melonDS/src/ARMInterpreter_LoadStore.cpp

809 lines
20 KiB
C++

/*
Copyright 2016-2022 melonDS team
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include <stdio.h>
#include "ARM.h"
namespace ARMInterpreter
{
// copypasta from ALU. bad
#define LSL_IMM(x, s) \
x <<= s;
#define LSR_IMM(x, s) \
if (s == 0) x = 0; \
else x >>= s;
#define ASR_IMM(x, s) \
if (s == 0) x = ((s32)x) >> 31; \
else x = ((s32)x) >> s;
#define ROR_IMM(x, s) \
if (s == 0) \
{ \
x = (x >> 1) | ((cpu->CPSR & 0x20000000) << 2); \
} \
else \
{ \
x = ROR(x, s); \
}
#define A_WB_CALC_OFFSET_IMM \
u32 offset = (cpu->CurInstr & 0xFFF); \
if (!(cpu->CurInstr & (1<<23))) offset = -offset;
#define A_WB_CALC_OFFSET_REG(shiftop) \
u32 offset = cpu->R[cpu->CurInstr & 0xF]; \
u32 shift = ((cpu->CurInstr>>7)&0x1F); \
shiftop(offset, shift); \
if (!(cpu->CurInstr & (1<<23))) offset = -offset;
#define A_STR \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->DataWrite32(offset, cpu->R[(cpu->CurInstr>>12) & 0xF]); \
if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
cpu->AddCycles_CD();
// TODO: user mode (bit21)
#define A_STR_POST \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->DataWrite32(addr, cpu->R[(cpu->CurInstr>>12) & 0xF]); \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
cpu->AddCycles_CD();
#define A_STRB \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->DataWrite8(offset, cpu->R[(cpu->CurInstr>>12) & 0xF]); \
if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
cpu->AddCycles_CD();
// TODO: user mode (bit21)
#define A_STRB_POST \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->DataWrite8(addr, cpu->R[(cpu->CurInstr>>12) & 0xF]); \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
cpu->AddCycles_CD();
#define A_LDR \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 val; cpu->DataRead32(offset, &val); \
val = ROR(val, ((offset&0x3)<<3)); \
if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
cpu->AddCycles_CDI(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
if (cpu->Num==1) val &= ~0x1; \
cpu->JumpTo(val); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = val; \
}
// TODO: user mode
#define A_LDR_POST \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 val; cpu->DataRead32(addr, &val); \
val = ROR(val, ((addr&0x3)<<3)); \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
cpu->AddCycles_CDI(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
if (cpu->Num==1) val &= ~0x1; \
cpu->JumpTo(val); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = val; \
}
#define A_LDRB \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 val; cpu->DataRead8(offset, &val); \
if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
cpu->AddCycles_CDI(); \
cpu->R[(cpu->CurInstr>>12) & 0xF] = val; \
if (((cpu->CurInstr>>12) & 0xF) == 15) printf("!! LDRB PC %08X\n", cpu->R[15]); \
// TODO: user mode
#define A_LDRB_POST \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 val; cpu->DataRead8(addr, &val); \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
cpu->AddCycles_CDI(); \
cpu->R[(cpu->CurInstr>>12) & 0xF] = val; \
if (((cpu->CurInstr>>12) & 0xF) == 15) printf("!! LDRB PC %08X\n", cpu->R[15]); \
#define A_IMPLEMENT_WB_LDRSTR(x) \
\
void A_##x##_IMM(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_IMM \
A_##x \
} \
\
void A_##x##_REG_LSL(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_REG(LSL_IMM) \
A_##x \
} \
\
void A_##x##_REG_LSR(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_REG(LSR_IMM) \
A_##x \
} \
\
void A_##x##_REG_ASR(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_REG(ASR_IMM) \
A_##x \
} \
\
void A_##x##_REG_ROR(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_REG(ROR_IMM) \
A_##x \
} \
\
void A_##x##_POST_IMM(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_IMM \
A_##x##_POST \
} \
\
void A_##x##_POST_REG_LSL(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_REG(LSL_IMM) \
A_##x##_POST \
} \
\
void A_##x##_POST_REG_LSR(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_REG(LSR_IMM) \
A_##x##_POST \
} \
\
void A_##x##_POST_REG_ASR(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_REG(ASR_IMM) \
A_##x##_POST \
} \
\
void A_##x##_POST_REG_ROR(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_REG(ROR_IMM) \
A_##x##_POST \
}
A_IMPLEMENT_WB_LDRSTR(STR)
A_IMPLEMENT_WB_LDRSTR(STRB)
A_IMPLEMENT_WB_LDRSTR(LDR)
A_IMPLEMENT_WB_LDRSTR(LDRB)
#define A_HD_CALC_OFFSET_IMM \
u32 offset = (cpu->CurInstr & 0xF) | ((cpu->CurInstr >> 4) & 0xF0); \
if (!(cpu->CurInstr & (1<<23))) offset = -offset;
#define A_HD_CALC_OFFSET_REG \
u32 offset = cpu->R[cpu->CurInstr & 0xF]; \
if (!(cpu->CurInstr & (1<<23))) offset = -offset;
#define A_STRH \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->DataWrite16(offset, cpu->R[(cpu->CurInstr>>12) & 0xF]); \
if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
cpu->AddCycles_CD();
#define A_STRH_POST \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->DataWrite16(addr, cpu->R[(cpu->CurInstr>>12) & 0xF]); \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
cpu->AddCycles_CD();
// TODO: CHECK LDRD/STRD TIMINGS!!
#define A_LDRD \
if (cpu->Num != 0) return; \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
u32 r = (cpu->CurInstr>>12) & 0xF; \
if (r&1) { r--; printf("!! MISALIGNED LDRD %d\n", r+1); } \
cpu->DataRead32 (offset , &cpu->R[r ]); \
cpu->DataRead32S(offset+4, &cpu->R[r+1]); \
cpu->AddCycles_CDI();
#define A_LDRD_POST \
if (cpu->Num != 0) return; \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
u32 r = (cpu->CurInstr>>12) & 0xF; \
if (r&1) { r--; printf("!! MISALIGNED LDRD_POST %d\n", r+1); } \
cpu->DataRead32 (addr , &cpu->R[r ]); \
cpu->DataRead32S(addr+4, &cpu->R[r+1]); \
cpu->AddCycles_CDI();
#define A_STRD \
if (cpu->Num != 0) return; \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
u32 r = (cpu->CurInstr>>12) & 0xF; \
if (r&1) { r--; printf("!! MISALIGNED STRD %d\n", r+1); } \
cpu->DataWrite32 (offset , cpu->R[r ]); \
cpu->DataWrite32S(offset+4, cpu->R[r+1]); \
cpu->AddCycles_CD();
#define A_STRD_POST \
if (cpu->Num != 0) return; \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
u32 r = (cpu->CurInstr>>12) & 0xF; \
if (r&1) { r--; printf("!! MISALIGNED STRD_POST %d\n", r+1); } \
cpu->DataWrite32 (addr , cpu->R[r ]); \
cpu->DataWrite32S(addr+4, cpu->R[r+1]); \
cpu->AddCycles_CD();
#define A_LDRH \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
cpu->DataRead16(offset, &cpu->R[(cpu->CurInstr>>12) & 0xF]); \
cpu->AddCycles_CDI(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) printf("!! LDRH PC %08X\n", cpu->R[15]); \
#define A_LDRH_POST \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
cpu->DataRead16(addr, &cpu->R[(cpu->CurInstr>>12) & 0xF]); \
cpu->AddCycles_CDI(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) printf("!! LDRH PC %08X\n", cpu->R[15]); \
#define A_LDRSB \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
cpu->DataRead8(offset, &cpu->R[(cpu->CurInstr>>12) & 0xF]); \
cpu->R[(cpu->CurInstr>>12) & 0xF] = (s32)(s8)cpu->R[(cpu->CurInstr>>12) & 0xF]; \
cpu->AddCycles_CDI(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) printf("!! LDRSB PC %08X\n", cpu->R[15]); \
#define A_LDRSB_POST \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
cpu->DataRead8(addr, &cpu->R[(cpu->CurInstr>>12) & 0xF]); \
cpu->R[(cpu->CurInstr>>12) & 0xF] = (s32)(s8)cpu->R[(cpu->CurInstr>>12) & 0xF]; \
cpu->AddCycles_CDI(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) printf("!! LDRSB PC %08X\n", cpu->R[15]); \
#define A_LDRSH \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
cpu->DataRead16(offset, &cpu->R[(cpu->CurInstr>>12) & 0xF]); \
cpu->R[(cpu->CurInstr>>12) & 0xF] = (s32)(s16)cpu->R[(cpu->CurInstr>>12) & 0xF]; \
cpu->AddCycles_CDI(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) printf("!! LDRSH PC %08X\n", cpu->R[15]); \
#define A_LDRSH_POST \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
cpu->DataRead16(addr, &cpu->R[(cpu->CurInstr>>12) & 0xF]); \
cpu->R[(cpu->CurInstr>>12) & 0xF] = (s32)(s16)cpu->R[(cpu->CurInstr>>12) & 0xF]; \
cpu->AddCycles_CDI(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) printf("!! LDRSH PC %08X\n", cpu->R[15]); \
#define A_IMPLEMENT_HD_LDRSTR(x) \
\
void A_##x##_IMM(ARM* cpu) \
{ \
A_HD_CALC_OFFSET_IMM \
A_##x \
} \
\
void A_##x##_REG(ARM* cpu) \
{ \
A_HD_CALC_OFFSET_REG \
A_##x \
} \
void A_##x##_POST_IMM(ARM* cpu) \
{ \
A_HD_CALC_OFFSET_IMM \
A_##x##_POST \
} \
\
void A_##x##_POST_REG(ARM* cpu) \
{ \
A_HD_CALC_OFFSET_REG \
A_##x##_POST \
}
A_IMPLEMENT_HD_LDRSTR(STRH)
A_IMPLEMENT_HD_LDRSTR(LDRD)
A_IMPLEMENT_HD_LDRSTR(STRD)
A_IMPLEMENT_HD_LDRSTR(LDRH)
A_IMPLEMENT_HD_LDRSTR(LDRSB)
A_IMPLEMENT_HD_LDRSTR(LDRSH)
void A_SWP(ARM* cpu)
{
u32 base = cpu->R[(cpu->CurInstr >> 16) & 0xF];
u32 rm = cpu->R[cpu->CurInstr & 0xF];
u32 val;
cpu->DataRead32(base, &val);
cpu->R[(cpu->CurInstr >> 12) & 0xF] = ROR(val, 8*(base&0x3));
u32 numD = cpu->DataCycles;
cpu->DataWrite32(base, rm);
cpu->DataCycles += numD;
cpu->AddCycles_CDI();
}
void A_SWPB(ARM* cpu)
{
u32 base = cpu->R[(cpu->CurInstr >> 16) & 0xF];
u32 rm = cpu->R[cpu->CurInstr & 0xF] & 0xFF;
cpu->DataRead8(base, &cpu->R[(cpu->CurInstr >> 12) & 0xF]);
u32 numD = cpu->DataCycles;
cpu->DataWrite8(base, rm);
cpu->DataCycles += numD;
cpu->AddCycles_CDI();
}
void A_LDM(ARM* cpu)
{
u32 baseid = (cpu->CurInstr >> 16) & 0xF;
u32 base = cpu->R[baseid];
u32 wbbase;
u32 preinc = (cpu->CurInstr & (1<<24));
bool first = true;
if (!(cpu->CurInstr & (1<<23)))
{
for (int i = 0; i < 16; i++)
{
if (cpu->CurInstr & (1<<i))
base -= 4;
}
if (cpu->CurInstr & (1<<21))
{
// pre writeback
wbbase = base;
}
preinc = !preinc;
}
if ((cpu->CurInstr & (1<<22)) && !(cpu->CurInstr & (1<<15)))
cpu->UpdateMode(cpu->CPSR, (cpu->CPSR&~0x1F)|0x10, true);
for (int i = 0; i < 15; i++)
{
if (cpu->CurInstr & (1<<i))
{
if (preinc) base += 4;
if (first) cpu->DataRead32 (base, &cpu->R[i]);
else cpu->DataRead32S(base, &cpu->R[i]);
first = false;
if (!preinc) base += 4;
}
}
if (cpu->CurInstr & (1<<15))
{
u32 pc;
if (preinc) base += 4;
if (first) cpu->DataRead32 (base, &pc);
else cpu->DataRead32S(base, &pc);
if (!preinc) base += 4;
if (cpu->Num == 1)
pc &= ~0x1;
cpu->JumpTo(pc, cpu->CurInstr & (1<<22));
}
if ((cpu->CurInstr & (1<<22)) && !(cpu->CurInstr & (1<<15)))
cpu->UpdateMode((cpu->CPSR&~0x1F)|0x10, cpu->CPSR, true);
if (cpu->CurInstr & (1<<21))
{
// post writeback
if (cpu->CurInstr & (1<<23))
wbbase = base;
if (cpu->CurInstr & (1 << baseid))
{
if (cpu->Num == 0)
{
u32 rlist = cpu->CurInstr & 0xFFFF;
if ((!(rlist & ~(1 << baseid))) || (rlist & ~((2 << baseid) - 1)))
cpu->R[baseid] = wbbase;
}
}
else
cpu->R[baseid] = wbbase;
}
cpu->AddCycles_CDI();
}
void A_STM(ARM* cpu)
{
u32 baseid = (cpu->CurInstr >> 16) & 0xF;
u32 base = cpu->R[baseid];
u32 oldbase = base;
u32 preinc = (cpu->CurInstr & (1<<24));
bool first = true;
if (!(cpu->CurInstr & (1<<23)))
{
for (u32 i = 0; i < 16; i++)
{
if (cpu->CurInstr & (1<<i))
base -= 4;
}
if (cpu->CurInstr & (1<<21))
cpu->R[baseid] = base;
preinc = !preinc;
}
bool isbanked = false;
if (cpu->CurInstr & (1<<22))
{
u32 mode = (cpu->CPSR & 0x1F);
if (mode == 0x11)
isbanked = (baseid >= 8 && baseid < 15);
else if (mode != 0x10 && mode != 0x1F)
isbanked = (baseid >= 13 && baseid < 15);
cpu->UpdateMode(cpu->CPSR, (cpu->CPSR&~0x1F)|0x10, true);
}
for (u32 i = 0; i < 16; i++)
{
if (cpu->CurInstr & (1<<i))
{
if (preinc) base += 4;
if (i == baseid && !isbanked)
{
if ((cpu->Num == 0) || (!(cpu->CurInstr & ((1<<i)-1))))
first ? cpu->DataWrite32(base, oldbase) : cpu->DataWrite32S(base, oldbase);
else
first ? cpu->DataWrite32(base, base) : cpu->DataWrite32S(base, base); // checkme
}
else
first ? cpu->DataWrite32(base, cpu->R[i]) : cpu->DataWrite32S(base, cpu->R[i]);
first = false;
if (!preinc) base += 4;
}
}
if (cpu->CurInstr & (1<<22))
cpu->UpdateMode((cpu->CPSR&~0x1F)|0x10, cpu->CPSR, true);
if ((cpu->CurInstr & (1<<23)) && (cpu->CurInstr & (1<<21)))
cpu->R[baseid] = base;
cpu->AddCycles_CD();
}
// ---- THUMB -----------------------
void T_LDR_PCREL(ARM* cpu)
{
u32 addr = (cpu->R[15] & ~0x2) + ((cpu->CurInstr & 0xFF) << 2);
cpu->DataRead32(addr, &cpu->R[(cpu->CurInstr >> 8) & 0x7]);
cpu->AddCycles_CDI();
}
void T_STR_REG(ARM* cpu)
{
u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7];
cpu->DataWrite32(addr, cpu->R[cpu->CurInstr & 0x7]);
cpu->AddCycles_CD();
}
void T_STRB_REG(ARM* cpu)
{
u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7];
cpu->DataWrite8(addr, cpu->R[cpu->CurInstr & 0x7]);
cpu->AddCycles_CD();
}
void T_LDR_REG(ARM* cpu)
{
u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7];
u32 val;
cpu->DataRead32(addr, &val);
cpu->R[cpu->CurInstr & 0x7] = ROR(val, 8*(addr&0x3));
cpu->AddCycles_CDI();
}
void T_LDRB_REG(ARM* cpu)
{
u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7];
cpu->DataRead8(addr, &cpu->R[cpu->CurInstr & 0x7]);
cpu->AddCycles_CDI();
}
void T_STRH_REG(ARM* cpu)
{
u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7];
cpu->DataWrite16(addr, cpu->R[cpu->CurInstr & 0x7]);
cpu->AddCycles_CD();
}
void T_LDRSB_REG(ARM* cpu)
{
u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7];
cpu->DataRead8(addr, &cpu->R[cpu->CurInstr & 0x7]);
cpu->R[cpu->CurInstr & 0x7] = (s32)(s8)cpu->R[cpu->CurInstr & 0x7];
cpu->AddCycles_CDI();
}
void T_LDRH_REG(ARM* cpu)
{
u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7];
cpu->DataRead16(addr, &cpu->R[cpu->CurInstr & 0x7]);
cpu->AddCycles_CDI();
}
void T_LDRSH_REG(ARM* cpu)
{
u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7];
cpu->DataRead16(addr, &cpu->R[cpu->CurInstr & 0x7]);
cpu->R[cpu->CurInstr & 0x7] = (s32)(s16)cpu->R[cpu->CurInstr & 0x7];
cpu->AddCycles_CDI();
}
void T_STR_IMM(ARM* cpu)
{
u32 offset = (cpu->CurInstr >> 4) & 0x7C;
offset += cpu->R[(cpu->CurInstr >> 3) & 0x7];
cpu->DataWrite32(offset, cpu->R[cpu->CurInstr & 0x7]);
cpu->AddCycles_CD();
}
void T_LDR_IMM(ARM* cpu)
{
u32 offset = (cpu->CurInstr >> 4) & 0x7C;
offset += cpu->R[(cpu->CurInstr >> 3) & 0x7];
u32 val;
cpu->DataRead32(offset, &val);
cpu->R[cpu->CurInstr & 0x7] = ROR(val, 8*(offset&0x3));
cpu->AddCycles_CDI();
}
void T_STRB_IMM(ARM* cpu)
{
u32 offset = (cpu->CurInstr >> 6) & 0x1F;
offset += cpu->R[(cpu->CurInstr >> 3) & 0x7];
cpu->DataWrite8(offset, cpu->R[cpu->CurInstr & 0x7]);
cpu->AddCycles_CD();
}
void T_LDRB_IMM(ARM* cpu)
{
u32 offset = (cpu->CurInstr >> 6) & 0x1F;
offset += cpu->R[(cpu->CurInstr >> 3) & 0x7];
cpu->DataRead8(offset, &cpu->R[cpu->CurInstr & 0x7]);
cpu->AddCycles_CDI();
}
void T_STRH_IMM(ARM* cpu)
{
u32 offset = (cpu->CurInstr >> 5) & 0x3E;
offset += cpu->R[(cpu->CurInstr >> 3) & 0x7];
cpu->DataWrite16(offset, cpu->R[cpu->CurInstr & 0x7]);
cpu->AddCycles_CD();
}
void T_LDRH_IMM(ARM* cpu)
{
u32 offset = (cpu->CurInstr >> 5) & 0x3E;
offset += cpu->R[(cpu->CurInstr >> 3) & 0x7];
cpu->DataRead16(offset, &cpu->R[cpu->CurInstr & 0x7]);
cpu->AddCycles_CDI();
}
void T_STR_SPREL(ARM* cpu)
{
u32 offset = (cpu->CurInstr << 2) & 0x3FC;
offset += cpu->R[13];
cpu->DataWrite32(offset, cpu->R[(cpu->CurInstr >> 8) & 0x7]);
cpu->AddCycles_CD();
}
void T_LDR_SPREL(ARM* cpu)
{
u32 offset = (cpu->CurInstr << 2) & 0x3FC;
offset += cpu->R[13];
cpu->DataRead32(offset, &cpu->R[(cpu->CurInstr >> 8) & 0x7]);
cpu->AddCycles_CDI();
}
void T_PUSH(ARM* cpu)
{
int nregs = 0;
bool first = true;
for (int i = 0; i < 8; i++)
{
if (cpu->CurInstr & (1<<i))
nregs++;
}
if (cpu->CurInstr & (1<<8))
nregs++;
u32 base = cpu->R[13];
base -= (nregs<<2);
cpu->R[13] = base;
for (int i = 0; i < 8; i++)
{
if (cpu->CurInstr & (1<<i))
{
if (first) cpu->DataWrite32 (base, cpu->R[i]);
else cpu->DataWrite32S(base, cpu->R[i]);
first = false;
base += 4;
}
}
if (cpu->CurInstr & (1<<8))
{
if (first) cpu->DataWrite32 (base, cpu->R[14]);
else cpu->DataWrite32S(base, cpu->R[14]);
}
cpu->AddCycles_CD();
}
void T_POP(ARM* cpu)
{
u32 base = cpu->R[13];
bool first = true;
for (int i = 0; i < 8; i++)
{
if (cpu->CurInstr & (1<<i))
{
if (first) cpu->DataRead32 (base, &cpu->R[i]);
else cpu->DataRead32S(base, &cpu->R[i]);
first = false;
base += 4;
}
}
if (cpu->CurInstr & (1<<8))
{
u32 pc;
if (first) cpu->DataRead32 (base, &pc);
else cpu->DataRead32S(base, &pc);
if (cpu->Num==1) pc |= 0x1;
cpu->JumpTo(pc);
base += 4;
}
cpu->R[13] = base;
cpu->AddCycles_CDI();
}
void T_STMIA(ARM* cpu)
{
u32 base = cpu->R[(cpu->CurInstr >> 8) & 0x7];
bool first = true;
for (int i = 0; i < 8; i++)
{
if (cpu->CurInstr & (1<<i))
{
if (first) cpu->DataWrite32 (base, cpu->R[i]);
else cpu->DataWrite32S(base, cpu->R[i]);
first = false;
base += 4;
}
}
// TODO: check "Rb included in Rlist" case
cpu->R[(cpu->CurInstr >> 8) & 0x7] = base;
cpu->AddCycles_CD();
}
void T_LDMIA(ARM* cpu)
{
u32 base = cpu->R[(cpu->CurInstr >> 8) & 0x7];
bool first = true;
for (int i = 0; i < 8; i++)
{
if (cpu->CurInstr & (1<<i))
{
if (first) cpu->DataRead32 (base, &cpu->R[i]);
else cpu->DataRead32S(base, &cpu->R[i]);
first = false;
base += 4;
}
}
if (!(cpu->CurInstr & (1<<((cpu->CurInstr >> 8) & 0x7))))
cpu->R[(cpu->CurInstr >> 8) & 0x7] = base;
cpu->AddCycles_CDI();
}
}