff % 60;
t /= 60;
t += diff / 60;
diff = rtcRegs[1] + t % 60;
if (diff < 0) {
diff += 60;
t -= 60;
}
rtcRegs[1] = diff % 60;
t /= 60;
t += diff / 60;
diff = rtcRegs[2] + t % 24;
if (diff < 0) {
diff += 24;
t -= 24;
}
rtcRegs[2] = diff % 24;
t /= 24;
t += diff / 24;
diff = rtcRegs[3] + ((rtcRegs[4] & 1) << 8) + (t & 0x1FF);
rtcRegs[3] = diff;
rtcRegs[4] &= 0xFE;
rtcRegs[4] |= (diff >> 8) & 1;
if (diff & 0x200) {
rtcRegs[4] |= 0x80;
}
}
static void _GBMBC1Update(struct GB* gb) {
struct GBMBC1State* state = &gb->memory.mbcState.mbc1;
int bank = state->bankLo;
bank &= (1 << state->multicartStride) - 1;
bank |= state->bankHi << state->multicartStride;
if (state->mode) {
GBMBCSwitchBank0(gb, state->bankHi << state->multicartStride);
GBMBCSwitchSramBank(gb, state->bankHi & 3);
} else {
GBMBCSwitchBank0(gb, 0);
GBMBCSwitchSramBank(gb, 0);
}
if (!(state->bankLo & 0x1F)) {
++state->bankLo;
++bank;
}
GBMBCSwitchBank(gb, bank);
}
void _GBMBC1(struct GB* gb, uint16_t address, uint8_t value) {
struct GBMemory* memory = &gb->memory;
int bank = value & 0x1F;
switch (address >> 13) {
case 0x0:
switch (value & 0xF) {
case 0:
memory->sramAccess = false;
break;
case 0xA:
memory->sramAccess = true;
GBMBCSwitchSramBank(gb, memory->sramCurrentBank);
break;
default:
// TODO
mLOG(GB_MBC, STUB, "MBC1 unknown value %02X", value);
break;
}
break;
case 0x1:
memory->mbcState.mbc1.bankLo = bank;
_GBMBC1Update(gb);
break;
case 0x2:
bank &= 3;
memory->mbcState.mbc1.bankHi = bank;
_GBMBC1Update(gb);
break;
case 0x3:
memory->mbcState.mbc1.mode = value & 1;
_GBMBC1Update(gb);
break;
default:
// TODO
mLOG(GB_MBC, STUB, "MBC1 unknown address: %04X:%02X", address, value);
break;
}
}
void _GBMBC2(struct GB* gb, uint16_t address, uint8_t value) {
struct GBMemory* memory = &gb->memory;
int shift = (address & 1) * 4;
int bank = value & 0xF;
switch ((address & 0xC100) >> 8) {
case 0x0:
switch (value & 0x0F) {
case 0:
memory->sramAccess = false;
break;
case 0xA:
memory->sramAccess = true;
break;
default:
// TODO
mLOG(GB_MBC, STUB, "MBC2 unknown value %02X", value);
break;
}
break;
case 0x1:
if (!bank) {
++bank;
}
GBMBCSwitchBank(gb, bank);
break;
case 0x80:
case 0x81:
case 0x82:
case 0x83:
if (!memory->sramAccess) {
return;
}
address &= 0x1FF;
memory->sramBank[(address >> 1)] &= 0xF0 >> shift;
memory->sramBank[(address >> 1)] |= (value & 0xF) << shift;
gb->sramDirty |= mSAVEDATA_DIRT_NEW;
break;
default:
// TODO
mLOG(GB_MBC, STUB, "MBC2 unknown address: %04X:%02X", address, value);
break;
}
}
uint8_t _GBMBC2Read(struct GBMemory* memory, uint16_t address) {
if (!memory->sramAccess) {
return 0xFF;
}
address &= 0x1FF;
int shift = (address & 1) * 4;
return (memory->sramBank[(address >> 1)] >> shift) | 0xF0;
}
void _GBMBC3(struct GB* gb, uint16_t address, uint8_t value) {
struct GBMemory* memory = &gb->memory;
int bank = value;
switch (address >> 13) {
case 0x0:
switch (value & 0xF) {
case 0:
memory->sramAccess = false;
break;
case 0xA:
memory->sramAccess = true;
GBMBCSwitchSramBank(gb, memory->sramCurrentBank);
break;
default:
// TODO
mLOG(GB_MBC, STUB, "MBC3 unknown value %02X", value);
break;
}
break;
case 0x1:
if (gb->memory.romSize < GB_SIZE_CART_BANK0 * 0x80) {
bank &= 0x7F;
}
if (!bank) {
++bank;
}
GBMBCSwitchBank(gb, bank);
break;
case 0x2:
bank &= 0xF;
if (bank < 8) {
GBMBCSwitchSramBank(gb, value);
memory->rtcAccess = false;
} else if (bank <= 0xC) {
memory->activeRtcReg = bank - 8;
memory->rtcAccess = true;
}
break;
case 0x3:
if (memory->rtcLatched && value == 0) {
memory->rtcLatched = false;
} else if (!memory->rtcLatched && value == 1) {
_GBMBCLatchRTC(gb->memory.rtc, gb->memory.rtcRegs, &gb->memory.rtcLastLatch);
memory->rtcLatched = true;
}
break;
}
}
void _GBMBC5(struct GB* gb, uint16_t address, uint8_t value) {
struct GBMemory* memory = &gb->memory;
int bank;
switch (address >> 12) {
case 0x0:
case 0x1:
switch (value) {
case 0:
memory->sramAccess = false;
break;
case 0xA:
memory->sramAccess = true;
GBMBCSwitchSramBank(gb, memory->sramCurrentBank);
break;
default:
// TODO
mLOG(GB_MBC, STUB, "MBC5 unknown value %02X", value);
break;
}
break;
case 0x2:
bank = (memory->currentBank & 0x100) | value;
GBMBCSwitchBank(gb, bank);
break;
case 0x3:
bank = (memory->currentBank & 0xFF) | ((value & 1) << 8);
GBMBCSwitchBank(gb, bank);
break;
case 0x4:
case 0x5:
if (memory->mbcType == GB_MBC5_RUMBLE && memory->rumble) {
memory->rumble->setRumble(memory->rumble, (value >> 3) & 1);
value &= ~8;
}
GBMBCSwitchSramBank(gb, value & 0xF);
break;
default:
// TODO
mLOG(GB_MBC, STUB, "MBC5 unknown address: %04X:%02X", address, value);
break;
}
}
void _GBMBC6(struct GB* gb, uint16_t address, uint8_t value) {
struct GBMemory* memory = &gb->memory;
int bank = value;
switch (address >> 10) {
case 0:
switch (value) {
case 0:
memory->sramAccess = false;
break;
case 0xA:
memory->sramAccess = true;
break;
default:
// TODO
mLOG(GB_MBC, STUB, "MBC6 unknown value %02X", value);
break;
}
break;
case 0x1:
GBMBCSwitchSramHalfBank(gb, 0, bank);
break;
case 0x2:
GBMBCSwitchSramHalfBank(gb, 1, bank);
break;
case 0x3:
mLOG(GB_MBC, STUB, "MBC6 unimplemented flash OE write: %04X:%02X", address, value);
break;
case 0x4:
mLOG(GB_MBC, STUB, "MBC6 unimplemented flash WE write: %04X:%02X", address, value);
break;
case 0x8:
case 0x9:
GBMBCSwitchHalfBank(gb, 0, bank);
break;
case 0xA:
case 0xB:
_GBMBC6MapChip(gb, 0, value);
break;
case 0xC:
case 0xD:
GBMBCSwitchHalfBank(gb, 1, bank);
break;
case 0xE:
case 0xF:
_GBMBC6MapChip(gb, 1, value);
break;
case 0x28:
case 0x29:
case 0x2A:
case 0x2B:
if (memory->sramAccess) {
memory->sramBank[address & (GB_SIZE_EXTERNAL_RAM_HALFBANK - 1)] = value;
gb->sramDirty |= mSAVEDATA_DIRT_NEW;
}
break;
case 0x2C:
case 0x2D:
case 0x2E:
case 0x2F:
if (memory->sramAccess) {
memory->sramBank1[address & (GB_SIZE_EXTERNAL_RAM_HALFBANK - 1)] = value;
}
break;
default:
mLOG(GB_MBC, STUB, "MBC6 unknown address: %04X:%02X", address, value);
break;
}
}
uint8_t _GBMBC6Read(struct GBMemory* memory, uint16_t address) {
if (!memory->sramAccess) {
return 0xFF;
}
switch (address >> 12) {
case 0xA:
return memory->sramBank[address & (GB_SIZE_EXTERNAL_RAM_HALFBANK - 1)];
case 0xB:
return memory->sramBank1[address & (GB_SIZE_EXTERNAL_RAM_HALFBANK - 1)];
}
return 0xFF;
}
static void _GBMBC6MapChip(struct GB* gb, int half, uint8_t value) {
if (!half) {
gb->memory.mbcState.mbc6.flashBank0 = !!(value & 0x08);
GBMBCSwitchHalfBank(gb, half, gb->memory.currentBank);
} else {
gb->memory.mbcState.mbc6.flashBank1 = !!(value & 0x08);
GBMBCSwitchHalfBank(gb, half, gb->memory.currentBank1);
}
}
void _GBMBC7(struct GB* gb, uint16_t address, uint8_t value) {
int bank = value & 0x7F;
switch (address >> 13) {
case 0x0:
switch (value) {
default:
case 0:
gb->memory.mbcState.mbc7.access = 0;
break;
case 0xA:
gb->memory.mbcState.mbc7.access |= 1;
break;
}
break;
case 0x1:
GBMBCSwitchBank(gb, bank);
break;
case 0x2:
if (value == 0x40) {
gb->memory.mbcState.mbc7.access |= 2;
} else {
gb->memory.mbcState.mbc7.access &= ~2;
}
break;
case 0x5:
_GBMBC7Write(&gb->memory, address, value);
gb->sramDirty |= mSAVEDATA_DIRT_NEW;
break;
default:
// TODO
mLOG(GB_MBC, STUB, "MBC7 unknown address: %04X:%02X", address, value);
break;
}
}
uint8_t _GBMBC7Read(struct GBMemory* memory, uint16_t address) {
struct GBMBC7State* mbc7 = &memory->mbcState.mbc7;
if (mbc7->access != 3) {
return 0xFF;
}
switch (address & 0xF0) {
case 0x20:
if (memory->rotation && memory->rotation->readTiltX) {
int32_t x = -memory->rotation->readTiltX(memory->rotation);
x >>= 21;
x += 0x81D0;
return x;
}
return 0xFF;
case 0x30:
if (memory->rotation && memory->rotation->readTiltX) {
int32_t x = -memory->rotation->readTiltX(memory->rotation);
x >>= 21;
x += 0x81D0;
return x >> 8;
}
return 7;
case 0x40:
if (memory->rotation && memory->rotation->readTiltY) {
int32_t y = -memory->rotation->readTiltY(memory->rotation);
y >>= 21;
y += 0x81D0;
return y;
}
return 0xFF;
case 0x50:
if (memory->rotation && memory->rotation->readTiltY) {
int32_t y = -memory->rotation->readTiltY(memory->rotation);
y >>= 21;
y += 0x81D0;
return y >> 8;
}
return 7;
case 0x60:
return 0;
case 0x80:
return mbc7->eeprom;
default:
return 0xFF;
}
}
void _GBMBC7Write(struct GBMemory* memory, uint16_t address, uint8_t value) {
struct GBMBC7State* mbc7 = &memory->mbcState.mbc7;
if (mbc7->access != 3) {
return;
}
switch (address & 0xF0) {
case 0x00:
mbc7->latch = (value & 0x55) == 0x55;
return;
case 0x10:
mbc7->latch |= (value & 0xAA);
if (mbc7->latch == 0xAB && memory->rotation && memory->rotation->sample) {
memory->rotation->sample(memory->rotation);
}
mbc7->latch = 0;
return;
default:
mLOG(GB_MBC, STUB, "MBC7 unknown register: %04X:%02X", address, value);
return;
case 0x80:
break;
}
GBMBC7Field old = memory->mbcState.mbc7.eeprom;
value = GBMBC7FieldFillDO(value); // Hi-Z
if (!GBMBC7FieldIsCS(old) && GBMBC7FieldIsCS(value)) {
mbc7->state = GBMBC7_STATE_IDLE;
}
if (!GBMBC7FieldIsCLK(old) && GBMBC7FieldIsCLK(value)) {
if (mbc7->state == GBMBC7_STATE_READ_COMMAND || mbc7->state == GBMBC7_STATE_EEPROM_WRITE || mbc7->state == GBMBC7_STATE_EEPROM_WRAL) {
mbc7->sr <<= 1;
mbc7->sr |= GBMBC7FieldGetDI(value);
++mbc7->srBits;
}
switch (mbc7->state) {
case GBMBC7_STATE_IDLE:
if (GBMBC7FieldIsDI(value)) {
mbc7->state = GBMBC7_STATE_READ_COMMAND;
mbc7->srBits = 0;
mbc7->sr = 0;
}
break;
case GBMBC7_STATE_READ_COMMAND:
if (mbc7->srBits == 10) {
mbc7->state = 0x10 | (mbc7->sr >> 6);
if (mbc7->state & 0xC) {
mbc7->state &= ~0x3;
}
mbc7->srBits = 0;
mbc7->address = mbc7->sr & 0x7F;
}
break;
case GBMBC7_STATE_DO:
value = GBMBC7FieldSetDO(value, mbc7->sr >> 15);
mbc7->sr <<= 1;
--mbc7->srBits;
if (!mbc7->srBits) {
mbc7->state = GBMBC7_STATE_IDLE;
}
break;
default:
break;
}
switch (mbc7->state) {
case GBMBC7_STATE_EEPROM_EWEN:
mbc7->writable = true;
mbc7->state = GBMBC7_STATE_IDLE;
break;
case GBMBC7_STATE_EEPROM_EWDS:
mbc7->writable = false;
mbc7->state = GBMBC7_STATE_IDLE;
break;
case GBMBC7_STATE_EEPROM_WRITE:
if (mbc7->srBits == 16) {
if (mbc7->writable) {
memory->sram[mbc7->address * 2] = mbc7->sr >> 8;
memory->sram[mbc7->address * 2 + 1] = mbc7->sr;
}
mbc7->state = GBMBC7_STATE_IDLE;
}
break;
case GBMBC7_STATE_EEPROM_ERASE:
if (mbc7->writable) {
memory->sram[mbc7->address * 2] = 0xFF;
memory->sram[mbc7->address * 2 + 1] = 0xFF;
}
mbc7->state = GBMBC7_STATE_IDLE;
break;
case GBMBC7_STATE_EEPROM_READ:
mbc7->srBits = 16;
mbc7->sr = memory->sram[mbc7->address * 2] << 8;
mbc7->sr |= memory->sram[mbc7->address * 2 + 1];
mbc7->state = GBMBC7_STATE_DO;
value = GBMBC7FieldClearDO(value);
break;
case GBMBC7_STATE_EEPROM_WRAL:
if (mbc7->srBits == 16) {
if (mbc7->writable) {
int i;
for (i = 0; i < 128; ++i) {
memory->sram[i * 2] = mbc7->sr >> 8;
memory->sram[i * 2 + 1] = mbc7->sr;
}
}
mbc7->state = GBMBC7_STATE_IDLE;
}
break;
case GBMBC7_STATE_EEPROM_ERAL:
if (mbc7->writable) {
int i;
for (i = 0; i < 128; ++i) {
memory->sram[i * 2] = 0xFF;
memory->sram[i * 2 + 1] = 0xFF;
}
}
mbc7->state = GBMBC7_STATE_IDLE;
break;
default:
break;
}
} else if (GBMBC7FieldIsCS(value) && GBMBC7FieldIsCLK(old) && !GBMBC7FieldIsCLK(value)) {
value = GBMBC7FieldSetDO(value, GBMBC7FieldGetDO(old));
}
mbc7->eeprom = value;
}

149
src/gb/mbc/pocket-cam.c Normal file
View File

@ -0,0 +1,149 @@
/* Copyright (c) 2013-2016 Jeffrey Pfau
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "gb/mbc/mbc-private.h"
#include <mgba/internal/defines.h>
#include <mgba/internal/gb/gb.h>
static void _GBPocketCamCapture(struct GBMemory*);
void _GBPocketCam(struct GB* gb, uint16_t address, uint8_t value) {
struct GBMemory* memory = &gb->memory;
int bank = value & 0x3F;
switch (address >> 13) {
case 0x0:
switch (value) {
case 0:
memory->sramAccess = false;
break;
case 0xA:
memory->sramAccess = true;
GBMBCSwitchSramBank(gb, memory->sramCurrentBank);
break;
default:
// TODO
mLOG(GB_MBC, STUB, "Pocket Cam unknown value %02X", value);
break;
}
break;
case 0x1:
GBMBCSwitchBank(gb, bank);
break;
case 0x2:
if (value < 0x10) {
GBMBCSwitchSramBank(gb, value);
memory->mbcState.pocketCam.registersActive = false;
memory->directSramAccess = true;
} else {
memory->mbcState.pocketCam.registersActive = true;
memory->directSramAccess = false;
}
break;
case 0x5:
if (!memory->mbcState.pocketCam.registersActive) {
break;
}
address &= 0x7F;
if (address == 0 && value & 1) {
value &= 6; // TODO: Timing
gb->sramDirty |= mSAVEDATA_DIRT_NEW;
_GBPocketCamCapture(memory);
}
if (address < sizeof(memory->mbcState.pocketCam.registers)) {
memory->mbcState.pocketCam.registers[address] = value;
}
break;
default:
mLOG(GB_MBC, STUB, "Pocket Cam unknown address: %04X:%02X", address, value);
break;
}
}
uint8_t _GBPocketCamRead(struct GBMemory* memory, uint16_t address) {
if (memory->mbcState.pocketCam.registersActive) {
if ((address & 0x7F) == 0) {
return memory->mbcState.pocketCam.registers[0];
}
return 0;
}
return memory->sramBank[address & (GB_SIZE_EXTERNAL_RAM - 1)];
}
void _GBPocketCamCapture(struct GBMemory* memory) {
if (!memory->cam) {
return;
}
const void* image = NULL;
size_t stride;
enum mColorFormat format;
memory->cam->requestImage(memory->cam, &image, &stride, &format);
if (!image) {
return;
}
memset(&memory->sram[0x100], 0, GBCAM_HEIGHT * GBCAM_WIDTH / 4);
struct GBPocketCamState* pocketCam = &memory->mbcState.pocketCam;
size_t x, y;
for (y = 0; y < GBCAM_HEIGHT; ++y) {
for (x = 0; x < GBCAM_WIDTH; ++x) {
uint32_t gray;
uint32_t color;
switch (format) {
case mCOLOR_XBGR8:
case mCOLOR_XRGB8:
case mCOLOR_ARGB8:
case mCOLOR_ABGR8:
color = ((const uint32_t*) image)[y * stride + x];
gray = (color & 0xFF) + ((color >> 8) & 0xFF) + ((color >> 16) & 0xFF);
break;
case mCOLOR_BGRX8:
case mCOLOR_RGBX8:
case mCOLOR_RGBA8:
case mCOLOR_BGRA8:
color = ((const uint32_t*) image)[y * stride + x];
gray = ((color >> 8) & 0xFF) + ((color >> 16) & 0xFF) + ((color >> 24) & 0xFF);
break;
case mCOLOR_BGR5:
case mCOLOR_RGB5:
case mCOLOR_ARGB5:
case mCOLOR_ABGR5:
color = ((const uint16_t*) image)[y * stride + x];
gray = ((color << 3) & 0xF8) + ((color >> 2) & 0xF8) + ((color >> 7) & 0xF8);
break;
case mCOLOR_BGR565:
case mCOLOR_RGB565:
color = ((const uint16_t*) image)[y * stride + x];
gray = ((color << 3) & 0xF8) + ((color >> 3) & 0xFC) + ((color >> 8) & 0xF8);
break;
case mCOLOR_BGRA5:
case mCOLOR_RGBA5:
color = ((const uint16_t*) image)[y * stride + x];
gray = ((color << 2) & 0xF8) + ((color >> 3) & 0xF8) + ((color >> 8) & 0xF8);
break;
default:
mLOG(GB_MBC, WARN, "Unsupported pixel format: %X", format);
return;
}
uint16_t exposure = (pocketCam->registers[2] << 8) | (pocketCam->registers[3]);
gray = (gray + 1) * exposure / 0x300;
// TODO: Additional processing
int matrixEntry = 3 * ((x & 3) + 4 * (y & 3));
if (gray < pocketCam->registers[matrixEntry + 6]) {
gray = 0x101;
} else if (gray < pocketCam->registers[matrixEntry + 7]) {
gray = 0x100;
} else if (gray < pocketCam->registers[matrixEntry + 8]) {
gray = 0x001;
} else {
gray = 0;
}
int coord = (((x >> 3) & 0xF) * 8 + (y & 0x7)) * 2 + (y & ~0x7) * 0x20;
uint16_t existing;
LOAD_16LE(existing, coord + 0x100, memory->sram);
existing |= gray << (7 - (x & 7));
STORE_16LE(existing, coord + 0x100, memory->sram);
}
}
}

433
src/gb/mbc/tama5.c Normal file
View File

@ -0,0 +1,433 @@
/* Copyright (c) 2013-2016 Jeffrey Pfau
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "gb/mbc/mbc-private.h"
#include <mgba/internal/defines.h>
#include <mgba/internal/gb/gb.h>
#include <mgba-util/vfs.h>
static const uint8_t _tama6RTCMask[32] = {
//0 1 2 3 4 5 6 7 8 9 A B C D E F
0xF, 0x7, 0xF, 0x7, 0xF, 0x3, 0x7, 0xF, 0x3, 0xF, 0x1, 0xF, 0xF, 0x0, 0x0, 0x0,
0x0, 0x0, 0xF, 0x7, 0xF, 0x3, 0x7, 0xF, 0x3, 0x0, 0x1, 0x3, 0x0, 0x0, 0x0, 0x0,
};
static const int _daysToMonth[] = {
[ 1] = 0,
[ 2] = 31,
[ 3] = 31 + 28,
[ 4] = 31 + 28 + 31,
[ 5] = 31 + 28 + 31 + 30,
[ 6] = 31 + 28 + 31 + 30 + 31,
[ 7] = 31 + 28 + 31 + 30 + 31 + 30,
[ 8] = 31 + 28 + 31 + 30 + 31 + 30 + 31,
[ 9] = 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
[10] = 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
[11] = 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
[12] = 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
};
static int _tama6DMYToDayOfYear(int day, int month, int year) {
if (month < 1 || month > 12) {
return -1;
}
day += _daysToMonth[month];
if (month > 2 && (year & 3) == 0) {
++day;
}
return day;
}
static int _tama6DayOfYearToMonth(int day, int year) {
int month;
for (month = 1; month < 12; ++month) {
if (day <= _daysToMonth[month + 1]) {
return month;
}
if (month == 2 && (year & 3) == 0) {
if (day == 60) {
return 2;
}
--day;
}
}
return 12;
}
static int _tama6DayOfYearToDayOfMonth(int day, int year) {
int month;
for (month = 1; month < 12; ++month) {
if (day <= _daysToMonth[month + 1]) {
return day - _daysToMonth[month];
}
if (month == 2 && (year & 3) == 0) {
if (day == 60) {
return 29;
}
--day;
}
}
return day - _daysToMonth[12];
}
static void _latchTAMA6Rtc(struct mRTCSource* rtc, struct GBTAMA5State* tama5, time_t* rtcLastLatch) {
time_t t;
if (rtc) {
if (rtc->sample) {
rtc->sample(rtc);
}
t = rtc->unixTime(rtc);
} else {
t = time(0);
}
time_t currentLatch = t;
t -= *rtcLastLatch;
*rtcLastLatch = currentLatch;
if (!t || tama5->disabled) {
return;
}
uint8_t* timerRegs = tama5->rtcTimerPage;
bool is24hour = tama5->rtcAlarmPage[GBTAMA6_RTC_PA1_24_HOUR];
int64_t diff;
diff = timerRegs[GBTAMA6_RTC_PA0_SECOND_1] + timerRegs[GBTAMA6_RTC_PA0_SECOND_10] * 10 + t % 60;
if (diff < 0) {
diff += 60;
t -= 60;
}
timerRegs[GBTAMA6_RTC_PA0_SECOND_1] = diff % 10;
timerRegs[GBTAMA6_RTC_PA0_SECOND_10] = (diff % 60) / 10;
t /= 60;
t += diff / 60;
diff = timerRegs[GBTAMA6_RTC_PA0_MINUTE_1] + timerRegs[GBTAMA6_RTC_PA0_MINUTE_10] * 10 + t % 60;
if (diff < 0) {
diff += 60;
t -= 60;
}
timerRegs[GBTAMA6_RTC_PA0_MINUTE_1] = diff % 10;
timerRegs[GBTAMA6_RTC_PA0_MINUTE_10] = (diff % 60) / 10;
t /= 60;
t += diff / 60;
diff = timerRegs[GBTAMA6_RTC_PA0_HOUR_1];
if (is24hour) {
diff += timerRegs[GBTAMA6_RTC_PA0_HOUR_10] * 10;
} else {
int hour10 = timerRegs[GBTAMA6_RTC_PA0_HOUR_10];
diff += (hour10 & 1) * 10;
diff += (hour10 & 2) * 12;
}
diff += t % 24;
if (diff < 0) {
diff += 24;
t -= 24;
}
if (is24hour) {
timerRegs[GBTAMA6_RTC_PA0_HOUR_1] = (diff % 24) % 10;
timerRegs[GBTAMA6_RTC_PA0_HOUR_10] = (diff % 24) / 10;
} else {
timerRegs[GBTAMA6_RTC_PA0_HOUR_1] = (diff % 12) % 10;
timerRegs[GBTAMA6_RTC_PA0_HOUR_10] = (diff % 12) / 10 + (diff / 12) * 2;
}
t /= 24;
t += diff / 24;
int day = timerRegs[GBTAMA6_RTC_PA0_DAY_1] + timerRegs[GBTAMA6_RTC_PA0_DAY_10] * 10;
int month = timerRegs[GBTAMA6_RTC_PA0_MONTH_1] + timerRegs[GBTAMA6_RTC_PA0_MONTH_10] * 10;
int year = timerRegs[GBTAMA6_RTC_PA0_YEAR_1] + timerRegs[GBTAMA6_RTC_PA0_YEAR_10] * 10;
int leapYear = tama5->rtcAlarmPage[GBTAMA6_RTC_PA1_LEAP_YEAR];
int dayOfWeek = timerRegs[GBTAMA6_RTC_PA0_WEEK];
int dayInYear = _tama6DMYToDayOfYear(day, month, leapYear);
diff = dayInYear + t;
while (diff <= 0) {
// Previous year
if (leapYear & 3) {
diff += 365;
} else {
diff += 366;
}
--year;
--leapYear;
}
while (diff > (leapYear & 3 ? 365 : 366)) {
// Future year
if (year % 4) {
diff -= 365;
} else {
diff -= 366;
}
++year;
++leapYear;
}
dayOfWeek = (dayOfWeek + diff) % 7;
year %= 100;
leapYear &= 3;
day = _tama6DayOfYearToDayOfMonth(diff, leapYear);
month = _tama6DayOfYearToMonth(diff, leapYear);
timerRegs[GBTAMA6_RTC_PA0_WEEK] = dayOfWeek;
tama5->rtcAlarmPage[GBTAMA6_RTC_PA1_LEAP_YEAR] = leapYear;
timerRegs[GBTAMA6_RTC_PA0_DAY_1] = day % 10;
timerRegs[GBTAMA6_RTC_PA0_DAY_10] = day / 10;
timerRegs[GBTAMA6_RTC_PA0_MONTH_1] = month % 10;
timerRegs[GBTAMA6_RTC_PA0_MONTH_10] = month / 10;
timerRegs[GBTAMA6_RTC_PA0_YEAR_1] = year % 10;
timerRegs[GBTAMA6_RTC_PA0_YEAR_10] = year / 10;
}
void _GBTAMA5(struct GB* gb, uint16_t address, uint8_t value) {
struct GBMemory* memory = &gb->memory;
struct GBTAMA5State* tama5 = &memory->mbcState.tama5;
switch (address >> 13) {
case 0x5:
if (address & 1) {
tama5->reg = value;
} else {
value &= 0xF;
if (tama5->reg < GBTAMA5_MAX) {
mLOG(GB_MBC, DEBUG, "TAMA5 write: %02X:%X", tama5->reg, value);
tama5->registers[tama5->reg] = value;
uint8_t address = ((tama5->registers[GBTAMA5_ADDR_HI] << 4) & 0x10) | tama5->registers[GBTAMA5_ADDR_LO];
uint8_t out = (tama5->registers[GBTAMA5_WRITE_HI] << 4) | tama5->registers[GBTAMA5_WRITE_LO];
switch (tama5->reg) {
case GBTAMA5_BANK_LO:
case GBTAMA5_BANK_HI:
GBMBCSwitchBank(gb, tama5->registers[GBTAMA5_BANK_LO] | (tama5->registers[GBTAMA5_BANK_HI] << 4));
break;
case GBTAMA5_WRITE_LO:
case GBTAMA5_WRITE_HI:
case GBTAMA5_ADDR_HI:
break;
case GBTAMA5_ADDR_LO:
switch (tama5->registers[GBTAMA5_ADDR_HI] >> 1) {
case 0x0: // RAM write
memory->sram[address] = out;
gb->sramDirty |= mSAVEDATA_DIRT_NEW;
break;
case 0x1: // RAM read
break;
case 0x2: // Other commands
switch (address) {
case GBTAMA6_DISABLE_TIMER:
tama5->disabled = true;
tama5->rtcTimerPage[GBTAMA6_RTC_PAGE] &= 0x7;
tama5->rtcAlarmPage[GBTAMA6_RTC_PAGE] &= 0x7;
tama5->rtcFreePage0[GBTAMA6_RTC_PAGE] &= 0x7;
tama5->rtcFreePage1[GBTAMA6_RTC_PAGE] &= 0x7;
break;
case GBTAMA6_ENABLE_TIMER:
tama5->disabled = false;
tama5->rtcTimerPage[GBTAMA6_RTC_PA0_SECOND_1] = 0;
tama5->rtcTimerPage[GBTAMA6_RTC_PA0_SECOND_10] = 0;
tama5->rtcTimerPage[GBTAMA6_RTC_PAGE] |= 0x8;
tama5->rtcAlarmPage[GBTAMA6_RTC_PAGE] |= 0x8;
tama5->rtcFreePage0[GBTAMA6_RTC_PAGE] |= 0x8;
tama5->rtcFreePage1[GBTAMA6_RTC_PAGE] |= 0x8;
break;
case GBTAMA6_MINUTE_WRITE:
tama5->rtcTimerPage[GBTAMA6_RTC_PA0_MINUTE_1] = out & 0xF;
tama5->rtcTimerPage[GBTAMA6_RTC_PA0_MINUTE_10] = out >> 4;
break;
case GBTAMA6_HOUR_WRITE:
tama5->rtcTimerPage[GBTAMA6_RTC_PA0_HOUR_1] = out & 0xF;
tama5->rtcTimerPage[GBTAMA6_RTC_PA0_HOUR_10] = out >> 4;
break;
case GBTAMA6_DISABLE_ALARM:
tama5->rtcTimerPage[GBTAMA6_RTC_PAGE] &= 0xB;
tama5->rtcAlarmPage[GBTAMA6_RTC_PAGE] &= 0xB;
tama5->rtcFreePage0[GBTAMA6_RTC_PAGE] &= 0xB;
tama5->rtcFreePage1[GBTAMA6_RTC_PAGE] &= 0xB;
break;
case GBTAMA6_ENABLE_ALARM:
tama5->rtcTimerPage[GBTAMA6_RTC_PAGE] |= 0x4;
tama5->rtcAlarmPage[GBTAMA6_RTC_PAGE] |= 0x4;
tama5->rtcFreePage0[GBTAMA6_RTC_PAGE] |= 0x4;
tama5->rtcFreePage1[GBTAMA6_RTC_PAGE] |= 0x4;
break;
}
break;
case 0x4: // RTC access
address = tama5->registers[GBTAMA5_WRITE_LO];
if (address >= GBTAMA6_RTC_PAGE) {
break;
}
out = tama5->registers[GBTAMA5_WRITE_HI];
switch (tama5->registers[GBTAMA5_ADDR_LO]) {
case 0:
out &= _tama6RTCMask[address];
tama5->rtcTimerPage[address] = out;
break;
case 2:
out &= _tama6RTCMask[address | 0x10];
tama5->rtcAlarmPage[address] = out;
break;
case 4:
tama5->rtcFreePage0[address] = out;
break;
case 6:
tama5->rtcFreePage1[address] = out;
break;
}
break;
default:
mLOG(GB_MBC, STUB, "TAMA5 unknown address: %02X:%02X", address, out);
break;
}
break;
default:
mLOG(GB_MBC, STUB, "TAMA5 unknown write: %02X:%X", tama5->reg, value);
break;
}
} else {
mLOG(GB_MBC, STUB, "TAMA5 unknown write: %02X", tama5->reg);
}
}
break;
default:
mLOG(GB_MBC, STUB, "TAMA5 unknown address: %04X:%02X", address, value);
}
}
uint8_t _GBTAMA5Read(struct GBMemory* memory, uint16_t address) {
struct GBTAMA5State* tama5 = &memory->mbcState.tama5;
if ((address & 0x1FFF) > 1) {
mLOG(GB_MBC, STUB, "TAMA5 unknown address: %04X", address);
}
if (address & 1) {
return 0xFF;
} else {
uint8_t value = 0xF0;
uint8_t address = ((tama5->registers[GBTAMA5_ADDR_HI] << 4) & 0x10) | tama5->registers[GBTAMA5_ADDR_LO];
switch (tama5->reg) {
case GBTAMA5_ACTIVE:
return 0xF1;
case GBTAMA5_READ_LO:
case GBTAMA5_READ_HI:
switch (tama5->registers[GBTAMA5_ADDR_HI] >> 1) {
case 0x1:
value = memory->sram[address];
break;
case 0x2:
mLOG(GB_MBC, STUB, "TAMA5 unknown read %s: %02X", tama5->reg == GBTAMA5_READ_HI ? "hi" : "lo", address);
_latchTAMA6Rtc(memory->rtc, tama5, &memory->rtcLastLatch);
switch (address) {
case GBTAMA6_MINUTE_READ:
value = (tama5->rtcTimerPage[GBTAMA6_RTC_PA0_MINUTE_10] << 4) | tama5->rtcTimerPage[GBTAMA6_RTC_PA0_MINUTE_1];
break;
case GBTAMA6_HOUR_READ:
value = (tama5->rtcTimerPage[GBTAMA6_RTC_PA0_HOUR_10] << 4) | tama5->rtcTimerPage[GBTAMA6_RTC_PA0_HOUR_1];
break;
default:
value = address;
break;
}
break;
case 0x4:
if (tama5->reg == GBTAMA5_READ_HI) {
mLOG(GB_MBC, GAME_ERROR, "TAMA5 reading RTC incorrectly");
break;
}
_latchTAMA6Rtc(memory->rtc, tama5, &memory->rtcLastLatch);
address = tama5->registers[GBTAMA5_WRITE_LO];
if (address > GBTAMA6_RTC_PAGE) {
value = 0;
break;
}
switch (tama5->registers[GBTAMA5_ADDR_LO]) {
case 1:
value = tama5->rtcTimerPage[address];
break;
case 3:
value = tama5->rtcTimerPage[address];
break;
case 5:
value = tama5->rtcTimerPage[address];
break;
case 7:
value = tama5->rtcTimerPage[address];
break;
}
break;
default:
mLOG(GB_MBC, STUB, "TAMA5 unknown read %s: %02X", tama5->reg == GBTAMA5_READ_HI ? "hi" : "lo", address);
break;
}
if (tama5->reg == GBTAMA5_READ_HI) {
value >>= 4;
}
value |= 0xF0;
return value;
default:
mLOG(GB_MBC, STUB, "TAMA5 unknown read: %02X", tama5->reg);
return 0xF1;
}
}
}
void GBMBCTAMA5Read(struct GB* gb) {
struct GBMBCTAMA5SaveBuffer buffer;
struct VFile* vf = gb->sramVf;
if (!vf) {
return;
}
vf->seek(vf, gb->sramSize, SEEK_SET);
if (vf->read(vf, &buffer, sizeof(buffer)) < (ssize_t) sizeof(buffer)) {
gb->memory.mbcState.tama5.disabled = false;
return;
}
size_t i;
for (i = 0; i < 0x8; ++i) {
gb->memory.mbcState.tama5.rtcTimerPage[i * 2] = buffer.rtcTimerPage[i] & 0xF;
gb->memory.mbcState.tama5.rtcTimerPage[i * 2 + 1] = buffer.rtcTimerPage[i] >> 4;
gb->memory.mbcState.tama5.rtcAlarmPage[i * 2] = buffer.rtcAlarmPage[i] & 0xF;
gb->memory.mbcState.tama5.rtcAlarmPage[i * 2 + 1] = buffer.rtcAlarmPage[i] >> 4;
gb->memory.mbcState.tama5.rtcFreePage0[i * 2] = buffer.rtcFreePage0[i] & 0xF;
gb->memory.mbcState.tama5.rtcFreePage0[i * 2 + 1] = buffer.rtcFreePage0[i] >> 4;
gb->memory.mbcState.tama5.rtcFreePage1[i * 2] = buffer.rtcFreePage1[i] & 0xF;
gb->memory.mbcState.tama5.rtcFreePage1[i * 2 + 1] = buffer.rtcFreePage1[i] >> 4;
}
LOAD_64LE(gb->memory.rtcLastLatch, 0, &buffer.latchedUnix);
gb->memory.mbcState.tama5.disabled = !(gb->memory.mbcState.tama5.rtcTimerPage[GBTAMA6_RTC_PAGE] & 0x8);
gb->memory.mbcState.tama5.rtcTimerPage[GBTAMA6_RTC_PAGE] &= 0xC;
gb->memory.mbcState.tama5.rtcAlarmPage[GBTAMA6_RTC_PAGE] &= 0xC;
gb->memory.mbcState.tama5.rtcAlarmPage[GBTAMA6_RTC_PAGE] |= 1;
gb->memory.mbcState.tama5.rtcFreePage0[GBTAMA6_RTC_PAGE] &= 0xC;
gb->memory.mbcState.tama5.rtcFreePage0[GBTAMA6_RTC_PAGE] |= 2;
gb->memory.mbcState.tama5.rtcFreePage1[GBTAMA6_RTC_PAGE] &= 0xC;
gb->memory.mbcState.tama5.rtcFreePage1[GBTAMA6_RTC_PAGE] |= 3;
}
void GBMBCTAMA5Write(struct GB* gb) {
struct VFile* vf = gb->sramVf;
if (!vf) {
return;
}
struct GBMBCTAMA5SaveBuffer buffer = {0};
size_t i;
for (i = 0; i < 8; ++i) {
buffer.rtcTimerPage[i] = gb->memory.mbcState.tama5.rtcTimerPage[i * 2] & 0xF;
buffer.rtcTimerPage[i] |= gb->memory.mbcState.tama5.rtcTimerPage[i * 2 + 1] << 4;
buffer.rtcAlarmPage[i] = gb->memory.mbcState.tama5.rtcAlarmPage[i * 2] & 0xF;
buffer.rtcAlarmPage[i] |= gb->memory.mbcState.tama5.rtcAlarmPage[i * 2 + 1] << 4;
buffer.rtcFreePage0[i] = gb->memory.mbcState.tama5.rtcFreePage0[i * 2] & 0xF;
buffer.rtcFreePage0[i] |= gb->memory.mbcState.tama5.rtcFreePage0[i * 2 + 1] << 4;
buffer.rtcFreePage1[i] = gb->memory.mbcState.tama5.rtcFreePage1[i * 2] & 0xF;
buffer.rtcFreePage1[i] |= gb->memory.mbcState.tama5.rtcFreePage1[i * 2 + 1] << 4;
}
STORE_64LE(gb->memory.rtcLastLatch, 0, &buffer.latchedUnix);
_GBMBCAppendSaveSuffix(gb, &buffer, sizeof(buffer));
}

469
src/gb/mbc/unlicensed.c Normal file
View File

@ -0,0 +1,469 @@
/* Copyright (c) 2013-2016 Jeffrey Pfau
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "gb/mbc/mbc-private.h"
#include <mgba/internal/gb/gb.h>
void _GBWisdomTree(struct GB* gb, uint16_t address, uint8_t value) {
UNUSED(value);
int bank = address & 0x3F;
switch (address >> 14) {
case 0x0:
GBMBCSwitchBank0(gb, bank * 2);
GBMBCSwitchBank(gb, bank * 2 + 1);
break;
default:
// TODO
mLOG(GB_MBC, STUB, "Wisdom Tree unknown address: %04X:%02X", address, value);
break;
}
}
void _GBPKJD(struct GB* gb, uint16_t address, uint8_t value) {
struct GBMemory* memory = &gb->memory;
switch (address >> 13) {
case 0x2:
if (value < 8) {
memory->directSramAccess = true;
memory->activeRtcReg = 0;
} else if (value >= 0xD && value <= 0xF) {
memory->directSramAccess = false;
memory->rtcAccess = false;
memory->activeRtcReg = value - 8;
}
break;
case 0x5:
if (!memory->sramAccess) {
return;
}
switch (memory->activeRtcReg) {
case 0:
memory->sramBank[address & (GB_SIZE_EXTERNAL_RAM - 1)] = value;
break;
case 5:
case 6:
memory->mbcState.pkjd.reg[memory->activeRtcReg - 5] = value;
break;
case 7:
switch (value) {
case 0x11:
memory->mbcState.pkjd.reg[0]--;
break;
case 0x12:
memory->mbcState.pkjd.reg[1]--;
break;
case 0x41:
memory->mbcState.pkjd.reg[0] += memory->mbcState.pkjd.reg[1];
break;
case 0x42:
memory->mbcState.pkjd.reg[1] += memory->mbcState.pkjd.reg[0];
break;
case 0x51:
memory->mbcState.pkjd.reg[0]++;
break;
case 0x52:
memory->mbcState.pkjd.reg[1]--;
break;
}
break;
}
return;
}
_GBMBC3(gb, address, value);
}
uint8_t _GBPKJDRead(struct GBMemory* memory, uint16_t address) {
if (!memory->sramAccess) {
return 0xFF;
}
switch (memory->activeRtcReg) {
case 0:
return memory->sramBank[address & (GB_SIZE_EXTERNAL_RAM - 1)];
case 5:
case 6:
return memory->mbcState.pkjd.reg[memory->activeRtcReg - 5];
default:
return 0;
}
}
static uint8_t _reorderBits(uint8_t input, const uint8_t* reorder) {
uint8_t newbyte = 0;
int i;
for(i = 0; i < 8; ++i) {
int oldbit = reorder[i];
int newbit = i;
newbyte += ((input >> oldbit) & 1) << newbit;
}
return newbyte;
}
static const uint8_t _ntOld1Reorder[8] = {
0, 2, 1, 4, 3, 5, 6, 7
};
void _ntOldMulticart(struct GB* gb, uint16_t address, uint8_t value, const uint8_t reorder[8]) {
struct GBMemory* memory = &gb->memory;
struct GBNTOldState* mbcState = &memory->mbcState.ntOld;
int bank = value;
switch (address & 3) {
case 0:
mLOG(GB_MBC, STUB, "Unimplemented NT Old 1 address 0");
break;
case 1:
value &= 0x3F;
mbcState->baseBank = value * 2;
if (mbcState->baseBank) {
GBMBCSwitchBank0(gb, mbcState->baseBank);
GBMBCSwitchBank(gb, mbcState->baseBank + 1);
}
break;
case 2:
if ((value & 0xF0) == 0xE0) {
gb->sramSize = 0x2000;
GBResizeSram(gb, gb->sramSize);
}
switch (value & 0xF) {
case 0x00:
mbcState->bankCount = 32;
break;
case 0x08:
mbcState->bankCount = 16;
break;
case 0xC:
mbcState->bankCount = 8;
break;
case 0xE:
mbcState->bankCount = 4;
break;
case 0xF:
mbcState->bankCount = 2;
break;
default:
mbcState->bankCount = 32;
break;
}
break;
case 3:
mbcState->swapped = !!(value & 0x10);
bank = memory->currentBank;
if (mbcState->swapped) {
bank = _reorderBits(bank, reorder);
}
GBMBCSwitchBank(gb, bank);
break;
}
}
void _GBNTOld1(struct GB* gb, uint16_t address, uint8_t value) {
struct GBMemory* memory = &gb->memory;
struct GBNTOldState* mbcState = &memory->mbcState.ntOld;
int bank = value;
switch (address >> 12) {
case 0x0:
case 0x1:
_GBMBC3(gb, address, value);
break;
case 0x2:
case 0x3:
bank &= 0x1F;
if (!bank) {
bank = 1;
}
if (mbcState->swapped) {
bank = _reorderBits(bank, _ntOld1Reorder);
}
if (mbcState->bankCount) {
bank &= mbcState->bankCount - 1;
}
GBMBCSwitchBank(gb, bank + mbcState->baseBank);
break;
case 0x5:
_ntOldMulticart(gb, address, value, _ntOld1Reorder);
break;
}
}
static const uint8_t _ntOld2Reorder[8] = {
1, 2, 0, 3, 4, 5, 6, 7
};
void _GBNTOld2(struct GB* gb, uint16_t address, uint8_t value) {
struct GBMemory* memory = &gb->memory;
struct GBNTOldState* mbcState = &memory->mbcState.ntOld;
int bank = value;
switch (address >> 12) {
case 0x0:
case 0x1:
_GBMBC3(gb, address, value);
break;
case 0x2:
case 0x3:
if (!bank) {
bank = 1;
}
if (mbcState->swapped) {
bank = _reorderBits(bank, _ntOld2Reorder);
}
if (mbcState->bankCount) {
bank &= mbcState->bankCount - 1;
}
GBMBCSwitchBank(gb, bank + mbcState->baseBank);
break;
case 0x5:
_ntOldMulticart(gb, address, value, _ntOld2Reorder);
// Fall through
case 0x4:
if (address == 0x5001) {
mbcState->rumble = !!(value & 0x80);
}
if (mbcState->rumble) {
memory->rumble->setRumble(memory->rumble, !!(mbcState->swapped ? value & 0x08 : value & 0x02));
}
break;
}
}
void _GBNTNew(struct GB* gb, uint16_t address, uint8_t value) {
struct GBMemory* memory = &gb->memory;
if (address >> 8 == 0x14) {
memory->mbcState.ntNew.splitMode = true;
return;
}
if (memory->mbcState.ntNew.splitMode) {
int bank = value;
if (bank < 2) {
bank = 2;
}
switch (address >> 10) {
case 8:
GBMBCSwitchHalfBank(gb, 0, bank);
return;
case 9:
GBMBCSwitchHalfBank(gb, 1, bank);
return;
}
}
_GBMBC5(gb, address, value);
}
static const uint8_t _bbdDataReordering[8][8] = {
{ 0, 1, 2, 3, 4, 5, 6, 7 }, // 00 - Normal
{ 0, 1, 2, 3, 4, 5, 6, 7 }, // 01 - NOT KNOWN YET
{ 0, 1, 2, 3, 4, 5, 6, 7 }, // 02 - NOT KNOWN YET
{ 0, 1, 2, 3, 4, 5, 6, 7 }, // 03 - NOT KNOWN YET
{ 0, 5, 1, 3, 4, 2, 6, 7 }, // 04 - Garou
{ 0, 4, 2, 3, 1, 5, 6, 7 }, // 05 - Harry
{ 0, 1, 2, 3, 4, 5, 6, 7 }, // 06 - NOT KNOWN YET
{ 0, 1, 5, 3, 4, 2, 6, 7 }, // 07 - Digimon
};
static const uint8_t _bbdBankReordering[8][8] = {
{ 0, 1, 2, 3, 4, 5, 6, 7 }, // 00 - Normal
{ 0, 1, 2, 3, 4, 5, 6, 7 }, // 01 - NOT KNOWN YET
{ 0, 1, 2, 3, 4, 5, 6, 7 }, // 02 - NOT KNOWN YET
{ 3, 4, 2, 0, 1, 5, 6, 7 }, // 03 - 0,1 unconfirmed. Digimon/Garou
{ 0, 1, 2, 3, 4, 5, 6, 7 }, // 04 - NOT KNOWN YET
{ 1, 2, 3, 4, 0, 5, 6, 7 }, // 05 - 0,1 unconfirmed. Harry
{ 0, 1, 2, 3, 4, 5, 6, 7 }, // 06 - NOT KNOWN YET
{ 0, 1, 2, 3, 4, 5, 6, 7 }, // 07 - NOT KNOWN YET
};
void _GBBBD(struct GB* gb, uint16_t address, uint8_t value) {
struct GBMemory* memory = &gb->memory;
switch (address & 0xF0FF) {
case 0x2000:
value = _reorderBits(value, _bbdBankReordering[memory->mbcState.bbd.bankSwapMode]);
break;
case 0x2001:
memory->mbcState.bbd.dataSwapMode = value & 0x07;
if (!(memory->mbcState.bbd.dataSwapMode == 0x07 || memory->mbcState.bbd.dataSwapMode == 0x05 || memory->mbcState.bbd.dataSwapMode == 0x04 || memory->mbcState.bbd.dataSwapMode == 0x00)) {
mLOG(GB_MBC, STUB, "Bitswap mode unsupported: %X", memory->mbcState.bbd.dataSwapMode);
}
break;
case 0x2080:
memory->mbcState.bbd.bankSwapMode = value & 0x07;
if (!(memory->mbcState.bbd.bankSwapMode == 0x03 || memory->mbcState.bbd.bankSwapMode == 0x05 || memory->mbcState.bbd.bankSwapMode == 0x00)) {
mLOG(GB_MBC, STUB, "Bankswap mode unsupported: %X", memory->mbcState.bbd.dataSwapMode);
}
break;
}
_GBMBC5(gb, address, value);
}
uint8_t _GBBBDRead(struct GBMemory* memory, uint16_t address) {
switch (address >> 14) {
case 0:
default:
return memory->romBank[address & (GB_SIZE_CART_BANK0 - 1)];
case 1:
return _reorderBits(memory->romBank[address & (GB_SIZE_CART_BANK0 - 1)], _bbdDataReordering[memory->mbcState.bbd.dataSwapMode]);
}
}
static const uint8_t _hitekDataReordering[8][8] = {
{ 0, 1, 2, 3, 4, 5, 6, 7 },
{ 0, 6, 5, 3, 4, 1, 2, 7 },
{ 0, 5, 6, 3, 4, 2, 1, 7 },
{ 0, 6, 2, 3, 4, 5, 1, 7 },
{ 0, 6, 1, 3, 4, 5, 2, 7 },
{ 0, 1, 6, 3, 4, 5, 2, 7 },
{ 0, 2, 6, 3, 4, 1, 5, 7 },
{ 0, 6, 2, 3, 4, 1, 5, 7 },
};
static const uint8_t _hitekBankReordering[8][8] = {
{ 0, 1, 2, 3, 4, 5, 6, 7 },
{ 3, 2, 1, 0, 4, 5, 6, 7 },
{ 2, 1, 0, 3, 4, 5, 6, 7 },
{ 1, 0, 3, 2, 4, 5, 6, 7 },
{ 0, 3, 2, 1, 4, 5, 6, 7 },
{ 2, 3, 0, 1, 4, 5, 6, 7 },
{ 3, 0, 1, 2, 4, 5, 6, 7 },
{ 2, 0, 3, 1, 4, 5, 6, 7 },
};
void _GBHitek(struct GB* gb, uint16_t address, uint8_t value) {
struct GBMemory* memory = &gb->memory;
switch (address & 0xF0FF) {
case 0x2000:
value = _reorderBits(value, _hitekBankReordering[memory->mbcState.bbd.bankSwapMode]);
break;
case 0x2001:
memory->mbcState.bbd.dataSwapMode = value & 0x07;
break;
case 0x2080:
memory->mbcState.bbd.bankSwapMode = value & 0x07;
break;
case 0x300:
// See hhugboy src/memory/mbc/MbcUnlHitek.cpp for commentary on this return
return;
}
_GBMBC5(gb, address, value);
}
uint8_t _GBHitekRead(struct GBMemory* memory, uint16_t address) {
switch (address >> 14) {
case 0:
default:
return memory->romBank[address & (GB_SIZE_CART_BANK0 - 1)];
case 1:
return _reorderBits(memory->romBank[address & (GB_SIZE_CART_BANK0 - 1)], _hitekDataReordering[memory->mbcState.bbd.dataSwapMode]);
}
}
void _GBLiCheng(struct GB* gb, uint16_t address, uint8_t value) {
if (address > 0x2100 && address < 0x3000) {
return;
}
_GBMBC5(gb, address, value);
}
void _GBSachen(struct GB* gb, uint16_t address, uint8_t value) {
struct GBSachenState* state = &gb->memory.mbcState.sachen;
uint8_t bank = value;
switch (address >> 13) {
case 0:
if ((state->unmaskedBank & 0x30) == 0x30) {
state->baseBank = bank;
GBMBCSwitchBank0(gb, state->baseBank & state->mask);
}
break;
case 1:
if (!bank) {
bank = 1;
}
state->unmaskedBank = bank;
bank = (bank & ~state->mask) | (state->baseBank & state->mask);
GBMBCSwitchBank(gb, bank);
break;
case 2:
if ((state->unmaskedBank & 0x30) == 0x30) {
state->mask = value;
bank = (state->unmaskedBank & ~state->mask) | (state->baseBank & state->mask);
GBMBCSwitchBank(gb, bank);
GBMBCSwitchBank0(gb, state->baseBank & state->mask);
}
break;
case 6:
if (gb->memory.mbcType == GB_UNL_SACHEN_MMC2 && state->locked == GB_SACHEN_LOCKED_DMG) {
state->locked = GB_SACHEN_LOCKED_CGB;
state->transition = 0;
}
break;
}
}
static uint16_t _unscrambleSachen(uint16_t address) {
uint16_t unscrambled = address & 0xFFAC;
unscrambled |= (address & 0x40) >> 6;
unscrambled |= (address & 0x10) >> 3;
unscrambled |= (address & 0x02) << 3;
unscrambled |= (address & 0x01) << 6;
return unscrambled;
}
uint8_t _GBSachenMMC1Read(struct GBMemory* memory, uint16_t address) {
struct GBSachenState* state = &memory->mbcState.sachen;
if (state->locked != GB_SACHEN_UNLOCKED && (address & 0xFF00) == 0x100) {
++state->transition;
if (state->transition == 0x31) {
state->locked = GB_SACHEN_UNLOCKED;
} else {
address |= 0x80;
}
}
if ((address & 0xFF00) == 0x0100) {
address = _unscrambleSachen(address);
}
if (address < GB_BASE_CART_BANK1) {
return memory->romBase[address];
} else if (address < GB_BASE_VRAM) {
return memory->romBank[address & (GB_SIZE_CART_BANK0 - 1)];
} else {
return 0xFF;
}
}
uint8_t _GBSachenMMC2Read(struct GBMemory* memory, uint16_t address) {
struct GBSachenState* state = &memory->mbcState.sachen;
if (address >= 0xC000 && state->locked == GB_SACHEN_LOCKED_DMG) {
state->transition = 0;
state->locked = GB_SACHEN_LOCKED_CGB;
}
if (state->locked != GB_SACHEN_UNLOCKED && (address & 0x8700) == 0x0100) {
++state->transition;
if (state->transition == 0x31) {
++state->locked;
state->transition = 0;
}
}
if ((address & 0xFF00) == 0x0100) {
if (state->locked == GB_SACHEN_LOCKED_CGB) {
address |= 0x80;
}
address = _unscrambleSachen(address);
}
if (address < GB_BASE_CART_BANK1) {
return memory->romBase[address];
} else if (address < GB_BASE_VRAM) {
return memory->romBank[address & (GB_SIZE_CART_BANK0 - 1)];
} else {
return 0xFF;
}
}