578 lines
14 KiB
C++
578 lines
14 KiB
C++
/*
|
|
Copyright 2016-2024 melonDS team
|
|
|
|
This file is part of melonDS.
|
|
|
|
melonDS is free software: you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation, either version 3 of the License, or (at your option)
|
|
any later version.
|
|
|
|
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with melonDS. If not, see http://www.gnu.org/licenses/.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include "DSi.h"
|
|
#include "DSi_NAND.h"
|
|
#include "DSi_AES.h"
|
|
#include "Platform.h"
|
|
|
|
namespace melonDS
|
|
{
|
|
using Platform::Log;
|
|
using Platform::LogLevel;
|
|
|
|
|
|
#define _printhex(str, size) { for (int z = 0; z < (size); z++) printf("%02X", (str)[z]); printf("\n"); }
|
|
#define _printhex2(str, size) { for (int z = 0; z < (size); z++) printf("%02X", (str)[z]); }
|
|
|
|
#define _printhexR(str, size) { for (int z = 0; z < (size); z++) printf("%02X", (str)[((size)-1)-z]); printf("\n"); }
|
|
#define _printhex2R(str, size) { for (int z = 0; z < (size); z++) printf("%02X", (str)[((size)-1)-z]); }
|
|
|
|
|
|
DSi_AES::DSi_AES(melonDS::DSi& dsi) : DSi(dsi)
|
|
{
|
|
const u8 zero[16] = {0};
|
|
AES_init_ctx_iv(&Ctx, zero, zero);
|
|
}
|
|
|
|
DSi_AES::~DSi_AES()
|
|
{
|
|
}
|
|
|
|
void DSi_AES::Reset()
|
|
{
|
|
Cnt = 0;
|
|
|
|
BlkCnt = 0;
|
|
RemExtra = 0;
|
|
RemBlocks = 0;
|
|
|
|
OutputFlush = false;
|
|
|
|
InputDMASize = 0;
|
|
OutputDMASize = 0;
|
|
AESMode = 0;
|
|
|
|
InputFIFO.Clear();
|
|
OutputFIFO.Clear();
|
|
|
|
memset(IV, 0, sizeof(IV));
|
|
|
|
memset(MAC, 0, sizeof(MAC));
|
|
|
|
memset(KeyNormal, 0, sizeof(KeyNormal));
|
|
memset(KeyX, 0, sizeof(KeyX));
|
|
memset(KeyY, 0, sizeof(KeyY));
|
|
|
|
memset(CurKey, 0, sizeof(CurKey));
|
|
memset(CurMAC, 0, sizeof(CurMAC));
|
|
|
|
memset(OutputMAC, 0, sizeof(OutputMAC));
|
|
OutputMACDue = false;
|
|
|
|
// initialize keys
|
|
u64 consoleid = DSi.SDMMC.GetNAND()->GetConsoleID();
|
|
|
|
// slot 0: modcrypt
|
|
*(u32*)&KeyX[0][0] = 0x746E694E;
|
|
*(u32*)&KeyX[0][4] = 0x6F646E65;
|
|
|
|
// slot 1: 'Tad'/dev.kp
|
|
*(u32*)&KeyX[1][0] = 0x4E00004A;
|
|
*(u32*)&KeyX[1][4] = 0x4A00004E;
|
|
*(u32*)&KeyX[1][8] = (u32)(consoleid >> 32) ^ 0xC80C4B72;
|
|
*(u32*)&KeyX[1][12] = (u32)consoleid;
|
|
|
|
// slot 3: console-unique eMMC crypto
|
|
*(u32*)&KeyX[3][0] = (u32)consoleid;
|
|
*(u32*)&KeyX[3][4] = (u32)consoleid ^ 0x24EE6906;
|
|
*(u32*)&KeyX[3][8] = (u32)(consoleid >> 32) ^ 0xE65B601D;
|
|
*(u32*)&KeyX[3][12] = (u32)(consoleid >> 32);
|
|
*(u32*)&KeyY[3][0] = 0x0AB9DC76;
|
|
*(u32*)&KeyY[3][4] = 0xBD4DC4D3;
|
|
*(u32*)&KeyY[3][8] = 0x202DDD1D;
|
|
}
|
|
|
|
void DSi_AES::DoSavestate(Savestate* file)
|
|
{
|
|
file->Section("AESi");
|
|
|
|
file->Var32(&Cnt);
|
|
|
|
file->Var32(&BlkCnt);
|
|
file->Var32(&RemExtra);
|
|
file->Var32(&RemBlocks);
|
|
|
|
file->Bool32(&OutputFlush);
|
|
|
|
file->Var32(&InputDMASize);
|
|
file->Var32(&OutputDMASize);
|
|
file->Var32(&AESMode);
|
|
|
|
InputFIFO.DoSavestate(file);
|
|
OutputFIFO.DoSavestate(file);
|
|
|
|
file->VarArray(IV, 16);
|
|
|
|
file->VarArray(MAC, 16);
|
|
|
|
file->VarArray(KeyNormal, 4*16);
|
|
file->VarArray(KeyX, 4*16);
|
|
file->VarArray(KeyY, 4*16);
|
|
|
|
file->VarArray(CurKey, 16);
|
|
file->VarArray(CurMAC, 16);
|
|
|
|
file->VarArray(OutputMAC, 16);
|
|
file->Bool32(&OutputMACDue);
|
|
|
|
file->VarArray(Ctx.RoundKey, AES_keyExpSize);
|
|
file->VarArray(Ctx.Iv, AES_BLOCKLEN);
|
|
}
|
|
|
|
|
|
void DSi_AES::ProcessBlock_CCM_Extra()
|
|
{
|
|
u8 data[16];
|
|
u8 data_rev[16];
|
|
|
|
*(u32*)&data[0] = InputFIFO.Read();
|
|
*(u32*)&data[4] = InputFIFO.Read();
|
|
*(u32*)&data[8] = InputFIFO.Read();
|
|
*(u32*)&data[12] = InputFIFO.Read();
|
|
|
|
Bswap128(data_rev, data);
|
|
|
|
for (int i = 0; i < 16; i++) CurMAC[i] ^= data_rev[i];
|
|
AES_ECB_encrypt(&Ctx, CurMAC);
|
|
}
|
|
|
|
void DSi_AES::ProcessBlock_CCM_Decrypt()
|
|
{
|
|
u8 data[16];
|
|
u8 data_rev[16];
|
|
|
|
*(u32*)&data[0] = InputFIFO.Read();
|
|
*(u32*)&data[4] = InputFIFO.Read();
|
|
*(u32*)&data[8] = InputFIFO.Read();
|
|
*(u32*)&data[12] = InputFIFO.Read();
|
|
|
|
//printf("AES-CCM: "); _printhex2(data, 16);
|
|
|
|
Bswap128(data_rev, data);
|
|
|
|
AES_CTR_xcrypt_buffer(&Ctx, data_rev, 16);
|
|
for (int i = 0; i < 16; i++) CurMAC[i] ^= data_rev[i];
|
|
AES_ECB_encrypt(&Ctx, CurMAC);
|
|
|
|
Bswap128(data, data_rev);
|
|
|
|
//printf(" -> "); _printhex2(data, 16);
|
|
|
|
OutputFIFO.Write(*(u32*)&data[0]);
|
|
OutputFIFO.Write(*(u32*)&data[4]);
|
|
OutputFIFO.Write(*(u32*)&data[8]);
|
|
OutputFIFO.Write(*(u32*)&data[12]);
|
|
}
|
|
|
|
void DSi_AES::ProcessBlock_CCM_Encrypt()
|
|
{
|
|
u8 data[16];
|
|
u8 data_rev[16];
|
|
|
|
*(u32*)&data[0] = InputFIFO.Read();
|
|
*(u32*)&data[4] = InputFIFO.Read();
|
|
*(u32*)&data[8] = InputFIFO.Read();
|
|
*(u32*)&data[12] = InputFIFO.Read();
|
|
|
|
//printf("AES-CCM: "); _printhex2(data, 16);
|
|
|
|
Bswap128(data_rev, data);
|
|
|
|
for (int i = 0; i < 16; i++) CurMAC[i] ^= data_rev[i];
|
|
AES_CTR_xcrypt_buffer(&Ctx, data_rev, 16);
|
|
AES_ECB_encrypt(&Ctx, CurMAC);
|
|
|
|
Bswap128(data, data_rev);
|
|
|
|
//printf(" -> "); _printhex2(data, 16);
|
|
|
|
OutputFIFO.Write(*(u32*)&data[0]);
|
|
OutputFIFO.Write(*(u32*)&data[4]);
|
|
OutputFIFO.Write(*(u32*)&data[8]);
|
|
OutputFIFO.Write(*(u32*)&data[12]);
|
|
}
|
|
|
|
void DSi_AES::ProcessBlock_CTR()
|
|
{
|
|
u8 data[16];
|
|
u8 data_rev[16];
|
|
|
|
*(u32*)&data[0] = InputFIFO.Read();
|
|
*(u32*)&data[4] = InputFIFO.Read();
|
|
*(u32*)&data[8] = InputFIFO.Read();
|
|
*(u32*)&data[12] = InputFIFO.Read();
|
|
|
|
//printf("AES-CTR: "); _printhex2(data, 16);
|
|
|
|
Bswap128(data_rev, data);
|
|
AES_CTR_xcrypt_buffer(&Ctx, data_rev, 16);
|
|
Bswap128(data, data_rev);
|
|
|
|
//printf(" -> "); _printhex(data, 16);
|
|
|
|
OutputFIFO.Write(*(u32*)&data[0]);
|
|
OutputFIFO.Write(*(u32*)&data[4]);
|
|
OutputFIFO.Write(*(u32*)&data[8]);
|
|
OutputFIFO.Write(*(u32*)&data[12]);
|
|
}
|
|
|
|
|
|
u32 DSi_AES::ReadCnt() const
|
|
{
|
|
u32 ret = Cnt;
|
|
|
|
ret |= InputFIFO.Level();
|
|
ret |= (OutputFIFO.Level() << 5);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void DSi_AES::WriteCnt(u32 val)
|
|
{
|
|
u32 oldcnt = Cnt;
|
|
Cnt = val & 0xFC1FF000;
|
|
|
|
/*if (val & (3<<10))
|
|
{
|
|
if (val & (1<<11)) OutputFlush = true;
|
|
Update();
|
|
}*/
|
|
|
|
u32 dmasize_in[4] = {0, 4, 8, 12};
|
|
u32 dmasize_out[4] = {4, 8, 12, 16};
|
|
InputDMASize = dmasize_in[(val >> 12) & 0x3];
|
|
OutputDMASize = dmasize_out[(val >> 14) & 0x3];
|
|
|
|
AESMode = (val >> 28) & 0x3;
|
|
|
|
if (val & (1<<24))
|
|
{
|
|
u32 slot = (val >> 26) & 0x3;
|
|
memcpy(CurKey, KeyNormal[slot], 16);
|
|
}
|
|
|
|
if (!(oldcnt & (1<<31)) && (val & (1<<31)))
|
|
{
|
|
// transfer start (checkme)
|
|
RemExtra = (AESMode < 2) ? (BlkCnt & 0xFFFF) : 0;
|
|
RemBlocks = BlkCnt >> 16;
|
|
|
|
OutputMACDue = false;
|
|
|
|
if (AESMode == 0 && (!(val & (1<<20)))) Log(LogLevel::Debug, "AES: CCM-DECRYPT MAC FROM WRFIFO, TODO\n");
|
|
|
|
if ((RemBlocks > 0) || (RemExtra > 0))
|
|
{
|
|
u8 key[16];
|
|
u8 iv[16];
|
|
|
|
Bswap128(key, CurKey);
|
|
Bswap128(iv, IV);
|
|
|
|
if (AESMode < 2)
|
|
{
|
|
u32 maclen = (val >> 16) & 0x7;
|
|
if (maclen < 1) maclen = 1;
|
|
|
|
iv[0] = 0x02;
|
|
for (int i = 0; i < 12; i++) iv[1+i] = iv[4+i];
|
|
iv[13] = 0x00;
|
|
iv[14] = 0x00;
|
|
iv[15] = 0x01;
|
|
|
|
AES_init_ctx_iv(&Ctx, key, iv);
|
|
|
|
iv[0] |= (maclen << 3) | ((BlkCnt & 0xFFFF) ? (1<<6) : 0);
|
|
iv[13] = RemBlocks >> 12;
|
|
iv[14] = RemBlocks >> 4;
|
|
iv[15] = RemBlocks << 4;
|
|
|
|
memcpy(CurMAC, iv, 16);
|
|
AES_ECB_encrypt(&Ctx, CurMAC);
|
|
}
|
|
else
|
|
{
|
|
AES_init_ctx_iv(&Ctx, key, iv);
|
|
}
|
|
|
|
DSi.CheckNDMAs(1, 0x2A);
|
|
}
|
|
else
|
|
{
|
|
// no blocks to process? oh well. mark it finished
|
|
// CHECKME: does this trigger any IRQ or shit?
|
|
|
|
Cnt &= ~(1<<31);
|
|
}
|
|
}
|
|
|
|
//printf("AES CNT: %08X / mode=%d key=%d inDMA=%d outDMA=%d blocks=%d (BLKCNT=%08X)\n",
|
|
// val, AESMode, (val >> 26) & 0x3, InputDMASize, OutputDMASize, RemBlocks, BlkCnt);
|
|
}
|
|
|
|
void DSi_AES::WriteBlkCnt(u32 val)
|
|
{
|
|
BlkCnt = val;
|
|
}
|
|
|
|
u32 DSi_AES::ReadOutputFIFO()
|
|
{
|
|
if (OutputFIFO.IsEmpty()) Log(LogLevel::Warn, "!!! AES OUTPUT FIFO EMPTY\n");
|
|
|
|
u32 ret = OutputFIFO.Read();
|
|
|
|
if (Cnt & (1<<31))
|
|
{
|
|
CheckInputDMA();
|
|
CheckOutputDMA();
|
|
}
|
|
else
|
|
{
|
|
if (OutputFIFO.Level() > 0)
|
|
DSi.CheckNDMAs(1, 0x2B);
|
|
else
|
|
DSi.StopNDMAs(1, 0x2B);
|
|
|
|
if (OutputMACDue && OutputFIFO.Level() <= 12)
|
|
{
|
|
OutputFIFO.Write(*(u32*)&OutputMAC[0]);
|
|
OutputFIFO.Write(*(u32*)&OutputMAC[4]);
|
|
OutputFIFO.Write(*(u32*)&OutputMAC[8]);
|
|
OutputFIFO.Write(*(u32*)&OutputMAC[12]);
|
|
OutputMACDue = false;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void DSi_AES::WriteInputFIFO(u32 val)
|
|
{
|
|
// TODO: add some delay to processing
|
|
|
|
if (InputFIFO.IsFull()) Log(LogLevel::Warn, "!!! AES INPUT FIFO FULL\n");
|
|
|
|
InputFIFO.Write(val);
|
|
|
|
if (!(Cnt & (1<<31))) return;
|
|
|
|
Update();
|
|
}
|
|
|
|
void DSi_AES::CheckInputDMA()
|
|
{
|
|
if (RemBlocks == 0 && RemExtra == 0) return;
|
|
|
|
if (InputFIFO.Level() <= InputDMASize)
|
|
{
|
|
// trigger input DMA
|
|
DSi.CheckNDMAs(1, 0x2A);
|
|
}
|
|
|
|
Update();
|
|
}
|
|
|
|
void DSi_AES::CheckOutputDMA()
|
|
{
|
|
if (OutputFIFO.Level() >= OutputDMASize)
|
|
{
|
|
// trigger output DMA
|
|
DSi.CheckNDMAs(1, 0x2B);
|
|
}
|
|
}
|
|
|
|
void DSi_AES::Update()
|
|
{
|
|
if (RemExtra > 0)
|
|
{
|
|
while (InputFIFO.Level() >= 4 && RemExtra > 0)
|
|
{
|
|
ProcessBlock_CCM_Extra();
|
|
RemExtra--;
|
|
}
|
|
}
|
|
|
|
if (RemExtra == 0)
|
|
{
|
|
while (InputFIFO.Level() >= 4 && OutputFIFO.Level() <= 12 && RemBlocks > 0)
|
|
{
|
|
switch (AESMode)
|
|
{
|
|
case 0: ProcessBlock_CCM_Decrypt(); break;
|
|
case 1: ProcessBlock_CCM_Encrypt(); break;
|
|
case 2:
|
|
case 3: ProcessBlock_CTR(); break;
|
|
}
|
|
|
|
RemBlocks--;
|
|
}
|
|
}
|
|
|
|
CheckOutputDMA();
|
|
|
|
if (RemBlocks == 0 && RemExtra == 0)
|
|
{
|
|
if (AESMode == 0)
|
|
{
|
|
Ctx.Iv[13] = 0x00;
|
|
Ctx.Iv[14] = 0x00;
|
|
Ctx.Iv[15] = 0x00;
|
|
AES_CTR_xcrypt_buffer(&Ctx, CurMAC, 16);
|
|
|
|
//printf("FINAL MAC: "); _printhexR(CurMAC, 16);
|
|
//printf("INPUT MAC: "); _printhex(MAC, 16);
|
|
|
|
Cnt |= (1<<21);
|
|
for (int i = 0; i < 16; i++)
|
|
{
|
|
if (CurMAC[15-i] != MAC[i]) Cnt &= ~(1<<21);
|
|
}
|
|
}
|
|
else if (AESMode == 1)
|
|
{
|
|
Ctx.Iv[13] = 0x00;
|
|
Ctx.Iv[14] = 0x00;
|
|
Ctx.Iv[15] = 0x00;
|
|
AES_CTR_xcrypt_buffer(&Ctx, CurMAC, 16);
|
|
|
|
Bswap128(OutputMAC, CurMAC);
|
|
|
|
if (OutputFIFO.Level() <= 12)
|
|
{
|
|
OutputFIFO.Write(*(u32*)&OutputMAC[0]);
|
|
OutputFIFO.Write(*(u32*)&OutputMAC[4]);
|
|
OutputFIFO.Write(*(u32*)&OutputMAC[8]);
|
|
OutputFIFO.Write(*(u32*)&OutputMAC[12]);
|
|
}
|
|
else
|
|
OutputMACDue = true;
|
|
|
|
// CHECKME
|
|
Cnt &= ~(1<<21);
|
|
}
|
|
else
|
|
{
|
|
// CHECKME
|
|
Cnt &= ~(1<<21);
|
|
}
|
|
|
|
Cnt &= ~(1<<31);
|
|
if (Cnt & (1<<30)) DSi.SetIRQ2(IRQ2_DSi_AES);
|
|
DSi.StopNDMAs(1, 0x2A);
|
|
|
|
if (!OutputFIFO.IsEmpty())
|
|
DSi.CheckNDMAs(1, 0x2B);
|
|
else
|
|
DSi.StopNDMAs(1, 0x2B);
|
|
OutputFlush = false;
|
|
}
|
|
}
|
|
|
|
|
|
void DSi_AES::WriteIV(u32 offset, u32 val, u32 mask)
|
|
{
|
|
u32 old = *(u32*)&IV[offset];
|
|
|
|
*(u32*)&IV[offset] = (old & ~mask) | (val & mask);
|
|
|
|
//printf("AES: IV: "); _printhex(IV, 16);
|
|
}
|
|
|
|
void DSi_AES::WriteMAC(u32 offset, u32 val, u32 mask)
|
|
{
|
|
u32 old = *(u32*)&MAC[offset];
|
|
|
|
*(u32*)&MAC[offset] = (old & ~mask) | (val & mask);
|
|
|
|
//printf("AES: MAC: "); _printhex(MAC, 16);
|
|
}
|
|
|
|
void DSi_AES::ROL16(u8* val, u32 n)
|
|
{
|
|
u32 n_coarse = n >> 3;
|
|
u32 n_fine = n & 7;
|
|
u8 tmp[16];
|
|
|
|
for (u32 i = 0; i < 16; i++)
|
|
{
|
|
tmp[i] = val[(i - n_coarse) & 0xF];
|
|
}
|
|
|
|
for (u32 i = 0; i < 16; i++)
|
|
{
|
|
val[i] = (tmp[i] << n_fine) | (tmp[(i - 1) & 0xF] >> (8-n_fine));
|
|
}
|
|
}
|
|
|
|
void DSi_AES::DeriveNormalKey(u8* keyX, u8* keyY, u8* normalkey)
|
|
{
|
|
const u8 key_const[16] = {0xFF, 0xFE, 0xFB, 0x4E, 0x29, 0x59, 0x02, 0x58, 0x2A, 0x68, 0x0F, 0x5F, 0x1A, 0x4F, 0x3E, 0x79};
|
|
u8 tmp[16];
|
|
|
|
for (int i = 0; i < 16; i++)
|
|
tmp[i] = keyX[i] ^ keyY[i];
|
|
|
|
u32 carry = 0;
|
|
for (int i = 0; i < 16; i++)
|
|
{
|
|
u32 res = tmp[i] + key_const[15-i] + carry;
|
|
tmp[i] = res & 0xFF;
|
|
carry = res >> 8;
|
|
}
|
|
|
|
ROL16(tmp, 42);
|
|
|
|
memcpy(normalkey, tmp, 16);
|
|
}
|
|
|
|
void DSi_AES::WriteKeyNormal(u32 slot, u32 offset, u32 val, u32 mask)
|
|
{
|
|
u32 old = *(u32*)&KeyNormal[slot][offset];
|
|
|
|
*(u32*)&KeyNormal[slot][offset] = (old & ~mask) | (val & mask);
|
|
|
|
//printf("KeyNormal(%d): ", slot); _printhex(KeyNormal[slot], 16);
|
|
}
|
|
|
|
void DSi_AES::WriteKeyX(u32 slot, u32 offset, u32 val, u32 mask)
|
|
{
|
|
u32 old = *(u32*)&KeyX[slot][offset];
|
|
|
|
*(u32*)&KeyX[slot][offset] = (old & ~mask) | (val & mask);
|
|
|
|
//printf("KeyX(%d): ", slot); _printhex(KeyX[slot], 16);
|
|
}
|
|
|
|
void DSi_AES::WriteKeyY(u32 slot, u32 offset, u32 val, u32 mask)
|
|
{
|
|
u32 old = *(u32*)&KeyY[slot][offset];
|
|
|
|
*(u32*)&KeyY[slot][offset] = (old & ~mask) | (val & mask);
|
|
|
|
//printf("[%08X] KeyY(%d): ", NDS::GetPC(1), slot); _printhex(KeyY[slot], 16);
|
|
|
|
if (offset >= 0xC)
|
|
{
|
|
DeriveNormalKey(KeyX[slot], KeyY[slot], KeyNormal[slot]);
|
|
}
|
|
}
|
|
|
|
} |