melonDS/src/NDSCart.cpp

1455 lines
34 KiB
C++
Raw Blame History

/*
Copyright 2016-2017 StapleButter
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include <stdio.h>
#include <string.h>
#include "NDS.h"
#include "NDSCart.h"
#include "ARM.h"
#include "melon_fopen.h"
namespace NDSCart_SRAM
{
// BIG SRAM TODO!!!!
// USE A DATABASE TO IDENTIFY SAVE MEMORY TYPE
// (and maybe keep autodetect as a last resort??)
// AUTODETECT IS BLARGY AND IS A MESS
u8* SRAM;
u32 SRAMLength;
char SRAMPath[1024];
void (*WriteFunc)(u8 val, bool islast);
u32 Discover_MemoryType;
u32 Discover_Likeliness;
u8* Discover_Buffer;
u32 Discover_DataPos;
u32 Discover_LastPC;
u32 Discover_AddrLength;
u32 Discover_Addr;
u32 Discover_LikelySize;
u32 Hold;
u8 CurCmd;
u32 DataPos;
u8 Data;
u8 StatusReg;
u32 Addr;
void Write_Null(u8 val, bool islast);
void Write_EEPROMTiny(u8 val, bool islast);
void Write_EEPROM(u8 val, bool islast);
void Write_Flash(u8 val, bool islast);
void Write_Discover(u8 val, bool islast);
bool Init()
{
SRAM = NULL;
Discover_Buffer = NULL;
return true;
}
void DeInit()
{
if (SRAM) delete[] SRAM;
if (Discover_Buffer) delete[] Discover_Buffer;
}
void Reset()
{
if (SRAM) delete[] SRAM;
if (Discover_Buffer) delete[] Discover_Buffer;
SRAM = NULL;
Discover_Buffer = NULL;
}
void DoSavestate(Savestate* file)
{
file->Section("NDCS");
// CHECKME/TODO/whatever
// should the autodetect status shit go in the savestate???
// I don't think so.
// worst case is that the savestate was taken before autodetect took place completely
// and that causes it to yield a different result, fucking things up
// but that is unlikely
// and we should just use a goddamn database anyway, this is a trainwreck
// we reload the SRAM contents, tho.
// it should be the same file (as it should be the same ROM, duh)
// but the contents may change
// TODO maybe: possibility to save to a separate file when using savestates????
// also the SRAM size shouldn't change. unless something something autodetect something but fuck that code.
//if (!file->Saving && SRAMLength)
// delete[] SRAM;
u32 oldlen = SRAMLength;
file->Var32(&SRAMLength);
if (SRAMLength != oldlen)
{
printf("savestate: VERY BAD!!!! SRAM LENGTH DIFFERENT. %d -> %d\n", oldlen, SRAMLength);
printf("oh well. loading it anyway. adsfgdsf\n");
if (oldlen) delete[] SRAM;
if (SRAMLength) SRAM = new u8[SRAMLength];
}
if (SRAMLength)
{
//if (!file->Saving)
// SRAM = new u8[SRAMLength];
file->VarArray(SRAM, SRAMLength);
}
// SPI status shito
file->Var32(&Hold);
file->Var8(&CurCmd);
file->Var32(&DataPos);
file->Var8(&Data);
file->Var8(&StatusReg);
file->Var32(&Addr);
}
void LoadSave(const char* path)
{
if (SRAM) delete[] SRAM;
if (Discover_Buffer) delete[] Discover_Buffer;
Discover_Buffer = NULL;
Discover_LastPC = 0;
Discover_AddrLength = 0x7FFFFFFF;
Discover_LikelySize = 0;
strncpy(SRAMPath, path, 1023);
SRAMPath[1023] = '\0';
FILE* f = melon_fopen(path, "rb");
if (f)
{
fseek(f, 0, SEEK_END);
SRAMLength = (u32)ftell(f);
SRAM = new u8[SRAMLength];
fseek(f, 0, SEEK_SET);
fread(SRAM, SRAMLength, 1, f);
fclose(f);
switch (SRAMLength)
{
case 512: WriteFunc = Write_EEPROMTiny; break;
case 8192:
case 65536: WriteFunc = Write_EEPROM; break;
case 256*1024:
case 512*1024:
case 1024*1024:
case 8192*1024: WriteFunc = Write_Flash; break;
default:
printf("!! BAD SAVE LENGTH %d\n", SRAMLength);
WriteFunc = Write_Null;
break;
}
}
else
{
SRAMLength = 0;
WriteFunc = Write_Discover;
Discover_MemoryType = 2;
Discover_Likeliness = 0;
Discover_DataPos = 0;
Discover_Buffer = new u8[256*1024];
memset(Discover_Buffer, 0, 256*1024);
}
Hold = 0;
CurCmd = 0;
Data = 0;
StatusReg = 0x00;
}
void RelocateSave(const char* path, bool write)
{
if (!write)
{
LoadSave(path); // lazy
return;
}
strncpy(SRAMPath, path, 1023);
SRAMPath[1023] = '\0';
FILE* f = melon_fopen(path, "wb");
if (!f)
{
printf("NDSCart_SRAM::RelocateSave: failed to create new file. fuck\n");
return;
}
fwrite(SRAM, SRAMLength, 1, f);
fclose(f);
}
u8 Read()
{
return Data;
}
void SetMemoryType()
{
SRAMLength = 0;
if (Discover_LikelySize)
{
if (Discover_LikelySize >= 0x40000)
{
Discover_MemoryType = 4; // FLASH
SRAMLength = Discover_LikelySize;
}
else if (Discover_LikelySize == 0x10000 || Discover_MemoryType == 3)
{
if (Discover_MemoryType > 3)
printf("incoherent detection result: type=%d size=%X\n", Discover_MemoryType, Discover_LikelySize);
Discover_MemoryType = 3;
}
else if (Discover_LikelySize == 0x2000)
{
if (Discover_MemoryType > 3)
printf("incoherent detection result: type=%d size=%X\n", Discover_MemoryType, Discover_LikelySize);
Discover_MemoryType = 2;
}
else if (Discover_LikelySize == 0x200 || Discover_MemoryType == 1)
{
if (Discover_MemoryType > 1)
printf("incoherent detection result: type=%d size=%X\n", Discover_MemoryType, Discover_LikelySize);
Discover_MemoryType = 1;
}
else
{
printf("bad save size %X. assuming EEPROM 64K\n", Discover_LikelySize);
Discover_MemoryType = 2;
}
}
switch (Discover_MemoryType)
{
case 1:
printf("Save memory type: EEPROM 4k\n");
WriteFunc = Write_EEPROMTiny;
SRAMLength = 512;
break;
case 2:
printf("Save memory type: EEPROM 64k\n");
WriteFunc = Write_EEPROM;
SRAMLength = 8192;
break;
case 3:
printf("Save memory type: EEPROM 512k\n");
WriteFunc = Write_EEPROM;
SRAMLength = 65536;
break;
case 4:
if (!SRAMLength) SRAMLength = 256*1024;
printf("Save memory type: Flash %dk\n", SRAMLength/1024);
WriteFunc = Write_Flash;
break;
case 5:
printf("Save memory type: ...something else\n");
WriteFunc = Write_Null;
SRAMLength = 0;
break;
}
if (!SRAMLength)
return;
SRAM = new u8[SRAMLength];
// replay writes that occured during discovery
u8 prev_cmd = CurCmd;
u32 pos = 0;
while (pos < 256*1024)
{
u32 len = *(u32*)&Discover_Buffer[pos];
pos += 4;
if (len == 0) break;
CurCmd = Discover_Buffer[pos++];
DataPos = 0;
Addr = 0;
Data = 0;
for (u32 i = 1; i < len; i++)
{
WriteFunc(Discover_Buffer[pos++], (i==(len-1)));
DataPos++;
}
}
CurCmd = prev_cmd;
delete[] Discover_Buffer;
Discover_Buffer = NULL;
}
void Write_Discover(u8 val, bool islast)
{
// attempt at autodetecting the type of save memory.
// we basically hope the game will be nice and clear whole pages of memory.
if (CurCmd == 0x03 || CurCmd == 0x0B)
{
if (Discover_Likeliness) // writes have occured before this read
{
// apply. and pray.
SetMemoryType();
DataPos = 0;
Addr = 0;
Data = 0;
return WriteFunc(val, islast);
}
else
{
if (DataPos == 0)
{
Discover_LastPC = NDS::GetPC((NDS::ExMemCnt[0] >> 11) & 0x1);
Discover_Addr = val;
}
else
{
bool addrlenchange = false;
Discover_Addr <<= 8;
Discover_Addr |= val;
u32 pc = NDS::GetPC((NDS::ExMemCnt[0] >> 11) & 0x1);
if ((pc != Discover_LastPC) || islast)
{
if (DataPos < Discover_AddrLength)
{
Discover_AddrLength = DataPos;
addrlenchange = true;
}
}
if (DataPos == Discover_AddrLength)
{
Discover_Addr >>= 8;
// determine the address for this read
// the idea is to see how far the game reads
// but we need margins for games that have antipiracy
// as those will generally read just past the limit
// and expect it to wrap to zero
u32 likelysize = 0;
if (DataPos == 3) // FLASH
{
if (Discover_Addr >= 0x101000)
likelysize = 0x800000; // 8M
else if (Discover_Addr >= 0x81000)
likelysize = 0x100000; // 1M
else if (Discover_Addr >= 0x41000)
likelysize = 0x80000; // 512K
else
likelysize = 0x40000; // 256K
}
else if (DataPos == 2) // EEPROM
{
if (Discover_Addr >= 0x3000)
likelysize = 0x10000; // 64K
else
likelysize = 0x2000; // 8K
}
else if (DataPos == 1) // tiny EEPROM
{
likelysize = 0x200; // always 4K
}
if ((likelysize > Discover_LikelySize) || addrlenchange)
Discover_LikelySize = likelysize;
}
}
Data = 0;
return;
}
}
if (CurCmd == 0x02 || CurCmd == 0x0A)
{
if (DataPos == 0)
Discover_Buffer[Discover_DataPos + 4] = CurCmd;
Discover_Buffer[Discover_DataPos + 5 + DataPos] = val;
if (islast)
{
u32 len = DataPos+1;
*(u32*)&Discover_Buffer[Discover_DataPos] = len+1;
Discover_DataPos += 5+len;
if (Discover_Likeliness <= len)
{
Discover_Likeliness = len;
if (len > 3+256) // bigger Flash, FRAM, whatever
{
Discover_MemoryType = 5;
}
else if ((len > 2+128) || (len > 1+16 && CurCmd == 0xA)) // Flash
{
Discover_MemoryType = 4;
}
else if (len > 2+32) // EEPROM 512k
{
Discover_MemoryType = 3;
}
else if (len > 1+16 || (len != 1+16 && CurCmd != 0x0A)) // EEPROM 64k
{
Discover_MemoryType = 2;
}
else // EEPROM 4k
{
Discover_MemoryType = 1;
}
}
printf("discover: type=%d likeliness=%d\n", Discover_MemoryType, Discover_Likeliness);
}
}
}
void Write_Null(u8 val, bool islast) {}
void Write_EEPROMTiny(u8 val, bool islast)
{
switch (CurCmd)
{
case 0x02:
case 0x0A:
if (DataPos < 1)
{
Addr = val;
Data = 0;
}
else
{
SRAM[(Addr + ((CurCmd==0x0A)?0x100:0)) & 0x1FF] = val;
Addr++;
}
break;
case 0x03:
case 0x0B:
if (DataPos < 1)
{
Addr = val;
Data = 0;
}
else
{
Data = SRAM[(Addr + ((CurCmd==0x0B)?0x100:0)) & 0x1FF];
Addr++;
}
break;
case 0x9F:
Data = 0xFF;
break;
default:
if (DataPos==0)
printf("unknown tiny EEPROM save command %02X\n", CurCmd);
break;
}
}
void Write_EEPROM(u8 val, bool islast)
{
switch (CurCmd)
{
case 0x02:
if (DataPos < 2)
{
Addr <<= 8;
Addr |= val;
Data = 0;
}
else
{
SRAM[Addr & (SRAMLength-1)] = val;
Addr++;
}
break;
case 0x03:
if (DataPos < 2)
{
Addr <<= 8;
Addr |= val;
Data = 0;
}
else
{
Data = SRAM[Addr & (SRAMLength-1)];
Addr++;
}
break;
case 0x9F:
Data = 0xFF;
break;
default:
if (DataPos==0)
printf("unknown EEPROM save command %02X\n", CurCmd);
break;
}
}
void Write_Flash(u8 val, bool islast)
{
switch (CurCmd)
{
case 0x02:
if (DataPos < 3)
{
Addr <<= 8;
Addr |= val;
Data = 0;
}
else
{
SRAM[Addr & (SRAMLength-1)] = 0;
Addr++;
}
break;
case 0x03:
if (DataPos < 3)
{
Addr <<= 8;
Addr |= val;
Data = 0;
}
else
{
Data = SRAM[Addr & (SRAMLength-1)];
Addr++;
}
break;
case 0x0A:
if (DataPos < 3)
{
Addr <<= 8;
Addr |= val;
Data = 0;
}
else
{
SRAM[Addr & (SRAMLength-1)] = val;
Addr++;
}
break;
case 0x9F:
Data = 0xFF;
break;
case 0xD8:
if (DataPos < 3)
{
Addr <<= 8;
Addr |= val;
Data = 0;
}
if (DataPos == 2)
{
for (u32 i = 0; i < 0x10000; i++)
{
SRAM[Addr & (SRAMLength-1)] = 0;
Addr++;
}
}
break;
case 0xDB:
if (DataPos < 3)
{
Addr <<= 8;
Addr |= val;
Data = 0;
}
if (DataPos == 2)
{
for (u32 i = 0; i < 0x100; i++)
{
SRAM[Addr & (SRAMLength-1)] = 0;
Addr++;
}
}
break;
default:
if (DataPos==0)
printf("unknown Flash save command %02X\n", CurCmd);
break;
}
}
void Write(u8 val, u32 hold)
{
bool islast = false;
if (!hold)
{
if (Hold) islast = true;
else CurCmd = val;
Hold = 0;
}
if (hold && (!Hold))
{
CurCmd = val;
Hold = 1;
Data = 0;
DataPos = 0;
Addr = 0;
//printf("save SPI command %02X\n", CurCmd);
return;
}
switch (CurCmd)
{
case 0x00:
// Pok<6F>mon carts have an IR transceiver thing, and send this
// to bypass it and access SRAM.
// TODO: design better
CurCmd = val;
break;
case 0x08:
// see above
// TODO: work out how the IR thing works. emulate it.
Data = 0xAA;
break;
case 0x02:
case 0x03:
case 0x0A:
case 0x0B:
case 0x9F:
case 0xD8:
case 0xDB:
WriteFunc(val, islast);
DataPos++;
break;
case 0x04: // write disable
StatusReg &= ~(1<<1);
Data = 0;
break;
case 0x05: // read status reg
Data = StatusReg;
break;
case 0x06: // write enable
StatusReg |= (1<<1);
Data = 0;
break;
default:
if (DataPos==0)
printf("unknown save SPI command %02X %02X %d\n", CurCmd, val, islast);
break;
}
if (islast && (CurCmd == 0x02 || CurCmd == 0x0A) && (SRAMLength > 0))
{
FILE* f = melon_fopen(SRAMPath, "wb");
if (f)
{
fwrite(SRAM, SRAMLength, 1, f);
fclose(f);
}
}
}
}
namespace NDSCart
{
u16 SPICnt;
u32 ROMCnt;
u8 ROMCommand[8];
u32 ROMDataOut;
u8 DataOut[0x4000];
u32 DataOutPos;
u32 DataOutLen;
bool CartInserted;
u8* CartROM;
u32 CartROMSize;
u32 CartID;
bool CartIsHomebrew;
u32 CmdEncMode;
u32 DataEncMode;
u32 Key1_KeyBuf[0x412];
u64 Key2_X;
u64 Key2_Y;
u32 ByteSwap(u32 val)
{
return (val >> 24) | ((val >> 8) & 0xFF00) | ((val << 8) & 0xFF0000) | (val << 24);
}
void Key1_Encrypt(u32* data)
{
u32 y = data[0];
u32 x = data[1];
u32 z;
for (u32 i = 0x0; i <= 0xF; i++)
{
z = Key1_KeyBuf[i] ^ x;
x = Key1_KeyBuf[0x012 + (z >> 24) ];
x += Key1_KeyBuf[0x112 + ((z >> 16) & 0xFF)];
x ^= Key1_KeyBuf[0x212 + ((z >> 8) & 0xFF)];
x += Key1_KeyBuf[0x312 + (z & 0xFF)];
x ^= y;
y = z;
}
data[0] = x ^ Key1_KeyBuf[0x10];
data[1] = y ^ Key1_KeyBuf[0x11];
}
void Key1_Decrypt(u32* data)
{
u32 y = data[0];
u32 x = data[1];
u32 z;
for (u32 i = 0x11; i >= 0x2; i--)
{
z = Key1_KeyBuf[i] ^ x;
x = Key1_KeyBuf[0x012 + (z >> 24) ];
x += Key1_KeyBuf[0x112 + ((z >> 16) & 0xFF)];
x ^= Key1_KeyBuf[0x212 + ((z >> 8) & 0xFF)];
x += Key1_KeyBuf[0x312 + (z & 0xFF)];
x ^= y;
y = z;
}
data[0] = x ^ Key1_KeyBuf[0x1];
data[1] = y ^ Key1_KeyBuf[0x0];
}
void Key1_ApplyKeycode(u32* keycode, u32 mod)
{
Key1_Encrypt(&keycode[1]);
Key1_Encrypt(&keycode[0]);
u32 temp[2] = {0,0};
for (u32 i = 0; i <= 0x11; i++)
{
Key1_KeyBuf[i] ^= ByteSwap(keycode[i % mod]);
}
for (u32 i = 0; i <= 0x410; i+=2)
{
Key1_Encrypt(temp);
Key1_KeyBuf[i ] = temp[1];
Key1_KeyBuf[i+1] = temp[0];
}
}
void Key1_InitKeycode(u32 idcode, u32 level, u32 mod)
{
memcpy(Key1_KeyBuf, &NDS::ARM7BIOS[0x30], 0x1048); // hax
u32 keycode[3] = {idcode, idcode>>1, idcode<<1};
if (level >= 1) Key1_ApplyKeycode(keycode, mod);
if (level >= 2) Key1_ApplyKeycode(keycode, mod);
if (level >= 3)
{
keycode[1] <<= 1;
keycode[2] >>= 1;
Key1_ApplyKeycode(keycode, mod);
}
}
void Key2_Encrypt(u8* data, u32 len)
{
for (u32 i = 0; i < len; i++)
{
Key2_X = (((Key2_X >> 5) ^
(Key2_X >> 17) ^
(Key2_X >> 18) ^
(Key2_X >> 31)) & 0xFF)
+ (Key2_X << 8);
Key2_Y = (((Key2_Y >> 5) ^
(Key2_Y >> 23) ^
(Key2_Y >> 18) ^
(Key2_Y >> 31)) & 0xFF)
+ (Key2_Y << 8);
Key2_X &= 0x0000007FFFFFFFFFULL;
Key2_Y &= 0x0000007FFFFFFFFFULL;
}
}
bool Init()
{
if (!NDSCart_SRAM::Init()) return false;
CartROM = NULL;
return true;
}
void DeInit()
{
if (CartROM) delete[] CartROM;
NDSCart_SRAM::DeInit();
}
void Reset()
{
SPICnt = 0;
ROMCnt = 0;
memset(ROMCommand, 0, 8);
ROMDataOut = 0;
Key2_X = 0;
Key2_Y = 0;
memset(DataOut, 0, 0x4000);
DataOutPos = 0;
DataOutLen = 0;
CartInserted = false;
if (CartROM) delete[] CartROM;
CartROM = NULL;
CartROMSize = 0;
CartID = 0;
CartIsHomebrew = false;
CmdEncMode = 0;
DataEncMode = 0;
NDSCart_SRAM::Reset();
}
void DoSavestate(Savestate* file)
{
file->Section("NDSC");
file->Var16(&SPICnt);
file->Var32(&ROMCnt);
file->VarArray(ROMCommand, 8);
file->Var32(&ROMDataOut);
file->VarArray(DataOut, 0x4000);
file->Var32(&DataOutPos);
file->Var32(&DataOutLen);
// cart inserted/len/ROM/etc should be already populated
// savestate should be loaded after the right game is loaded
// (TODO: system to verify that indeed the right ROM is loaded)
// (what to CRC? whole ROM? code binaries? latter would be more convenient for ie. romhaxing)
file->Var32(&CmdEncMode);
file->Var32(&DataEncMode);
// TODO: check KEY1 shit??
NDSCart_SRAM::DoSavestate(file);
}
void ApplyDLDIPatch()
{
// TODO: embed patches? let the user choose? default to some builtin driver?
u32 offset = *(u32*)&CartROM[0x20];
u32 size = *(u32*)&CartROM[0x2C];
u8* binary = &CartROM[offset];
u32 dldioffset = 0;
for (u32 i = 0; i < size; i++)
{
if (*(u32*)&binary[i ] == 0xBF8DA5ED &&
*(u32*)&binary[i+4] == 0x69684320 &&
*(u32*)&binary[i+8] == 0x006D6873)
{
dldioffset = i;
break;
}
}
if (!dldioffset)
{
return;
}
printf("DLDI shit found at %08X (%08X)\n", dldioffset, offset+dldioffset);
FILE* f = fopen("dldi.bin", "rb");
if (!f)
{
printf("no DLDI patch available. oh well\n");
return;
}
u32 dldisize;
fseek(f, 0, SEEK_END);
dldisize = ftell(f);
fseek(f, 0, SEEK_SET);
u8* patch = new u8[dldisize];
fread(patch, dldisize, 1, f);
fclose(f);
if (*(u32*)&patch[0] != 0xBF8DA5ED ||
*(u32*)&patch[4] != 0x69684320 ||
*(u32*)&patch[8] != 0x006D6873)
{
printf("bad DLDI patch\n");
delete[] patch;
return;
}
if (patch[0x0D] > binary[dldioffset+0x0F])
{
printf("DLDI driver ain't gonna fit, sorry\n");
delete[] patch;
return;
}
printf("existing driver is: %s\n", &binary[dldioffset+0x10]);
printf("new driver is: %s\n", &patch[0x10]);
u32 memaddr = *(u32*)&binary[dldioffset+0x40];
if (memaddr == 0)
memaddr = *(u32*)&binary[dldioffset+0x68] - 0x80;
u32 patchbase = *(u32*)&patch[0x40];
u32 delta = memaddr - patchbase;
u32 patchsize = 1 << patch[0x0D];
u32 patchend = patchbase + patchsize;
memcpy(&binary[dldioffset], patch, dldisize);
*(u32*)&binary[dldioffset+0x40] += delta;
*(u32*)&binary[dldioffset+0x44] += delta;
*(u32*)&binary[dldioffset+0x48] += delta;
*(u32*)&binary[dldioffset+0x4C] += delta;
*(u32*)&binary[dldioffset+0x50] += delta;
*(u32*)&binary[dldioffset+0x54] += delta;
*(u32*)&binary[dldioffset+0x58] += delta;
*(u32*)&binary[dldioffset+0x5C] += delta;
*(u32*)&binary[dldioffset+0x68] += delta;
*(u32*)&binary[dldioffset+0x6C] += delta;
*(u32*)&binary[dldioffset+0x70] += delta;
*(u32*)&binary[dldioffset+0x74] += delta;
*(u32*)&binary[dldioffset+0x78] += delta;
*(u32*)&binary[dldioffset+0x7C] += delta;
u8 fixmask = patch[0x0E];
if (fixmask & 0x01)
{
u32 fixstart = *(u32*)&patch[0x40] - patchbase;
u32 fixend = *(u32*)&patch[0x44] - patchbase;
for (u32 addr = fixstart; addr < fixend; addr+=4)
{
u32 val = *(u32*)&binary[dldioffset+addr];
if (val >= patchbase && val < patchend)
*(u32*)&binary[dldioffset+addr] += delta;
}
}
if (fixmask & 0x02)
{
u32 fixstart = *(u32*)&patch[0x48] - patchbase;
u32 fixend = *(u32*)&patch[0x4C] - patchbase;
for (u32 addr = fixstart; addr < fixend; addr+=4)
{
u32 val = *(u32*)&binary[dldioffset+addr];
if (val >= patchbase && val < patchend)
*(u32*)&binary[dldioffset+addr] += delta;
}
}
if (fixmask & 0x04)
{
u32 fixstart = *(u32*)&patch[0x50] - patchbase;
u32 fixend = *(u32*)&patch[0x54] - patchbase;
for (u32 addr = fixstart; addr < fixend; addr+=4)
{
u32 val = *(u32*)&binary[dldioffset+addr];
if (val >= patchbase && val < patchend)
*(u32*)&binary[dldioffset+addr] += delta;
}
}
if (fixmask & 0x08)
{
u32 fixstart = *(u32*)&patch[0x58] - patchbase;
u32 fixend = *(u32*)&patch[0x5C] - patchbase;
memset(&binary[dldioffset+fixstart], 0, fixend-fixstart);
}
delete[] patch;
printf("applied DLDI patch\n");
}
bool LoadROM(const char* path, const char* sram, bool direct)
{
// TODO: streaming mode? for really big ROMs or systems with limited RAM
// for now we're lazy
FILE* f = melon_fopen(path, "rb");
if (!f)
{
return false;
}
NDS::Reset();
fseek(f, 0, SEEK_END);
u32 len = (u32)ftell(f);
CartROMSize = 0x200;
while (CartROMSize < len)
CartROMSize <<= 1;
u32 gamecode;
fseek(f, 0x0C, SEEK_SET);
fread(&gamecode, 4, 1, f);
CartROM = new u8[CartROMSize];
memset(CartROM, 0, CartROMSize);
fseek(f, 0, SEEK_SET);
fread(CartROM, 1, len, f);
fclose(f);
//CartROM = f;
// generate a ROM ID
// note: most games don't check the actual value
// it just has to stay the same throughout gameplay
CartID = 0x00001FC2;
if (*(u32*)&CartROM[0x20] < 0x4000)
{
//ApplyDLDIPatch();
}
if (direct)
{
// TODO: in the case of an already-encrypted secure area, direct boot
// needs it decrypted
NDS::SetupDirectBoot();
CmdEncMode = 2;
}
CartInserted = true;
u32 arm9base = *(u32*)&CartROM[0x20];
if (arm9base < 0x8000)
{
if (arm9base >= 0x4000)
{
// reencrypt secure area if needed
if (*(u32*)&CartROM[arm9base] == 0xE7FFDEFF && *(u32*)&CartROM[arm9base+0x10] != 0xE7FFDEFF)
{
printf("Re-encrypting cart secure area\n");
strncpy((char*)&CartROM[arm9base], "encryObj", 8);
Key1_InitKeycode(gamecode, 3, 2);
for (u32 i = 0; i < 0x800; i += 8)
Key1_Encrypt((u32*)&CartROM[arm9base + i]);
Key1_InitKeycode(gamecode, 2, 2);
Key1_Encrypt((u32*)&CartROM[arm9base]);
}
}
else
CartIsHomebrew = true;
}
// encryption
Key1_InitKeycode(gamecode, 2, 2);
// save
printf("Save file: %s\n", sram);
NDSCart_SRAM::LoadSave(sram);
return true;
}
void RelocateSave(const char* path, bool write)
{
// herp derp
NDSCart_SRAM::RelocateSave(path, write);
}
void ReadROM(u32 addr, u32 len, u32 offset)
{
if (!CartInserted) return;
if (addr >= CartROMSize) return;
if ((addr+len) > CartROMSize)
len = CartROMSize - addr;
memcpy(DataOut+offset, CartROM+addr, len);
}
void ReadROM_B7(u32 addr, u32 len, u32 offset)
{
if (!CartInserted) return;
addr &= (CartROMSize-1);
if (!CartIsHomebrew)
{
if (addr < 0x8000)
addr = 0x8000 + (addr & 0x1FF);
}
memcpy(DataOut+offset, CartROM+addr, len);
}
void ROMEndTransfer(u32 param)
{
ROMCnt &= ~(1<<31);
if (SPICnt & (1<<14))
NDS::SetIRQ((NDS::ExMemCnt[0]>>11)&0x1, NDS::IRQ_CartSendDone);
}
void ROMPrepareData(u32 param)
{
if (DataOutPos >= DataOutLen)
ROMDataOut = 0;
else
ROMDataOut = *(u32*)&DataOut[DataOutPos];
DataOutPos += 4;
ROMCnt |= (1<<23);
if (NDS::ExMemCnt[0] & (1<<11))
NDS::CheckDMAs(1, 0x12);
else
NDS::CheckDMAs(0, 0x05);
}
u32 sc_addr = 0;
void WriteROMCnt(u32 val)
{
ROMCnt = (val & 0xFF7F7FFF) | (ROMCnt & 0x00800000);
if (!(SPICnt & (1<<15))) return;
if (val & (1<<15))
{
u32 snum = (NDS::ExMemCnt[0]>>8)&0x8;
u64 seed0 = *(u32*)&NDS::ROMSeed0[snum] | ((u64)NDS::ROMSeed0[snum+4] << 32);
u64 seed1 = *(u32*)&NDS::ROMSeed1[snum] | ((u64)NDS::ROMSeed1[snum+4] << 32);
Key2_X = 0;
Key2_Y = 0;
for (u32 i = 0; i < 39; i++)
{
if (seed0 & (1ULL << i)) Key2_X |= (1ULL << (38-i));
if (seed1 & (1ULL << i)) Key2_Y |= (1ULL << (38-i));
}
printf("seed0: %02X%08X\n", (u32)(seed0>>32), (u32)seed0);
printf("seed1: %02X%08X\n", (u32)(seed1>>32), (u32)seed1);
printf("key2 X: %02X%08X\n", (u32)(Key2_X>>32), (u32)Key2_X);
printf("key2 Y: %02X%08X\n", (u32)(Key2_Y>>32), (u32)Key2_Y);
}
if (!(ROMCnt & (1<<31))) return;
u32 datasize = (ROMCnt >> 24) & 0x7;
if (datasize == 7)
datasize = 4;
else if (datasize > 0)
datasize = 0x100 << datasize;
DataOutPos = 0;
DataOutLen = datasize;
// handle KEY1 encryption as needed.
// KEY2 encryption is implemented in hardware and doesn't need to be handled.
u8 cmd[8];
if (CmdEncMode == 1)
{
*(u32*)&cmd[0] = ByteSwap(*(u32*)&ROMCommand[4]);
*(u32*)&cmd[4] = ByteSwap(*(u32*)&ROMCommand[0]);
Key1_Decrypt((u32*)cmd);
u32 tmp = ByteSwap(*(u32*)&cmd[4]);
*(u32*)&cmd[4] = ByteSwap(*(u32*)&cmd[0]);
*(u32*)&cmd[0] = tmp;
}
else
{
*(u32*)&cmd[0] = *(u32*)&ROMCommand[0];
*(u32*)&cmd[4] = *(u32*)&ROMCommand[4];
}
/*printf("ROM COMMAND %04X %08X %02X%02X%02X%02X%02X%02X%02X%02X SIZE %04X\n",
SPICnt, ROMCnt,
cmd[0], cmd[1], cmd[2], cmd[3],
cmd[4], cmd[5], cmd[6], cmd[7],
datasize);*/
switch (cmd[0])
{
case 0x9F:
memset(DataOut, 0xFF, DataOutLen);
break;
case 0x00:
memset(DataOut, 0, DataOutLen);
if (DataOutLen > 0x1000)
{
ReadROM(0, 0x1000, 0);
for (u32 pos = 0x1000; pos < DataOutLen; pos += 0x1000)
memcpy(DataOut+pos, DataOut, 0x1000);
}
else
ReadROM(0, DataOutLen, 0);
break;
case 0x90:
case 0xB8:
for (u32 pos = 0; pos < DataOutLen; pos += 4)
*(u32*)&DataOut[pos] = CartID;
break;
case 0x3C:
if (CartInserted) CmdEncMode = 1;
break;
case 0xB7:
{
u32 addr = (cmd[1]<<24) | (cmd[2]<<16) | (cmd[3]<<8) | cmd[4];
memset(DataOut, 0, DataOutLen);
if (((addr + DataOutLen - 1) >> 12) != (addr >> 12))
{
u32 len1 = 0x1000 - (addr & 0xFFF);
ReadROM_B7(addr, len1, 0);
ReadROM_B7(addr+len1, DataOutLen-len1, len1);
}
else
ReadROM_B7(addr, DataOutLen, 0);
}
break;
// SUPERCARD EMULATION TEST
// TODO: INTEGRATE BETTER!!!!
case 0x70: // init??? returns whether SDHC addressing should be used
for (u32 pos = 0; pos < DataOutLen; pos += 4)
*(u32*)&DataOut[pos] = 0;
break;
case 0x53: // set address for read
sc_addr = (cmd[1]<<24) | (cmd[2]<<16) | (cmd[3]<<8) | cmd[4];
printf("SUPERCARD: read %08X\n", sc_addr);
break;
case 0x80: // read operation busy, I guess
// TODO: make it take some time
for (u32 pos = 0; pos < DataOutLen; pos += 4)
*(u32*)&DataOut[pos] = 0;
break;
case 0x81: // read data
{
if (DataOutLen != 0x200)
printf("SUPERCARD: BOGUS READ %d\n", DataOutLen);
// TODO: this is really inefficient. just testing
FILE* f = fopen("scsd.bin", "rb");
fseek(f, sc_addr, SEEK_SET);
fread(DataOut, 1, 0x200, f);
fclose(f);
}
break;
// SUPERCARD EMULATION TEST END
default:
switch (cmd[0] & 0xF0)
{
case 0x40:
DataEncMode = 2;
break;
case 0x10:
for (u32 pos = 0; pos < DataOutLen; pos += 4)
*(u32*)&DataOut[pos] = CartID;
break;
case 0x20:
{
u32 addr = (cmd[2] & 0xF0) << 8;
ReadROM(addr, 0x1000, 0);
}
break;
case 0xA0:
CmdEncMode = 2;
break;
}
break;
}
ROMCnt &= ~(1<<23);
// ROM transfer timings
// the bus is parallel with 8 bits
// thus a command would take 8 cycles to be transferred
// and it would take 4 cycles to receive a word of data
// TODO: advance read position if bit28 is set
u32 xfercycle = (ROMCnt & (1<<27)) ? 8 : 5;
u32 cmddelay = 8 + (ROMCnt & 0x1FFF);
if (datasize) cmddelay += ((ROMCnt >> 16) & 0x3F);
if (datasize == 0)
NDS::ScheduleEvent(NDS::Event_ROMTransfer, false, xfercycle*cmddelay, ROMEndTransfer, 0);
else
NDS::ScheduleEvent(NDS::Event_ROMTransfer, true, xfercycle*(cmddelay+4), ROMPrepareData, 0);
}
u32 ReadROMData()
{
if (ROMCnt & (1<<23))
{
ROMCnt &= ~(1<<23);
if (DataOutPos < DataOutLen)
{
u32 xfercycle = (ROMCnt & (1<<27)) ? 8 : 5;
u32 delay = 4;
if (!(DataOutPos & 0x1FF)) delay += ((ROMCnt >> 16) & 0x3F);
NDS::ScheduleEvent(NDS::Event_ROMTransfer, true, xfercycle*delay, ROMPrepareData, 0);
}
else
ROMEndTransfer(0);
}
return ROMDataOut;
}
void WriteSPICnt(u16 val)
{
SPICnt = (SPICnt & 0x0080) | (val & 0xE043);
if (SPICnt & (1<<7))
printf("!! CHANGING AUXSPICNT DURING TRANSFER: %04X\n", val);
}
void SPITransferDone(u32 param)
{
SPICnt &= ~(1<<7);
}
u8 ReadSPIData()
{
if (!(SPICnt & (1<<15))) return 0;
if (!(SPICnt & (1<<13))) return 0;
if (SPICnt & (1<<7)) return 0; // checkme
return NDSCart_SRAM::Read();
}
void WriteSPIData(u8 val)
{
if (!(SPICnt & (1<<15))) return;
if (!(SPICnt & (1<<13))) return;
if (SPICnt & (1<<7)) printf("!! WRITING AUXSPIDATA DURING PENDING TRANSFER\n");
SPICnt |= (1<<7);
NDSCart_SRAM::Write(val, SPICnt&(1<<6));
// SPI transfers one bit per cycle -> 8 cycles per byte
u32 delay = 8 * (8 << (SPICnt & 0x3));
NDS::ScheduleEvent(NDS::Event_ROMSPITransfer, false, delay, SPITransferDone, 0);
}
}