melonDS/src/NDS.cpp

4468 lines
120 KiB
C++

/*
Copyright 2016-2023 melonDS team
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "NDS.h"
#include "ARM.h"
#include "NDSCart.h"
#include "GBACart.h"
#include "DMA.h"
#include "FIFO.h"
#include "GPU.h"
#include "SPU.h"
#include "SPI.h"
#include "RTC.h"
#include "Wifi.h"
#include "AREngine.h"
#include "Platform.h"
#include "FreeBIOS.h"
#include "DSi.h"
#include "DSi_SPI_TSC.h"
#include "DSi_NWifi.h"
#include "DSi_Camera.h"
#include "DSi_DSP.h"
#include "ARMJIT.h"
#include "ARMJIT_Memory.h"
namespace melonDS
{
using namespace Platform;
namespace NDS
{
// timing notes
//
// * this implementation is technically wrong for VRAM
// each bank is considered a separate region
// but this would only matter in specific VRAM->VRAM DMA transfers or
// when running code in VRAM, which is way unlikely
//
// bus/basedelay/nspenalty
//
// bus types:
// * 0 / 32-bit: nothing special
// * 1 / 16-bit: 32-bit accesses split into two 16-bit accesses, second is always sequential
// * 2 / 8-bit/GBARAM: (presumably) split into multiple 8-bit accesses?
// * 3 / ARM9 internal: cache/TCM
//
// ARM9 always gets 3c nonseq penalty when using the bus (except for mainRAM where the penalty is 7c)
// /!\ 3c penalty doesn't apply to DMA!
//
// ARM7 only gets nonseq penalty when accessing mainRAM (7c as for ARM9)
//
// timings for GBA slot and wifi are set up at runtime
int ConsoleType;
u8 ARM9MemTimings[0x40000][8];
u32 ARM9Regions[0x40000];
u8 ARM7MemTimings[0x20000][4];
u32 ARM7Regions[0x20000];
ARMv5* ARM9;
ARMv4* ARM7;
#ifdef JIT_ENABLED
bool EnableJIT;
#endif
u32 NumFrames;
u32 NumLagFrames;
bool LagFrameFlag;
u64 LastSysClockCycles;
u64 FrameStartTimestamp;
int CurCPU;
const s32 kMaxIterationCycles = 64;
const s32 kIterationCycleMargin = 8;
u32 ARM9ClockShift;
// no need to worry about those overflowing, they can keep going for atleast 4350 years
u64 ARM9Timestamp, ARM9Target;
u64 ARM7Timestamp, ARM7Target;
u64 SysTimestamp;
struct SchedEvent
{
std::map<u32, EventFunc> Funcs;
u64 Timestamp;
u32 FuncID;
u32 Param;
};
SchedEvent SchedList[Event_MAX];
u32 SchedListMask;
u32 CPUStop;
u8 ARM9BIOS[0x1000];
u8 ARM7BIOS[0x4000];
u8* MainRAM;
u32 MainRAMMask;
u8* SharedWRAM;
u8 WRAMCnt;
// putting them together so they're always next to each other
MemRegion SWRAM_ARM9;
MemRegion SWRAM_ARM7;
u8* ARM7WRAM;
u16 ExMemCnt[2];
// TODO: these belong in NDSCart!
u8 ROMSeed0[2*8];
u8 ROMSeed1[2*8];
// IO shit
u32 IME[2];
u32 IE[2], IF[2];
u32 IE2, IF2;
u8 PostFlag9;
u8 PostFlag7;
u16 PowerControl9;
u16 PowerControl7;
u16 WifiWaitCnt;
u16 ARM7BIOSProt;
Timer Timers[8];
u8 TimerCheckMask[2];
u64 TimerTimestamp[2];
DMA* DMAs[8];
u32 DMA9Fill[4];
u16 IPCSync9, IPCSync7;
u16 IPCFIFOCnt9, IPCFIFOCnt7;
FIFO<u32, 16> IPCFIFO9; // FIFO in which the ARM9 writes
FIFO<u32, 16> IPCFIFO7;
u16 DivCnt;
u32 DivNumerator[2];
u32 DivDenominator[2];
u32 DivQuotient[2];
u32 DivRemainder[2];
u16 SqrtCnt;
u32 SqrtVal[2];
u32 SqrtRes;
u32 KeyInput;
u16 KeyCnt[2];
u16 RCnt;
class SPU* SPU;
class SPIHost* SPI;
class RTC* RTC;
class Wifi* Wifi;
std::unique_ptr<NDSCart::NDSCartSlot> NDSCartSlot;
std::unique_ptr<GBACart::GBACartSlot> GBACartSlot;
std::unique_ptr<melonDS::GPU> GPU;
std::unique_ptr<ARMJIT> JIT;
class AREngine* AREngine;
bool Running;
bool RunningGame;
void DivDone(u32 param);
void SqrtDone(u32 param);
void RunTimer(u32 tid, s32 cycles);
void UpdateWifiTimings();
void SetWifiWaitCnt(u16 val);
void SetGBASlotTimings();
bool Init()
{
RegisterEventFunc(Event_Div, 0, DivDone);
RegisterEventFunc(Event_Sqrt, 0, SqrtDone);
JIT = std::make_unique<ARMJIT>();
GPU = std::make_unique<melonDS::GPU>(*JIT);
MainRAM = JIT->Memory.GetMainRAM();
SharedWRAM = JIT->Memory.GetSharedWRAM();
ARM7WRAM = JIT->Memory.GetARM7WRAM();
ARM9 = new ARMv5(*JIT, *GPU);
ARM7 = new ARMv4(*JIT, *GPU);
DMAs[0] = new DMA(0, 0, *GPU);
DMAs[1] = new DMA(0, 1, *GPU);
DMAs[2] = new DMA(0, 2, *GPU);
DMAs[3] = new DMA(0, 3, *GPU);
DMAs[4] = new DMA(1, 0, *GPU);
DMAs[5] = new DMA(1, 1, *GPU);
DMAs[6] = new DMA(1, 2, *GPU);
DMAs[7] = new DMA(1, 3, *GPU);
SPU = new class SPU;
SPI = new class SPIHost();
RTC = new class RTC();
Wifi = new class Wifi();
NDSCartSlot = std::make_unique<NDSCart::NDSCartSlot>();
GBACartSlot = std::make_unique<GBACart::GBACartSlot>();
if (!DSi::Init()) return false;
AREngine = new class AREngine();
return true;
}
void DeInit()
{
delete ARM9; ARM9 = nullptr;
delete ARM7; ARM7 = nullptr;
for (int i = 0; i < 8; i++)
{
delete DMAs[i];
DMAs[i] = nullptr;
}
delete SPU; SPU = nullptr;
delete SPI; SPI = nullptr;
delete RTC; RTC = nullptr;
delete Wifi; Wifi = nullptr;
NDSCartSlot = nullptr;
GBACartSlot = nullptr;
GPU = nullptr;
DSi::DeInit();
delete AREngine; AREngine = nullptr;
UnregisterEventFunc(Event_Div, 0);
UnregisterEventFunc(Event_Sqrt, 0);
JIT = nullptr;
}
void SetARM9RegionTimings(u32 addrstart, u32 addrend, u32 region, int buswidth, int nonseq, int seq)
{
addrstart >>= 2;
addrend >>= 2;
int N16, S16, N32, S32, cpuN;
N16 = nonseq;
S16 = seq;
if (buswidth == 16)
{
N32 = N16 + S16;
S32 = S16 + S16;
}
else
{
N32 = N16;
S32 = S16;
}
// nonseq accesses on the CPU get a 3-cycle penalty for all regions except main RAM
cpuN = (region == Mem9_MainRAM) ? 0 : 3;
for (u32 i = addrstart; i < addrend; i++)
{
// CPU timings
ARM9MemTimings[i][0] = N16 + cpuN;
ARM9MemTimings[i][1] = S16;
ARM9MemTimings[i][2] = N32 + cpuN;
ARM9MemTimings[i][3] = S32;
// DMA timings
ARM9MemTimings[i][4] = N16;
ARM9MemTimings[i][5] = S16;
ARM9MemTimings[i][6] = N32;
ARM9MemTimings[i][7] = S32;
ARM9Regions[i] = region;
}
ARM9->UpdateRegionTimings(addrstart<<2, addrend<<2);
}
void SetARM7RegionTimings(u32 addrstart, u32 addrend, u32 region, int buswidth, int nonseq, int seq)
{
addrstart >>= 3;
addrend >>= 3;
int N16, S16, N32, S32;
N16 = nonseq;
S16 = seq;
if (buswidth == 16)
{
N32 = N16 + S16;
S32 = S16 + S16;
}
else
{
N32 = N16;
S32 = S16;
}
for (u32 i = addrstart; i < addrend; i++)
{
// CPU and DMA timings are the same
ARM7MemTimings[i][0] = N16;
ARM7MemTimings[i][1] = S16;
ARM7MemTimings[i][2] = N32;
ARM7MemTimings[i][3] = S32;
ARM7Regions[i] = region;
}
}
void InitTimings()
{
// TODO, eventually:
// VRAM is initially unmapped. The timings should be those of void regions.
// Similarly for any unmapped VRAM area.
// Need to check whether supporting these timing characteristics would impact performance
// (especially wrt VRAM mirroring and overlapping and whatnot).
// Also, each VRAM bank is its own memory region. This would matter when DMAing from a VRAM
// bank to another (if this is a thing) for example.
// TODO: check in detail how WRAM works, although it seems to be one region.
// TODO: DSi-specific timings!!
SetARM9RegionTimings(0x00000, 0x100000, 0, 32, 1, 1); // void
SetARM9RegionTimings(0xFFFF0, 0x100000, Mem9_BIOS, 32, 1, 1); // BIOS
SetARM9RegionTimings(0x02000, 0x03000, Mem9_MainRAM, 16, 8, 1); // main RAM
SetARM9RegionTimings(0x03000, 0x04000, Mem9_WRAM, 32, 1, 1); // ARM9/shared WRAM
SetARM9RegionTimings(0x04000, 0x05000, Mem9_IO, 32, 1, 1); // IO
SetARM9RegionTimings(0x05000, 0x06000, Mem9_Pal, 16, 1, 1); // palette
SetARM9RegionTimings(0x06000, 0x07000, Mem9_VRAM, 16, 1, 1); // VRAM
SetARM9RegionTimings(0x07000, 0x08000, Mem9_OAM, 32, 1, 1); // OAM
// ARM7
SetARM7RegionTimings(0x00000, 0x100000, 0, 32, 1, 1); // void
SetARM7RegionTimings(0x00000, 0x00010, Mem7_BIOS, 32, 1, 1); // BIOS
SetARM7RegionTimings(0x02000, 0x03000, Mem7_MainRAM, 16, 8, 1); // main RAM
SetARM7RegionTimings(0x03000, 0x04000, Mem7_WRAM, 32, 1, 1); // ARM7/shared WRAM
SetARM7RegionTimings(0x04000, 0x04800, Mem7_IO, 32, 1, 1); // IO
SetARM7RegionTimings(0x06000, 0x07000, Mem7_VRAM, 16, 1, 1); // ARM7 VRAM
// handled later: GBA slot, wifi
}
bool NeedsDirectBoot()
{
if (ConsoleType == 1)
{
// for now, DSi mode requires original BIOS/NAND
return false;
}
else
{
// internal BIOS does not support direct boot
if (!Platform::GetConfigBool(Platform::ExternalBIOSEnable))
return true;
// DSi/3DS firmwares aren't bootable
if (!SPI->GetFirmware()->IsBootable())
return true;
return false;
}
}
void SetupDirectBoot(const std::string& romname)
{
const NDSHeader& header = NDSCartSlot->GetCart()->GetHeader();
if (ConsoleType == 1)
{
DSi::SetupDirectBoot();
}
else
{
u32 cartid = NDSCartSlot->GetCart()->ID();
const u8* cartrom = NDSCartSlot->GetCart()->GetROM();
MapSharedWRAM(3);
// setup main RAM data
for (u32 i = 0; i < 0x170; i+=4)
{
u32 tmp = *(u32*)&cartrom[i];
ARM9Write32(0x027FFE00+i, tmp);
}
ARM9Write32(0x027FF800, cartid);
ARM9Write32(0x027FF804, cartid);
ARM9Write16(0x027FF808, header.HeaderCRC16);
ARM9Write16(0x027FF80A, header.SecureAreaCRC16);
ARM9Write16(0x027FF850, 0x5835);
ARM9Write32(0x027FFC00, cartid);
ARM9Write32(0x027FFC04, cartid);
ARM9Write16(0x027FFC08, header.HeaderCRC16);
ARM9Write16(0x027FFC0A, header.SecureAreaCRC16);
ARM9Write16(0x027FFC10, 0x5835);
ARM9Write16(0x027FFC30, 0xFFFF);
ARM9Write16(0x027FFC40, 0x0001);
u32 arm9start = 0;
// load the ARM9 secure area
if (header.ARM9ROMOffset >= 0x4000 && header.ARM9ROMOffset < 0x8000)
{
u8 securearea[0x800];
NDSCartSlot->DecryptSecureArea(securearea);
for (u32 i = 0; i < 0x800; i+=4)
{
ARM9Write32(header.ARM9RAMAddress+i, *(u32*)&securearea[i]);
arm9start += 4;
}
}
// CHECKME: firmware seems to load this in 0x200 byte chunks
for (u32 i = arm9start; i < header.ARM9Size; i+=4)
{
u32 tmp = *(u32*)&cartrom[header.ARM9ROMOffset+i];
ARM9Write32(header.ARM9RAMAddress+i, tmp);
}
for (u32 i = 0; i < header.ARM7Size; i+=4)
{
u32 tmp = *(u32*)&cartrom[header.ARM7ROMOffset+i];
ARM7Write32(header.ARM7RAMAddress+i, tmp);
}
ARM7BIOSProt = 0x1204;
SPI->GetFirmwareMem()->SetupDirectBoot(false);
ARM9->CP15Write(0x100, 0x00012078);
ARM9->CP15Write(0x200, 0x00000042);
ARM9->CP15Write(0x201, 0x00000042);
ARM9->CP15Write(0x300, 0x00000002);
ARM9->CP15Write(0x502, 0x15111011);
ARM9->CP15Write(0x503, 0x05100011);
ARM9->CP15Write(0x600, 0x04000033);
ARM9->CP15Write(0x601, 0x04000033);
ARM9->CP15Write(0x610, 0x0200002B);
ARM9->CP15Write(0x611, 0x0200002B);
ARM9->CP15Write(0x620, 0x00000000);
ARM9->CP15Write(0x621, 0x00000000);
ARM9->CP15Write(0x630, 0x08000035);
ARM9->CP15Write(0x631, 0x08000035);
ARM9->CP15Write(0x640, 0x0300001B);
ARM9->CP15Write(0x641, 0x0300001B);
ARM9->CP15Write(0x650, 0x00000000);
ARM9->CP15Write(0x651, 0x00000000);
ARM9->CP15Write(0x660, 0xFFFF001D);
ARM9->CP15Write(0x661, 0xFFFF001D);
ARM9->CP15Write(0x670, 0x027FF017);
ARM9->CP15Write(0x671, 0x027FF017);
ARM9->CP15Write(0x910, 0x0300000A);
ARM9->CP15Write(0x911, 0x00000020);
}
NDSCartSlot->SetupDirectBoot(romname);
ARM9->R[12] = header.ARM9EntryAddress;
ARM9->R[13] = 0x03002F7C;
ARM9->R[14] = header.ARM9EntryAddress;
ARM9->R_IRQ[0] = 0x03003F80;
ARM9->R_SVC[0] = 0x03003FC0;
ARM7->R[12] = header.ARM7EntryAddress;
ARM7->R[13] = 0x0380FD80;
ARM7->R[14] = header.ARM7EntryAddress;
ARM7->R_IRQ[0] = 0x0380FF80;
ARM7->R_SVC[0] = 0x0380FFC0;
ARM9->JumpTo(header.ARM9EntryAddress);
ARM7->JumpTo(header.ARM7EntryAddress);
PostFlag9 = 0x01;
PostFlag7 = 0x01;
PowerControl9 = 0x820F;
GPU->SetPowerCnt(PowerControl9);
// checkme
RCnt = 0x8000;
NDSCartSlot->SetSPICnt(0x8000);
SPU->SetBias(0x200);
SetWifiWaitCnt(0x0030);
}
void Reset()
{
Platform::FileHandle* f;
u32 i;
#ifdef JIT_ENABLED
EnableJIT = Platform::GetConfigBool(Platform::JIT_Enable);
#endif
RunningGame = false;
LastSysClockCycles = 0;
// BIOS files are now loaded by the frontend
JIT->Reset();
if (ConsoleType == 1)
{
// BIOS files are now loaded by the frontend
ARM9ClockShift = 2;
MainRAMMask = 0xFFFFFF;
}
else
{
ARM9ClockShift = 1;
MainRAMMask = 0x3FFFFF;
}
// has to be called before InitTimings
// otherwise some PU settings are completely
// unitialised on the first run
ARM9->CP15Reset();
ARM9Timestamp = 0; ARM9Target = 0;
ARM7Timestamp = 0; ARM7Target = 0;
SysTimestamp = 0;
InitTimings();
memset(MainRAM, 0, MainRAMMask + 1);
memset(SharedWRAM, 0, 0x8000);
memset(ARM7WRAM, 0, 0x10000);
MapSharedWRAM(0);
ExMemCnt[0] = 0x4000;
ExMemCnt[1] = 0x4000;
memset(ROMSeed0, 0, 2*8);
memset(ROMSeed1, 0, 2*8);
SetGBASlotTimings();
IME[0] = 0;
IE[0] = 0;
IF[0] = 0;
IME[1] = 0;
IE[1] = 0;
IF[1] = 0;
IE2 = 0;
IF2 = 0;
PostFlag9 = 0x00;
PostFlag7 = 0x00;
PowerControl9 = 0x0001;
PowerControl7 = 0x0001;
WifiWaitCnt = 0xFFFF; // temp
SetWifiWaitCnt(0);
ARM7BIOSProt = 0;
IPCSync9 = 0;
IPCSync7 = 0;
IPCFIFOCnt9 = 0;
IPCFIFOCnt7 = 0;
IPCFIFO9.Clear();
IPCFIFO7.Clear();
DivCnt = 0;
SqrtCnt = 0;
ARM9->Reset();
ARM7->Reset();
CPUStop = 0;
memset(Timers, 0, 8*sizeof(Timer));
TimerCheckMask[0] = 0;
TimerCheckMask[1] = 0;
TimerTimestamp[0] = 0;
TimerTimestamp[1] = 0;
for (i = 0; i < 8; i++) DMAs[i]->Reset();
memset(DMA9Fill, 0, 4*4);
for (i = 0; i < Event_MAX; i++)
{
SchedEvent& evt = SchedList[i];
evt.Timestamp = 0;
evt.FuncID = 0;
evt.Param = 0;
}
SchedListMask = 0;
KeyInput = 0x007F03FF;
KeyCnt[0] = 0;
KeyCnt[1] = 0;
RCnt = 0;
GPU->Reset();
NDSCartSlot->Reset();
GBACartSlot->Reset();
SPU->Reset();
SPI->Reset();
RTC->Reset();
Wifi->Reset();
// TODO: move the SOUNDBIAS/degrade logic to SPU?
// The SOUNDBIAS register does nothing on DSi
SPU->SetApplyBias(ConsoleType == 0);
bool degradeAudio = true;
if (ConsoleType == 1)
{
DSi::Reset();
KeyInput &= ~(1 << (16+6));
degradeAudio = false;
}
int bitDepth = Platform::GetConfigInt(Platform::AudioBitDepth);
if (bitDepth == 1) // Always 10-bit
degradeAudio = true;
else if (bitDepth == 2) // Always 16-bit
degradeAudio = false;
SPU->SetDegrade10Bit(degradeAudio);
AREngine->Reset();
}
void Start()
{
Running = true;
}
static const char* StopReasonName(Platform::StopReason reason)
{
switch (reason)
{
case Platform::StopReason::External:
return "External";
case Platform::StopReason::PowerOff:
return "PowerOff";
case Platform::StopReason::GBAModeNotSupported:
return "GBAModeNotSupported";
case Platform::StopReason::BadExceptionRegion:
return "BadExceptionRegion";
default:
return "Unknown";
}
}
void Stop(Platform::StopReason reason)
{
Platform::LogLevel level;
switch (reason)
{
case Platform::StopReason::External:
case Platform::StopReason::PowerOff:
level = LogLevel::Info;
break;
case Platform::StopReason::GBAModeNotSupported:
case Platform::StopReason::BadExceptionRegion:
level = LogLevel::Error;
break;
default:
level = LogLevel::Warn;
break;
}
Log(level, "Stopping emulated console (Reason: %s)\n", StopReasonName(reason));
Running = false;
Platform::SignalStop(reason);
GPU->Stop();
SPU->Stop();
if (ConsoleType == 1)
DSi::Stop();
}
bool DoSavestate(Savestate* file)
{
file->Section("NDSG");
if (file->Saving)
{
u32 console = ConsoleType;
file->Var32(&console);
}
else
{
u32 console;
file->Var32(&console);
if (console != ConsoleType)
{
Log(LogLevel::Error, "savestate: Expected console type %d, got console type %d. cannot load.\n", ConsoleType, console);
return false;
}
}
file->VarArray(MainRAM, MainRAMMaxSize);
file->VarArray(SharedWRAM, SharedWRAMSize);
file->VarArray(ARM7WRAM, ARM7WRAMSize);
//file->VarArray(ARM9BIOS, 0x1000);
//file->VarArray(ARM7BIOS, 0x4000);
file->VarArray(ExMemCnt, 2*sizeof(u16));
file->VarArray(ROMSeed0, 2*8);
file->VarArray(ROMSeed1, 2*8);
file->Var16(&WifiWaitCnt);
file->VarArray(IME, 2*sizeof(u32));
file->VarArray(IE, 2*sizeof(u32));
file->VarArray(IF, 2*sizeof(u32));
file->Var32(&IE2);
file->Var32(&IF2);
file->Var8(&PostFlag9);
file->Var8(&PostFlag7);
file->Var16(&PowerControl9);
file->Var16(&PowerControl7);
file->Var16(&ARM7BIOSProt);
file->Var16(&IPCSync9);
file->Var16(&IPCSync7);
file->Var16(&IPCFIFOCnt9);
file->Var16(&IPCFIFOCnt7);
IPCFIFO9.DoSavestate(file);
IPCFIFO7.DoSavestate(file);
file->Var16(&DivCnt);
file->Var16(&SqrtCnt);
file->Var32(&CPUStop);
for (int i = 0; i < 8; i++)
{
Timer* timer = &Timers[i];
file->Var16(&timer->Reload);
file->Var16(&timer->Cnt);
file->Var32(&timer->Counter);
file->Var32(&timer->CycleShift);
}
file->VarArray(TimerCheckMask, 2*sizeof(u8));
file->VarArray(TimerTimestamp, 2*sizeof(u64));
file->VarArray(DMA9Fill, 4*sizeof(u32));
for (int i = 0; i < Event_MAX; i++)
{
SchedEvent& evt = SchedList[i];
file->Var64(&evt.Timestamp);
file->Var32(&evt.FuncID);
file->Var32(&evt.Param);
}
file->Var32(&SchedListMask);
file->Var64(&ARM9Timestamp);
file->Var64(&ARM9Target);
file->Var64(&ARM7Timestamp);
file->Var64(&ARM7Target);
file->Var64(&SysTimestamp);
file->Var64(&LastSysClockCycles);
file->Var64(&FrameStartTimestamp);
file->Var32(&NumFrames);
file->Var32(&NumLagFrames);
file->Bool32(&LagFrameFlag);
// TODO: save KeyInput????
file->VarArray(KeyCnt, 2*sizeof(u16));
file->Var16(&RCnt);
file->Var8(&WRAMCnt);
file->Bool32(&RunningGame);
if (!file->Saving)
{
// 'dept of redundancy dept'
// but we do need to update the mappings
MapSharedWRAM(WRAMCnt);
InitTimings();
SetGBASlotTimings();
UpdateWifiTimings();
}
for (int i = 0; i < 8; i++)
DMAs[i]->DoSavestate(file);
ARM9->DoSavestate(file);
ARM7->DoSavestate(file);
NDSCartSlot->DoSavestate(file);
if (ConsoleType == 0)
GBACartSlot->DoSavestate(file);
GPU->DoSavestate(file);
SPU->DoSavestate(file);
SPI->DoSavestate(file);
RTC->DoSavestate(file);
Wifi->DoSavestate(file);
if (ConsoleType == 1)
DSi::DoSavestate(file);
if (!file->Saving)
{
GPU->SetPowerCnt(PowerControl9);
SPU->SetPowerCnt(PowerControl7 & 0x0001);
Wifi->SetPowerCnt(PowerControl7 & 0x0002);
}
#ifdef JIT_ENABLED
if (!file->Saving)
{
JIT->ResetBlockCache();
JIT->Memory.Reset();
}
#endif
file->Finish();
return true;
}
void SetConsoleType(int type)
{
ConsoleType = type;
}
bool LoadCart(const u8* romdata, u32 romlen, const u8* savedata, u32 savelen)
{
if (!NDSCartSlot->LoadROM(romdata, romlen))
return false;
if (savedata && savelen)
NDSCartSlot->LoadSave(savedata, savelen);
return true;
}
void LoadSave(const u8* savedata, u32 savelen)
{
if (savedata && savelen)
NDSCartSlot->LoadSave(savedata, savelen);
}
void EjectCart()
{
NDSCartSlot->EjectCart();
}
bool CartInserted()
{
return NDSCartSlot->GetCart() != nullptr;
}
bool LoadGBACart(const u8* romdata, u32 romlen, const u8* savedata, u32 savelen)
{
if (!GBACartSlot)
return false;
if (!GBACartSlot->LoadROM(romdata, romlen))
return false;
if (savedata && savelen)
GBACartSlot->LoadSave(savedata, savelen);
return true;
}
void LoadGBAAddon(int type)
{
if (GBACartSlot)
GBACartSlot->LoadAddon(type);
}
void EjectGBACart()
{
if (GBACartSlot)
GBACartSlot->EjectCart();
}
void LoadBIOS()
{
Reset();
}
bool IsLoadedARM9BIOSBuiltIn()
{
return memcmp(NDS::ARM9BIOS, bios_arm9_bin, sizeof(NDS::ARM9BIOS)) == 0;
}
bool IsLoadedARM7BIOSBuiltIn()
{
return memcmp(NDS::ARM7BIOS, bios_arm7_bin, sizeof(NDS::ARM7BIOS)) == 0;
}
u64 NextTarget()
{
u64 minEvent = UINT64_MAX;
u32 mask = SchedListMask;
for (int i = 0; i < Event_MAX; i++)
{
if (!mask) break;
if (mask & 0x1)
{
if (SchedList[i].Timestamp < minEvent)
minEvent = SchedList[i].Timestamp;
}
mask >>= 1;
}
u64 max = SysTimestamp + kMaxIterationCycles;
if (minEvent < max + kIterationCycleMargin)
return minEvent;
return max;
}
void RunSystem(u64 timestamp)
{
SysTimestamp = timestamp;
u32 mask = SchedListMask;
for (int i = 0; i < Event_MAX; i++)
{
if (!mask) break;
if (mask & 0x1)
{
SchedEvent& evt = SchedList[i];
if (evt.Timestamp <= SysTimestamp)
{
SchedListMask &= ~(1<<i);
EventFunc func = evt.Funcs[evt.FuncID];
func(evt.Param);
}
}
mask >>= 1;
}
}
u64 NextTargetSleep()
{
u64 minEvent = UINT64_MAX;
u32 mask = SchedListMask;
for (int i = 0; i < Event_MAX; i++)
{
if (!mask) break;
if (i == Event_SPU || i == Event_RTC)
{
if (mask & 0x1)
{
if (SchedList[i].Timestamp < minEvent)
minEvent = SchedList[i].Timestamp;
}
}
mask >>= 1;
}
return minEvent;
}
void RunSystemSleep(u64 timestamp)
{
u64 offset = timestamp - SysTimestamp;
SysTimestamp = timestamp;
u32 mask = SchedListMask;
for (int i = 0; i < Event_MAX; i++)
{
if (!mask) break;
if (i == Event_SPU || i == Event_RTC)
{
if (mask & 0x1)
{
SchedEvent& evt = SchedList[i];
if (evt.Timestamp <= SysTimestamp)
{
SchedListMask &= ~(1<<i);
u32 param;
if (i == Event_SPU)
param = 1;
else
param = evt.Param;
EventFunc func = evt.Funcs[evt.FuncID];
func(param);
}
}
}
else if (mask & 0x1)
{
if (SchedList[i].Timestamp <= SysTimestamp)
{
SchedList[i].Timestamp += offset;
}
}
mask >>= 1;
}
}
template <bool EnableJIT, int ConsoleType>
u32 RunFrame()
{
FrameStartTimestamp = SysTimestamp;
GPU->TotalScanlines = 0;
LagFrameFlag = true;
bool runFrame = Running && !(CPUStop & CPUStop_Sleep);
while (Running)
{
u64 frametarget = SysTimestamp + 560190;
if (CPUStop & CPUStop_Sleep)
{
// we are running in sleep mode
// we still need to run the RTC during this mode
// we also keep outputting audio, so that frontends using audio sync don't skyrocket to 1000+FPS
while (Running && (SysTimestamp < frametarget))
{
u64 target = NextTargetSleep();
if (target > frametarget)
target = frametarget;
ARM9Timestamp = target << ARM9ClockShift;
ARM7Timestamp = target;
TimerTimestamp[0] = target;
TimerTimestamp[1] = target;
GPU->GPU3D.Timestamp = target;
RunSystemSleep(target);
if (!(CPUStop & CPUStop_Sleep))
break;
}
if (SysTimestamp >= frametarget)
GPU->BlankFrame();
}
else
{
ARM9->CheckGdbIncoming();
ARM7->CheckGdbIncoming();
if (!(CPUStop & CPUStop_Wakeup))
{
GPU->StartFrame();
}
CPUStop &= ~CPUStop_Wakeup;
while (Running && GPU->TotalScanlines==0)
{
u64 target = NextTarget();
ARM9Target = target << ARM9ClockShift;
CurCPU = 0;
if (CPUStop & CPUStop_GXStall)
{
// GXFIFO stall
s32 cycles = GPU->GPU3D.CyclesToRunFor();
ARM9Timestamp = std::min(ARM9Target, ARM9Timestamp+(cycles<<ARM9ClockShift));
}
else if (CPUStop & CPUStop_DMA9)
{
DMAs[0]->Run<ConsoleType>();
if (!(CPUStop & CPUStop_GXStall)) DMAs[1]->Run<ConsoleType>();
if (!(CPUStop & CPUStop_GXStall)) DMAs[2]->Run<ConsoleType>();
if (!(CPUStop & CPUStop_GXStall)) DMAs[3]->Run<ConsoleType>();
if (ConsoleType == 1) DSi::RunNDMAs(0);
}
else
{
#ifdef JIT_ENABLED
if (EnableJIT)
ARM9->ExecuteJIT();
else
#endif
ARM9->Execute();
}
RunTimers(0);
GPU->GPU3D.Run();
target = ARM9Timestamp >> ARM9ClockShift;
CurCPU = 1;
while (ARM7Timestamp < target)
{
ARM7Target = target; // might be changed by a reschedule
if (CPUStop & CPUStop_DMA7)
{
DMAs[4]->Run<ConsoleType>();
DMAs[5]->Run<ConsoleType>();
DMAs[6]->Run<ConsoleType>();
DMAs[7]->Run<ConsoleType>();
if (ConsoleType == 1) DSi::RunNDMAs(1);
}
else
{
#ifdef JIT_ENABLED
if (EnableJIT)
ARM7->ExecuteJIT();
else
#endif
ARM7->Execute();
}
RunTimers(1);
}
RunSystem(target);
if (CPUStop & CPUStop_Sleep)
{
break;
}
}
}
if (GPU->TotalScanlines == 0)
continue;
#ifdef DEBUG_CHECK_DESYNC
Log(LogLevel::Debug, "[%08X%08X] ARM9=%ld, ARM7=%ld, GPU=%ld\n",
(u32)(SysTimestamp>>32), (u32)SysTimestamp,
(ARM9Timestamp>>1)-SysTimestamp,
ARM7Timestamp-SysTimestamp,
GPU3D::Timestamp-SysTimestamp);
#endif
SPU->TransferOutput();
break;
}
// In the context of TASes, frame count is traditionally the primary measure of emulated time,
// so it needs to be tracked even if NDS is powered off.
NumFrames++;
if (LagFrameFlag)
NumLagFrames++;
if (Running)
return GPU->TotalScanlines;
else
return 263;
}
u32 RunFrame()
{
#ifdef JIT_ENABLED
if (EnableJIT)
return NDS::ConsoleType == 1
? RunFrame<true, 1>()
: RunFrame<true, 0>();
else
#endif
return NDS::ConsoleType == 1
? RunFrame<false, 1>()
: RunFrame<false, 0>();
}
void Reschedule(u64 target)
{
if (CurCPU == 0)
{
if (target < (ARM9Target >> ARM9ClockShift))
ARM9Target = (target << ARM9ClockShift);
}
else
{
if (target < ARM7Target)
ARM7Target = target;
}
}
void RegisterEventFunc(u32 id, u32 funcid, EventFunc func)
{
SchedEvent& evt = SchedList[id];
evt.Funcs[funcid] = func;
}
void UnregisterEventFunc(u32 id, u32 funcid)
{
SchedEvent& evt = SchedList[id];
evt.Funcs.erase(funcid);
}
void ScheduleEvent(u32 id, bool periodic, s32 delay, u32 funcid, u32 param)
{
if (SchedListMask & (1<<id))
{
Log(LogLevel::Debug, "!! EVENT %d ALREADY SCHEDULED\n", id);
return;
}
SchedEvent& evt = SchedList[id];
if (periodic)
evt.Timestamp += delay;
else
{
if (CurCPU == 0)
evt.Timestamp = (ARM9Timestamp >> ARM9ClockShift) + delay;
else
evt.Timestamp = ARM7Timestamp + delay;
}
evt.FuncID = funcid;
evt.Param = param;
SchedListMask |= (1<<id);
Reschedule(evt.Timestamp);
}
void CancelEvent(u32 id)
{
SchedListMask &= ~(1<<id);
}
void TouchScreen(u16 x, u16 y)
{
SPI->GetTSC()->SetTouchCoords(x, y);
}
void ReleaseScreen()
{
SPI->GetTSC()->SetTouchCoords(0x000, 0xFFF);
}
void CheckKeyIRQ(u32 cpu, u32 oldkey, u32 newkey)
{
u16 cnt = KeyCnt[cpu];
if (!(cnt & (1<<14))) // IRQ disabled
return;
u32 mask = (cnt & 0x03FF);
oldkey &= mask;
newkey &= mask;
bool oldmatch, newmatch;
if (cnt & (1<<15))
{
// logical AND
oldmatch = (oldkey == 0);
newmatch = (newkey == 0);
}
else
{
// logical OR
oldmatch = (oldkey != mask);
newmatch = (newkey != mask);
}
if ((!oldmatch) && newmatch)
SetIRQ(cpu, IRQ_Keypad);
}
void SetKeyMask(u32 mask)
{
u32 key_lo = mask & 0x3FF;
u32 key_hi = (mask >> 10) & 0x3;
u32 oldkey = KeyInput;
KeyInput &= 0xFFFCFC00;
KeyInput |= key_lo | (key_hi << 16);
CheckKeyIRQ(0, oldkey, KeyInput);
CheckKeyIRQ(1, oldkey, KeyInput);
}
bool IsLidClosed()
{
if (KeyInput & (1<<23)) return true;
return false;
}
void SetLidClosed(bool closed)
{
if (closed)
{
KeyInput |= (1<<23);
}
else
{
KeyInput &= ~(1<<23);
SetIRQ(1, IRQ_LidOpen);
}
}
void CamInputFrame(int cam, u32* data, int width, int height, bool rgb)
{
// TODO: support things like the GBA-slot camera addon
// whenever these are emulated
if (ConsoleType == 1)
{
switch (cam)
{
case 0: return DSi::CamModule->GetOuterCamera()->InputFrame(data, width, height, rgb);
case 1: return DSi::CamModule->GetInnerCamera()->InputFrame(data, width, height, rgb);
}
}
}
void MicInputFrame(s16* data, int samples)
{
return SPI->GetTSC()->MicInputFrame(data, samples);
}
/*int ImportSRAM(u8* data, u32 length)
{
return NDSCart::ImportSRAM(data, length);
}*/
void Halt()
{
Log(LogLevel::Info, "Halt()\n");
Running = false;
}
void MapSharedWRAM(u8 val)
{
if (val == WRAMCnt)
return;
NDS::JIT->Memory.RemapSWRAM();
WRAMCnt = val;
switch (WRAMCnt & 0x3)
{
case 0:
SWRAM_ARM9.Mem = &SharedWRAM[0];
SWRAM_ARM9.Mask = 0x7FFF;
SWRAM_ARM7.Mem = NULL;
SWRAM_ARM7.Mask = 0;
break;
case 1:
SWRAM_ARM9.Mem = &SharedWRAM[0x4000];
SWRAM_ARM9.Mask = 0x3FFF;
SWRAM_ARM7.Mem = &SharedWRAM[0];
SWRAM_ARM7.Mask = 0x3FFF;
break;
case 2:
SWRAM_ARM9.Mem = &SharedWRAM[0];
SWRAM_ARM9.Mask = 0x3FFF;
SWRAM_ARM7.Mem = &SharedWRAM[0x4000];
SWRAM_ARM7.Mask = 0x3FFF;
break;
case 3:
SWRAM_ARM9.Mem = NULL;
SWRAM_ARM9.Mask = 0;
SWRAM_ARM7.Mem = &SharedWRAM[0];
SWRAM_ARM7.Mask = 0x7FFF;
break;
}
}
void UpdateWifiTimings()
{
if (PowerControl7 & 0x0002)
{
const int ntimings[4] = {10, 8, 6, 18};
u16 val = WifiWaitCnt;
SetARM7RegionTimings(0x04800, 0x04808, Mem7_Wifi0, 16, ntimings[val & 0x3], (val & 0x4) ? 4 : 6);
SetARM7RegionTimings(0x04808, 0x04810, Mem7_Wifi1, 16, ntimings[(val>>3) & 0x3], (val & 0x20) ? 4 : 10);
}
else
{
SetARM7RegionTimings(0x04800, 0x04808, Mem7_Wifi0, 32, 1, 1);
SetARM7RegionTimings(0x04808, 0x04810, Mem7_Wifi1, 32, 1, 1);
}
}
void SetWifiWaitCnt(u16 val)
{
if (WifiWaitCnt == val) return;
WifiWaitCnt = val;
UpdateWifiTimings();
}
void SetGBASlotTimings()
{
const int ntimings[4] = {10, 8, 6, 18};
const u16 openbus[4] = {0xFE08, 0x0000, 0x0000, 0xFFFF};
u16 curcpu = (ExMemCnt[0] >> 7) & 0x1;
u16 curcnt = ExMemCnt[curcpu];
int ramN = ntimings[curcnt & 0x3];
int romN = ntimings[(curcnt>>2) & 0x3];
int romS = (curcnt & 0x10) ? 4 : 6;
// GBA slot timings only apply on the selected side
if (curcpu == 0)
{
SetARM9RegionTimings(0x08000, 0x0A000, Mem9_GBAROM, 16, romN, romS);
SetARM9RegionTimings(0x0A000, 0x0B000, Mem9_GBARAM, 8, ramN, ramN);
SetARM7RegionTimings(0x08000, 0x0A000, 0, 32, 1, 1);
SetARM7RegionTimings(0x0A000, 0x0B000, 0, 32, 1, 1);
}
else
{
SetARM9RegionTimings(0x08000, 0x0A000, 0, 32, 1, 1);
SetARM9RegionTimings(0x0A000, 0x0B000, 0, 32, 1, 1);
SetARM7RegionTimings(0x08000, 0x0A000, Mem7_GBAROM, 16, romN, romS);
SetARM7RegionTimings(0x0A000, 0x0B000, Mem7_GBARAM, 8, ramN, ramN);
}
// this open-bus implementation is a rough way of simulating the way values
// lingering on the bus decay after a while, which is visible at higher waitstates
// for example, the Cartridge Construction Kit relies on this to determine that
// the GBA slot is empty
assert(GBACartSlot != nullptr);
GBACartSlot->SetOpenBusDecay(openbus[(curcnt>>2) & 0x3]);
}
void UpdateIRQ(u32 cpu)
{
ARM* arm = cpu ? (ARM*)ARM7 : (ARM*)ARM9;
if (IME[cpu] & 0x1)
{
arm->IRQ = !!(IE[cpu] & IF[cpu]);
if ((ConsoleType == 1) && cpu)
arm->IRQ |= !!(IE2 & IF2);
}
else
{
arm->IRQ = 0;
}
}
void SetIRQ(u32 cpu, u32 irq)
{
IF[cpu] |= (1 << irq);
UpdateIRQ(cpu);
if ((cpu == 1) && (CPUStop & CPUStop_Sleep))
{
if (IE[1] & (1 << irq))
{
CPUStop &= ~CPUStop_Sleep;
CPUStop |= CPUStop_Wakeup;
GPU->GPU3D.RestartFrame();
}
}
}
void ClearIRQ(u32 cpu, u32 irq)
{
IF[cpu] &= ~(1 << irq);
UpdateIRQ(cpu);
}
void SetIRQ2(u32 irq)
{
IF2 |= (1 << irq);
UpdateIRQ(1);
}
void ClearIRQ2(u32 irq)
{
IF2 &= ~(1 << irq);
UpdateIRQ(1);
}
bool HaltInterrupted(u32 cpu)
{
if (cpu == 0)
{
if (!(IME[0] & 0x1))
return false;
}
if (IF[cpu] & IE[cpu])
return true;
if ((ConsoleType == 1) && cpu && (IF2 & IE2))
return true;
return false;
}
void StopCPU(u32 cpu, u32 mask)
{
if (cpu)
{
CPUStop |= (mask << 16);
ARM7->Halt(2);
}
else
{
CPUStop |= mask;
ARM9->Halt(2);
}
}
void ResumeCPU(u32 cpu, u32 mask)
{
if (cpu) mask <<= 16;
CPUStop &= ~mask;
}
void GXFIFOStall()
{
if (CPUStop & CPUStop_GXStall) return;
CPUStop |= CPUStop_GXStall;
if (CurCPU == 1) ARM9->Halt(2);
else
{
DMAs[0]->StallIfRunning();
DMAs[1]->StallIfRunning();
DMAs[2]->StallIfRunning();
DMAs[3]->StallIfRunning();
if (ConsoleType == 1) DSi::StallNDMAs();
}
}
void GXFIFOUnstall()
{
CPUStop &= ~CPUStop_GXStall;
}
void EnterSleepMode()
{
if (CPUStop & CPUStop_Sleep) return;
CPUStop |= CPUStop_Sleep;
ARM7->Halt(2);
}
u32 GetPC(u32 cpu)
{
return cpu ? ARM7->R[15] : ARM9->R[15];
}
u64 GetSysClockCycles(int num)
{
u64 ret;
if (num == 0 || num == 2)
{
if (CurCPU == 0)
ret = ARM9Timestamp >> ARM9ClockShift;
else
ret = ARM7Timestamp;
if (num == 2) ret -= FrameStartTimestamp;
}
else if (num == 1)
{
ret = LastSysClockCycles;
LastSysClockCycles = 0;
if (CurCPU == 0)
LastSysClockCycles = ARM9Timestamp >> ARM9ClockShift;
else
LastSysClockCycles = ARM7Timestamp;
}
return ret;
}
void NocashPrint(u32 ncpu, u32 addr)
{
// addr: debug string
ARM* cpu = ncpu ? (ARM*)ARM7 : (ARM*)ARM9;
u8 (*readfn)(u32) = ncpu ? NDS::ARM7Read8 : NDS::ARM9Read8;
char output[1024];
int ptr = 0;
for (int i = 0; i < 120 && ptr < 1023; )
{
char ch = readfn(addr++);
i++;
if (ch == '%')
{
char cmd[16]; int j;
for (j = 0; j < 15; )
{
char ch2 = readfn(addr++);
i++;
if (i >= 120) break;
if (ch2 == '%') break;
cmd[j++] = ch2;
}
cmd[j] = '\0';
char subs[64];
if (cmd[0] == 'r')
{
if (!strcmp(cmd, "r0")) sprintf(subs, "%08X", cpu->R[0]);
else if (!strcmp(cmd, "r1")) sprintf(subs, "%08X", cpu->R[1]);
else if (!strcmp(cmd, "r2")) sprintf(subs, "%08X", cpu->R[2]);
else if (!strcmp(cmd, "r3")) sprintf(subs, "%08X", cpu->R[3]);
else if (!strcmp(cmd, "r4")) sprintf(subs, "%08X", cpu->R[4]);
else if (!strcmp(cmd, "r5")) sprintf(subs, "%08X", cpu->R[5]);
else if (!strcmp(cmd, "r6")) sprintf(subs, "%08X", cpu->R[6]);
else if (!strcmp(cmd, "r7")) sprintf(subs, "%08X", cpu->R[7]);
else if (!strcmp(cmd, "r8")) sprintf(subs, "%08X", cpu->R[8]);
else if (!strcmp(cmd, "r9")) sprintf(subs, "%08X", cpu->R[9]);
else if (!strcmp(cmd, "r10")) sprintf(subs, "%08X", cpu->R[10]);
else if (!strcmp(cmd, "r11")) sprintf(subs, "%08X", cpu->R[11]);
else if (!strcmp(cmd, "r12")) sprintf(subs, "%08X", cpu->R[12]);
else if (!strcmp(cmd, "r13")) sprintf(subs, "%08X", cpu->R[13]);
else if (!strcmp(cmd, "r14")) sprintf(subs, "%08X", cpu->R[14]);
else if (!strcmp(cmd, "r15")) sprintf(subs, "%08X", cpu->R[15]);
}
else
{
if (!strcmp(cmd, "sp")) sprintf(subs, "%08X", cpu->R[13]);
else if (!strcmp(cmd, "lr")) sprintf(subs, "%08X", cpu->R[14]);
else if (!strcmp(cmd, "pc")) sprintf(subs, "%08X", cpu->R[15]);
else if (!strcmp(cmd, "frame")) sprintf(subs, "%u", NumFrames);
else if (!strcmp(cmd, "scanline")) sprintf(subs, "%u", GPU->VCount);
else if (!strcmp(cmd, "totalclks")) sprintf(subs, "%" PRIu64, GetSysClockCycles(0));
else if (!strcmp(cmd, "lastclks")) sprintf(subs, "%" PRIu64, GetSysClockCycles(1));
else if (!strcmp(cmd, "zeroclks"))
{
sprintf(subs, "%s", "");
GetSysClockCycles(1);
}
}
int slen = strlen(subs);
if ((ptr+slen) > 1023) slen = 1023-ptr;
strncpy(&output[ptr], subs, slen);
ptr += slen;
}
else
{
output[ptr++] = ch;
if (ch == '\0') break;
}
}
output[ptr] = '\0';
Log(LogLevel::Debug, "%s", output);
}
void MonitorARM9Jump(u32 addr)
{
// checkme: can the entrypoint addr be THUMB?
// also TODO: make it work in DSi mode
if ((!RunningGame) && NDSCartSlot->GetCart())
{
const NDSHeader& header = NDSCartSlot->GetCart()->GetHeader();
if (addr == header.ARM9EntryAddress)
{
Log(LogLevel::Info, "Game is now booting\n");
RunningGame = true;
}
}
}
void HandleTimerOverflow(u32 tid)
{
Timer* timer = &Timers[tid];
timer->Counter += (timer->Reload << 10);
if (timer->Cnt & (1<<6))
SetIRQ(tid >> 2, IRQ_Timer0 + (tid & 0x3));
if ((tid & 0x3) == 3)
return;
for (;;)
{
tid++;
timer = &Timers[tid];
if ((timer->Cnt & 0x84) != 0x84)
break;
timer->Counter += (1 << 10);
if (!(timer->Counter >> 26))
break;
timer->Counter = timer->Reload << 10;
if (timer->Cnt & (1<<6))
SetIRQ(tid >> 2, IRQ_Timer0 + (tid & 0x3));
if ((tid & 0x3) == 3)
break;
}
}
void RunTimer(u32 tid, s32 cycles)
{
Timer* timer = &Timers[tid];
timer->Counter += (cycles << timer->CycleShift);
while (timer->Counter >> 26)
{
timer->Counter -= (1 << 26);
HandleTimerOverflow(tid);
}
}
void RunTimers(u32 cpu)
{
u32 timermask = TimerCheckMask[cpu];
s32 cycles;
if (cpu == 0)
cycles = (ARM9Timestamp >> ARM9ClockShift) - TimerTimestamp[0];
else
cycles = ARM7Timestamp - TimerTimestamp[1];
if (timermask & 0x1) RunTimer((cpu<<2)+0, cycles);
if (timermask & 0x2) RunTimer((cpu<<2)+1, cycles);
if (timermask & 0x4) RunTimer((cpu<<2)+2, cycles);
if (timermask & 0x8) RunTimer((cpu<<2)+3, cycles);
TimerTimestamp[cpu] += cycles;
}
const s32 TimerPrescaler[4] = {0, 6, 8, 10};
u16 TimerGetCounter(u32 timer)
{
RunTimers(timer>>2);
u32 ret = Timers[timer].Counter;
return ret >> 10;
}
void TimerStart(u32 id, u16 cnt)
{
Timer* timer = &Timers[id];
u16 curstart = timer->Cnt & (1<<7);
u16 newstart = cnt & (1<<7);
RunTimers(id>>2);
timer->Cnt = cnt;
timer->CycleShift = 10 - TimerPrescaler[cnt & 0x03];
if ((!curstart) && newstart)
{
timer->Counter = timer->Reload << 10;
}
if ((cnt & 0x84) == 0x80)
TimerCheckMask[id>>2] |= 0x01 << (id&0x3);
else
TimerCheckMask[id>>2] &= ~(0x01 << (id&0x3));
}
// matching NDMA modes for DSi
const u32 NDMAModes[] =
{
// ARM9
0x10, // immediate
0x06, // VBlank
0x07, // HBlank
0x08, // scanline start
0x09, // mainmem FIFO
0x04, // DS cart slot
0xFF, // GBA cart slot
0x0A, // GX FIFO
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
// ARM7
0x30, // immediate
0x26, // VBlank
0x24, // DS cart slot
0xFF, // wifi / GBA cart slot (TODO)
};
bool DMAsInMode(u32 cpu, u32 mode)
{
cpu <<= 2;
if (DMAs[cpu+0]->IsInMode(mode)) return true;
if (DMAs[cpu+1]->IsInMode(mode)) return true;
if (DMAs[cpu+2]->IsInMode(mode)) return true;
if (DMAs[cpu+3]->IsInMode(mode)) return true;
if (ConsoleType == 1)
{
cpu >>= 2;
return DSi::NDMAsInMode(cpu, NDMAModes[mode]);
}
return false;
}
bool DMAsRunning(u32 cpu)
{
cpu <<= 2;
if (DMAs[cpu+0]->IsRunning()) return true;
if (DMAs[cpu+1]->IsRunning()) return true;
if (DMAs[cpu+2]->IsRunning()) return true;
if (DMAs[cpu+3]->IsRunning()) return true;
if (ConsoleType == 1)
{
if (DSi::NDMAsRunning(cpu>>2)) return true;
}
return false;
}
void CheckDMAs(u32 cpu, u32 mode)
{
cpu <<= 2;
DMAs[cpu+0]->StartIfNeeded(mode);
DMAs[cpu+1]->StartIfNeeded(mode);
DMAs[cpu+2]->StartIfNeeded(mode);
DMAs[cpu+3]->StartIfNeeded(mode);
if (ConsoleType == 1)
{
cpu >>= 2;
DSi::CheckNDMAs(cpu, NDMAModes[mode]);
}
}
void StopDMAs(u32 cpu, u32 mode)
{
cpu <<= 2;
DMAs[cpu+0]->StopIfNeeded(mode);
DMAs[cpu+1]->StopIfNeeded(mode);
DMAs[cpu+2]->StopIfNeeded(mode);
DMAs[cpu+3]->StopIfNeeded(mode);
if (ConsoleType == 1)
{
cpu >>= 2;
DSi::StopNDMAs(cpu, NDMAModes[mode]);
}
}
void DivDone(u32 param)
{
DivCnt &= ~0xC000;
switch (DivCnt & 0x0003)
{
case 0x0000:
{
s32 num = (s32)DivNumerator[0];
s32 den = (s32)DivDenominator[0];
if (den == 0)
{
DivQuotient[0] = (num<0) ? 1:-1;
DivQuotient[1] = (num<0) ? -1:0;
*(s64*)&DivRemainder[0] = num;
}
else if (num == -0x80000000 && den == -1)
{
*(s64*)&DivQuotient[0] = 0x80000000;
}
else
{
*(s64*)&DivQuotient[0] = (s64)(num / den);
*(s64*)&DivRemainder[0] = (s64)(num % den);
}
}
break;
case 0x0001:
case 0x0003:
{
s64 num = *(s64*)&DivNumerator[0];
s32 den = (s32)DivDenominator[0];
if (den == 0)
{
*(s64*)&DivQuotient[0] = (num<0) ? 1:-1;
*(s64*)&DivRemainder[0] = num;
}
else if (num == -0x8000000000000000 && den == -1)
{
*(s64*)&DivQuotient[0] = 0x8000000000000000;
*(s64*)&DivRemainder[0] = 0;
}
else
{
*(s64*)&DivQuotient[0] = (s64)(num / den);
*(s64*)&DivRemainder[0] = (s64)(num % den);
}
}
break;
case 0x0002:
{
s64 num = *(s64*)&DivNumerator[0];
s64 den = *(s64*)&DivDenominator[0];
if (den == 0)
{
*(s64*)&DivQuotient[0] = (num<0) ? 1:-1;
*(s64*)&DivRemainder[0] = num;
}
else if (num == -0x8000000000000000 && den == -1)
{
*(s64*)&DivQuotient[0] = 0x8000000000000000;
*(s64*)&DivRemainder[0] = 0;
}
else
{
*(s64*)&DivQuotient[0] = (s64)(num / den);
*(s64*)&DivRemainder[0] = (s64)(num % den);
}
}
break;
}
if ((DivDenominator[0] | DivDenominator[1]) == 0)
DivCnt |= 0x4000;
}
void StartDiv()
{
NDS::CancelEvent(NDS::Event_Div);
DivCnt |= 0x8000;
NDS::ScheduleEvent(NDS::Event_Div, false, ((DivCnt&0x3)==0) ? 18:34, 0, 0);
}
// http://stackoverflow.com/questions/1100090/looking-for-an-efficient-integer-square-root-algorithm-for-arm-thumb2
void SqrtDone(u32 param)
{
u64 val;
u32 res = 0;
u64 rem = 0;
u32 prod = 0;
u32 nbits, topshift;
SqrtCnt &= ~0x8000;
if (SqrtCnt & 0x0001)
{
val = *(u64*)&SqrtVal[0];
nbits = 32;
topshift = 62;
}
else
{
val = (u64)SqrtVal[0]; // 32bit
nbits = 16;
topshift = 30;
}
for (u32 i = 0; i < nbits; i++)
{
rem = (rem << 2) + ((val >> topshift) & 0x3);
val <<= 2;
res <<= 1;
prod = (res << 1) + 1;
if (rem >= prod)
{
rem -= prod;
res++;
}
}
SqrtRes = res;
}
void StartSqrt()
{
NDS::CancelEvent(NDS::Event_Sqrt);
SqrtCnt |= 0x8000;
NDS::ScheduleEvent(NDS::Event_Sqrt, false, 13, 0, 0);
}
void debug(u32 param)
{
Log(LogLevel::Debug, "ARM9 PC=%08X LR=%08X %08X\n", ARM9->R[15], ARM9->R[14], ARM9->R_IRQ[1]);
Log(LogLevel::Debug, "ARM7 PC=%08X LR=%08X %08X\n", ARM7->R[15], ARM7->R[14], ARM7->R_IRQ[1]);
Log(LogLevel::Debug, "ARM9 IME=%08X IE=%08X IF=%08X\n", IME[0], IE[0], IF[0]);
Log(LogLevel::Debug, "ARM7 IME=%08X IE=%08X IF=%08X IE2=%04X IF2=%04X\n", IME[1], IE[1], IF[1], IE2, IF2);
//for (int i = 0; i < 9; i++)
// printf("VRAM %c: %02X\n", 'A'+i, GPU->VRAMCNT[i]);
Platform::FileHandle* shit = Platform::OpenFile("debug/DSfirmware.bin", FileMode::Write);
Platform::FileWrite(ARM9->ITCM, 0x8000, 1, shit);
for (u32 i = 0x02000000; i < 0x02400000; i+=4)
{
u32 val = ARM7Read32(i);
Platform::FileWrite(&val, 4, 1, shit);
}
for (u32 i = 0x037F0000; i < 0x03810000; i+=4)
{
u32 val = ARM7Read32(i);
Platform::FileWrite(&val, 4, 1, shit);
}
for (u32 i = 0x06000000; i < 0x06040000; i+=4)
{
u32 val = ARM7Read32(i);
Platform::FileWrite(&val, 4, 1, shit);
}
Platform::CloseFile(shit);
/*FILE*
shit = fopen("debug/directboot9.bin", "wb");
for (u32 i = 0x02000000; i < 0x04000000; i+=4)
{
u32 val = DSi::ARM9Read32(i);
fwrite(&val, 4, 1, shit);
}
fclose(shit);
shit = fopen("debug/camera7.bin", "wb");
for (u32 i = 0x02000000; i < 0x04000000; i+=4)
{
u32 val = DSi::ARM7Read32(i);
fwrite(&val, 4, 1, shit);
}
fclose(shit);*/
}
u8 ARM9Read8(u32 addr)
{
if ((addr & 0xFFFFF000) == 0xFFFF0000)
{
return *(u8*)&ARM9BIOS[addr & 0xFFF];
}
switch (addr & 0xFF000000)
{
case 0x02000000:
return *(u8*)&MainRAM[addr & MainRAMMask];
case 0x03000000:
if (SWRAM_ARM9.Mem)
{
return *(u8*)&SWRAM_ARM9.Mem[addr & SWRAM_ARM9.Mask];
}
else
{
return 0;
}
case 0x04000000:
return ARM9IORead8(addr);
case 0x05000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return 0;
return GPU->ReadPalette<u8>(addr);
case 0x06000000:
switch (addr & 0x00E00000)
{
case 0x00000000: return GPU->ReadVRAM_ABG<u8>(addr);
case 0x00200000: return GPU->ReadVRAM_BBG<u8>(addr);
case 0x00400000: return GPU->ReadVRAM_AOBJ<u8>(addr);
case 0x00600000: return GPU->ReadVRAM_BOBJ<u8>(addr);
default: return GPU->ReadVRAM_LCDC<u8>(addr);
}
case 0x07000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return 0;
return GPU->ReadOAM<u8>(addr);
case 0x08000000:
case 0x09000000:
if (ExMemCnt[0] & (1<<7)) return 0x00; // deselected CPU is 00h-filled
assert(GBACartSlot != nullptr);
if (addr & 0x1) return GBACartSlot->ROMRead(addr-1) >> 8;
return GBACartSlot->ROMRead(addr) & 0xFF;
case 0x0A000000:
if (ExMemCnt[0] & (1<<7)) return 0x00; // deselected CPU is 00h-filled
assert(GBACartSlot != nullptr);
return GBACartSlot->SRAMRead(addr);
}
Log(LogLevel::Debug, "unknown arm9 read8 %08X\n", addr);
return 0;
}
u16 ARM9Read16(u32 addr)
{
addr &= ~0x1;
if ((addr & 0xFFFFF000) == 0xFFFF0000)
{
return *(u16*)&ARM9BIOS[addr & 0xFFF];
}
switch (addr & 0xFF000000)
{
case 0x02000000:
return *(u16*)&MainRAM[addr & MainRAMMask];
case 0x03000000:
if (SWRAM_ARM9.Mem)
{
return *(u16*)&SWRAM_ARM9.Mem[addr & SWRAM_ARM9.Mask];
}
else
{
return 0;
}
case 0x04000000:
return ARM9IORead16(addr);
case 0x05000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return 0;
return GPU->ReadPalette<u16>(addr);
case 0x06000000:
switch (addr & 0x00E00000)
{
case 0x00000000: return GPU->ReadVRAM_ABG<u16>(addr);
case 0x00200000: return GPU->ReadVRAM_BBG<u16>(addr);
case 0x00400000: return GPU->ReadVRAM_AOBJ<u16>(addr);
case 0x00600000: return GPU->ReadVRAM_BOBJ<u16>(addr);
default: return GPU->ReadVRAM_LCDC<u16>(addr);
}
case 0x07000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return 0;
return GPU->ReadOAM<u16>(addr);
case 0x08000000:
case 0x09000000:
if (ExMemCnt[0] & (1<<7)) return 0x0000; // deselected CPU is 00h-filled
assert(GBACartSlot != nullptr);
return GBACartSlot->ROMRead(addr);
case 0x0A000000:
if (ExMemCnt[0] & (1<<7)) return 0x0000; // deselected CPU is 00h-filled
assert(GBACartSlot != nullptr);
return GBACartSlot->SRAMRead(addr) |
(GBACartSlot->SRAMRead(addr+1) << 8);
}
//if (addr) Log(LogLevel::Warn, "unknown arm9 read16 %08X %08X\n", addr, ARM9->R[15]);
return 0;
}
u32 ARM9Read32(u32 addr)
{
addr &= ~0x3;
if ((addr & 0xFFFFF000) == 0xFFFF0000)
{
return *(u32*)&ARM9BIOS[addr & 0xFFF];
}
switch (addr & 0xFF000000)
{
case 0x02000000:
return *(u32*)&MainRAM[addr & MainRAMMask];
case 0x03000000:
if (SWRAM_ARM9.Mem)
{
return *(u32*)&SWRAM_ARM9.Mem[addr & SWRAM_ARM9.Mask];
}
else
{
return 0;
}
case 0x04000000:
return ARM9IORead32(addr);
case 0x05000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return 0;
return GPU->ReadPalette<u32>(addr);
case 0x06000000:
switch (addr & 0x00E00000)
{
case 0x00000000: return GPU->ReadVRAM_ABG<u32>(addr);
case 0x00200000: return GPU->ReadVRAM_BBG<u32>(addr);
case 0x00400000: return GPU->ReadVRAM_AOBJ<u32>(addr);
case 0x00600000: return GPU->ReadVRAM_BOBJ<u32>(addr);
default: return GPU->ReadVRAM_LCDC<u32>(addr);
}
case 0x07000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return 0;
return GPU->ReadOAM<u32>(addr & 0x7FF);
case 0x08000000:
case 0x09000000:
if (ExMemCnt[0] & (1<<7)) return 0x00000000; // deselected CPU is 00h-filled
assert(GBACartSlot != nullptr);
return GBACartSlot->ROMRead(addr) |
(GBACartSlot->ROMRead(addr+2) << 16);
case 0x0A000000:
if (ExMemCnt[0] & (1<<7)) return 0x00000000; // deselected CPU is 00h-filled
assert(GBACartSlot != nullptr);
return GBACartSlot->SRAMRead(addr) |
(GBACartSlot->SRAMRead(addr+1) << 8) |
(GBACartSlot->SRAMRead(addr+2) << 16) |
(GBACartSlot->SRAMRead(addr+3) << 24);
}
//Log(LogLevel::Warn, "unknown arm9 read32 %08X | %08X %08X\n", addr, ARM9->R[15], ARM9->R[12]);
return 0;
}
void ARM9Write8(u32 addr, u8 val)
{
switch (addr & 0xFF000000)
{
case 0x02000000:
NDS::JIT->CheckAndInvalidate<0, ARMJIT_Memory::memregion_MainRAM>(addr);
*(u8*)&MainRAM[addr & MainRAMMask] = val;
return;
case 0x03000000:
if (SWRAM_ARM9.Mem)
{
NDS::JIT->CheckAndInvalidate<0, ARMJIT_Memory::memregion_SharedWRAM>(addr);
*(u8*)&SWRAM_ARM9.Mem[addr & SWRAM_ARM9.Mask] = val;
}
return;
case 0x04000000:
ARM9IOWrite8(addr, val);
return;
case 0x05000000:
case 0x06000000:
case 0x07000000:
return;
case 0x08000000:
case 0x09000000:
return;
case 0x0A000000:
if (ExMemCnt[0] & (1<<7)) return; // deselected CPU, skip the write
assert(GBACartSlot != nullptr);
GBACartSlot->SRAMWrite(addr, val);
return;
}
Log(LogLevel::Debug, "unknown arm9 write8 %08X %02X\n", addr, val);
}
void ARM9Write16(u32 addr, u16 val)
{
addr &= ~0x1;
switch (addr & 0xFF000000)
{
case 0x02000000:
NDS::JIT->CheckAndInvalidate<0, ARMJIT_Memory::memregion_MainRAM>(addr);
*(u16*)&MainRAM[addr & MainRAMMask] = val;
return;
case 0x03000000:
if (SWRAM_ARM9.Mem)
{
NDS::JIT->CheckAndInvalidate<0, ARMJIT_Memory::memregion_SharedWRAM>(addr);
*(u16*)&SWRAM_ARM9.Mem[addr & SWRAM_ARM9.Mask] = val;
}
return;
case 0x04000000:
ARM9IOWrite16(addr, val);
return;
case 0x05000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return;
GPU->WritePalette<u16>(addr, val);
return;
case 0x06000000:
NDS::JIT->CheckAndInvalidate<0, ARMJIT_Memory::memregion_VRAM>(addr);
switch (addr & 0x00E00000)
{
case 0x00000000: GPU->WriteVRAM_ABG<u16>(addr, val); return;
case 0x00200000: GPU->WriteVRAM_BBG<u16>(addr, val); return;
case 0x00400000: GPU->WriteVRAM_AOBJ<u16>(addr, val); return;
case 0x00600000: GPU->WriteVRAM_BOBJ<u16>(addr, val); return;
default: GPU->WriteVRAM_LCDC<u16>(addr, val); return;
}
case 0x07000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return;
GPU->WriteOAM<u16>(addr, val);
return;
case 0x08000000:
case 0x09000000:
if (ExMemCnt[0] & (1<<7)) return; // deselected CPU, skip the write
assert(GBACartSlot != nullptr);
GBACartSlot->ROMWrite(addr, val);
return;
case 0x0A000000:
if (ExMemCnt[0] & (1<<7)) return; // deselected CPU, skip the write
assert(GBACartSlot != nullptr);
GBACartSlot->SRAMWrite(addr, val & 0xFF);
GBACartSlot->SRAMWrite(addr+1, val >> 8);
return;
}
//if (addr) Log(LogLevel::Warn, "unknown arm9 write16 %08X %04X\n", addr, val);
}
void ARM9Write32(u32 addr, u32 val)
{
addr &= ~0x3;
switch (addr & 0xFF000000)
{
case 0x02000000:
NDS::JIT->CheckAndInvalidate<0, ARMJIT_Memory::memregion_MainRAM>(addr);
*(u32*)&MainRAM[addr & MainRAMMask] = val;
return ;
case 0x03000000:
if (SWRAM_ARM9.Mem)
{
NDS::JIT->CheckAndInvalidate<0, ARMJIT_Memory::memregion_SharedWRAM>(addr);
*(u32*)&SWRAM_ARM9.Mem[addr & SWRAM_ARM9.Mask] = val;
}
return;
case 0x04000000:
ARM9IOWrite32(addr, val);
return;
case 0x05000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return;
GPU->WritePalette(addr, val);
return;
case 0x06000000:
NDS::JIT->CheckAndInvalidate<0, ARMJIT_Memory::memregion_VRAM>(addr);
switch (addr & 0x00E00000)
{
case 0x00000000: GPU->WriteVRAM_ABG<u32>(addr, val); return;
case 0x00200000: GPU->WriteVRAM_BBG<u32>(addr, val); return;
case 0x00400000: GPU->WriteVRAM_AOBJ<u32>(addr, val); return;
case 0x00600000: GPU->WriteVRAM_BOBJ<u32>(addr, val); return;
default: GPU->WriteVRAM_LCDC<u32>(addr, val); return;
}
case 0x07000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return;
GPU->WriteOAM<u32>(addr, val);
return;
case 0x08000000:
case 0x09000000:
if (ExMemCnt[0] & (1<<7)) return; // deselected CPU, skip the write
assert(GBACartSlot != nullptr);
GBACartSlot->ROMWrite(addr, val & 0xFFFF);
GBACartSlot->ROMWrite(addr+2, val >> 16);
return;
case 0x0A000000:
if (ExMemCnt[0] & (1<<7)) return; // deselected CPU, skip the write
assert(GBACartSlot != nullptr);
GBACartSlot->SRAMWrite(addr, val & 0xFF);
GBACartSlot->SRAMWrite(addr+1, (val >> 8) & 0xFF);
GBACartSlot->SRAMWrite(addr+2, (val >> 16) & 0xFF);
GBACartSlot->SRAMWrite(addr+3, val >> 24);
return;
}
//Log(LogLevel::Warn, "unknown arm9 write32 %08X %08X | %08X\n", addr, val, ARM9->R[15]);
}
bool ARM9GetMemRegion(u32 addr, bool write, MemRegion* region)
{
switch (addr & 0xFF000000)
{
case 0x02000000:
region->Mem = MainRAM;
region->Mask = MainRAMMask;
return true;
case 0x03000000:
if (SWRAM_ARM9.Mem)
{
region->Mem = SWRAM_ARM9.Mem;
region->Mask = SWRAM_ARM9.Mask;
return true;
}
break;
}
if ((addr & 0xFFFFF000) == 0xFFFF0000 && !write)
{
region->Mem = ARM9BIOS;
region->Mask = 0xFFF;
return true;
}
region->Mem = NULL;
return false;
}
u8 ARM7Read8(u32 addr)
{
if (addr < 0x00004000)
{
// TODO: check the boundary? is it 4000 or higher on regular DS?
if (ARM7->R[15] >= 0x00004000)
return 0xFF;
if (addr < ARM7BIOSProt && ARM7->R[15] >= ARM7BIOSProt)
return 0xFF;
return *(u8*)&ARM7BIOS[addr];
}
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
return *(u8*)&MainRAM[addr & MainRAMMask];
case 0x03000000:
if (SWRAM_ARM7.Mem)
{
return *(u8*)&SWRAM_ARM7.Mem[addr & SWRAM_ARM7.Mask];
}
else
{
return *(u8*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)];
}
case 0x03800000:
return *(u8*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)];
case 0x04000000:
return ARM7IORead8(addr);
case 0x04800000:
if (addr < 0x04810000)
{
if (!(PowerControl7 & (1<<1))) return 0;
if (addr & 0x1) return Wifi->Read(addr-1) >> 8;
return Wifi->Read(addr) & 0xFF;
}
break;
case 0x06000000:
case 0x06800000:
return GPU->ReadVRAM_ARM7<u8>(addr);
case 0x08000000:
case 0x08800000:
case 0x09000000:
case 0x09800000:
if (!(ExMemCnt[0] & (1<<7))) return 0x00; // deselected CPU is 00h-filled
assert(GBACartSlot != nullptr);
if (addr & 0x1) return GBACartSlot->ROMRead(addr-1) >> 8;
return GBACartSlot->ROMRead(addr) & 0xFF;
case 0x0A000000:
case 0x0A800000:
if (!(ExMemCnt[0] & (1<<7))) return 0x00; // deselected CPU is 00h-filled
assert(GBACartSlot != nullptr);
return GBACartSlot->SRAMRead(addr);
}
Log(LogLevel::Debug, "unknown arm7 read8 %08X %08X %08X/%08X\n", addr, ARM7->R[15], ARM7->R[0], ARM7->R[1]);
return 0;
}
u16 ARM7Read16(u32 addr)
{
addr &= ~0x1;
if (addr < 0x00004000)
{
if (ARM7->R[15] >= 0x00004000)
return 0xFFFF;
if (addr < ARM7BIOSProt && ARM7->R[15] >= ARM7BIOSProt)
return 0xFFFF;
return *(u16*)&ARM7BIOS[addr];
}
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
return *(u16*)&MainRAM[addr & MainRAMMask];
case 0x03000000:
if (SWRAM_ARM7.Mem)
{
return *(u16*)&SWRAM_ARM7.Mem[addr & SWRAM_ARM7.Mask];
}
else
{
return *(u16*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)];
}
case 0x03800000:
return *(u16*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)];
case 0x04000000:
return ARM7IORead16(addr);
case 0x04800000:
if (addr < 0x04810000)
{
if (!(PowerControl7 & (1<<1))) return 0;
return Wifi->Read(addr);
}
break;
case 0x06000000:
case 0x06800000:
return GPU->ReadVRAM_ARM7<u16>(addr);
case 0x08000000:
case 0x08800000:
case 0x09000000:
case 0x09800000:
if (!(ExMemCnt[0] & (1<<7))) return 0x0000; // deselected CPU is 00h-filled
assert(GBACartSlot != nullptr);
return GBACartSlot->ROMRead(addr);
case 0x0A000000:
case 0x0A800000:
if (!(ExMemCnt[0] & (1<<7))) return 0x0000; // deselected CPU is 00h-filled
assert(GBACartSlot != nullptr);
return GBACartSlot->SRAMRead(addr) |
(GBACartSlot->SRAMRead(addr+1) << 8);
}
Log(LogLevel::Debug, "unknown arm7 read16 %08X %08X\n", addr, ARM7->R[15]);
return 0;
}
u32 ARM7Read32(u32 addr)
{
addr &= ~0x3;
if (addr < 0x00004000)
{
if (ARM7->R[15] >= 0x00004000)
return 0xFFFFFFFF;
if (addr < ARM7BIOSProt && ARM7->R[15] >= ARM7BIOSProt)
return 0xFFFFFFFF;
return *(u32*)&ARM7BIOS[addr];
}
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
return *(u32*)&MainRAM[addr & MainRAMMask];
case 0x03000000:
if (SWRAM_ARM7.Mem)
{
return *(u32*)&SWRAM_ARM7.Mem[addr & SWRAM_ARM7.Mask];
}
else
{
return *(u32*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)];
}
case 0x03800000:
return *(u32*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)];
case 0x04000000:
return ARM7IORead32(addr);
case 0x04800000:
if (addr < 0x04810000)
{
if (!(PowerControl7 & (1<<1))) return 0;
return Wifi->Read(addr) | (Wifi->Read(addr+2) << 16);
}
break;
case 0x06000000:
case 0x06800000:
return GPU->ReadVRAM_ARM7<u32>(addr);
case 0x08000000:
case 0x08800000:
case 0x09000000:
case 0x09800000:
if (!(ExMemCnt[0] & (1<<7))) return 0x00000000; // deselected CPU is 00h-filled
assert(GBACartSlot != nullptr);
return GBACartSlot->ROMRead(addr) |
(GBACartSlot->ROMRead(addr+2) << 16);
case 0x0A000000:
case 0x0A800000:
if (!(ExMemCnt[0] & (1<<7))) return 0x00000000; // deselected CPU is 00h-filled
assert(GBACartSlot != nullptr);
return GBACartSlot->SRAMRead(addr) |
(GBACartSlot->SRAMRead(addr+1) << 8) |
(GBACartSlot->SRAMRead(addr+2) << 16) |
(GBACartSlot->SRAMRead(addr+3) << 24);
}
//Log(LogLevel::Warn, "unknown arm7 read32 %08X | %08X\n", addr, ARM7->R[15]);
return 0;
}
void ARM7Write8(u32 addr, u8 val)
{
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
NDS::JIT->CheckAndInvalidate<1, ARMJIT_Memory::memregion_MainRAM>(addr);
*(u8*)&MainRAM[addr & MainRAMMask] = val;
return;
case 0x03000000:
if (SWRAM_ARM7.Mem)
{
NDS::JIT->CheckAndInvalidate<1, ARMJIT_Memory::memregion_SharedWRAM>(addr);
*(u8*)&SWRAM_ARM7.Mem[addr & SWRAM_ARM7.Mask] = val;
return;
}
else
{
NDS::JIT->CheckAndInvalidate<1, ARMJIT_Memory::memregion_WRAM7>(addr);
*(u8*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)] = val;
return;
}
case 0x03800000:
NDS::JIT->CheckAndInvalidate<1, ARMJIT_Memory::memregion_WRAM7>(addr);
*(u8*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)] = val;
return;
case 0x04000000:
ARM7IOWrite8(addr, val);
return;
case 0x06000000:
case 0x06800000:
NDS::JIT->CheckAndInvalidate<1, ARMJIT_Memory::memregion_VWRAM>(addr);
GPU->WriteVRAM_ARM7<u8>(addr, val);
return;
case 0x08000000:
case 0x08800000:
case 0x09000000:
case 0x09800000:
return;
case 0x0A000000:
case 0x0A800000:
if (!(ExMemCnt[0] & (1<<7))) return; // deselected CPU, skip the write
assert(GBACartSlot != nullptr);
GBACartSlot->SRAMWrite(addr, val);
return;
}
//if (ARM7->R[15] > 0x00002F30) // ARM7 BIOS bug
if (addr >= 0x01000000)
Log(LogLevel::Debug, "unknown arm7 write8 %08X %02X @ %08X\n", addr, val, ARM7->R[15]);
}
void ARM7Write16(u32 addr, u16 val)
{
addr &= ~0x1;
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
NDS::JIT->CheckAndInvalidate<1, ARMJIT_Memory::memregion_MainRAM>(addr);
*(u16*)&MainRAM[addr & MainRAMMask] = val;
return;
case 0x03000000:
if (SWRAM_ARM7.Mem)
{
NDS::JIT->CheckAndInvalidate<1, ARMJIT_Memory::memregion_SharedWRAM>(addr);
*(u16*)&SWRAM_ARM7.Mem[addr & SWRAM_ARM7.Mask] = val;
return;
}
else
{
NDS::JIT->CheckAndInvalidate<1, ARMJIT_Memory::memregion_WRAM7>(addr);
*(u16*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)] = val;
return;
}
case 0x03800000:
NDS::JIT->CheckAndInvalidate<1, ARMJIT_Memory::memregion_WRAM7>(addr);
*(u16*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)] = val;
return;
case 0x04000000:
ARM7IOWrite16(addr, val);
return;
case 0x04800000:
if (addr < 0x04810000)
{
if (!(PowerControl7 & (1<<1))) return;
Wifi->Write(addr, val);
return;
}
break;
case 0x06000000:
case 0x06800000:
NDS::JIT->CheckAndInvalidate<1, ARMJIT_Memory::memregion_VWRAM>(addr);
GPU->WriteVRAM_ARM7<u16>(addr, val);
return;
case 0x08000000:
case 0x08800000:
case 0x09000000:
case 0x09800000:
if (!(ExMemCnt[0] & (1<<7))) return; // deselected CPU, skip the write
assert(GBACartSlot != nullptr);
GBACartSlot->ROMWrite(addr, val);
return;
case 0x0A000000:
case 0x0A800000:
if (!(ExMemCnt[0] & (1<<7))) return; // deselected CPU, skip the write
GBACartSlot->SRAMWrite(addr, val & 0xFF);
GBACartSlot->SRAMWrite(addr+1, val >> 8);
return;
}
if (addr >= 0x01000000)
Log(LogLevel::Debug, "unknown arm7 write16 %08X %04X @ %08X\n", addr, val, ARM7->R[15]);
}
void ARM7Write32(u32 addr, u32 val)
{
addr &= ~0x3;
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
NDS::JIT->CheckAndInvalidate<1, ARMJIT_Memory::memregion_MainRAM>(addr);
*(u32*)&MainRAM[addr & MainRAMMask] = val;
return;
case 0x03000000:
if (SWRAM_ARM7.Mem)
{
NDS::JIT->CheckAndInvalidate<1, ARMJIT_Memory::memregion_SharedWRAM>(addr);
*(u32*)&SWRAM_ARM7.Mem[addr & SWRAM_ARM7.Mask] = val;
return;
}
else
{
NDS::JIT->CheckAndInvalidate<1, ARMJIT_Memory::memregion_WRAM7>(addr);
*(u32*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)] = val;
return;
}
case 0x03800000:
NDS::JIT->CheckAndInvalidate<1, ARMJIT_Memory::memregion_WRAM7>(addr);
*(u32*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)] = val;
return;
case 0x04000000:
ARM7IOWrite32(addr, val);
return;
case 0x04800000:
if (addr < 0x04810000)
{
if (!(PowerControl7 & (1<<1))) return;
Wifi->Write(addr, val & 0xFFFF);
Wifi->Write(addr+2, val >> 16);
return;
}
break;
case 0x06000000:
case 0x06800000:
NDS::JIT->CheckAndInvalidate<1, ARMJIT_Memory::memregion_VWRAM>(addr);
GPU->WriteVRAM_ARM7<u32>(addr, val);
return;
case 0x08000000:
case 0x08800000:
case 0x09000000:
case 0x09800000:
if (!(ExMemCnt[0] & (1<<7))) return; // deselected CPU, skip the write
assert(GBACartSlot != nullptr);
GBACartSlot->ROMWrite(addr, val & 0xFFFF);
GBACartSlot->ROMWrite(addr+2, val >> 16);
return;
case 0x0A000000:
case 0x0A800000:
if (!(ExMemCnt[0] & (1<<7))) return; // deselected CPU, skip the write
assert(GBACartSlot != nullptr);
GBACartSlot->SRAMWrite(addr, val & 0xFF);
GBACartSlot->SRAMWrite(addr+1, (val >> 8) & 0xFF);
GBACartSlot->SRAMWrite(addr+2, (val >> 16) & 0xFF);
GBACartSlot->SRAMWrite(addr+3, val >> 24);
return;
}
if (addr >= 0x01000000)
Log(LogLevel::Debug, "unknown arm7 write32 %08X %08X @ %08X\n", addr, val, ARM7->R[15]);
}
bool ARM7GetMemRegion(u32 addr, bool write, MemRegion* region)
{
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
region->Mem = MainRAM;
region->Mask = MainRAMMask;
return true;
case 0x03000000:
// note on this, and why we can only cover it in one particular case:
// it is typical for games to map all shared WRAM to the ARM7
// then access all the WRAM as one contiguous block starting at 0x037F8000
// this case needs a bit of a hack to cover
// it's not really worth bothering anyway
if (!SWRAM_ARM7.Mem)
{
region->Mem = ARM7WRAM;
region->Mask = ARM7WRAMSize-1;
return true;
}
break;
case 0x03800000:
region->Mem = ARM7WRAM;
region->Mask = ARM7WRAMSize-1;
return true;
}
// BIOS. ARM7 PC has to be within range.
if (addr < 0x00004000 && !write)
{
if (ARM7->R[15] < 0x4000 && (addr >= ARM7BIOSProt || ARM7->R[15] < ARM7BIOSProt))
{
region->Mem = ARM7BIOS;
region->Mask = 0x3FFF;
return true;
}
}
region->Mem = NULL;
return false;
}
#define CASE_READ8_16BIT(addr, val) \
case (addr): return (val) & 0xFF; \
case (addr+1): return (val) >> 8;
#define CASE_READ8_32BIT(addr, val) \
case (addr): return (val) & 0xFF; \
case (addr+1): return ((val) >> 8) & 0xFF; \
case (addr+2): return ((val) >> 16) & 0xFF; \
case (addr+3): return (val) >> 24;
u8 ARM9IORead8(u32 addr)
{
switch (addr)
{
case 0x04000130: LagFrameFlag = false; return KeyInput & 0xFF;
case 0x04000131: LagFrameFlag = false; return (KeyInput >> 8) & 0xFF;
case 0x04000132: return KeyCnt[0] & 0xFF;
case 0x04000133: return KeyCnt[0] >> 8;
case 0x040001A2:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot->ReadSPIData();
return 0;
case 0x040001A8:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot->GetROMCommand(0);
return 0;
case 0x040001A9:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot->GetROMCommand(1);
return 0;
case 0x040001AA:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot->GetROMCommand(2);
return 0;
case 0x040001AB:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot->GetROMCommand(3);
return 0;
case 0x040001AC:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot->GetROMCommand(4);
return 0;
case 0x040001AD:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot->GetROMCommand(5);
return 0;
case 0x040001AE:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot->GetROMCommand(6);
return 0;
case 0x040001AF:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot->GetROMCommand(7);
return 0;
case 0x04000208: return IME[0];
case 0x04000240: return GPU->VRAMCNT[0];
case 0x04000241: return GPU->VRAMCNT[1];
case 0x04000242: return GPU->VRAMCNT[2];
case 0x04000243: return GPU->VRAMCNT[3];
case 0x04000244: return GPU->VRAMCNT[4];
case 0x04000245: return GPU->VRAMCNT[5];
case 0x04000246: return GPU->VRAMCNT[6];
case 0x04000247: return WRAMCnt;
case 0x04000248: return GPU->VRAMCNT[7];
case 0x04000249: return GPU->VRAMCNT[8];
CASE_READ8_16BIT(0x04000280, DivCnt)
CASE_READ8_32BIT(0x04000290, DivNumerator[0])
CASE_READ8_32BIT(0x04000294, DivNumerator[1])
CASE_READ8_32BIT(0x04000298, DivDenominator[0])
CASE_READ8_32BIT(0x0400029C, DivDenominator[1])
CASE_READ8_32BIT(0x040002A0, DivQuotient[0])
CASE_READ8_32BIT(0x040002A4, DivQuotient[1])
CASE_READ8_32BIT(0x040002A8, DivRemainder[0])
CASE_READ8_32BIT(0x040002AC, DivRemainder[1])
CASE_READ8_16BIT(0x040002B0, SqrtCnt)
CASE_READ8_32BIT(0x040002B4, SqrtRes)
CASE_READ8_32BIT(0x040002B8, SqrtVal[0])
CASE_READ8_32BIT(0x040002BC, SqrtVal[1])
case 0x04000300: return PostFlag9;
}
if (addr >= 0x04000000 && addr < 0x04000060)
{
return GPU->GPU2D_A.Read8(addr);
}
if (addr >= 0x04001000 && addr < 0x04001060)
{
return GPU->GPU2D_B.Read8(addr);
}
if (addr >= 0x04000320 && addr < 0x040006A4)
{
return GPU->GPU3D.Read8(addr);
}
// NO$GBA debug register "Emulation ID"
if(addr >= 0x04FFFA00 && addr < 0x04FFFA10)
{
// FIX: GBATek says this should be padded with spaces
static char const emuID[16] = "melonDS " MELONDS_VERSION;
auto idx = addr - 0x04FFFA00;
return (u8)(emuID[idx]);
}
if ((addr & 0xFFFFF000) != 0x04004000)
Log(LogLevel::Debug, "unknown ARM9 IO read8 %08X %08X\n", addr, ARM9->R[15]);
return 0;
}
u16 ARM9IORead16(u32 addr)
{
switch (addr)
{
case 0x04000004: return GPU->DispStat[0];
case 0x04000006: return GPU->VCount;
case 0x04000060: return GPU->GPU3D.Read16(addr);
case 0x04000064:
case 0x04000066: return GPU->GPU2D_A.Read16(addr);
case 0x040000B8: return DMAs[0]->Cnt & 0xFFFF;
case 0x040000BA: return DMAs[0]->Cnt >> 16;
case 0x040000C4: return DMAs[1]->Cnt & 0xFFFF;
case 0x040000C6: return DMAs[1]->Cnt >> 16;
case 0x040000D0: return DMAs[2]->Cnt & 0xFFFF;
case 0x040000D2: return DMAs[2]->Cnt >> 16;
case 0x040000DC: return DMAs[3]->Cnt & 0xFFFF;
case 0x040000DE: return DMAs[3]->Cnt >> 16;
case 0x040000E0: return ((u16*)DMA9Fill)[0];
case 0x040000E2: return ((u16*)DMA9Fill)[1];
case 0x040000E4: return ((u16*)DMA9Fill)[2];
case 0x040000E6: return ((u16*)DMA9Fill)[3];
case 0x040000E8: return ((u16*)DMA9Fill)[4];
case 0x040000EA: return ((u16*)DMA9Fill)[5];
case 0x040000EC: return ((u16*)DMA9Fill)[6];
case 0x040000EE: return ((u16*)DMA9Fill)[7];
case 0x04000100: return TimerGetCounter(0);
case 0x04000102: return Timers[0].Cnt;
case 0x04000104: return TimerGetCounter(1);
case 0x04000106: return Timers[1].Cnt;
case 0x04000108: return TimerGetCounter(2);
case 0x0400010A: return Timers[2].Cnt;
case 0x0400010C: return TimerGetCounter(3);
case 0x0400010E: return Timers[3].Cnt;
case 0x04000130: LagFrameFlag = false; return KeyInput & 0xFFFF;
case 0x04000132: return KeyCnt[0];
case 0x04000180: return IPCSync9;
case 0x04000184:
{
u16 val = IPCFIFOCnt9;
if (IPCFIFO9.IsEmpty()) val |= 0x0001;
else if (IPCFIFO9.IsFull()) val |= 0x0002;
if (IPCFIFO7.IsEmpty()) val |= 0x0100;
else if (IPCFIFO7.IsFull()) val |= 0x0200;
return val;
}
case 0x040001A0:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot->GetSPICnt();
return 0;
case 0x040001A2:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot->ReadSPIData();
return 0;
case 0x040001A8:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot->GetROMCommand(0) |
(NDSCartSlot->GetROMCommand(1) << 8);
return 0;
case 0x040001AA:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot->GetROMCommand(2) |
(NDSCartSlot->GetROMCommand(3) << 8);
return 0;
case 0x040001AC:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot->GetROMCommand(4) |
(NDSCartSlot->GetROMCommand(5) << 8);
return 0;
case 0x040001AE:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot->GetROMCommand(6) |
(NDSCartSlot->GetROMCommand(7) << 8);
return 0;
case 0x04000204: return ExMemCnt[0];
case 0x04000208: return IME[0];
case 0x04000210: return IE[0] & 0xFFFF;
case 0x04000212: return IE[0] >> 16;
case 0x04000240: return GPU->VRAMCNT[0] | (GPU->VRAMCNT[1] << 8);
case 0x04000242: return GPU->VRAMCNT[2] | (GPU->VRAMCNT[3] << 8);
case 0x04000244: return GPU->VRAMCNT[4] | (GPU->VRAMCNT[5] << 8);
case 0x04000246: return GPU->VRAMCNT[6] | (WRAMCnt << 8);
case 0x04000248: return GPU->VRAMCNT[7] | (GPU->VRAMCNT[8] << 8);
case 0x04000280: return DivCnt;
case 0x04000290: return DivNumerator[0] & 0xFFFF;
case 0x04000292: return DivNumerator[0] >> 16;
case 0x04000294: return DivNumerator[1] & 0xFFFF;
case 0x04000296: return DivNumerator[1] >> 16;
case 0x04000298: return DivDenominator[0] & 0xFFFF;
case 0x0400029A: return DivDenominator[0] >> 16;
case 0x0400029C: return DivDenominator[1] & 0xFFFF;
case 0x0400029E: return DivDenominator[1] >> 16;
case 0x040002A0: return DivQuotient[0] & 0xFFFF;
case 0x040002A2: return DivQuotient[0] >> 16;
case 0x040002A4: return DivQuotient[1] & 0xFFFF;
case 0x040002A6: return DivQuotient[1] >> 16;
case 0x040002A8: return DivRemainder[0] & 0xFFFF;
case 0x040002AA: return DivRemainder[0] >> 16;
case 0x040002AC: return DivRemainder[1] & 0xFFFF;
case 0x040002AE: return DivRemainder[1] >> 16;
case 0x040002B0: return SqrtCnt;
case 0x040002B4: return SqrtRes & 0xFFFF;
case 0x040002B6: return SqrtRes >> 16;
case 0x040002B8: return SqrtVal[0] & 0xFFFF;
case 0x040002BA: return SqrtVal[0] >> 16;
case 0x040002BC: return SqrtVal[1] & 0xFFFF;
case 0x040002BE: return SqrtVal[1] >> 16;
case 0x04000300: return PostFlag9;
case 0x04000304: return PowerControl9;
case 0x04004000:
case 0x04004004:
case 0x04004010:
// shut up logging for DSi registers
return 0;
}
if ((addr >= 0x04000000 && addr < 0x04000060) || (addr == 0x0400006C))
{
return GPU->GPU2D_A.Read16(addr);
}
if ((addr >= 0x04001000 && addr < 0x04001060) || (addr == 0x0400106C))
{
return GPU->GPU2D_B.Read16(addr);
}
if (addr >= 0x04000320 && addr < 0x040006A4)
{
return GPU->GPU3D.Read16(addr);
}
if ((addr & 0xFFFFF000) != 0x04004000)
Log(LogLevel::Debug, "unknown ARM9 IO read16 %08X %08X\n", addr, ARM9->R[15]);
return 0;
}
u32 ARM9IORead32(u32 addr)
{
switch (addr)
{
case 0x04000004: return GPU->DispStat[0] | (GPU->VCount << 16);
case 0x04000060: return GPU->GPU3D.Read32(addr);
case 0x04000064: return GPU->GPU2D_A.Read32(addr);
case 0x040000B0: return DMAs[0]->SrcAddr;
case 0x040000B4: return DMAs[0]->DstAddr;
case 0x040000B8: return DMAs[0]->Cnt;
case 0x040000BC: return DMAs[1]->SrcAddr;
case 0x040000C0: return DMAs[1]->DstAddr;
case 0x040000C4: return DMAs[1]->Cnt;
case 0x040000C8: return DMAs[2]->SrcAddr;
case 0x040000CC: return DMAs[2]->DstAddr;
case 0x040000D0: return DMAs[2]->Cnt;
case 0x040000D4: return DMAs[3]->SrcAddr;
case 0x040000D8: return DMAs[3]->DstAddr;
case 0x040000DC: return DMAs[3]->Cnt;
case 0x040000E0: return DMA9Fill[0];
case 0x040000E4: return DMA9Fill[1];
case 0x040000E8: return DMA9Fill[2];
case 0x040000EC: return DMA9Fill[3];
case 0x040000F4: return 0; // ???? Golden Sun Dark Dawn keeps reading this
case 0x04000100: return TimerGetCounter(0) | (Timers[0].Cnt << 16);
case 0x04000104: return TimerGetCounter(1) | (Timers[1].Cnt << 16);
case 0x04000108: return TimerGetCounter(2) | (Timers[2].Cnt << 16);
case 0x0400010C: return TimerGetCounter(3) | (Timers[3].Cnt << 16);
case 0x04000130: LagFrameFlag = false; return (KeyInput & 0xFFFF) | (KeyCnt[0] << 16);
case 0x04000180: return IPCSync9;
case 0x04000184: return ARM9IORead16(addr);
case 0x040001A0:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot->GetSPICnt() | (NDSCartSlot->ReadSPIData() << 16);
return 0;
case 0x040001A4:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot->GetROMCnt();
return 0;
case 0x040001A8:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot->GetROMCommand(0) |
(NDSCartSlot->GetROMCommand(1) << 8) |
(NDSCartSlot->GetROMCommand(2) << 16) |
(NDSCartSlot->GetROMCommand(3) << 24);
return 0;
case 0x040001AC:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot->GetROMCommand(4) |
(NDSCartSlot->GetROMCommand(5) << 8) |
(NDSCartSlot->GetROMCommand(6) << 16) |
(NDSCartSlot->GetROMCommand(7) << 24);
return 0;
case 0x04000208: return IME[0];
case 0x04000210: return IE[0];
case 0x04000214: return IF[0];
case 0x04000240: return GPU->VRAMCNT[0] | (GPU->VRAMCNT[1] << 8) | (GPU->VRAMCNT[2] << 16) | (GPU->VRAMCNT[3] << 24);
case 0x04000244: return GPU->VRAMCNT[4] | (GPU->VRAMCNT[5] << 8) | (GPU->VRAMCNT[6] << 16) | (WRAMCnt << 24);
case 0x04000248: return GPU->VRAMCNT[7] | (GPU->VRAMCNT[8] << 8);
case 0x04000280: return DivCnt;
case 0x04000290: return DivNumerator[0];
case 0x04000294: return DivNumerator[1];
case 0x04000298: return DivDenominator[0];
case 0x0400029C: return DivDenominator[1];
case 0x040002A0: return DivQuotient[0];
case 0x040002A4: return DivQuotient[1];
case 0x040002A8: return DivRemainder[0];
case 0x040002AC: return DivRemainder[1];
case 0x040002B0: return SqrtCnt;
case 0x040002B4: return SqrtRes;
case 0x040002B8: return SqrtVal[0];
case 0x040002BC: return SqrtVal[1];
case 0x04000300: return PostFlag9;
case 0x04000304: return PowerControl9;
case 0x04100000:
if (IPCFIFOCnt9 & 0x8000)
{
u32 ret;
if (IPCFIFO7.IsEmpty())
{
IPCFIFOCnt9 |= 0x4000;
ret = IPCFIFO7.Peek();
}
else
{
ret = IPCFIFO7.Read();
if (IPCFIFO7.IsEmpty() && (IPCFIFOCnt7 & 0x0004))
SetIRQ(1, IRQ_IPCSendDone);
}
return ret;
}
else
return IPCFIFO7.Peek();
case 0x04100010:
if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot->ReadROMData();
return 0;
case 0x04004000:
case 0x04004004:
case 0x04004010:
// shut up logging for DSi registers
return 0;
// NO$GBA debug register "Clock Cycles"
// Since it's a 64 bit reg. the CPU will access it in two parts:
case 0x04FFFA20: return (u32)(GetSysClockCycles(0) & 0xFFFFFFFF);
case 0x04FFFA24: return (u32)(GetSysClockCycles(0) >> 32);
}
if ((addr >= 0x04000000 && addr < 0x04000060) || (addr == 0x0400006C))
{
return GPU->GPU2D_A.Read32(addr);
}
if ((addr >= 0x04001000 && addr < 0x04001060) || (addr == 0x0400106C))
{
return GPU->GPU2D_B.Read32(addr);
}
if (addr >= 0x04000320 && addr < 0x040006A4)
{
return GPU->GPU3D.Read32(addr);
}
if ((addr & 0xFFFFF000) != 0x04004000)
Log(LogLevel::Debug, "unknown ARM9 IO read32 %08X %08X\n", addr, ARM9->R[15]);
return 0;
}
void ARM9IOWrite8(u32 addr, u8 val)
{
switch (addr)
{
case 0x0400006C:
case 0x0400006D: GPU->GPU2D_A.Write8(addr, val); return;
case 0x0400106C:
case 0x0400106D: GPU->GPU2D_B.Write8(addr, val); return;
case 0x04000132:
KeyCnt[0] = (KeyCnt[0] & 0xFF00) | val;
return;
case 0x04000133:
KeyCnt[0] = (KeyCnt[0] & 0x00FF) | (val << 8);
return;
case 0x04000188:
ARM9IOWrite32(addr, val | (val << 8) | (val << 16) | (val << 24));
return;
case 0x040001A0:
if (!(ExMemCnt[0] & (1<<11)))
NDSCartSlot->WriteSPICnt((NDSCartSlot->GetSPICnt() & 0xFF00) | val);
return;
case 0x040001A1:
if (!(ExMemCnt[0] & (1<<11)))
NDSCartSlot->WriteSPICnt((NDSCartSlot->GetSPICnt() & 0x00FF) | (val << 8));
return;
case 0x040001A2:
if (!(ExMemCnt[0] & (1<<11)))
NDSCartSlot->WriteSPIData(val);
return;
case 0x040001A8: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot->SetROMCommand(0, val); return;
case 0x040001A9: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot->SetROMCommand(1, val); return;
case 0x040001AA: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot->SetROMCommand(2, val); return;
case 0x040001AB: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot->SetROMCommand(3, val); return;
case 0x040001AC: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot->SetROMCommand(4, val); return;
case 0x040001AD: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot->SetROMCommand(5, val); return;
case 0x040001AE: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot->SetROMCommand(6, val); return;
case 0x040001AF: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot->SetROMCommand(7, val); return;
case 0x04000208: IME[0] = val & 0x1; UpdateIRQ(0); return;
case 0x04000240: GPU->MapVRAM_AB(0, val); return;
case 0x04000241: GPU->MapVRAM_AB(1, val); return;
case 0x04000242: GPU->MapVRAM_CD(2, val); return;
case 0x04000243: GPU->MapVRAM_CD(3, val); return;
case 0x04000244: GPU->MapVRAM_E(4, val); return;
case 0x04000245: GPU->MapVRAM_FG(5, val); return;
case 0x04000246: GPU->MapVRAM_FG(6, val); return;
case 0x04000247: MapSharedWRAM(val); return;
case 0x04000248: GPU->MapVRAM_H(7, val); return;
case 0x04000249: GPU->MapVRAM_I(8, val); return;
case 0x04000300:
if (PostFlag9 & 0x01) val |= 0x01;
PostFlag9 = val & 0x03;
return;
}
if (addr >= 0x04000000 && addr < 0x04000060)
{
GPU->GPU2D_A.Write8(addr, val);
return;
}
if (addr >= 0x04001000 && addr < 0x04001060)
{
GPU->GPU2D_B.Write8(addr, val);
return;
}
if (addr >= 0x04000320 && addr < 0x040006A4)
{
GPU->GPU3D.Write8(addr, val);
return;
}
Log(LogLevel::Debug, "unknown ARM9 IO write8 %08X %02X %08X\n", addr, val, ARM9->R[15]);
}
void ARM9IOWrite16(u32 addr, u16 val)
{
switch (addr)
{
case 0x04000004: GPU->SetDispStat(0, val); return;
case 0x04000006: GPU->SetVCount(val); return;
case 0x04000060: GPU->GPU3D.Write16(addr, val); return;
case 0x04000068:
case 0x0400006A: GPU->GPU2D_A.Write16(addr, val); return;
case 0x0400006C: GPU->GPU2D_A.Write16(addr, val); return;
case 0x0400106C: GPU->GPU2D_B.Write16(addr, val); return;
case 0x040000B8: DMAs[0]->WriteCnt((DMAs[0]->Cnt & 0xFFFF0000) | val); return;
case 0x040000BA: DMAs[0]->WriteCnt((DMAs[0]->Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x040000C4: DMAs[1]->WriteCnt((DMAs[1]->Cnt & 0xFFFF0000) | val); return;
case 0x040000C6: DMAs[1]->WriteCnt((DMAs[1]->Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x040000D0: DMAs[2]->WriteCnt((DMAs[2]->Cnt & 0xFFFF0000) | val); return;
case 0x040000D2: DMAs[2]->WriteCnt((DMAs[2]->Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x040000DC: DMAs[3]->WriteCnt((DMAs[3]->Cnt & 0xFFFF0000) | val); return;
case 0x040000DE: DMAs[3]->WriteCnt((DMAs[3]->Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x040000E0: DMA9Fill[0] = (DMA9Fill[0] & 0xFFFF0000) | val; return;
case 0x040000E2: DMA9Fill[0] = (DMA9Fill[0] & 0x0000FFFF) | (val << 16); return;
case 0x040000E4: DMA9Fill[1] = (DMA9Fill[1] & 0xFFFF0000) | val; return;
case 0x040000E6: DMA9Fill[1] = (DMA9Fill[1] & 0x0000FFFF) | (val << 16); return;
case 0x040000E8: DMA9Fill[2] = (DMA9Fill[2] & 0xFFFF0000) | val; return;
case 0x040000EA: DMA9Fill[2] = (DMA9Fill[2] & 0x0000FFFF) | (val << 16); return;
case 0x040000EC: DMA9Fill[3] = (DMA9Fill[3] & 0xFFFF0000) | val; return;
case 0x040000EE: DMA9Fill[3] = (DMA9Fill[3] & 0x0000FFFF) | (val << 16); return;
case 0x04000100: Timers[0].Reload = val; return;
case 0x04000102: TimerStart(0, val); return;
case 0x04000104: Timers[1].Reload = val; return;
case 0x04000106: TimerStart(1, val); return;
case 0x04000108: Timers[2].Reload = val; return;
case 0x0400010A: TimerStart(2, val); return;
case 0x0400010C: Timers[3].Reload = val; return;
case 0x0400010E: TimerStart(3, val); return;
case 0x04000132:
KeyCnt[0] = val;
return;
case 0x04000180:
IPCSync7 &= 0xFFF0;
IPCSync7 |= ((val & 0x0F00) >> 8);
IPCSync9 &= 0xB0FF;
IPCSync9 |= (val & 0x4F00);
if ((val & 0x2000) && (IPCSync7 & 0x4000))
{
SetIRQ(1, IRQ_IPCSync);
}
return;
case 0x04000184:
if (val & 0x0008)
IPCFIFO9.Clear();
if ((val & 0x0004) && (!(IPCFIFOCnt9 & 0x0004)) && IPCFIFO9.IsEmpty())
SetIRQ(0, IRQ_IPCSendDone);
if ((val & 0x0400) && (!(IPCFIFOCnt9 & 0x0400)) && (!IPCFIFO7.IsEmpty()))
SetIRQ(0, IRQ_IPCRecv);
if (val & 0x4000)
IPCFIFOCnt9 &= ~0x4000;
IPCFIFOCnt9 = (val & 0x8404) | (IPCFIFOCnt9 & 0x4000);
return;
case 0x04000188:
ARM9IOWrite32(addr, val | (val << 16));
return;
case 0x040001A0:
if (!(ExMemCnt[0] & (1<<11)))
NDSCartSlot->WriteSPICnt(val);
return;
case 0x040001A2:
if (!(ExMemCnt[0] & (1<<11)))
NDSCartSlot->WriteSPIData(val & 0xFF);
return;
case 0x040001A8:
if (!(ExMemCnt[0] & (1<<11)))
{
NDSCartSlot->SetROMCommand(0, val & 0xFF);
NDSCartSlot->SetROMCommand(1, val >> 8);
}
return;
case 0x040001AA:
if (!(ExMemCnt[0] & (1<<11)))
{
NDSCartSlot->SetROMCommand(2, val & 0xFF);
NDSCartSlot->SetROMCommand(3, val >> 8);
}
return;
case 0x040001AC:
if (!(ExMemCnt[0] & (1<<11)))
{
NDSCartSlot->SetROMCommand(4, val & 0xFF);
NDSCartSlot->SetROMCommand(5, val >> 8);
}
return;
case 0x040001AE:
if (!(ExMemCnt[0] & (1<<11)))
{
NDSCartSlot->SetROMCommand(6, val & 0xFF);
NDSCartSlot->SetROMCommand(7, val >> 8);
}
return;
case 0x040001B8: ROMSeed0[4] = val & 0x7F; return;
case 0x040001BA: ROMSeed1[4] = val & 0x7F; return;
case 0x04000204:
{
u16 oldVal = ExMemCnt[0];
ExMemCnt[0] = val;
ExMemCnt[1] = (ExMemCnt[1] & 0x007F) | (val & 0xFF80);
if ((oldVal ^ ExMemCnt[0]) & 0xFF)
SetGBASlotTimings();
return;
}
case 0x04000208: IME[0] = val & 0x1; UpdateIRQ(0); return;
case 0x04000210: IE[0] = (IE[0] & 0xFFFF0000) | val; UpdateIRQ(0); return;
case 0x04000212: IE[0] = (IE[0] & 0x0000FFFF) | (val << 16); UpdateIRQ(0); return;
// TODO: what happens when writing to IF this way??
case 0x04000240:
GPU->MapVRAM_AB(0, val & 0xFF);
GPU->MapVRAM_AB(1, val >> 8);
return;
case 0x04000242:
GPU->MapVRAM_CD(2, val & 0xFF);
GPU->MapVRAM_CD(3, val >> 8);
return;
case 0x04000244:
GPU->MapVRAM_E(4, val & 0xFF);
GPU->MapVRAM_FG(5, val >> 8);
return;
case 0x04000246:
GPU->MapVRAM_FG(6, val & 0xFF);
MapSharedWRAM(val >> 8);
return;
case 0x04000248:
GPU->MapVRAM_H(7, val & 0xFF);
GPU->MapVRAM_I(8, val >> 8);
return;
case 0x04000280: DivCnt = val; StartDiv(); return;
case 0x040002B0: SqrtCnt = val; StartSqrt(); return;
case 0x04000300:
if (PostFlag9 & 0x01) val |= 0x01;
PostFlag9 = val & 0x03;
return;
case 0x04000304:
PowerControl9 = val & 0x820F;
GPU->SetPowerCnt(PowerControl9);
return;
}
if (addr >= 0x04000000 && addr < 0x04000060)
{
GPU->GPU2D_A.Write16(addr, val);
return;
}
if (addr >= 0x04001000 && addr < 0x04001060)
{
GPU->GPU2D_B.Write16(addr, val);
return;
}
if (addr >= 0x04000320 && addr < 0x040006A4)
{
GPU->GPU3D.Write16(addr, val);
return;
}
Log(LogLevel::Debug, "unknown ARM9 IO write16 %08X %04X %08X\n", addr, val, ARM9->R[15]);
}
void ARM9IOWrite32(u32 addr, u32 val)
{
switch (addr)
{
case 0x04000004:
GPU->SetDispStat(0, val & 0xFFFF);
GPU->SetVCount(val >> 16);
return;
case 0x04000060: GPU->GPU3D.Write32(addr, val); return;
case 0x04000064:
case 0x04000068: GPU->GPU2D_A.Write32(addr, val); return;
case 0x0400006C: GPU->GPU2D_A.Write16(addr, val&0xFFFF); return;
case 0x0400106C: GPU->GPU2D_B.Write16(addr, val&0xFFFF); return;
case 0x040000B0: DMAs[0]->SrcAddr = val; return;
case 0x040000B4: DMAs[0]->DstAddr = val; return;
case 0x040000B8: DMAs[0]->WriteCnt(val); return;
case 0x040000BC: DMAs[1]->SrcAddr = val; return;
case 0x040000C0: DMAs[1]->DstAddr = val; return;
case 0x040000C4: DMAs[1]->WriteCnt(val); return;
case 0x040000C8: DMAs[2]->SrcAddr = val; return;
case 0x040000CC: DMAs[2]->DstAddr = val; return;
case 0x040000D0: DMAs[2]->WriteCnt(val); return;
case 0x040000D4: DMAs[3]->SrcAddr = val; return;
case 0x040000D8: DMAs[3]->DstAddr = val; return;
case 0x040000DC: DMAs[3]->WriteCnt(val); return;
case 0x040000E0: DMA9Fill[0] = val; return;
case 0x040000E4: DMA9Fill[1] = val; return;
case 0x040000E8: DMA9Fill[2] = val; return;
case 0x040000EC: DMA9Fill[3] = val; return;
case 0x04000100:
Timers[0].Reload = val & 0xFFFF;
TimerStart(0, val>>16);
return;
case 0x04000104:
Timers[1].Reload = val & 0xFFFF;
TimerStart(1, val>>16);
return;
case 0x04000108:
Timers[2].Reload = val & 0xFFFF;
TimerStart(2, val>>16);
return;
case 0x0400010C:
Timers[3].Reload = val & 0xFFFF;
TimerStart(3, val>>16);
return;
case 0x04000130:
KeyCnt[0] = val >> 16;
return;
case 0x04000180:
case 0x04000184:
ARM9IOWrite16(addr, val);
return;
case 0x04000188:
if (IPCFIFOCnt9 & 0x8000)
{
if (IPCFIFO9.IsFull())
IPCFIFOCnt9 |= 0x4000;
else
{
bool wasempty = IPCFIFO9.IsEmpty();
IPCFIFO9.Write(val);
if ((IPCFIFOCnt7 & 0x0400) && wasempty)
SetIRQ(1, IRQ_IPCRecv);
}
}
return;
case 0x040001A0:
if (!(ExMemCnt[0] & (1<<11)))
{
NDSCartSlot->WriteSPICnt(val & 0xFFFF);
NDSCartSlot->WriteSPIData((val >> 16) & 0xFF);
}
return;
case 0x040001A4:
if (!(ExMemCnt[0] & (1<<11)))
NDSCartSlot->WriteROMCnt(val);
return;
case 0x040001A8:
if (!(ExMemCnt[0] & (1<<11)))
{
NDSCartSlot->SetROMCommand(0, val & 0xFF);
NDSCartSlot->SetROMCommand(1, (val >> 8) & 0xFF);
NDSCartSlot->SetROMCommand(2, (val >> 16) & 0xFF);
NDSCartSlot->SetROMCommand(3, val >> 24);
}
return;
case 0x040001AC:
if (!(ExMemCnt[0] & (1<<11)))
{
NDSCartSlot->SetROMCommand(4, val & 0xFF);
NDSCartSlot->SetROMCommand(5, (val >> 8) & 0xFF);
NDSCartSlot->SetROMCommand(6, (val >> 16) & 0xFF);
NDSCartSlot->SetROMCommand(7, val >> 24);
}
return;
case 0x040001B0: *(u32*)&ROMSeed0[0] = val; return;
case 0x040001B4: *(u32*)&ROMSeed1[0] = val; return;
case 0x04000208: IME[0] = val & 0x1; UpdateIRQ(0); return;
case 0x04000210: IE[0] = val; UpdateIRQ(0); return;
case 0x04000214: IF[0] &= ~val; GPU->GPU3D.CheckFIFOIRQ(); UpdateIRQ(0); return;
case 0x04000240:
GPU->MapVRAM_AB(0, val & 0xFF);
GPU->MapVRAM_AB(1, (val >> 8) & 0xFF);
GPU->MapVRAM_CD(2, (val >> 16) & 0xFF);
GPU->MapVRAM_CD(3, val >> 24);
return;
case 0x04000244:
GPU->MapVRAM_E(4, val & 0xFF);
GPU->MapVRAM_FG(5, (val >> 8) & 0xFF);
GPU->MapVRAM_FG(6, (val >> 16) & 0xFF);
MapSharedWRAM(val >> 24);
return;
case 0x04000248:
GPU->MapVRAM_H(7, val & 0xFF);
GPU->MapVRAM_I(8, (val >> 8) & 0xFF);
return;
case 0x04000280: DivCnt = val; StartDiv(); return;
case 0x040002B0: SqrtCnt = val; StartSqrt(); return;
case 0x04000290: DivNumerator[0] = val; StartDiv(); return;
case 0x04000294: DivNumerator[1] = val; StartDiv(); return;
case 0x04000298: DivDenominator[0] = val; StartDiv(); return;
case 0x0400029C: DivDenominator[1] = val; StartDiv(); return;
case 0x040002B8: SqrtVal[0] = val; StartSqrt(); return;
case 0x040002BC: SqrtVal[1] = val; StartSqrt(); return;
case 0x04000304:
PowerControl9 = val & 0x820F;
GPU->SetPowerCnt(PowerControl9);
return;
case 0x04100010:
if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot->WriteROMData(val);
return;
// NO$GBA debug register "String Out (raw)"
case 0x04FFFA10:
{
char output[1024] = { 0 };
char ch = '.';
for (size_t i = 0; i < 1023 && ch != '\0'; i++)
{
ch = NDS::ARM9Read8(val + i);
output[i] = ch;
}
Log(LogLevel::Debug, "%s", output);
return;
}
// NO$GBA debug registers "String Out (with parameters)" and "String Out (with parameters, plus linefeed)"
case 0x04FFFA14:
case 0x04FFFA18:
{
bool appendLF = 0x04FFFA18 == addr;
NocashPrint(0, val);
if(appendLF)
Log(LogLevel::Debug, "\n");
return;
}
// NO$GBA debug register "Char Out"
case 0x04FFFA1C: Log(LogLevel::Debug, "%c", val & 0xFF); return;
}
if (addr >= 0x04000000 && addr < 0x04000060)
{
GPU->GPU2D_A.Write32(addr, val);
return;
}
if (addr >= 0x04001000 && addr < 0x04001060)
{
GPU->GPU2D_B.Write32(addr, val);
return;
}
if (addr >= 0x04000320 && addr < 0x040006A4)
{
GPU->GPU3D.Write32(addr, val);
return;
}
Log(LogLevel::Debug, "unknown ARM9 IO write32 %08X %08X %08X\n", addr, val, ARM9->R[15]);
}
u8 ARM7IORead8(u32 addr)
{
switch (addr)
{
case 0x04000130: return KeyInput & 0xFF;
case 0x04000131: return (KeyInput >> 8) & 0xFF;
case 0x04000132: return KeyCnt[1] & 0xFF;
case 0x04000133: return KeyCnt[1] >> 8;
case 0x04000134: return RCnt & 0xFF;
case 0x04000135: return RCnt >> 8;
case 0x04000136: return (KeyInput >> 16) & 0xFF;
case 0x04000137: return KeyInput >> 24;
case 0x04000138: return RTC->Read() & 0xFF;
case 0x040001A2:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot->ReadSPIData();
return 0;
case 0x040001A8:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot->GetROMCommand(0);
return 0;
case 0x040001A9:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot->GetROMCommand(1);
return 0;
case 0x040001AA:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot->GetROMCommand(2);
return 0;
case 0x040001AB:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot->GetROMCommand(3);
return 0;
case 0x040001AC:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot->GetROMCommand(4);
return 0;
case 0x040001AD:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot->GetROMCommand(5);
return 0;
case 0x040001AE:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot->GetROMCommand(6);
return 0;
case 0x040001AF:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot->GetROMCommand(7);
return 0;
case 0x040001C2: return SPI->ReadData();
case 0x04000208: return IME[1];
case 0x04000240: return GPU->VRAMSTAT;
case 0x04000241: return WRAMCnt;
case 0x04000300: return PostFlag7;
case 0x04000304: return PowerControl7;
}
if (addr >= 0x04000400 && addr < 0x04000520)
{
return SPU->Read8(addr);
}
if ((addr & 0xFFFFF000) != 0x04004000)
Log(LogLevel::Debug, "unknown ARM7 IO read8 %08X %08X\n", addr, ARM7->R[15]);
return 0;
}
u16 ARM7IORead16(u32 addr)
{
switch (addr)
{
case 0x04000004: return GPU->DispStat[1];
case 0x04000006: return GPU->VCount;
case 0x040000B8: return DMAs[4]->Cnt & 0xFFFF;
case 0x040000BA: return DMAs[4]->Cnt >> 16;
case 0x040000C4: return DMAs[5]->Cnt & 0xFFFF;
case 0x040000C6: return DMAs[5]->Cnt >> 16;
case 0x040000D0: return DMAs[6]->Cnt & 0xFFFF;
case 0x040000D2: return DMAs[6]->Cnt >> 16;
case 0x040000DC: return DMAs[7]->Cnt & 0xFFFF;
case 0x040000DE: return DMAs[7]->Cnt >> 16;
case 0x04000100: return TimerGetCounter(4);
case 0x04000102: return Timers[4].Cnt;
case 0x04000104: return TimerGetCounter(5);
case 0x04000106: return Timers[5].Cnt;
case 0x04000108: return TimerGetCounter(6);
case 0x0400010A: return Timers[6].Cnt;
case 0x0400010C: return TimerGetCounter(7);
case 0x0400010E: return Timers[7].Cnt;
case 0x04000130: return KeyInput & 0xFFFF;
case 0x04000132: return KeyCnt[1];
case 0x04000134: return RCnt;
case 0x04000136: return KeyInput >> 16;
case 0x04000138: return RTC->Read();
case 0x04000180: return IPCSync7;
case 0x04000184:
{
u16 val = IPCFIFOCnt7;
if (IPCFIFO7.IsEmpty()) val |= 0x0001;
else if (IPCFIFO7.IsFull()) val |= 0x0002;
if (IPCFIFO9.IsEmpty()) val |= 0x0100;
else if (IPCFIFO9.IsFull()) val |= 0x0200;
return val;
}
case 0x040001A0: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot->GetSPICnt(); return 0;
case 0x040001A2: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot->ReadSPIData(); return 0;
case 0x040001A8:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot->GetROMCommand(0) |
(NDSCartSlot->GetROMCommand(1) << 8);
return 0;
case 0x040001AA:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot->GetROMCommand(2) |
(NDSCartSlot->GetROMCommand(3) << 8);
return 0;
case 0x040001AC:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot->GetROMCommand(4) |
(NDSCartSlot->GetROMCommand(5) << 8);
return 0;
case 0x040001AE:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot->GetROMCommand(6) |
(NDSCartSlot->GetROMCommand(7) << 8);
return 0;
case 0x040001C0: return SPI->ReadCnt();
case 0x040001C2: return SPI->ReadData();
case 0x04000204: return ExMemCnt[1];
case 0x04000206:
if (!(PowerControl7 & (1<<1))) return 0;
return WifiWaitCnt;
case 0x04000208: return IME[1];
case 0x04000210: return IE[1] & 0xFFFF;
case 0x04000212: return IE[1] >> 16;
case 0x04000300: return PostFlag7;
case 0x04000304: return PowerControl7;
case 0x04000308: return ARM7BIOSProt;
}
if (addr >= 0x04000400 && addr < 0x04000520)
{
return SPU->Read16(addr);
}
if ((addr & 0xFFFFF000) != 0x04004000)
Log(LogLevel::Debug, "unknown ARM7 IO read16 %08X %08X\n", addr, ARM7->R[15]);
return 0;
}
u32 ARM7IORead32(u32 addr)
{
switch (addr)
{
case 0x04000004: return GPU->DispStat[1] | (GPU->VCount << 16);
case 0x040000B0: return DMAs[4]->SrcAddr;
case 0x040000B4: return DMAs[4]->DstAddr;
case 0x040000B8: return DMAs[4]->Cnt;
case 0x040000BC: return DMAs[5]->SrcAddr;
case 0x040000C0: return DMAs[5]->DstAddr;
case 0x040000C4: return DMAs[5]->Cnt;
case 0x040000C8: return DMAs[6]->SrcAddr;
case 0x040000CC: return DMAs[6]->DstAddr;
case 0x040000D0: return DMAs[6]->Cnt;
case 0x040000D4: return DMAs[7]->SrcAddr;
case 0x040000D8: return DMAs[7]->DstAddr;
case 0x040000DC: return DMAs[7]->Cnt;
case 0x04000100: return TimerGetCounter(4) | (Timers[4].Cnt << 16);
case 0x04000104: return TimerGetCounter(5) | (Timers[5].Cnt << 16);
case 0x04000108: return TimerGetCounter(6) | (Timers[6].Cnt << 16);
case 0x0400010C: return TimerGetCounter(7) | (Timers[7].Cnt << 16);
case 0x04000130: return (KeyInput & 0xFFFF) | (KeyCnt[1] << 16);
case 0x04000134: return RCnt | (KeyInput & 0xFFFF0000);
case 0x04000138: return RTC->Read();
case 0x04000180: return IPCSync7;
case 0x04000184: return ARM7IORead16(addr);
case 0x040001A0:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot->GetSPICnt() | (NDSCartSlot->ReadSPIData() << 16);
return 0;
case 0x040001A4:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot->GetROMCnt();
return 0;
case 0x040001A8:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot->GetROMCommand(0) |
(NDSCartSlot->GetROMCommand(1) << 8) |
(NDSCartSlot->GetROMCommand(2) << 16) |
(NDSCartSlot->GetROMCommand(3) << 24);
return 0;
case 0x040001AC:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot->GetROMCommand(4) |
(NDSCartSlot->GetROMCommand(5) << 8) |
(NDSCartSlot->GetROMCommand(6) << 16) |
(NDSCartSlot->GetROMCommand(7) << 24);
return 0;
case 0x040001C0:
return SPI->ReadCnt() | (SPI->ReadData() << 16);
case 0x04000208: return IME[1];
case 0x04000210: return IE[1];
case 0x04000214: return IF[1];
case 0x04000304: return PowerControl7;
case 0x04000308: return ARM7BIOSProt;
case 0x04100000:
if (IPCFIFOCnt7 & 0x8000)
{
u32 ret;
if (IPCFIFO9.IsEmpty())
{
IPCFIFOCnt7 |= 0x4000;
ret = IPCFIFO9.Peek();
}
else
{
ret = IPCFIFO9.Read();
if (IPCFIFO9.IsEmpty() && (IPCFIFOCnt9 & 0x0004))
SetIRQ(0, IRQ_IPCSendDone);
}
return ret;
}
else
return IPCFIFO9.Peek();
case 0x04100010:
if (ExMemCnt[0] & (1<<11)) return NDSCartSlot->ReadROMData();
return 0;
}
if (addr >= 0x04000400 && addr < 0x04000520)
{
return SPU->Read32(addr);
}
if ((addr & 0xFFFFF000) != 0x04004000)
Log(LogLevel::Debug, "unknown ARM7 IO read32 %08X %08X\n", addr, ARM7->R[15]);
return 0;
}
void ARM7IOWrite8(u32 addr, u8 val)
{
switch (addr)
{
case 0x04000132:
KeyCnt[1] = (KeyCnt[1] & 0xFF00) | val;
return;
case 0x04000133:
KeyCnt[1] = (KeyCnt[1] & 0x00FF) | (val << 8);
return;
case 0x04000134:
RCnt = (RCnt & 0xFF00) | val;
return;
case 0x04000135:
RCnt = (RCnt & 0x00FF) | (val << 8);
return;
case 0x04000138: RTC->Write(val, true); return;
case 0x04000188:
ARM7IOWrite32(addr, val | (val << 8) | (val << 16) | (val << 24));
return;
case 0x040001A0:
if (ExMemCnt[0] & (1<<11))
{
NDSCartSlot->WriteSPICnt((NDSCartSlot->GetSPICnt() & 0xFF00) | val);
}
return;
case 0x040001A1:
if (ExMemCnt[0] & (1<<11))
NDSCartSlot->WriteSPICnt((NDSCartSlot->GetSPICnt() & 0x00FF) | (val << 8));
return;
case 0x040001A2:
if (ExMemCnt[0] & (1<<11))
NDSCartSlot->WriteSPIData(val);
return;
case 0x040001A8: if (ExMemCnt[0] & (1<<11)) NDSCartSlot->SetROMCommand(0, val); return;
case 0x040001A9: if (ExMemCnt[0] & (1<<11)) NDSCartSlot->SetROMCommand(1, val); return;
case 0x040001AA: if (ExMemCnt[0] & (1<<11)) NDSCartSlot->SetROMCommand(2, val); return;
case 0x040001AB: if (ExMemCnt[0] & (1<<11)) NDSCartSlot->SetROMCommand(3, val); return;
case 0x040001AC: if (ExMemCnt[0] & (1<<11)) NDSCartSlot->SetROMCommand(4, val); return;
case 0x040001AD: if (ExMemCnt[0] & (1<<11)) NDSCartSlot->SetROMCommand(5, val); return;
case 0x040001AE: if (ExMemCnt[0] & (1<<11)) NDSCartSlot->SetROMCommand(6, val); return;
case 0x040001AF: if (ExMemCnt[0] & (1<<11)) NDSCartSlot->SetROMCommand(7, val); return;
case 0x040001C2:
SPI->WriteData(val);
return;
case 0x04000208: IME[1] = val & 0x1; UpdateIRQ(1); return;
case 0x04000300:
if (ARM7->R[15] >= 0x4000)
return;
if (!(PostFlag7 & 0x01))
PostFlag7 = val & 0x01;
return;
case 0x04000301:
val &= 0xC0;
if (val == 0x40) Stop(StopReason::GBAModeNotSupported);
else if (val == 0x80) ARM7->Halt(1);
else if (val == 0xC0) EnterSleepMode();
return;
}
if (addr >= 0x04000400 && addr < 0x04000520)
{
SPU->Write8(addr, val);
return;
}
Log(LogLevel::Debug, "unknown ARM7 IO write8 %08X %02X %08X\n", addr, val, ARM7->R[15]);
}
void ARM7IOWrite16(u32 addr, u16 val)
{
switch (addr)
{
case 0x04000004: GPU->SetDispStat(1, val); return;
case 0x04000006: GPU->SetVCount(val); return;
case 0x040000B8: DMAs[4]->WriteCnt((DMAs[4]->Cnt & 0xFFFF0000) | val); return;
case 0x040000BA: DMAs[4]->WriteCnt((DMAs[4]->Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x040000C4: DMAs[5]->WriteCnt((DMAs[5]->Cnt & 0xFFFF0000) | val); return;
case 0x040000C6: DMAs[5]->WriteCnt((DMAs[5]->Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x040000D0: DMAs[6]->WriteCnt((DMAs[6]->Cnt & 0xFFFF0000) | val); return;
case 0x040000D2: DMAs[6]->WriteCnt((DMAs[6]->Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x040000DC: DMAs[7]->WriteCnt((DMAs[7]->Cnt & 0xFFFF0000) | val); return;
case 0x040000DE: DMAs[7]->WriteCnt((DMAs[7]->Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x04000100: Timers[4].Reload = val; return;
case 0x04000102: TimerStart(4, val); return;
case 0x04000104: Timers[5].Reload = val; return;
case 0x04000106: TimerStart(5, val); return;
case 0x04000108: Timers[6].Reload = val; return;
case 0x0400010A: TimerStart(6, val); return;
case 0x0400010C: Timers[7].Reload = val; return;
case 0x0400010E: TimerStart(7, val); return;
case 0x04000132: KeyCnt[1] = val; return;
case 0x04000134: RCnt = val; return;
case 0x04000138: RTC->Write(val, false); return;
case 0x04000180:
IPCSync9 &= 0xFFF0;
IPCSync9 |= ((val & 0x0F00) >> 8);
IPCSync7 &= 0xB0FF;
IPCSync7 |= (val & 0x4F00);
if ((val & 0x2000) && (IPCSync9 & 0x4000))
{
SetIRQ(0, IRQ_IPCSync);
}
return;
case 0x04000184:
if (val & 0x0008)
IPCFIFO7.Clear();
if ((val & 0x0004) && (!(IPCFIFOCnt7 & 0x0004)) && IPCFIFO7.IsEmpty())
SetIRQ(1, IRQ_IPCSendDone);
if ((val & 0x0400) && (!(IPCFIFOCnt7 & 0x0400)) && (!IPCFIFO9.IsEmpty()))
SetIRQ(1, IRQ_IPCRecv);
if (val & 0x4000)
IPCFIFOCnt7 &= ~0x4000;
IPCFIFOCnt7 = (val & 0x8404) | (IPCFIFOCnt7 & 0x4000);
return;
case 0x04000188:
ARM7IOWrite32(addr, val | (val << 16));
return;
case 0x040001A0:
if (ExMemCnt[0] & (1<<11))
NDSCartSlot->WriteSPICnt(val);
return;
case 0x040001A2:
if (ExMemCnt[0] & (1<<11))
NDSCartSlot->WriteSPIData(val & 0xFF);
return;
case 0x040001A8:
if (ExMemCnt[0] & (1<<11))
{
NDSCartSlot->SetROMCommand(0, val & 0xFF);
NDSCartSlot->SetROMCommand(1, val >> 8);
}
return;
case 0x040001AA:
if (ExMemCnt[0] & (1<<11))
{
NDSCartSlot->SetROMCommand(2, val & 0xFF);
NDSCartSlot->SetROMCommand(3, val >> 8);
}
return;
case 0x040001AC:
if (ExMemCnt[0] & (1<<11))
{
NDSCartSlot->SetROMCommand(4, val & 0xFF);
NDSCartSlot->SetROMCommand(5, val >> 8);
}
return;
case 0x040001AE:
if (ExMemCnt[0] & (1<<11))
{
NDSCartSlot->SetROMCommand(6, val & 0xFF);
NDSCartSlot->SetROMCommand(7, val >> 8);
}
return;
case 0x040001B8: ROMSeed0[12] = val & 0x7F; return;
case 0x040001BA: ROMSeed1[12] = val & 0x7F; return;
case 0x040001C0:
SPI->WriteCnt(val);
return;
case 0x040001C2:
SPI->WriteData(val & 0xFF);
return;
case 0x04000204:
{
u16 oldVal = ExMemCnt[1];
ExMemCnt[1] = (ExMemCnt[1] & 0xFF80) | (val & 0x007F);
if ((ExMemCnt[1] ^ oldVal) & 0xFF)
SetGBASlotTimings();
return;
}
case 0x04000206:
if (!(PowerControl7 & (1<<1))) return;
SetWifiWaitCnt(val);
return;
case 0x04000208: IME[1] = val & 0x1; UpdateIRQ(1); return;
case 0x04000210: IE[1] = (IE[1] & 0xFFFF0000) | val; UpdateIRQ(1); return;
case 0x04000212: IE[1] = (IE[1] & 0x0000FFFF) | (val << 16); UpdateIRQ(1); return;
// TODO: what happens when writing to IF this way??
case 0x04000300:
if (ARM7->R[15] >= 0x4000)
return;
if (!(PostFlag7 & 0x01))
PostFlag7 = val & 0x01;
return;
case 0x04000304:
{
u16 change = PowerControl7 ^ val;
PowerControl7 = val & 0x0003;
SPU->SetPowerCnt(val & 0x0001);
Wifi->SetPowerCnt(val & 0x0002);
if (change & 0x0002) UpdateWifiTimings();
}
return;
case 0x04000308:
if (ARM7BIOSProt == 0)
ARM7BIOSProt = val & 0xFFFE;
return;
}
if (addr >= 0x04000400 && addr < 0x04000520)
{
SPU->Write16(addr, val);
return;
}
Log(LogLevel::Debug, "unknown ARM7 IO write16 %08X %04X %08X\n", addr, val, ARM7->R[15]);
}
void ARM7IOWrite32(u32 addr, u32 val)
{
switch (addr)
{
case 0x04000004:
GPU->SetDispStat(1, val & 0xFFFF);
GPU->SetVCount(val >> 16);
return;
case 0x040000B0: DMAs[4]->SrcAddr = val; return;
case 0x040000B4: DMAs[4]->DstAddr = val; return;
case 0x040000B8: DMAs[4]->WriteCnt(val); return;
case 0x040000BC: DMAs[5]->SrcAddr = val; return;
case 0x040000C0: DMAs[5]->DstAddr = val; return;
case 0x040000C4: DMAs[5]->WriteCnt(val); return;
case 0x040000C8: DMAs[6]->SrcAddr = val; return;
case 0x040000CC: DMAs[6]->DstAddr = val; return;
case 0x040000D0: DMAs[6]->WriteCnt(val); return;
case 0x040000D4: DMAs[7]->SrcAddr = val; return;
case 0x040000D8: DMAs[7]->DstAddr = val; return;
case 0x040000DC: DMAs[7]->WriteCnt(val); return;
case 0x04000100:
Timers[4].Reload = val & 0xFFFF;
TimerStart(4, val>>16);
return;
case 0x04000104:
Timers[5].Reload = val & 0xFFFF;
TimerStart(5, val>>16);
return;
case 0x04000108:
Timers[6].Reload = val & 0xFFFF;
TimerStart(6, val>>16);
return;
case 0x0400010C:
Timers[7].Reload = val & 0xFFFF;
TimerStart(7, val>>16);
return;
case 0x04000130: KeyCnt[1] = val >> 16; return;
case 0x04000134: RCnt = val & 0xFFFF; return;
case 0x04000138: RTC->Write(val & 0xFFFF, false); return;
case 0x04000180:
case 0x04000184:
ARM7IOWrite16(addr, val);
return;
case 0x04000188:
if (IPCFIFOCnt7 & 0x8000)
{
if (IPCFIFO7.IsFull())
IPCFIFOCnt7 |= 0x4000;
else
{
bool wasempty = IPCFIFO7.IsEmpty();
IPCFIFO7.Write(val);
if ((IPCFIFOCnt9 & 0x0400) && wasempty)
SetIRQ(0, IRQ_IPCRecv);
}
}
return;
case 0x040001A0:
if (ExMemCnt[0] & (1<<11))
{
NDSCartSlot->WriteSPICnt(val & 0xFFFF);
NDSCartSlot->WriteSPIData((val >> 16) & 0xFF);
}
return;
case 0x040001A4:
if (ExMemCnt[0] & (1<<11))
NDSCartSlot->WriteROMCnt(val);
return;
case 0x040001A8:
if (ExMemCnt[0] & (1<<11))
{
NDSCartSlot->SetROMCommand(0, val & 0xFF);
NDSCartSlot->SetROMCommand(1, (val >> 8) & 0xFF);
NDSCartSlot->SetROMCommand(2, (val >> 16) & 0xFF);
NDSCartSlot->SetROMCommand(3, val >> 24);
}
return;
case 0x040001AC:
if (ExMemCnt[0] & (1<<11))
{
NDSCartSlot->SetROMCommand(4, val & 0xFF);
NDSCartSlot->SetROMCommand(5, (val >> 8) & 0xFF);
NDSCartSlot->SetROMCommand(6, (val >> 16) & 0xFF);
NDSCartSlot->SetROMCommand(7, val >> 24);
}
return;
case 0x040001B0: *(u32*)&ROMSeed0[8] = val; return;
case 0x040001B4: *(u32*)&ROMSeed1[8] = val; return;
case 0x040001C0:
SPI->WriteCnt(val & 0xFFFF);
SPI->WriteData((val >> 16) & 0xFF);
return;
case 0x04000208: IME[1] = val & 0x1; UpdateIRQ(1); return;
case 0x04000210: IE[1] = val; UpdateIRQ(1); return;
case 0x04000214: IF[1] &= ~val; UpdateIRQ(1); return;
case 0x04000304:
{
u16 change = PowerControl7 ^ val;
PowerControl7 = val & 0x0003;
SPU->SetPowerCnt(val & 0x0001);
Wifi->SetPowerCnt(val & 0x0002);
if (change & 0x0002) UpdateWifiTimings();
}
return;
case 0x04000308:
if (ARM7BIOSProt == 0)
ARM7BIOSProt = val & 0xFFFE;
return;
case 0x04100010:
if (ExMemCnt[0] & (1<<11)) NDSCartSlot->WriteROMData(val);
return;
}
if (addr >= 0x04000400 && addr < 0x04000520)
{
SPU->Write32(addr, val);
return;
}
Log(LogLevel::Debug, "unknown ARM7 IO write32 %08X %08X %08X\n", addr, val, ARM7->R[15]);
}
}
}