melonDS/ARMInterpreter_LoadStore.cpp

701 lines
18 KiB
C++

#include <stdio.h>
#include "ARM.h"
namespace ARMInterpreter
{
// copypasta from ALU. bad
#define LSL_IMM(x, s) \
x <<= s;
#define LSR_IMM(x, s) \
if (s == 0) s = 32; \
x >>= s;
#define ASR_IMM(x, s) \
if (s == 0) s = 32; \
x = ((s32)x) >> s;
#define ROR_IMM(x, s) \
if (s == 0) \
{ \
x = (x >> 1) | ((cpu->CPSR & 0x20000000) << 2); \
} \
else \
{ \
x = ROR(x, s); \
}
#define A_WB_CALC_OFFSET_IMM \
u32 offset = (cpu->CurInstr & 0xFFF); \
if (!(cpu->CurInstr & (1<<23))) offset = -offset;
#define A_WB_CALC_OFFSET_REG(shiftop) \
u32 offset = cpu->R[cpu->CurInstr & 0xF]; \
u32 shift = ((cpu->CurInstr>>7)&0x1F); \
shiftop(offset, shift); \
if (!(cpu->CurInstr & (1<<23))) offset = -offset;
#define A_STR \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->Write32(offset, cpu->R[(cpu->CurInstr>>12) & 0xF]); \
if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
return C_N(2) + cpu->MemWaitstate(3, offset);
#define A_STR_POST \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->Write32(addr, cpu->R[(cpu->CurInstr>>12) & 0xF], cpu->CurInstr & (1<<21)); \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
return C_N(2) + cpu->MemWaitstate(3, addr);
#define A_STRB \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->Write8(offset, cpu->R[(cpu->CurInstr>>12) & 0xF]); \
if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
return C_N(2) + cpu->MemWaitstate(3, offset);
#define A_STRB_POST \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->Write8(addr, cpu->R[(cpu->CurInstr>>12) & 0xF], cpu->CurInstr & (1<<21)); \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
return C_N(2) + cpu->MemWaitstate(3, addr);
#define A_LDR \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 val = ROR(cpu->Read32(offset), ((offset&0x3)<<3)); \
if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
if (cpu->Num==1) val &= ~0x1; \
cpu->JumpTo(val); \
return C_S(2) + C_N(2) + C_I(1) + cpu->MemWaitstate(3, offset); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = val; \
return C_S(1) + C_N(1) + C_I(1) + cpu->MemWaitstate(3, offset); \
}
#define A_LDR_POST \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 val = ROR(cpu->Read32(addr, cpu->CurInstr & (1<<21)), ((addr&0x3)<<3)); \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
if (cpu->Num==1) val &= ~0x1; \
cpu->JumpTo(val); \
return C_S(2) + C_N(2) + C_I(1) + cpu->MemWaitstate(3, addr); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = val; \
return C_S(1) + C_N(1) + C_I(1) + cpu->MemWaitstate(3, addr); \
}
#define A_LDRB \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 val = cpu->Read8(offset); \
if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
cpu->R[(cpu->CurInstr>>12) & 0xF] = val; \
return C_S(1) + C_N(1) + C_I(1) + cpu->MemWaitstate(3, offset);
#define A_LDRB_POST \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 val = cpu->Read8(addr, cpu->CurInstr & (1<<21)); \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
cpu->R[(cpu->CurInstr>>12) & 0xF] = val; \
return C_S(1) + C_N(1) + C_I(1) + cpu->MemWaitstate(3, addr);
#define A_IMPLEMENT_WB_LDRSTR(x) \
\
s32 A_##x##_IMM(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_IMM \
A_##x \
} \
\
s32 A_##x##_REG_LSL(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_REG(LSL_IMM) \
A_##x \
} \
\
s32 A_##x##_REG_LSR(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_REG(LSR_IMM) \
A_##x \
} \
\
s32 A_##x##_REG_ASR(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_REG(ASR_IMM) \
A_##x \
} \
\
s32 A_##x##_REG_ROR(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_REG(ROR_IMM) \
A_##x \
} \
\
s32 A_##x##_POST_IMM(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_IMM \
A_##x##_POST \
} \
\
s32 A_##x##_POST_REG_LSL(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_REG(LSL_IMM) \
A_##x##_POST \
} \
\
s32 A_##x##_POST_REG_LSR(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_REG(LSR_IMM) \
A_##x##_POST \
} \
\
s32 A_##x##_POST_REG_ASR(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_REG(ASR_IMM) \
A_##x##_POST \
} \
\
s32 A_##x##_POST_REG_ROR(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_REG(ROR_IMM) \
A_##x##_POST \
}
A_IMPLEMENT_WB_LDRSTR(STR)
A_IMPLEMENT_WB_LDRSTR(STRB)
A_IMPLEMENT_WB_LDRSTR(LDR)
A_IMPLEMENT_WB_LDRSTR(LDRB)
#define A_HD_CALC_OFFSET_IMM \
u32 offset = (cpu->CurInstr & 0xF) | ((cpu->CurInstr >> 4) & 0xF0); \
if (!(cpu->CurInstr & (1<<23))) offset = -offset;
#define A_HD_CALC_OFFSET_REG \
u32 offset = cpu->R[cpu->CurInstr & 0xF]; \
if (!(cpu->CurInstr & (1<<23))) offset = -offset;
#define A_STRH \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->Write16(offset, cpu->R[(cpu->CurInstr>>12) & 0xF]); \
if (cpu->CurInstr & (1<<24)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
return C_N(2) + cpu->MemWaitstate(2, offset);
#define A_STRH_POST \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->Write16(addr, cpu->R[(cpu->CurInstr>>12) & 0xF]); \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
return C_N(2) + cpu->MemWaitstate(2, addr);
// TODO: CHECK LDRD/STRD TIMINGS!!
#define A_LDRD \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
u32 r = (cpu->CurInstr>>12) & 0xF; \
cpu->R[r ] = cpu->Read32(offset ); \
cpu->R[r+1] = cpu->Read32(offset+4); \
return C_S(1) + C_N(1) + C_I(1) + cpu->MemWaitstate(3, offset);
#define A_LDRD_POST \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
u32 r = (cpu->CurInstr>>12) & 0xF; \
cpu->R[r ] = cpu->Read32(addr ); \
cpu->R[r+1] = cpu->Read32(addr+4); \
return C_S(1) + C_N(1) + C_I(1) + cpu->MemWaitstate(3, addr);
#define A_STRD \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
if (cpu->CurInstr & (1<<24)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
u32 r = (cpu->CurInstr>>12) & 0xF; \
cpu->Write32(offset , cpu->R[r ]); \
cpu->Write32(offset+4, cpu->R[r+1]); \
return C_N(2) + cpu->MemWaitstate(3, offset);
#define A_STRD_POST \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
u32 r = (cpu->CurInstr>>12) & 0xF; \
cpu->Write32(offset , cpu->R[r ]); \
cpu->Write32(offset+4, cpu->R[r+1]); \
return C_N(2) + cpu->MemWaitstate(3, addr);
#define A_LDRH \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->R[(cpu->CurInstr>>12) & 0xF] = cpu->Read16(offset); \
if (cpu->CurInstr & (1<<24)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
return C_N(2) + cpu->MemWaitstate(2, offset);
#define A_LDRH_POST \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->R[(cpu->CurInstr>>12) & 0xF] = cpu->Read16(addr); \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
return C_N(2) + cpu->MemWaitstate(2, addr);
#define A_LDRSB \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->R[(cpu->CurInstr>>12) & 0xF] = (s32)(s8)cpu->Read8(offset); \
if (cpu->CurInstr & (1<<24)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
return C_N(2) + cpu->MemWaitstate(3, offset);
#define A_LDRSB_POST \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->R[(cpu->CurInstr>>12) & 0xF] = (s32)(s8)cpu->Read8(addr); \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
return C_N(2) + cpu->MemWaitstate(3, addr);
#define A_LDRSH \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->R[(cpu->CurInstr>>12) & 0xF] = (s32)(s16)cpu->Read16(offset); \
if (cpu->CurInstr & (1<<24)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
return C_N(2) + cpu->MemWaitstate(2, offset);
#define A_LDRSH_POST \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->R[(cpu->CurInstr>>12) & 0xF] = (s32)(s16)cpu->Read16(addr); \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
return C_N(2) + cpu->MemWaitstate(2, addr);
#define A_IMPLEMENT_HD_LDRSTR(x) \
\
s32 A_##x##_IMM(ARM* cpu) \
{ \
A_HD_CALC_OFFSET_IMM \
A_##x \
} \
\
s32 A_##x##_REG(ARM* cpu) \
{ \
A_HD_CALC_OFFSET_REG \
A_##x \
} \
s32 A_##x##_POST_IMM(ARM* cpu) \
{ \
A_HD_CALC_OFFSET_IMM \
A_##x##_POST \
} \
\
s32 A_##x##_POST_REG(ARM* cpu) \
{ \
A_HD_CALC_OFFSET_REG \
A_##x##_POST \
}
A_IMPLEMENT_HD_LDRSTR(STRH)
A_IMPLEMENT_HD_LDRSTR(LDRD)
A_IMPLEMENT_HD_LDRSTR(STRD)
A_IMPLEMENT_HD_LDRSTR(LDRH)
A_IMPLEMENT_HD_LDRSTR(LDRSB)
A_IMPLEMENT_HD_LDRSTR(LDRSH)
s32 A_LDM(ARM* cpu)
{
u32 base = cpu->R[(cpu->CurInstr >> 16) & 0xF];
u32 preinc = (cpu->CurInstr & (1<<24));
if (!(cpu->CurInstr & (1<<23)))
{
for (int i = 0; i < 16; i++)
{
if (cpu->CurInstr & (1<<i))
base -= 4;
}
if (cpu->CurInstr & (1<<21))
{
cpu->R[(cpu->CurInstr >> 16) & 0xF] = base;
if (cpu->CurInstr & (1 << ((cpu->CurInstr >> 16) & 0xF)))
printf("!! BAD LDM\n");
}
preinc = !preinc;
}
s32 cycles = C_N(1) + C_I(1);
if ((cpu->CurInstr & (1<<22)) && !(cpu->CurInstr & (1<<15)))
cpu->UpdateMode(cpu->CPSR, (cpu->CPSR&~0x1F)|0x10);
for (int i = 0; i < 15; i++)
{
if (cpu->CurInstr & (1<<i))
{
if (preinc) base += 4;
cpu->R[i] = cpu->Read32(base);
cycles += C_S(1) + cpu->MemWaitstate(3, base);
if (!preinc) base += 4;
}
}
if (cpu->CurInstr & (1<<15))
{
if (preinc) base += 4;
u32 pc = cpu->Read32(base);
cycles += C_S(2) + C_N(1) + cpu->MemWaitstate(3, base);
if (!preinc) base += 4;
if (cpu->Num == 1)
pc &= ~0x1;
cpu->JumpTo(pc);
if (cpu->CurInstr & (1<<22)) cpu->RestoreCPSR();
}
if ((cpu->CurInstr & (1<<22)) && !(cpu->CurInstr & (1<<15)))
cpu->UpdateMode((cpu->CPSR&~0x1F)|0x10, cpu->CPSR);
if ((cpu->CurInstr & (1<<23)) && (cpu->CurInstr & (1<<21)))
{
cpu->R[(cpu->CurInstr >> 16) & 0xF] = base;
if (cpu->CurInstr & (1 << ((cpu->CurInstr >> 16) & 0xF)))
printf("!! BAD LDM\n");
}
return cycles;
}
s32 A_STM(ARM* cpu)
{
u32 base = cpu->R[(cpu->CurInstr >> 16) & 0xF];
u32 preinc = (cpu->CurInstr & (1<<24));
if (!(cpu->CurInstr & (1<<23)))
{
for (int i = 0; i < 16; i++)
{
if (cpu->CurInstr & (1<<i))
base -= 4;
}
if (cpu->CurInstr & (1<<21))
{
cpu->R[(cpu->CurInstr >> 16) & 0xF] = base;
if (cpu->CurInstr & (1 << ((cpu->CurInstr >> 16) & 0xF)))
printf("!! BAD STM\n");
}
preinc = !preinc;
}
s32 cycles = C_N(1) + C_I(1);
if (cpu->CurInstr & (1<<22))
cpu->UpdateMode(cpu->CPSR, (cpu->CPSR&~0x1F)|0x10);
for (int i = 0; i < 16; i++)
{
if (cpu->CurInstr & (1<<i))
{
if (preinc) base += 4;
cpu->Write32(base, cpu->R[i]);
cycles += C_S(1) + cpu->MemWaitstate(3, base);
if (!preinc) base += 4;
}
}
if (cpu->CurInstr & (1<<22))
cpu->UpdateMode((cpu->CPSR&~0x1F)|0x10, cpu->CPSR);
if ((cpu->CurInstr & (1<<23)) && (cpu->CurInstr & (1<<21)))
{
cpu->R[(cpu->CurInstr >> 16) & 0xF] = base;
if (cpu->CurInstr & (1 << ((cpu->CurInstr >> 16) & 0xF)))
printf("!! BAD STM\n");
}
return cycles;
}
// ---- THUMB -----------------------
s32 T_LDR_PCREL(ARM* cpu)
{
u32 addr = cpu->R[15] + ((cpu->CurInstr & 0xFF) << 2);
cpu->R[(cpu->CurInstr >> 8) & 0x7] = cpu->Read32(addr);
return C_S(1) + C_N(1) + C_I(1) + cpu->MemWaitstate(3, addr);
}
s32 T_STR_REG(ARM* cpu)
{
u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7];
cpu->Write32(addr, cpu->R[cpu->CurInstr & 0x7]);
return C_N(2) + cpu->MemWaitstate(3, addr);
}
s32 T_STRB_REG(ARM* cpu)
{
u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7];
cpu->Write8(addr, cpu->R[cpu->CurInstr & 0x7]);
return C_N(2) + cpu->MemWaitstate(3, addr);
}
s32 T_LDR_REG(ARM* cpu)
{
u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7];
cpu->R[cpu->CurInstr & 0x7] = cpu->Read32(addr);
return C_S(1) + C_N(1) + C_I(1) + cpu->MemWaitstate(3, addr);
}
s32 T_LDRB_REG(ARM* cpu)
{
u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7];
cpu->R[cpu->CurInstr & 0x7] = cpu->Read8(addr);
return C_S(1) + C_N(1) + C_I(1) + cpu->MemWaitstate(3, addr);
}
s32 T_STRH_REG(ARM* cpu)
{
u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7];
cpu->Write16(addr, cpu->R[cpu->CurInstr & 0x7]);
return C_N(2) + cpu->MemWaitstate(2, addr);
}
s32 T_LDRSB_REG(ARM* cpu)
{
u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7];
cpu->R[cpu->CurInstr & 0x7] = (s32)(s8)cpu->Read8(addr);
return C_S(1) + C_N(1) + C_I(1) + cpu->MemWaitstate(3, addr);
}
s32 T_LDRH_REG(ARM* cpu)
{
u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7];
cpu->R[cpu->CurInstr & 0x7] = cpu->Read16(addr);
return C_S(1) + C_N(1) + C_I(1) + cpu->MemWaitstate(2, addr);
}
s32 T_LDRSH_REG(ARM* cpu)
{
u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7];
cpu->R[cpu->CurInstr & 0x7] = (s32)(s16)cpu->Read16(addr);
return C_S(1) + C_N(1) + C_I(1) + cpu->MemWaitstate(2, addr);
}
s32 T_STR_IMM(ARM* cpu)
{
u32 offset = (cpu->CurInstr >> 4) & 0x7C;
offset += cpu->R[(cpu->CurInstr >> 3) & 0x7];
cpu->Write32(offset, cpu->R[cpu->CurInstr & 0x7]);
return C_N(2) + cpu->MemWaitstate(3, offset);
}
s32 T_LDR_IMM(ARM* cpu)
{
u32 offset = (cpu->CurInstr >> 4) & 0x7C;
offset += cpu->R[(cpu->CurInstr >> 3) & 0x7];
cpu->R[cpu->CurInstr & 0x7] = cpu->Read32(offset);
return C_S(1) + C_N(1) + C_I(1) + cpu->MemWaitstate(3, offset);
}
s32 T_STRB_IMM(ARM* cpu)
{
u32 offset = (cpu->CurInstr >> 6) & 0x1F;
offset += cpu->R[(cpu->CurInstr >> 3) & 0x7];
cpu->Write8(offset, cpu->R[cpu->CurInstr & 0x7]);
return C_N(2) + cpu->MemWaitstate(3, offset);
}
s32 T_LDRB_IMM(ARM* cpu)
{
u32 offset = (cpu->CurInstr >> 6) & 0x1F;
offset += cpu->R[(cpu->CurInstr >> 3) & 0x7];
cpu->R[cpu->CurInstr & 0x7] = cpu->Read8(offset);
return C_S(1) + C_N(1) + C_I(1) + cpu->MemWaitstate(3, offset);
}
s32 T_STRH_IMM(ARM* cpu)
{
u32 offset = (cpu->CurInstr >> 5) & 0x3E;
offset += cpu->R[(cpu->CurInstr >> 3) & 0x7];
cpu->Write16(offset, cpu->R[cpu->CurInstr & 0x7]);
return C_N(2) + cpu->MemWaitstate(2, offset);
}
s32 T_LDRH_IMM(ARM* cpu)
{
u32 offset = (cpu->CurInstr >> 5) & 0x3E;
offset += cpu->R[(cpu->CurInstr >> 3) & 0x7];
cpu->R[cpu->CurInstr & 0x7] = cpu->Read16(offset);
return C_S(1) + C_N(1) + C_I(1) + cpu->MemWaitstate(2, offset);
}
s32 T_STR_SPREL(ARM* cpu)
{
u32 offset = (cpu->CurInstr << 2) & 0x3FC;
offset += cpu->R[13];
cpu->Write32(offset, cpu->R[(cpu->CurInstr >> 8) & 0x7]);
return C_N(2) + cpu->MemWaitstate(3, offset);
}
s32 T_LDR_SPREL(ARM* cpu)
{
u32 offset = (cpu->CurInstr << 2) & 0x3FC;
offset += cpu->R[13];
cpu->R[(cpu->CurInstr >> 8) & 0x7] = cpu->Read32(offset);
return C_S(1) + C_N(1) + C_I(1) + cpu->MemWaitstate(3, offset);
}
s32 T_PUSH(ARM* cpu)
{
int nregs = 0;
for (int i = 0; i < 8; i++)
{
if (cpu->CurInstr & (1<<i))
nregs++;
}
if (cpu->CurInstr & (1<<8))
nregs++;
u32 base = cpu->R[13];
base -= (nregs<<2);
cpu->R[13] = base;
int cycles = C_N(2);
for (int i = 0; i < 8; i++)
{
if (cpu->CurInstr & (1<<i))
{
cpu->Write32(base, cpu->R[i]);
cycles += C_S(1) + cpu->MemWaitstate(3, base);
base += 4;
}
}
if (cpu->CurInstr & (1<<8))
{
cpu->Write32(base, cpu->R[14]);
cycles += C_S(1) + cpu->MemWaitstate(3, base);
}
return cycles - C_S(1);
}
s32 T_POP(ARM* cpu)
{
u32 base = cpu->R[13];
int cycles = C_N(1) + C_I(1);
for (int i = 0; i < 8; i++)
{
if (cpu->CurInstr & (1<<i))
{
cpu->R[i] = cpu->Read32(base);
cycles += C_S(1) + cpu->MemWaitstate(3, base);
base += 4;
}
}
if (cpu->CurInstr & (1<<8))
{
u32 pc = cpu->Read32(base);
if (cpu->Num==1) pc |= 0x1;
cpu->JumpTo(pc);
cycles += C_S(2) + C_N(1) + cpu->MemWaitstate(3, base);
base += 4;
}
cpu->R[13] = base;
return cycles;
}
s32 T_STMIA(ARM* cpu)
{
u32 base = cpu->R[(cpu->CurInstr >> 8) & 0x7];
int cycles = C_N(2);
for (int i = 0; i < 8; i++)
{
if (cpu->CurInstr & (1<<i))
{
cpu->Write32(base, cpu->R[i]);
cycles += C_S(1) + cpu->MemWaitstate(3, base);
base += 4;
}
}
cpu->R[(cpu->CurInstr >> 8) & 0x7] = base;
return cycles - C_S(1);
}
s32 T_LDMIA(ARM* cpu)
{
u32 base = cpu->R[(cpu->CurInstr >> 8) & 0x7];
int cycles = C_N(1) + C_I(1);
for (int i = 0; i < 8; i++)
{
if (cpu->CurInstr & (1<<i))
{
cpu->R[i] = cpu->Read32(base);
cycles += C_S(1) + cpu->MemWaitstate(3, base);
base += 4;
}
}
cpu->R[(cpu->CurInstr >> 8) & 0x7] = base;
return cycles;
}
}