melonDS/GPU3D.cpp

1521 lines
43 KiB
C++

/*
Copyright 2016-2017 StapleButter
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include <stdio.h>
#include <string.h>
#include "NDS.h"
#include "GPU.h"
#include "FIFO.h"
// 3D engine notes
//
// vertex/polygon RAM is filled when a complete polygon is defined, after it's been culled and clipped
// 04000604 reads from bank used by renderer
// bank used by renderer is emptied at scanline ~192
// banks are swapped at scanline ~194
// TODO: needs more investigation. it's weird.
//
// clipping rules:
// * if a shared vertex in a strip is clipped, affected polygons are converted into single polygons
// strip is resumed at the first eligible polygon
//
// clipping exhibits oddities on the real thing. bad precision? fancy algorithm? TODO: investigate.
//
// vertex color precision:
// * vertex colors are kept at 5-bit during clipping. makes for shitty results.
// * vertex colors are converted to 9-bit before drawing, as such:
// if (x > 0) x = (x << 4) + 0xF
// the added bias affects interpolation.
//
// depth buffer:
// Z-buffering mode: val = ((Z * 0x800 * 0x1000) / W) + 0x7FFCFF
// W-buffering mode: val = W - 0x1FF
// TODO: confirm W, because it's weird
namespace GPU3D
{
const u32 CmdNumParams[256] =
{
// 0x00
0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// 0x10
1, 0, 1, 1, 1, 0, 16, 12, 16, 12, 9, 3, 3,
0, 0, 0,
// 0x20
1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0,
// 0x30
1, 1, 1, 1, 32,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// 0x40
1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// 0x50
1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// 0x60
1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// 0x70
3, 2, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// 0x80+
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
const s32 CmdNumCycles[256] =
{
// 0x00
0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// 0x10
1, 17, 36, 17, 36, 19, 34, 30, 35, 31, 28, 22, 22,
0, 0, 0,
// 0x20
1, 9, 1, 9, 8, 8, 8, 8, 8, 1, 1, 1,
0, 0, 0, 0,
// 0x30
4, 4, 6, 1, 32,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// 0x40
1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// 0x50
392,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// 0x60
1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// 0x70
103, 9, 5,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// 0x80+
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
typedef struct
{
u8 Command;
u32 Param;
} CmdFIFOEntry;
FIFO<CmdFIFOEntry>* CmdFIFO;
FIFO<CmdFIFOEntry>* CmdPIPE;
u32 NumCommands, CurCommand, ParamCount, TotalParams;
u32 GXStat;
u32 ExecParams[32];
u32 ExecParamCount;
s32 CycleCount;
u32 MatrixMode;
s32 ProjMatrix[16];
s32 PosMatrix[16];
s32 VecMatrix[16];
s32 TexMatrix[16];
s32 ClipMatrix[16];
bool ClipMatrixDirty;
s32 Viewport[4];
s32 ProjMatrixStack[16];
s32 PosMatrixStack[31][16];
s32 ProjMatrixStackPointer;
s32 PosMatrixStackPointer;
void MatrixLoadIdentity(s32* m);
void UpdateClipMatrix();
u32 PolygonMode;
s16 CurVertex[3];
u8 VertexColor[3];
s16 TexCoords[2];
u32 PolygonAttr;
u32 CurPolygonAttr;
u32 TexParam;
u32 TexPalette;
Vertex TempVertexBuffer[4];
u32 VertexNum;
u32 VertexNumInPoly;
u32 NumConsecutivePolygons;
Polygon* LastStripPolygon;
Vertex VertexRAM[6144 * 2];
Polygon PolygonRAM[2048 * 2];
Vertex* CurVertexRAM;
Polygon* CurPolygonRAM;
u32 NumVertices, NumPolygons;
u32 CurRAMBank;
u32 FlushRequest;
bool Init()
{
CmdFIFO = new FIFO<CmdFIFOEntry>(256);
CmdPIPE = new FIFO<CmdFIFOEntry>(4);
if (!SoftRenderer::Init()) return false;
return true;
}
void DeInit()
{
SoftRenderer::DeInit();
delete CmdFIFO;
delete CmdPIPE;
}
void Reset()
{
CmdFIFO->Clear();
CmdPIPE->Clear();
NumCommands = 0;
CurCommand = 0;
ParamCount = 0;
TotalParams = 0;
GXStat = 0;
memset(ExecParams, 0, 32*4);
ExecParamCount = 0;
CycleCount = 0;
MatrixMode = 0;
MatrixLoadIdentity(ProjMatrix);
MatrixLoadIdentity(PosMatrix);
MatrixLoadIdentity(VecMatrix);
MatrixLoadIdentity(TexMatrix);
ClipMatrixDirty = true;
UpdateClipMatrix();
memset(Viewport, 0, sizeof(Viewport));
memset(ProjMatrixStack, 0, 16*4);
memset(PosMatrixStack, 0, 31 * 16*4);
ProjMatrixStackPointer = 0;
PosMatrixStackPointer = 0;
VertexNum = 0;
VertexNumInPoly = 0;
CurRAMBank = 0;
CurVertexRAM = &VertexRAM[0];
CurPolygonRAM = &PolygonRAM[0];
NumVertices = 0;
NumPolygons = 0;
FlushRequest = 0;
SoftRenderer::Reset();
}
void MatrixLoadIdentity(s32* m)
{
m[0] = 0x1000; m[1] = 0; m[2] = 0; m[3] = 0;
m[4] = 0; m[5] = 0x1000; m[6] = 0; m[7] = 0;
m[8] = 0; m[9] = 0; m[10] = 0x1000; m[11] = 0;
m[12] = 0; m[13] = 0; m[14] = 0; m[15] = 0x1000;
}
void MatrixLoad4x4(s32* m, s32* s)
{
memcpy(m, s, 16*4);
}
void MatrixLoad4x3(s32* m, s32* s)
{
m[0] = s[0]; m[1] = s[1]; m[2] = s[2]; m[3] = 0;
m[4] = s[3]; m[5] = s[4]; m[6] = s[5]; m[7] = 0;
m[8] = s[6]; m[9] = s[7]; m[10] = s[8]; m[11] = 0;
m[12] = s[9]; m[13] = s[10]; m[14] = s[11]; m[15] = 0x1000;
}
void MatrixMult4x4(s32* m, s32* s)
{
s32 tmp[16];
memcpy(tmp, m, 16*4);
// m = s*m
m[0] = ((s64)s[0]*tmp[0] + (s64)s[1]*tmp[4] + (s64)s[2]*tmp[8] + (s64)s[3]*tmp[12]) >> 12;
m[1] = ((s64)s[0]*tmp[1] + (s64)s[1]*tmp[5] + (s64)s[2]*tmp[9] + (s64)s[3]*tmp[13]) >> 12;
m[2] = ((s64)s[0]*tmp[2] + (s64)s[1]*tmp[6] + (s64)s[2]*tmp[10] + (s64)s[3]*tmp[14]) >> 12;
m[3] = ((s64)s[0]*tmp[3] + (s64)s[1]*tmp[7] + (s64)s[2]*tmp[11] + (s64)s[3]*tmp[15]) >> 12;
m[4] = ((s64)s[4]*tmp[0] + (s64)s[5]*tmp[4] + (s64)s[6]*tmp[8] + (s64)s[7]*tmp[12]) >> 12;
m[5] = ((s64)s[4]*tmp[1] + (s64)s[5]*tmp[5] + (s64)s[6]*tmp[9] + (s64)s[7]*tmp[13]) >> 12;
m[6] = ((s64)s[4]*tmp[2] + (s64)s[5]*tmp[6] + (s64)s[6]*tmp[10] + (s64)s[7]*tmp[14]) >> 12;
m[7] = ((s64)s[4]*tmp[3] + (s64)s[5]*tmp[7] + (s64)s[6]*tmp[11] + (s64)s[7]*tmp[15]) >> 12;
m[8] = ((s64)s[8]*tmp[0] + (s64)s[9]*tmp[4] + (s64)s[10]*tmp[8] + (s64)s[11]*tmp[12]) >> 12;
m[9] = ((s64)s[8]*tmp[1] + (s64)s[9]*tmp[5] + (s64)s[10]*tmp[9] + (s64)s[11]*tmp[13]) >> 12;
m[10] = ((s64)s[8]*tmp[2] + (s64)s[9]*tmp[6] + (s64)s[10]*tmp[10] + (s64)s[11]*tmp[14]) >> 12;
m[11] = ((s64)s[8]*tmp[3] + (s64)s[9]*tmp[7] + (s64)s[10]*tmp[11] + (s64)s[11]*tmp[15]) >> 12;
m[12] = ((s64)s[12]*tmp[0] + (s64)s[13]*tmp[4] + (s64)s[14]*tmp[8] + (s64)s[15]*tmp[12]) >> 12;
m[13] = ((s64)s[12]*tmp[1] + (s64)s[13]*tmp[5] + (s64)s[14]*tmp[9] + (s64)s[15]*tmp[13]) >> 12;
m[14] = ((s64)s[12]*tmp[2] + (s64)s[13]*tmp[6] + (s64)s[14]*tmp[10] + (s64)s[15]*tmp[14]) >> 12;
m[15] = ((s64)s[12]*tmp[3] + (s64)s[13]*tmp[7] + (s64)s[14]*tmp[11] + (s64)s[15]*tmp[15]) >> 12;
}
void MatrixMult4x3(s32* m, s32* s)
{
s32 tmp[16];
memcpy(tmp, m, 16*4);
// m = s*m
m[0] = ((s64)s[0]*tmp[0] + (s64)s[1]*tmp[4] + (s64)s[2]*tmp[8]) >> 12;
m[1] = ((s64)s[0]*tmp[1] + (s64)s[1]*tmp[5] + (s64)s[2]*tmp[9]) >> 12;
m[2] = ((s64)s[0]*tmp[2] + (s64)s[1]*tmp[6] + (s64)s[2]*tmp[10]) >> 12;
m[3] = ((s64)s[0]*tmp[3] + (s64)s[1]*tmp[7] + (s64)s[2]*tmp[11]) >> 12;
m[4] = ((s64)s[3]*tmp[0] + (s64)s[4]*tmp[4] + (s64)s[5]*tmp[8]) >> 12;
m[5] = ((s64)s[3]*tmp[1] + (s64)s[4]*tmp[5] + (s64)s[5]*tmp[9]) >> 12;
m[6] = ((s64)s[3]*tmp[2] + (s64)s[4]*tmp[6] + (s64)s[5]*tmp[10]) >> 12;
m[7] = ((s64)s[3]*tmp[3] + (s64)s[4]*tmp[7] + (s64)s[5]*tmp[11]) >> 12;
m[8] = ((s64)s[6]*tmp[0] + (s64)s[7]*tmp[4] + (s64)s[8]*tmp[8]) >> 12;
m[9] = ((s64)s[6]*tmp[1] + (s64)s[7]*tmp[5] + (s64)s[8]*tmp[9]) >> 12;
m[10] = ((s64)s[6]*tmp[2] + (s64)s[7]*tmp[6] + (s64)s[8]*tmp[10]) >> 12;
m[11] = ((s64)s[6]*tmp[3] + (s64)s[7]*tmp[7] + (s64)s[8]*tmp[11]) >> 12;
m[12] = ((s64)s[9]*tmp[0] + (s64)s[10]*tmp[4] + (s64)s[11]*tmp[8] + (s64)0x1000*tmp[12]) >> 12;
m[13] = ((s64)s[9]*tmp[1] + (s64)s[10]*tmp[5] + (s64)s[11]*tmp[9] + (s64)0x1000*tmp[13]) >> 12;
m[14] = ((s64)s[9]*tmp[2] + (s64)s[10]*tmp[6] + (s64)s[11]*tmp[10] + (s64)0x1000*tmp[14]) >> 12;
m[15] = ((s64)s[9]*tmp[3] + (s64)s[10]*tmp[7] + (s64)s[11]*tmp[11] + (s64)0x1000*tmp[15]) >> 12;
}
void MatrixMult3x3(s32* m, s32* s)
{
s32 tmp[12];
memcpy(tmp, m, 12*4);
// m = s*m
m[0] = ((s64)s[0]*tmp[0] + (s64)s[1]*tmp[4] + (s64)s[2]*tmp[8]) >> 12;
m[1] = ((s64)s[0]*tmp[1] + (s64)s[1]*tmp[5] + (s64)s[2]*tmp[9]) >> 12;
m[2] = ((s64)s[0]*tmp[2] + (s64)s[1]*tmp[6] + (s64)s[2]*tmp[10]) >> 12;
m[3] = ((s64)s[0]*tmp[3] + (s64)s[1]*tmp[7] + (s64)s[2]*tmp[11]) >> 12;
m[4] = ((s64)s[3]*tmp[0] + (s64)s[4]*tmp[4] + (s64)s[5]*tmp[8]) >> 12;
m[5] = ((s64)s[3]*tmp[1] + (s64)s[4]*tmp[5] + (s64)s[5]*tmp[9]) >> 12;
m[6] = ((s64)s[3]*tmp[2] + (s64)s[4]*tmp[6] + (s64)s[5]*tmp[10]) >> 12;
m[7] = ((s64)s[3]*tmp[3] + (s64)s[4]*tmp[7] + (s64)s[5]*tmp[11]) >> 12;
m[8] = ((s64)s[6]*tmp[0] + (s64)s[7]*tmp[4] + (s64)s[8]*tmp[8]) >> 12;
m[9] = ((s64)s[6]*tmp[1] + (s64)s[7]*tmp[5] + (s64)s[8]*tmp[9]) >> 12;
m[10] = ((s64)s[6]*tmp[2] + (s64)s[7]*tmp[6] + (s64)s[8]*tmp[10]) >> 12;
m[11] = ((s64)s[6]*tmp[3] + (s64)s[7]*tmp[7] + (s64)s[8]*tmp[11]) >> 12;
}
void MatrixScale(s32* m, s32* s)
{
m[0] = ((s64)s[0]*m[0]) >> 12;
m[1] = ((s64)s[0]*m[1]) >> 12;
m[2] = ((s64)s[0]*m[2]) >> 12;
m[3] = ((s64)s[0]*m[3]) >> 12;
m[4] = ((s64)s[1]*m[4]) >> 12;
m[5] = ((s64)s[1]*m[5]) >> 12;
m[6] = ((s64)s[1]*m[6]) >> 12;
m[7] = ((s64)s[1]*m[7]) >> 12;
m[8] = ((s64)s[2]*m[8]) >> 12;
m[9] = ((s64)s[2]*m[9]) >> 12;
m[10] = ((s64)s[2]*m[10]) >> 12;
m[11] = ((s64)s[2]*m[11]) >> 12;
}
void MatrixTranslate(s32* m, s32* s)
{
m[12] += ((s64)s[0]*m[0] + (s64)s[1]*m[4] + (s64)s[2]*m[8]) >> 12;
m[13] += ((s64)s[0]*m[1] + (s64)s[1]*m[5] + (s64)s[2]*m[9]) >> 12;
m[14] += ((s64)s[0]*m[2] + (s64)s[1]*m[6] + (s64)s[2]*m[10]) >> 12;
}
void UpdateClipMatrix()
{
if (!ClipMatrixDirty) return;
ClipMatrixDirty = false;
memcpy(ClipMatrix, ProjMatrix, 16*4);
MatrixMult4x4(ClipMatrix, PosMatrix);
}
template<int comp, s32 plane>
void ClipSegment(Vertex* outbuf, Vertex* vout, Vertex* vin)
{
s64 factor_num = vin->Position[3] - (plane*vin->Position[comp]);
s32 factor_den = factor_num - (vout->Position[3] - (plane*vout->Position[comp]));
Vertex mid;
#define INTERPOLATE(var) mid.var = (vin->var + ((vout->var - vin->var) * factor_num) / factor_den);
INTERPOLATE(Position[0]);
INTERPOLATE(Position[1]);
INTERPOLATE(Position[2]);
INTERPOLATE(Position[3]);
INTERPOLATE(Color[0]);
INTERPOLATE(Color[1]);
INTERPOLATE(Color[2]);
INTERPOLATE(TexCoords[0]);
INTERPOLATE(TexCoords[1]);
mid.Clipped = true;
mid.ViewportTransformDone = false;
#undef INTERPOLATE
*outbuf = mid;
}
void SubmitPolygon()
{
Vertex clippedvertices[2][10];
Vertex* reusedvertices[2];
int clipstart = 0;
int lastpolyverts = 0;
int nverts = PolygonMode & 0x1 ? 4:3;
int prev, next;
int c;
// culling
// checkme: does it work this way for quads and up?
/*s32 _x1 = TempVertexBuffer[1].Position[0] - TempVertexBuffer[0].Position[0];
s32 _x2 = TempVertexBuffer[2].Position[0] - TempVertexBuffer[0].Position[0];
s32 _y1 = TempVertexBuffer[1].Position[1] - TempVertexBuffer[0].Position[1];
s32 _y2 = TempVertexBuffer[2].Position[1] - TempVertexBuffer[0].Position[1];
s32 _z1 = TempVertexBuffer[1].Position[2] - TempVertexBuffer[0].Position[2];
s32 _z2 = TempVertexBuffer[2].Position[2] - TempVertexBuffer[0].Position[2];
s32 normalX = (((s64)_y1 * _z2) - ((s64)_z1 * _y2)) >> 12;
s32 normalY = (((s64)_z1 * _x2) - ((s64)_x1 * _z2)) >> 12;
s32 normalZ = (((s64)_x1 * _y2) - ((s64)_y1 * _x2)) >> 12;*/
/*s32 centerX = ((s64)TempVertexBuffer[0].Position[3] * ClipMatrix[12]) >> 12;
s32 centerY = ((s64)TempVertexBuffer[0].Position[3] * ClipMatrix[13]) >> 12;
s32 centerZ = ((s64)TempVertexBuffer[0].Position[3] * ClipMatrix[14]) >> 12;*/
/*s64 dot = ((s64)(-TempVertexBuffer[0].Position[0]) * normalX) +
((s64)(-TempVertexBuffer[0].Position[1]) * normalY) +
((s64)(-TempVertexBuffer[0].Position[2]) * normalZ); // checkme*/
// code inspired from Dolphin's software renderer.
// maybe not 100% right
s32 _x0 = TempVertexBuffer[0].Position[0];
s32 _x1 = TempVertexBuffer[1].Position[0];
s32 _x2 = TempVertexBuffer[2].Position[0];
s32 _y0 = TempVertexBuffer[0].Position[1];
s32 _y1 = TempVertexBuffer[1].Position[1];
s32 _y2 = TempVertexBuffer[2].Position[1];
s32 _z0 = TempVertexBuffer[0].Position[3];
s32 _z1 = TempVertexBuffer[1].Position[3];
s32 _z2 = TempVertexBuffer[2].Position[3];
s32 normalX = (((s64)_y0 * _z2) - ((s64)_z0 * _y2)) >> 12;
s32 normalY = (((s64)_z0 * _x2) - ((s64)_x0 * _z2)) >> 12;
s32 normalZ = (((s64)_x0 * _y2) - ((s64)_y0 * _x2)) >> 12;
s64 dot = ((s64)_x1 * normalX) + ((s64)_y1 * normalY) + ((s64)_z1 * normalZ);
bool facingview = (dot < 0);
//printf("Z: %d %d\n", normalZ, -TempVertexBuffer[0].Position[2]);
if (facingview)
{
if (!(CurPolygonAttr & (1<<7)))
{
LastStripPolygon = NULL;
return;
}
}
else
{
if (!(CurPolygonAttr & (1<<6)))
{
LastStripPolygon = NULL;
return;
}
}
// for strips, check whether we can attach to the previous polygon
// this requires two vertices shared with the previous polygon, and that
// the two polygons be of the same type
if (PolygonMode >= 2 && LastStripPolygon)
{
int id0, id1;
if (PolygonMode == 2)
{
if (NumConsecutivePolygons & 1)
{
id0 = 2;
id1 = 1;
}
else
{
id0 = 0;
id1 = 2;
}
lastpolyverts = 3;
}
else
{
id0 = 3;
id1 = 2;
lastpolyverts = 4;
}
if (LastStripPolygon->NumVertices == lastpolyverts &&
!LastStripPolygon->Vertices[id0]->Clipped &&
!LastStripPolygon->Vertices[id1]->Clipped)
{
reusedvertices[0] = LastStripPolygon->Vertices[id0];
reusedvertices[1] = LastStripPolygon->Vertices[id1];
clippedvertices[0][0] = *reusedvertices[0];
clippedvertices[0][1] = *reusedvertices[1];
clippedvertices[1][0] = *reusedvertices[0];
clippedvertices[1][1] = *reusedvertices[1];
clipstart = 2;
}
}
// clip.
// for each vertex:
// if it's outside, check if the previous and next vertices are inside
// if so, place a new vertex at the edge of the view volume
// X clipping
c = clipstart;
for (int i = clipstart; i < nverts; i++)
{
prev = i-1; if (prev < 0) prev = nverts-1;
next = i+1; if (next >= nverts) next = 0;
Vertex vtx = TempVertexBuffer[i];
if (vtx.Position[0] > vtx.Position[3])
{
Vertex* vprev = &TempVertexBuffer[prev];
if (vprev->Position[0] <= vprev->Position[3])
{
ClipSegment<0, 1>(&clippedvertices[0][c], &vtx, vprev);
c++;
}
Vertex* vnext = &TempVertexBuffer[next];
if (vnext->Position[0] <= vnext->Position[3])
{
ClipSegment<0, 1>(&clippedvertices[0][c], &vtx, vnext);
c++;
}
}
else
clippedvertices[0][c++] = vtx;
}
nverts = c; c = clipstart;
for (int i = clipstart; i < nverts; i++)
{
prev = i-1; if (prev < 0) prev = nverts-1;
next = i+1; if (next >= nverts) next = 0;
Vertex vtx = clippedvertices[0][i];
if (vtx.Position[0] < -vtx.Position[3])
{
Vertex* vprev = &clippedvertices[0][prev];
if (vprev->Position[0] >= -vprev->Position[3])
{
ClipSegment<0, -1>(&clippedvertices[1][c], &vtx, vprev);
c++;
}
Vertex* vnext = &clippedvertices[0][next];
if (vnext->Position[0] >= -vnext->Position[3])
{
ClipSegment<0, -1>(&clippedvertices[1][c], &vtx, vnext);
c++;
}
}
else
clippedvertices[1][c++] = vtx;
}
for (int i = 0; i < c; i++)
{
Vertex* vtx = &clippedvertices[1][i];
vtx->Color[0] &= ~0xFFF; vtx->Color[0] += 0xFFF;
vtx->Color[1] &= ~0xFFF; vtx->Color[1] += 0xFFF;
vtx->Color[2] &= ~0xFFF; vtx->Color[2] += 0xFFF;
}
// Y clipping
nverts = c; c = clipstart;
for (int i = clipstart; i < nverts; i++)
{
prev = i-1; if (prev < 0) prev = nverts-1;
next = i+1; if (next >= nverts) next = 0;
Vertex vtx = clippedvertices[1][i];
if (vtx.Position[1] > vtx.Position[3])
{
Vertex* vprev = &clippedvertices[1][prev];
if (vprev->Position[1] <= vprev->Position[3])
{
ClipSegment<1, 1>(&clippedvertices[0][c], &vtx, vprev);
c++;
}
Vertex* vnext = &clippedvertices[1][next];
if (vnext->Position[1] <= vnext->Position[3])
{
ClipSegment<1, 1>(&clippedvertices[0][c], &vtx, vnext);
c++;
}
}
else
clippedvertices[0][c++] = vtx;
}
nverts = c; c = clipstart;
for (int i = clipstart; i < nverts; i++)
{
prev = i-1; if (prev < 0) prev = nverts-1;
next = i+1; if (next >= nverts) next = 0;
Vertex vtx = clippedvertices[0][i];
if (vtx.Position[1] < -vtx.Position[3])
{
Vertex* vprev = &clippedvertices[0][prev];
if (vprev->Position[1] >= -vprev->Position[3])
{
ClipSegment<1, -1>(&clippedvertices[1][c], &vtx, vprev);
c++;
}
Vertex* vnext = &clippedvertices[0][next];
if (vnext->Position[1] >= -vnext->Position[3])
{
ClipSegment<1, -1>(&clippedvertices[1][c], &vtx, vnext);
c++;
}
}
else
clippedvertices[1][c++] = vtx;
}
for (int i = 0; i < c; i++)
{
Vertex* vtx = &clippedvertices[1][i];
vtx->Color[0] &= ~0xFFF; vtx->Color[0] += 0xFFF;
vtx->Color[1] &= ~0xFFF; vtx->Color[1] += 0xFFF;
vtx->Color[2] &= ~0xFFF; vtx->Color[2] += 0xFFF;
}
// Z clipping
nverts = c; c = clipstart;
for (int i = clipstart; i < nverts; i++)
{
prev = i-1; if (prev < 0) prev = nverts-1;
next = i+1; if (next >= nverts) next = 0;
Vertex vtx = clippedvertices[1][i];
if (vtx.Position[2] > vtx.Position[3])
{
Vertex* vprev = &clippedvertices[1][prev];
if (vprev->Position[2] <= vprev->Position[3])
{
ClipSegment<2, 1>(&clippedvertices[0][c], &vtx, vprev);
c++;
}
Vertex* vnext = &clippedvertices[1][next];
if (vnext->Position[2] <= vnext->Position[3])
{
ClipSegment<2, 1>(&clippedvertices[0][c], &vtx, vnext);
c++;
}
}
else
clippedvertices[0][c++] = vtx;
}
nverts = c; c = clipstart;
for (int i = clipstart; i < nverts; i++)
{
prev = i-1; if (prev < 0) prev = nverts-1;
next = i+1; if (next >= nverts) next = 0;
Vertex vtx = clippedvertices[0][i];
if (vtx.Position[2] < -vtx.Position[3])
{
Vertex* vprev = &clippedvertices[0][prev];
if (vprev->Position[2] >= -vprev->Position[3])
{
ClipSegment<2, -1>(&clippedvertices[1][c], &vtx, vprev);
c++;
}
Vertex* vnext = &clippedvertices[0][next];
if (vnext->Position[2] >= -vnext->Position[3])
{
ClipSegment<2, -1>(&clippedvertices[1][c], &vtx, vnext);
c++;
}
}
else
clippedvertices[1][c++] = vtx;
}
for (int i = 0; i < c; i++)
{
Vertex* vtx = &clippedvertices[1][i];
vtx->Color[0] &= ~0xFFF; vtx->Color[0] += 0xFFF;
vtx->Color[1] &= ~0xFFF; vtx->Color[1] += 0xFFF;
vtx->Color[2] &= ~0xFFF; vtx->Color[2] += 0xFFF;
}
if (c == 0)
{
LastStripPolygon = NULL;
return;
}
// build the actual polygon
if (NumPolygons >= 2048 || NumVertices+c > 6144)
{
LastStripPolygon = NULL;
return;
}
Polygon* poly = &CurPolygonRAM[NumPolygons++];
poly->NumVertices = 0;
poly->Attr = CurPolygonAttr;
poly->TexParam = TexParam;
poly->TexPalette = TexPalette;
poly->FacingView = facingview;
if (LastStripPolygon && clipstart > 0)
{
if (c == lastpolyverts)
{
poly->Vertices[0] = reusedvertices[0];
poly->Vertices[1] = reusedvertices[1];
}
else
{
Vertex v0 = *reusedvertices[0];
Vertex v1 = *reusedvertices[1];
CurVertexRAM[NumVertices] = v0;
poly->Vertices[0] = &CurVertexRAM[NumVertices];
CurVertexRAM[NumVertices+1] = v1;
poly->Vertices[1] = &CurVertexRAM[NumVertices+1];
NumVertices += 2;
}
poly->NumVertices += 2;
}
for (int i = clipstart; i < c; i++)
{
CurVertexRAM[NumVertices] = clippedvertices[1][i];
poly->Vertices[i] = &CurVertexRAM[NumVertices];
NumVertices++;
poly->NumVertices++;
}
if (PolygonMode >= 2)
LastStripPolygon = poly;
else
LastStripPolygon = NULL;
}
void SubmitVertex()
{
s64 vertex[4] = {(s64)CurVertex[0], (s64)CurVertex[1], (s64)CurVertex[2], 0x1000};
Vertex* vertextrans = &TempVertexBuffer[VertexNumInPoly];
UpdateClipMatrix();
vertextrans->Position[0] = (vertex[0]*ClipMatrix[0] + vertex[1]*ClipMatrix[4] + vertex[2]*ClipMatrix[8] + vertex[3]*ClipMatrix[12]) >> 12;
vertextrans->Position[1] = (vertex[0]*ClipMatrix[1] + vertex[1]*ClipMatrix[5] + vertex[2]*ClipMatrix[9] + vertex[3]*ClipMatrix[13]) >> 12;
vertextrans->Position[2] = (vertex[0]*ClipMatrix[2] + vertex[1]*ClipMatrix[6] + vertex[2]*ClipMatrix[10] + vertex[3]*ClipMatrix[14]) >> 12;
vertextrans->Position[3] = (vertex[0]*ClipMatrix[3] + vertex[1]*ClipMatrix[7] + vertex[2]*ClipMatrix[11] + vertex[3]*ClipMatrix[15]) >> 12;
vertextrans->Color[0] = (VertexColor[0] << 12) + 0xFFF;
vertextrans->Color[1] = (VertexColor[1] << 12) + 0xFFF;
vertextrans->Color[2] = (VertexColor[2] << 12) + 0xFFF;
if ((TexParam >> 30) == 3)
{
vertextrans->TexCoords[0] = (CurVertex[0]*TexMatrix[0] + CurVertex[1]*TexMatrix[4] + CurVertex[2]*TexMatrix[8] + 0x1000*TexCoords[0]) >> 12;
vertextrans->TexCoords[1] = (CurVertex[0]*TexMatrix[1] + CurVertex[1]*TexMatrix[5] + CurVertex[2]*TexMatrix[9] + 0x1000*TexCoords[1]) >> 12;
}
else
{
vertextrans->TexCoords[0] = TexCoords[0];
vertextrans->TexCoords[1] = TexCoords[1];
}
vertextrans->Clipped = false;
vertextrans->ViewportTransformDone = false;
VertexNum++;
VertexNumInPoly++;
switch (PolygonMode)
{
case 0: // triangle
if (VertexNumInPoly == 3)
{
VertexNumInPoly = 0;
SubmitPolygon();
NumConsecutivePolygons++;
}
break;
case 1: // quad
if (VertexNumInPoly == 4)
{
VertexNumInPoly = 0;
SubmitPolygon();
NumConsecutivePolygons++;
}
break;
case 2: // triangle strip
if (NumConsecutivePolygons & 1)
{
Vertex tmp = TempVertexBuffer[1];
TempVertexBuffer[1] = TempVertexBuffer[0];
TempVertexBuffer[0] = tmp;
VertexNumInPoly = 2;
SubmitPolygon();
NumConsecutivePolygons++;
TempVertexBuffer[1] = TempVertexBuffer[2];
}
else if (VertexNumInPoly == 3)
{
VertexNumInPoly = 2;
SubmitPolygon();
NumConsecutivePolygons++;
TempVertexBuffer[0] = TempVertexBuffer[1];
TempVertexBuffer[1] = TempVertexBuffer[2];
}
break;
case 3: // quad strip
if (VertexNumInPoly == 4)
{
Vertex tmp = TempVertexBuffer[3];
TempVertexBuffer[3] = TempVertexBuffer[2];
TempVertexBuffer[2] = tmp;
VertexNumInPoly = 2;
SubmitPolygon();
NumConsecutivePolygons++;
TempVertexBuffer[0] = TempVertexBuffer[3];
TempVertexBuffer[1] = TempVertexBuffer[2];
}
break;
}
}
void CmdFIFOWrite(CmdFIFOEntry& entry)
{
if (CmdFIFO->IsEmpty() && !CmdPIPE->IsFull())
{
CmdPIPE->Write(entry);
}
else
{
if (CmdFIFO->IsFull())
{
//printf("!!! GX FIFO FULL\n");
//return;
// temp. hack
// SM64DS seems to overflow the FIFO occasionally
// either leftover bugs in our implementation, or the game accidentally doing that
// TODO: investigate.
// TODO: implement this behavior properly (freezes the bus until the FIFO isn't full anymore)
while (CmdFIFO->IsFull())
ExecuteCommand();
}
CmdFIFO->Write(entry);
}
}
CmdFIFOEntry CmdFIFORead()
{
CmdFIFOEntry ret = CmdPIPE->Read();
if (CmdPIPE->Level() <= 2)
{
if (!CmdFIFO->IsEmpty())
CmdPIPE->Write(CmdFIFO->Read());
if (!CmdFIFO->IsEmpty())
CmdPIPE->Write(CmdFIFO->Read());
CheckFIFODMA();
CheckFIFOIRQ();
}
return ret;
}
void ExecuteCommand()
{
CmdFIFOEntry entry = CmdFIFORead();
//printf("FIFO: processing %02X %08X. Levels: FIFO=%d, PIPE=%d\n", entry.Command, entry.Param, CmdFIFO->Level(), CmdPIPE->Level());
ExecParams[ExecParamCount] = entry.Param;
ExecParamCount++;
if (ExecParamCount >= CmdNumParams[entry.Command])
{
CycleCount += CmdNumCycles[entry.Command];
ExecParamCount = 0;
GXStat &= ~(1<<14);
if (CycleCount > 0)
GXStat |= (1<<27);
switch (entry.Command)
{
case 0x10: // matrix mode
MatrixMode = ExecParams[0] & 0x3;
break;
case 0x11: // push matrix
if (MatrixMode == 0)
{
if (ProjMatrixStackPointer > 0)
{
printf("!! PROJ MATRIX STACK OVERFLOW\n");
GXStat |= (1<<15);
break;
}
memcpy(ProjMatrixStack, ProjMatrix, 16*4);
ProjMatrixStackPointer++;
GXStat |= (1<<14);
}
else if (MatrixMode == 3)
{
printf("!! CAN'T PUSH TEXTURE MATRIX\n");
GXStat |= (1<<15); // CHECKME
}
else
{
if (PosMatrixStackPointer > 30)
{
printf("!! POS MATRIX STACK OVERFLOW\n");
GXStat |= (1<<15);
break;
}
memcpy(PosMatrixStack[PosMatrixStackPointer], PosMatrix, 16*4);
PosMatrixStackPointer++;
GXStat |= (1<<14);
}
break;
case 0x12: // pop matrix
if (MatrixMode == 0)
{
if (ProjMatrixStackPointer <= 0)
{
printf("!! PROJ MATRIX STACK UNDERFLOW\n");
GXStat |= (1<<15);
break;
}
ProjMatrixStackPointer--;
memcpy(ProjMatrix, ProjMatrixStack, 16*4);
GXStat |= (1<<14);
ClipMatrixDirty = true;
}
else if (MatrixMode == 3)
{
printf("!! CAN'T POP TEXTURE MATRIX\n");
GXStat |= (1<<15); // CHECKME
}
else
{
s32 offset = (s32)(ExecParams[0] << 26) >> 26;
PosMatrixStackPointer -= offset;
if (PosMatrixStackPointer < 0 || PosMatrixStackPointer > 30)
{
printf("!! POS MATRIX STACK UNDER/OVERFLOW %d\n", PosMatrixStackPointer);
PosMatrixStackPointer += offset;
GXStat |= (1<<15);
break;
}
memcpy(PosMatrix, PosMatrixStack[PosMatrixStackPointer], 16*4);
GXStat |= (1<<14);
ClipMatrixDirty = true;
}
break;
case 0x13: // store matrix
if (MatrixMode == 0)
{
memcpy(ProjMatrixStack, ProjMatrix, 16*4);
}
else if (MatrixMode == 3)
{
printf("!! CAN'T STORE TEXTURE MATRIX\n");
GXStat |= (1<<15); // CHECKME
}
else
{
u32 addr = ExecParams[0] & 0x1F;
if (addr > 30)
{
printf("!! POS MATRIX STORE ADDR 31\n");
GXStat |= (1<<15);
break;
}
memcpy(PosMatrixStack[addr], PosMatrix, 16*4);
}
break;
case 0x14: // restore matrix
if (MatrixMode == 0)
{
memcpy(ProjMatrix, ProjMatrixStack, 16*4);
ClipMatrixDirty = true;
}
else if (MatrixMode == 3)
{
printf("!! CAN'T RESTORE TEXTURE MATRIX\n");
GXStat |= (1<<15); // CHECKME
}
else
{
u32 addr = ExecParams[0] & 0x1F;
if (addr > 30)
{
printf("!! POS MATRIX STORE ADDR 31\n");
GXStat |= (1<<15);
break;
}
memcpy(PosMatrix, PosMatrixStack[addr], 16*4);
ClipMatrixDirty = true;
}
break;
case 0x15: // identity
if (MatrixMode == 0)
{
MatrixLoadIdentity(ProjMatrix);
ClipMatrixDirty = true;
}
else if (MatrixMode == 3)
MatrixLoadIdentity(TexMatrix);
else
{
MatrixLoadIdentity(PosMatrix);
if (MatrixMode == 2)
MatrixLoadIdentity(VecMatrix);
ClipMatrixDirty = true;
}
break;
case 0x16: // load 4x4
if (MatrixMode == 0)
{
MatrixLoad4x4(ProjMatrix, (s32*)ExecParams);
ClipMatrixDirty = true;
}
else if (MatrixMode == 3)
MatrixLoad4x4(TexMatrix, (s32*)ExecParams);
else
{
MatrixLoad4x4(PosMatrix, (s32*)ExecParams);
if (MatrixMode == 2)
MatrixLoad4x4(VecMatrix, (s32*)ExecParams);
ClipMatrixDirty = true;
}
break;
case 0x17: // load 4x3
if (MatrixMode == 0)
{
MatrixLoad4x3(ProjMatrix, (s32*)ExecParams);
ClipMatrixDirty = true;
}
else if (MatrixMode == 3)
MatrixLoad4x3(TexMatrix, (s32*)ExecParams);
else
{
MatrixLoad4x3(PosMatrix, (s32*)ExecParams);
if (MatrixMode == 2)
MatrixLoad4x3(VecMatrix, (s32*)ExecParams);
ClipMatrixDirty = true;
}
break;
case 0x18: // mult 4x4
if (MatrixMode == 0)
{
MatrixMult4x4(ProjMatrix, (s32*)ExecParams);
ClipMatrixDirty = true;
}
else if (MatrixMode == 3)
MatrixMult4x4(TexMatrix, (s32*)ExecParams);
else
{
MatrixMult4x4(PosMatrix, (s32*)ExecParams);
if (MatrixMode == 2)
{
MatrixMult4x4(VecMatrix, (s32*)ExecParams);
CycleCount += 30;
}
ClipMatrixDirty = true;
}
break;
case 0x19: // mult 4x3
if (MatrixMode == 0)
{
MatrixMult4x3(ProjMatrix, (s32*)ExecParams);
ClipMatrixDirty = true;
}
else if (MatrixMode == 3)
MatrixMult4x3(TexMatrix, (s32*)ExecParams);
else
{
MatrixMult4x3(PosMatrix, (s32*)ExecParams);
if (MatrixMode == 2)
{
MatrixMult4x3(VecMatrix, (s32*)ExecParams);
CycleCount += 30;
}
ClipMatrixDirty = true;
}
break;
case 0x1A: // mult 3x3
if (MatrixMode == 0)
{
MatrixMult3x3(ProjMatrix, (s32*)ExecParams);
ClipMatrixDirty = true;
}
else if (MatrixMode == 3)
MatrixMult3x3(TexMatrix, (s32*)ExecParams);
else
{
MatrixMult3x3(PosMatrix, (s32*)ExecParams);
if (MatrixMode == 2)
{
MatrixMult3x3(VecMatrix, (s32*)ExecParams);
CycleCount += 30;
}
ClipMatrixDirty = true;
}
break;
case 0x1B: // scale
if (MatrixMode == 0)
{
MatrixScale(ProjMatrix, (s32*)ExecParams);
ClipMatrixDirty = true;
}
else if (MatrixMode == 3)
MatrixScale(TexMatrix, (s32*)ExecParams);
else
{
MatrixScale(PosMatrix, (s32*)ExecParams);
ClipMatrixDirty = true;
}
break;
case 0x1C: // translate
if (MatrixMode == 0)
{
MatrixTranslate(ProjMatrix, (s32*)ExecParams);
ClipMatrixDirty = true;
}
else if (MatrixMode == 3)
MatrixTranslate(TexMatrix, (s32*)ExecParams);
else
{
MatrixTranslate(PosMatrix, (s32*)ExecParams);
if (MatrixMode == 2)
MatrixTranslate(VecMatrix, (s32*)ExecParams);
ClipMatrixDirty = true;
}
break;
case 0x20: // vertex color
{
u32 c = ExecParams[0];
u32 r = c & 0x1F;
u32 g = (c >> 5) & 0x1F;
u32 b = (c >> 10) & 0x1F;
VertexColor[0] = r;
VertexColor[1] = g;
VertexColor[2] = b;
}
break;
case 0x21:
// TODO: more cycles if lights are enabled
// TODO also texcoords if needed
break;
case 0x22: // texcoord
TexCoords[0] = ExecParams[0] & 0xFFFF;
TexCoords[1] = ExecParams[0] >> 16;
if ((TexParam >> 30) == 1)
{
TexCoords[0] = (TexCoords[0]*TexMatrix[0] + TexCoords[1]*TexMatrix[4] + TexMatrix[8] + TexMatrix[12]) >> 12;
TexCoords[1] = (TexCoords[0]*TexMatrix[1] + TexCoords[1]*TexMatrix[5] + TexMatrix[9] + TexMatrix[13]) >> 12;
}
break;
case 0x23: // full vertex
CurVertex[0] = ExecParams[0] & 0xFFFF;
CurVertex[1] = ExecParams[0] >> 16;
CurVertex[2] = ExecParams[1] & 0xFFFF;
SubmitVertex();
break;
case 0x24: // 10-bit vertex
CurVertex[0] = (ExecParams[0] & 0x000003FF) << 6;
CurVertex[1] = (ExecParams[0] & 0x000FFC00) >> 4;
CurVertex[2] = (ExecParams[0] & 0x3FF00000) >> 14;
SubmitVertex();
break;
case 0x25: // vertex XY
CurVertex[0] = ExecParams[0] & 0xFFFF;
CurVertex[1] = ExecParams[0] >> 16;
SubmitVertex();
break;
case 0x26: // vertex XZ
CurVertex[0] = ExecParams[0] & 0xFFFF;
CurVertex[2] = ExecParams[0] >> 16;
SubmitVertex();
break;
case 0x27: // vertex YZ
CurVertex[1] = ExecParams[0] & 0xFFFF;
CurVertex[2] = ExecParams[0] >> 16;
SubmitVertex();
break;
case 0x28: // 10-bit delta vertex
CurVertex[0] += (s16)((ExecParams[0] & 0x000003FF) << 6) >> 6;
CurVertex[1] += (s16)((ExecParams[0] & 0x000FFC00) >> 4) >> 6;
CurVertex[2] += (s16)((ExecParams[0] & 0x3FF00000) >> 14) >> 6;
SubmitVertex();
break;
case 0x29: // polygon attributes
PolygonAttr = ExecParams[0];
break;
case 0x2A: // texture param
TexParam = ExecParams[0];
break;
case 0x2B: // texture palette
TexPalette = ExecParams[0] & 0x1FFF;
break;
case 0x40:
PolygonMode = ExecParams[0] & 0x3;
VertexNum = 0;
VertexNumInPoly = 0;
NumConsecutivePolygons = 0;
LastStripPolygon = NULL;
CurPolygonAttr = PolygonAttr;
break;
case 0x50:
FlushRequest = 1;//0x80000000 | (ExecParams[0] & 0x3);
CycleCount = 392;
break;
case 0x60: // viewport x1,y1,x2,y2
Viewport[0] = ExecParams[0] & 0xFF;
Viewport[1] = (ExecParams[0] >> 8) & 0xFF;
Viewport[2] = ((ExecParams[0] >> 16) & 0xFF) - Viewport[0] + 1;
Viewport[3] = (ExecParams[0] >> 24) - Viewport[1] + 1;
break;
default:
//if (entry.Command != 0x41)
//printf("!! UNKNOWN GX COMMAND %02X %08X\n", entry.Command, entry.Param);
break;
}
}
}
void Run(s32 cycles)
{
if (FlushRequest)
return;
if (CycleCount <= 0 && CmdPIPE->IsEmpty())
return;
CycleCount -= cycles;
if (CycleCount <= 0)
{
while (CycleCount <= 0 && !CmdPIPE->IsEmpty())
ExecuteCommand();
}
if (CycleCount <= 0 && CmdPIPE->IsEmpty())
{
CycleCount = 0;
GXStat &= ~((1<<27)|(1<<14));
}
}
void CheckFIFOIRQ()
{
bool irq = false;
switch (GXStat >> 30)
{
case 1: irq = (CmdFIFO->Level() < 128); break;
case 2: irq = CmdFIFO->IsEmpty(); break;
}
if (irq) NDS::SetIRQ(0, NDS::IRQ_GXFIFO);
else NDS::ClearIRQ(0, NDS::IRQ_GXFIFO);
}
void CheckFIFODMA()
{
if (CmdFIFO->Level() < 128)
NDS::CheckDMAs(0, 0x07);
}
void VBlank()
{
if (FlushRequest)
{
SoftRenderer::RenderFrame(CurVertexRAM, CurPolygonRAM, NumPolygons);
CurRAMBank = CurRAMBank?0:1;
CurVertexRAM = &VertexRAM[CurRAMBank ? 6144 : 0];
CurPolygonRAM = &PolygonRAM[CurRAMBank ? 2048 : 0];
NumVertices = 0;
NumPolygons = 0;
FlushRequest = 0;
}
}
u8* GetLine(int line)
{
return SoftRenderer::GetLine(line);
}
u8 Read8(u32 addr)
{
return 0;
}
u16 Read16(u32 addr)
{
return 0;
}
u32 Read32(u32 addr)
{
switch (addr)
{
case 0x04000320:
return 46; // TODO, eventually
case 0x04000600:
{
u32 fifolevel = CmdFIFO->Level();
return GXStat |
((PosMatrixStackPointer & 0x1F) << 8) |
((ProjMatrixStackPointer & 0x1) << 13) |
(fifolevel << 16) |
(fifolevel < 128 ? (1<<25) : 0) |
(fifolevel == 0 ? (1<<26) : 0);
}
}
if (addr >= 0x04000640 && addr < 0x04000680)
{
UpdateClipMatrix();
return ClipMatrix[(addr & 0x3C) >> 2];
}
if (addr >= 0x04000680 && addr < 0x040006A4)
{
printf("!! VECMTX READ\n");
return 0;
}
return 0;
}
void Write8(u32 addr, u8 val)
{
//
}
void Write16(u32 addr, u16 val)
{
//
}
void Write32(u32 addr, u32 val)
{
switch (addr)
{
case 0x04000600:
if (val & 0x8000) GXStat &= ~0x8000;
val &= 0xC0000000;
GXStat &= 0x3FFFFFFF;
GXStat |= val;
CheckFIFOIRQ();
return;
}
if (addr >= 0x04000400 && addr < 0x04000440)
{
if (NumCommands == 0)
{
NumCommands = 4;
CurCommand = val;
ParamCount = 0;
TotalParams = CmdNumParams[CurCommand & 0xFF];
if (TotalParams > 0) return;
}
else
ParamCount++;
for (;;)
{
if ((CurCommand & 0xFF) || (NumCommands == 4 && CurCommand == 0))
{
CmdFIFOEntry entry;
entry.Command = CurCommand & 0xFF;
entry.Param = val;
CmdFIFOWrite(entry);
}
if (ParamCount >= TotalParams)
{
CurCommand >>= 8;
NumCommands--;
if (NumCommands == 0) break;
ParamCount = 0;
TotalParams = CmdNumParams[CurCommand & 0xFF];
}
if (ParamCount < TotalParams)
break;
}
return;
}
if (addr >= 0x04000440 && addr < 0x040005CC)
{
CmdFIFOEntry entry;
entry.Command = (addr & 0x1FC) >> 2;
entry.Param = val;
CmdFIFOWrite(entry);
return;
}
}
}