melonDS/NDS.cpp

1508 lines
36 KiB
C++

/*
Copyright 2016-2017 StapleButter
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include <stdio.h>
#include <string.h>
#include "NDS.h"
#include "ARM.h"
#include "CP15.h"
#include "GPU2D.h"
#include "SPI.h"
#include "Wifi.h"
namespace NDS
{
SchedEvent SchedBuffer[SCHED_BUF_LEN];
SchedEvent* SchedQueue;
bool NeedReschedule;
ARM* ARM9;
ARM* ARM7;
s32 ARM9Cycles, ARM7Cycles;
s32 CompensatedCycles;
s32 SchedCycles;
u8 ARM9BIOS[0x1000];
u8 ARM7BIOS[0x4000];
u8 MainRAM[0x400000];
u8 SharedWRAM[0x8000];
u8 WRAMCnt;
u8* SWRAM_ARM9;
u8* SWRAM_ARM7;
u32 SWRAM_ARM9Mask;
u32 SWRAM_ARM7Mask;
u8 ARM7WRAM[0x10000];
u8 ARM9ITCM[0x8000];
u32 ARM9ITCMSize;
u8 ARM9DTCM[0x4000];
u32 ARM9DTCMBase, ARM9DTCMSize;
// IO shit
u32 IME[2];
u32 IE[2], IF[2];
u16 PowerControl9;
u16 PowerControl7;
Timer Timers[8];
u16 IPCSync9, IPCSync7;
u32 ROMSPIControl;
u32 ROMControl;
u8 ROMCommand[8];
u8 ROMCurCommand[8];
u32 ROMReadPos, ROMReadSize;
u16 _soundbias; // temp
bool Running;
void Init()
{
ARM9 = new ARM(0);
ARM7 = new ARM(1);
SPI::Init();
Reset();
}
void LoadROM()
{
FILE* f;
f = fopen("armwrestler.nds", "rb");
u32 bootparams[8];
fseek(f, 0x20, SEEK_SET);
fread(bootparams, 8, 4, f);
printf("ARM9: offset=%08X entry=%08X RAM=%08X size=%08X\n",
bootparams[0], bootparams[1], bootparams[2], bootparams[3]);
printf("ARM7: offset=%08X entry=%08X RAM=%08X size=%08X\n",
bootparams[4], bootparams[5], bootparams[6], bootparams[7]);
fseek(f, bootparams[0], SEEK_SET);
for (u32 i = 0; i < bootparams[3]; i+=4)
{
u32 tmp;
fread(&tmp, 4, 1, f);
ARM9Write32(bootparams[2]+i, tmp);
}
fseek(f, bootparams[4], SEEK_SET);
for (u32 i = 0; i < bootparams[7]; i+=4)
{
u32 tmp;
fread(&tmp, 4, 1, f);
ARM9Write32(bootparams[6]+i, tmp);
}
fclose(f);
ARM9->JumpTo(bootparams[1]);
ARM7->JumpTo(bootparams[5]);
}
void Reset()
{
FILE* f;
f = fopen("bios9.bin", "rb");
if (!f)
printf("ARM9 BIOS not found\n");
else
{
fseek(f, 0, SEEK_SET);
fread(ARM9BIOS, 0x1000, 1, f);
printf("ARM9 BIOS loaded: %08X\n", ARM9Read32(0xFFFF0000));
fclose(f);
}
f = fopen("bios7.bin", "rb");
if (!f)
printf("ARM7 BIOS not found\n");
else
{
fseek(f, 0, SEEK_SET);
fread(ARM7BIOS, 0x4000, 1, f);
printf("ARM7 BIOS loaded: %08X\n", ARM7Read32(0x00000000));
fclose(f);
}
memset(MainRAM, 0, 0x400000);
memset(SharedWRAM, 0, 0x8000);
memset(ARM7WRAM, 0, 0x10000);
memset(ARM9ITCM, 0, 0x8000);
memset(ARM9DTCM, 0, 0x4000);
MapSharedWRAM(0);
ARM9ITCMSize = 0;
ARM9DTCMBase = 0xFFFFFFFF;
ARM9DTCMSize = 0;
IME[0] = 0;
IME[1] = 0;
PowerControl9 = 0x0001;
PowerControl7 = 0x0001;
IPCSync9 = 0;
IPCSync7 = 0;
ROMSPIControl = 0;
ROMControl = 0;
memset(ROMCommand, 0, 8);
ARM9->Reset();
ARM7->Reset();
CP15::Reset();
memset(Timers, 0, 8*sizeof(Timer));
SPI::Reset();
Wifi::Reset();
memset(SchedBuffer, 0, sizeof(SchedEvent)*SCHED_BUF_LEN);
SchedQueue = NULL;
ARM9Cycles = 0;
ARM7Cycles = 0;
SchedCycles = 0;
_soundbias = 0;
// test
//LoadROM();
Running = true; // hax
}
static int fnum = 0;
void RunFrame()
{
s32 framecycles = 560190<<1;
const s32 maxcycles = 16;
if (!Running) return; // dorp
fnum++;
//printf("frame %d\n", fnum);
GPU2D::StartFrame();
while (Running && framecycles>0)
{
s32 cyclestorun = maxcycles;
if (SchedQueue)
{
if (SchedQueue->Delay < cyclestorun)
cyclestorun = SchedQueue->Delay;
}
//CompensatedCycles = ARM9Cycles;
s32 torun9 = cyclestorun - ARM9Cycles;
s32 c9 = ARM9->Execute(torun9);
ARM9Cycles = c9 - torun9;
//c9 -= CompensatedCycles;
s32 torun7 = (c9 - ARM7Cycles) & ~1;
s32 c7 = ARM7->Execute(torun7 >> 1) << 1;
ARM7Cycles = c7 - torun7;
RunEvents(c9);
framecycles -= cyclestorun;
}
//printf("frame end\n");
}
SchedEvent* ScheduleEvent(s32 Delay, void (*Func)(u32), u32 Param)
{
// find a free entry
u32 entry = -1;
for (int i = 0; i < SCHED_BUF_LEN; i++)
{
if (SchedBuffer[i].Func == NULL)
{
entry = i;
break;
}
}
if (entry == -1)
{
printf("!! SCHEDULER BUFFER FULL\n");
return NULL;
}
SchedEvent* evt = &SchedBuffer[entry];
evt->Func = Func;
evt->Param = Param;
Delay += SchedCycles;
SchedEvent* cur = SchedQueue;
SchedEvent* prev = NULL;
for (;;)
{
if (cur == NULL) break;
if (cur->Delay > Delay) break;
Delay -= cur->Delay;
prev = cur;
cur = cur->NextEvent;
}
// so, we found it. we insert our event before 'cur'.
evt->Delay = Delay;
if (cur == NULL)
{
if (prev == NULL)
{
// list empty
SchedQueue = evt;
evt->PrevEvent = NULL;
evt->NextEvent = NULL;
}
else
{
// inserting at the end of the list
evt->PrevEvent = prev;
evt->NextEvent = NULL;
prev->NextEvent = evt;
}
}
else
{
evt->NextEvent = cur;
evt->PrevEvent = cur->PrevEvent;
if (evt->PrevEvent)
evt->PrevEvent->NextEvent = evt;
else
SchedQueue = evt;
cur->PrevEvent = evt;
cur->Delay -= evt->Delay;
}
return evt;
}
void CancelEvent(SchedEvent* event)
{
event->Func = NULL;
// unlink
if (event->PrevEvent)
event->PrevEvent->NextEvent = event->NextEvent;
else
SchedQueue = event->NextEvent;
if (event->NextEvent)
event->NextEvent->PrevEvent = event->PrevEvent;
}
void RunEvents(s32 cycles)
{
SchedCycles += cycles;
while (SchedQueue && SchedQueue->Delay <= SchedCycles)
{
void (*func)(u32) = SchedQueue->Func;
u32 param = SchedQueue->Param;
SchedQueue->Func = NULL;
SchedCycles -= SchedQueue->Delay;
SchedQueue = SchedQueue->NextEvent;
if (SchedQueue) SchedQueue->PrevEvent = NULL;
func(param);
}
}
void CompensateARM7()
{return;
s32 c9 = ARM9->Cycles - CompensatedCycles;
CompensatedCycles = ARM9->Cycles;
s32 c7 = ARM7->Execute((c9 - ARM7Cycles) >> 1) << 1;
ARM7Cycles = c7 - c9;
RunEvents(c9);
}
void Halt()
{
printf("Halt()\n");
Running = false;
}
void MapSharedWRAM(u8 val)
{
WRAMCnt = val;
switch (WRAMCnt & 0x3)
{
case 0:
SWRAM_ARM9 = &SharedWRAM[0];
SWRAM_ARM9Mask = 0x7FFF;
SWRAM_ARM7 = NULL;
SWRAM_ARM7Mask = 0;
break;
case 1:
SWRAM_ARM9 = &SharedWRAM[0x4000];
SWRAM_ARM9Mask = 0x3FFF;
SWRAM_ARM7 = &SharedWRAM[0];
SWRAM_ARM7Mask = 0x3FFF;
break;
case 2:
SWRAM_ARM9 = &SharedWRAM[0];
SWRAM_ARM9Mask = 0x3FFF;
SWRAM_ARM7 = &SharedWRAM[0x4000];
SWRAM_ARM7Mask = 0x3FFF;
break;
case 3:
SWRAM_ARM9 = NULL;
SWRAM_ARM9Mask = 0;
SWRAM_ARM7 = &SharedWRAM[0];
SWRAM_ARM7Mask = 0x7FFF;
break;
}
}
void TriggerIRQ(u32 cpu, u32 irq)
{
irq = 1 << irq;
if (!(IE[cpu] & irq)) return;
IF[cpu] |= irq;
if (!(IME[cpu] & 0x1)) return;
(cpu?ARM7:ARM9)->TriggerIRQ();
}
bool HaltInterrupted(u32 cpu)
{
if (cpu == 0)
{
if (!(IME[0] & 0x1))
return false;
}
if (IF[cpu] & IE[cpu])
return true;
return false;
}
const s32 TimerPrescaler[4] = {2, 128, 512, 2048};
void TimerIncrement(u32 param)
{
Timer* timer = &Timers[param];
u32 tid = param & 0x3;
u32 cpu = param >> 2;
for (;;)
{
timer->Counter++;
if (tid == (param&0x3))
timer->Event = ScheduleEvent(TimerPrescaler[timer->Control&0x3], TimerIncrement, param);
if (timer->Counter == 0)
{
timer->Counter = timer->Reload;
if (timer->Control & (1<<6))
TriggerIRQ(cpu, IRQ_Timer0 + tid);
// cascade
if (tid == 3)
break;
timer++;
if ((timer->Control & 0x84) != 0x84)
break;
tid++;
continue;
}
break;
}
}
void TimerStart(u32 id, u16 cnt)
{
Timer* timer = &Timers[id];
u16 curstart = timer->Control & (1<<7);
u16 newstart = cnt & (1<<7);
timer->Control = cnt;
if ((!curstart) && newstart)
{
// start the timer, if it's not a cascading timer
if (!(cnt & (1<<2)))
{
timer->Counter = timer->Reload;
timer->Event = ScheduleEvent(TimerPrescaler[cnt&0x3], TimerIncrement, id);
}
else
timer->Event = NULL;
}
else if (curstart && !newstart)
{
if (timer->Event)
CancelEvent(timer->Event);
}
}
void ROMEndTransfer(u32 cpu)
{
ROMControl &= ~(1<<23);
ROMControl &= ~(1<<31);
if (ROMSPIControl & (1<<14))
TriggerIRQ(cpu, IRQ_CartSendDone);
}
void ROMStartTransfer(u32 cpu)
{
u32 datasize = (ROMControl >> 24) & 0x7;
if (datasize == 7)
datasize = 4;
else if (datasize > 0)
datasize = 0x100 << datasize;
//datasize += (ROMControl & 0x1FFF); // KEY1 gap
ROMReadPos = 0;
ROMReadSize = datasize;
*(u32*)&ROMCurCommand[0] = *(u32*)&ROMCommand[0];
*(u32*)&ROMCurCommand[4] = *(u32*)&ROMCommand[4];
printf("ROM COMMAND %04X %08X %02X%02X%02X%02X%02X%02X%02X%02X SIZE %04X\n",
ROMSPIControl, ROMControl,
ROMCommand[0], ROMCommand[1], ROMCommand[2], ROMCommand[3],
ROMCommand[4], ROMCommand[5], ROMCommand[6], ROMCommand[7],
datasize);
ROMControl |= (1<<23);
if (datasize == 0)
{
// hax
/*if (ROMCommand[0] == 0xBA)
ScheduleEvent(0x910*5*2, ROMEndTransfer, cpu);
else*/
ROMEndTransfer(cpu);
printf("ROM transfer done. %08X %08X\n", ARM7Read32(0x03FFFFF8), ARM7Read32(0x03FFFFFC));
}
}
u32 ROMReadData(u32 cpu)
{
u32 ret = 0;
switch (ROMCurCommand[0])
{
case 0x9F: ret = 0xFFFFFFFF; break;
case 0x00:
// TODO: feed an actual cart header!
ret = 0;
break;
case 0x90:
// chip ID
ret = 0;
break;
}
ROMReadPos += 4;
if (ROMReadPos >= ROMReadSize)
ROMEndTransfer(cpu);
return ret;
}
void debug(u32 param)
{
printf("ARM9 PC=%08X\n", ARM9->R[15]);
printf("ARM7 PC=%08X\n", ARM7->R[15]);
}
u8 ARM9Read8(u32 addr)
{
if ((addr & 0xFFFFF000) == 0xFFFF0000)
{
return *(u8*)&ARM9BIOS[addr & 0xFFF];
}
if (addr < ARM9ITCMSize)
{
return *(u8*)&ARM9ITCM[addr & 0x7FFF];
}
if (addr >= ARM9DTCMBase && addr < (ARM9DTCMBase + ARM9DTCMSize))
{
return *(u8*)&ARM9DTCM[(addr - ARM9DTCMBase) & 0x3FFF];
}
switch (addr & 0xFF000000)
{
case 0x02000000:
return *(u8*)&MainRAM[addr & 0x3FFFFF];
case 0x03000000:
if (SWRAM_ARM9) return *(u8*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask];
else return 0;
case 0x04000000:
switch (addr)
{
case 0x04000208: return IME[0];
case 0x04000240: return GPU2D::VRAMCNT[0];
case 0x04000241: return GPU2D::VRAMCNT[1];
case 0x04000242: return GPU2D::VRAMCNT[2];
case 0x04000243: return GPU2D::VRAMCNT[3];
case 0x04000244: return GPU2D::VRAMCNT[4];
case 0x04000245: return GPU2D::VRAMCNT[5];
case 0x04000246: return GPU2D::VRAMCNT[6];
case 0x04000247: return WRAMCnt;
case 0x04000248: return GPU2D::VRAMCNT[7];
case 0x04000249: return GPU2D::VRAMCNT[8];
case 0x04000300:
printf("ARM9 POSTFLG READ @ %08X\n", ARM9->R[15]);
return 0;
}
printf("unknown arm9 IO read8 %08X\n", addr);
return 0;
case 0x05000000: return *(u8*)&GPU2D::Palette[addr & 0x7FF];
case 0x06000000:
{
u32 chunk = (addr >> 14) & 0x7F;
u8* vram = NULL;
switch (addr & 0x00E00000)
{
case 0x00000000: vram = GPU2D::VRAM_ABG[chunk]; break;
case 0x00200000: vram = GPU2D::VRAM_AOBJ[chunk]; break;
case 0x00400000: vram = GPU2D::VRAM_BBG[chunk]; break;
case 0x00600000: vram = GPU2D::VRAM_BOBJ[chunk]; break;
case 0x00800000: vram = GPU2D::VRAM_LCD[chunk]; break;
}
if (vram)
return *(u8*)&vram[addr & 0x3FFF];
}
return 0;
case 0x07000000: return *(u8*)&GPU2D::OAM[addr & 0x7FF];
}
printf("unknown arm9 read8 %08X\n", addr);
return 0;
}
u16 ARM9Read16(u32 addr)
{
if ((addr & 0xFFFFF000) == 0xFFFF0000)
{
return *(u16*)&ARM9BIOS[addr & 0xFFF];
}
if (addr < ARM9ITCMSize)
{
return *(u16*)&ARM9ITCM[addr & 0x7FFF];
}
if (addr >= ARM9DTCMBase && addr < (ARM9DTCMBase + ARM9DTCMSize))
{
return *(u16*)&ARM9DTCM[(addr - ARM9DTCMBase) & 0x3FFF];
}
switch (addr & 0xFF000000)
{
case 0x02000000:
return *(u16*)&MainRAM[addr & 0x3FFFFF];
case 0x03000000:
if (SWRAM_ARM9) return *(u16*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask];
else return 0;
case 0x04000000:
switch (addr)
{
case 0x04000004: return GPU2D::DispStat[0];
case 0x04000006: return GPU2D::VCount;
case 0x04000100: return Timers[0].Counter;
case 0x04000102: return Timers[0].Control;
case 0x04000104: return Timers[1].Counter;
case 0x04000106: return Timers[1].Control;
case 0x04000108: return Timers[2].Counter;
case 0x0400010A: return Timers[2].Control;
case 0x0400010C: return Timers[3].Counter;
case 0x0400010E: return Timers[3].Control;
case 0x04000180: return IPCSync9;
case 0x04000204: return 0;//0xFFFF;
case 0x04000208: return IME[0];
case 0x04000304: return PowerControl9;
}
printf("unknown arm9 IO read16 %08X\n", addr);
return 0;
case 0x05000000: return *(u16*)&GPU2D::Palette[addr & 0x7FF];
case 0x06000000:
{
u32 chunk = (addr >> 14) & 0x7F;
u8* vram = NULL;
switch (addr & 0x00E00000)
{
case 0x00000000: vram = GPU2D::VRAM_ABG[chunk]; break;
case 0x00200000: vram = GPU2D::VRAM_AOBJ[chunk]; break;
case 0x00400000: vram = GPU2D::VRAM_BBG[chunk]; break;
case 0x00600000: vram = GPU2D::VRAM_BOBJ[chunk]; break;
case 0x00800000: vram = GPU2D::VRAM_LCD[chunk]; break;
}
if (vram)
return *(u16*)&vram[addr & 0x3FFF];
}
return 0;
case 0x07000000: return *(u16*)&GPU2D::OAM[addr & 0x7FF];
}
printf("unknown arm9 read16 %08X\n", addr);
return 0;
}
u32 ARM9Read32(u32 addr)
{
if ((addr & 0xFFFFF000) == 0xFFFF0000)
{
return *(u32*)&ARM9BIOS[addr & 0xFFF];
}
if (addr < ARM9ITCMSize)
{
return *(u32*)&ARM9ITCM[addr & 0x7FFF];
}
if (addr >= ARM9DTCMBase && addr < (ARM9DTCMBase + ARM9DTCMSize))
{
return *(u32*)&ARM9DTCM[(addr - ARM9DTCMBase) & 0x3FFF];
}
if (addr >= 0xFFFF1000)
{
printf("!!!!!!!!!!!!!\n");
Halt();
/*FILE* f = fopen("ram.bin", "wb");
fwrite(MainRAM, 0x400000, 1, f);
fclose(f);
fopen("wram.bin", "wb");
fwrite(ARM7WRAM, 0x10000, 1, f);
fclose(f);
fopen("swram.bin", "wb");
fwrite(ARM7WRAM, 0x8000, 1, f);
fclose(f);*/
}
switch (addr & 0xFF000000)
{
case 0x02000000:
return *(u32*)&MainRAM[addr & 0x3FFFFF];
case 0x03000000:
if (SWRAM_ARM9) return *(u32*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask];
else return 0;
case 0x04000000:
switch (addr)
{
case 0x04000004: return GPU2D::DispStat[0] | (GPU2D::VCount << 16);
case 0x04000100: return Timers[0].Counter | (Timers[0].Control << 16);
case 0x04000104: return Timers[1].Counter | (Timers[1].Control << 16);
case 0x04000108: return Timers[2].Counter | (Timers[2].Control << 16);
case 0x0400010C: return Timers[3].Counter | (Timers[3].Control << 16);
case 0x04000208: return IME[0];
case 0x04000210: return IE[0];
case 0x04000214: return IF[0];
}
printf("unknown arm9 IO read32 %08X | %08X %08X %08X\n", addr, ARM9->R[15], ARM9->R[12], ARM9Read32(0x027FF820));
return 0;
case 0x05000000: return *(u32*)&GPU2D::Palette[addr & 0x7FF];
case 0x06000000:
{
u32 chunk = (addr >> 14) & 0x7F;
u8* vram = NULL;
switch (addr & 0x00E00000)
{
case 0x00000000: vram = GPU2D::VRAM_ABG[chunk]; break;
case 0x00200000: vram = GPU2D::VRAM_AOBJ[chunk]; break;
case 0x00400000: vram = GPU2D::VRAM_BBG[chunk]; break;
case 0x00600000: vram = GPU2D::VRAM_BOBJ[chunk]; break;
case 0x00800000: vram = GPU2D::VRAM_LCD[chunk]; break;
}
if (vram)
return *(u32*)&vram[addr & 0x3FFF];
}
return 0;
case 0x07000000: return *(u32*)&GPU2D::OAM[addr & 0x7FF];
}
printf("unknown arm9 read32 %08X | %08X %08X %08X\n", addr, ARM9->R[15], ARM9->R[12], ARM9Read32(0x027FF820));
return 0;
}
void ARM9Write8(u32 addr, u8 val)
{
if (addr < ARM9ITCMSize)
{
*(u8*)&ARM9ITCM[addr & 0x7FFF] = val;
return;
}
if (addr >= ARM9DTCMBase && addr < (ARM9DTCMBase + ARM9DTCMSize))
{
*(u8*)&ARM9DTCM[(addr - ARM9DTCMBase) & 0x3FFF] = val;
return;
}
switch (addr & 0xFF000000)
{
case 0x02000000:
*(u8*)&MainRAM[addr & 0x3FFFFF] = val;
return;
case 0x03000000:
if (SWRAM_ARM9) *(u8*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask] = val;
return;
case 0x04000000:
switch (addr)
{
case 0x040001A0:
ROMSPIControl &= 0xFF00;
ROMSPIControl |= val;
return;
case 0x040001A1:
ROMSPIControl &= 0x00FF;
ROMSPIControl |= (val << 8);
return;
case 0x04000208: IME[0] = val; return;
case 0x04000240: GPU2D::MapVRAM_AB(0, val); return;
case 0x04000241: GPU2D::MapVRAM_AB(1, val); return;
case 0x04000242: GPU2D::MapVRAM_CD(2, val); return;
case 0x04000243: GPU2D::MapVRAM_CD(3, val); return;
case 0x04000244: GPU2D::MapVRAM_E(4, val); return;
case 0x04000245: GPU2D::MapVRAM_FG(5, val); return;
case 0x04000246: GPU2D::MapVRAM_FG(6, val); return;
case 0x04000247: MapSharedWRAM(val); return;
case 0x04000248: GPU2D::MapVRAM_H(7, val); return;
case 0x04000249: GPU2D::MapVRAM_I(8, val); return;
}
break;
case 0x05000000:
case 0x06000000:
case 0x07000000:
return;
}
printf("unknown arm9 write8 %08X %02X\n", addr, val);
}
void ARM9Write16(u32 addr, u16 val)
{
if (addr < ARM9ITCMSize)
{
*(u16*)&ARM9ITCM[addr & 0x7FFF] = val;
return;
}
if (addr >= ARM9DTCMBase && addr < (ARM9DTCMBase + ARM9DTCMSize))
{
*(u16*)&ARM9DTCM[(addr - ARM9DTCMBase) & 0x3FFF] = val;
return;
}
switch (addr & 0xFF000000)
{
case 0x02000000:
*(u16*)&MainRAM[addr & 0x3FFFFF] = val;
return;
case 0x03000000:
if (SWRAM_ARM9) *(u16*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask] = val;
return;
case 0x04000000:
switch (addr)
{
case 0x04000004: GPU2D::SetDispStat(0, val); return;
case 0x04000100: Timers[0].Reload = val; return;
case 0x04000102: TimerStart(0, val); return;
case 0x04000104: Timers[1].Reload = val; return;
case 0x04000106: TimerStart(1, val); return;
case 0x04000108: Timers[2].Reload = val; return;
case 0x0400010A: TimerStart(2, val); return;
case 0x0400010C: Timers[3].Reload = val; return;
case 0x0400010E: TimerStart(3, val); return;
case 0x04000180:
IPCSync7 &= 0xFFF0;
IPCSync7 |= ((val & 0x0F00) >> 8);
IPCSync9 &= 0xB0FF;
IPCSync9 |= (val & 0x4F00);
if ((val & 0x2000) && (IPCSync7 & 0x4000))
{
TriggerIRQ(1, IRQ_IPCSync);
}
CompensateARM7();
return;
case 0x040001A0:
ROMSPIControl = val;
return;
case 0x04000208: IME[0] = val; return;
case 0x04000240:
GPU2D::MapVRAM_AB(0, val & 0xFF);
GPU2D::MapVRAM_AB(1, val >> 8);
return;
case 0x04000242:
GPU2D::MapVRAM_CD(2, val & 0xFF);
GPU2D::MapVRAM_CD(3, val >> 8);
return;
case 0x04000244:
GPU2D::MapVRAM_E(4, val & 0xFF);
GPU2D::MapVRAM_FG(5, val >> 8);
return;
case 0x04000246:
GPU2D::MapVRAM_FG(6, val & 0xFF);
MapSharedWRAM(val >> 8);
return;
case 0x04000248:
GPU2D::MapVRAM_H(7, val & 0xFF);
GPU2D::MapVRAM_I(8, val >> 8);
return;
case 0x04000304: PowerControl9 = val; return;
}
break;
case 0x05000000:
*(u16*)&GPU2D::Palette[addr & 0x7FF] = val;
return;
case 0x06000000:
{
u32 chunk = (addr >> 14) & 0x7F;
u8* vram = NULL;
switch (addr & 0x00E00000)
{
case 0x00000000: vram = GPU2D::VRAM_ABG[chunk]; break;
case 0x00200000: vram = GPU2D::VRAM_AOBJ[chunk]; break;
case 0x00400000: vram = GPU2D::VRAM_BBG[chunk]; break;
case 0x00600000: vram = GPU2D::VRAM_BOBJ[chunk]; break;
case 0x00800000: vram = GPU2D::VRAM_LCD[chunk]; break;
}
if (vram)
*(u16*)&vram[addr & 0x3FFF] = val;
}
return;
case 0x07000000:
*(u16*)&GPU2D::OAM[addr & 0x7FF] = val;
return;
}
printf("unknown arm9 write16 %08X %04X\n", addr, val);
}
void ARM9Write32(u32 addr, u32 val)
{
if (addr < ARM9ITCMSize)
{
*(u32*)&ARM9ITCM[addr & 0x7FFF] = val;
return;
}
if (addr >= ARM9DTCMBase && addr < (ARM9DTCMBase + ARM9DTCMSize))
{
*(u32*)&ARM9DTCM[(addr - ARM9DTCMBase) & 0x3FFF] = val;
return;
}
switch (addr & 0xFF000000)
{
case 0x02000000:
*(u32*)&MainRAM[addr & 0x3FFFFF] = val;
return;
case 0x03000000:
if (SWRAM_ARM9) *(u32*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask] = val;
return;
case 0x04000000:
switch (addr)
{
case 0x04000100:
Timers[0].Reload = val & 0xFFFF;
TimerStart(0, val>>16);
return;
case 0x04000104:
Timers[1].Reload = val & 0xFFFF;
TimerStart(1, val>>16);
return;
case 0x04000108:
Timers[2].Reload = val & 0xFFFF;
TimerStart(2, val>>16);
return;
case 0x0400010C:
Timers[3].Reload = val & 0xFFFF;
TimerStart(3, val>>16);
return;
case 0x040001A0:
ROMSPIControl = val & 0xFFFF;
// TODO: SPI shit
return;
case 0x040001A4:
val &= ~0x00800000;
ROMControl = val;
if (val & 0x80000000) ROMStartTransfer(0);
return;
case 0x04000208: IME[0] = val; return;
case 0x04000210: IE[0] = val; return;
case 0x04000214: IF[0] &= ~val; return;
case 0x04000240:
GPU2D::MapVRAM_AB(0, val & 0xFF);
GPU2D::MapVRAM_AB(1, (val >> 8) & 0xFF);
GPU2D::MapVRAM_CD(2, (val >> 16) & 0xFF);
GPU2D::MapVRAM_CD(3, val >> 24);
return;
case 0x04000244:
GPU2D::MapVRAM_E(4, val & 0xFF);
GPU2D::MapVRAM_FG(5, (val >> 8) & 0xFF);
GPU2D::MapVRAM_FG(6, (val >> 16) & 0xFF);
MapSharedWRAM(val >> 24);
return;
case 0x04000248:
GPU2D::MapVRAM_H(7, val & 0xFF);
GPU2D::MapVRAM_I(8, (val >> 8) & 0xFF);
return;
}
break;
case 0x05000000:
*(u32*)&GPU2D::Palette[addr & 0x7FF] = val;
return;
case 0x06000000:
{
u32 chunk = (addr >> 14) & 0x7F;
u8* vram = NULL;
switch (addr & 0x00E00000)
{
case 0x00000000: vram = GPU2D::VRAM_ABG[chunk]; break;
case 0x00200000: vram = GPU2D::VRAM_AOBJ[chunk]; break;
case 0x00400000: vram = GPU2D::VRAM_BBG[chunk]; break;
case 0x00600000: vram = GPU2D::VRAM_BOBJ[chunk]; break;
case 0x00800000: vram = GPU2D::VRAM_LCD[chunk]; break;
}
if (vram)
*(u32*)&vram[addr & 0x3FFF] = val;
}
return;
case 0x07000000:
*(u32*)&GPU2D::OAM[addr & 0x7FF] = val;
return;
}
printf("unknown arm9 write32 %08X %08X | %08X\n", addr, val, ARM9->R[15]);
}
u8 ARM7Read8(u32 addr)
{
if (addr < 0x00004000)
{
return *(u8*)&ARM7BIOS[addr];
}
switch (addr & 0xFF800000)
{
case 0x02000000:
return *(u8*)&MainRAM[addr & 0x3FFFFF];
case 0x03000000:
if (SWRAM_ARM7) return *(u8*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask];
else return *(u8*)&ARM7WRAM[addr & 0xFFFF];
case 0x03800000:
return *(u8*)&ARM7WRAM[addr & 0xFFFF];
case 0x04000000:
switch (addr)
{
case 0x04000138: return 0; // RTC shit
case 0x040001C2: return SPI::ReadData();
case 0x04000208: return IME[1];
case 0x04000240: return GPU2D::VRAMSTAT;
case 0x04000241: return WRAMCnt;
case 0x04000300:
printf("ARM7 POSTFLG READ @ %08X\n", ARM7->R[15]);
return 0;
}
printf("unknown arm7 IO read8 %08X\n", addr);
return 0;
case 0x06000000:
case 0x06800000:
{
u32 chunk = (addr >> 17) & 0x1;
u8* vram = GPU2D::VRAM_ARM7[chunk];
if (vram)
return *(u8*)&vram[addr & 0x3FFF];
}
return 0;
}
printf("unknown arm7 read8 %08X\n", addr);
return 0;
}
u16 ARM7Read16(u32 addr)
{
if (addr < 0x00004000)
{
return *(u16*)&ARM7BIOS[addr];
}
switch (addr & 0xFF800000)
{
case 0x02000000:
return *(u16*)&MainRAM[addr & 0x3FFFFF];
case 0x03000000:
if (SWRAM_ARM7) return *(u16*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask];
else return *(u16*)&ARM7WRAM[addr & 0xFFFF];
case 0x03800000:
return *(u16*)&ARM7WRAM[addr & 0xFFFF];
case 0x04000000:
switch (addr)
{
case 0x04000004: return GPU2D::DispStat[1];
case 0x04000006: return GPU2D::VCount;
case 0x04000100: return Timers[4].Counter;
case 0x04000102: return Timers[4].Control;
case 0x04000104: return Timers[5].Counter;
case 0x04000106: return Timers[5].Control;
case 0x04000108: return Timers[6].Counter;
case 0x0400010A: return Timers[6].Control;
case 0x0400010C: return Timers[7].Counter;
case 0x0400010E: return Timers[7].Control;
case 0x04000134: return 0x8000;
case 0x04000138: return 0; // RTC shit
case 0x04000180: return IPCSync7;
case 0x040001C0: return SPI::ReadCnt();
case 0x040001C2: return SPI::ReadData();
case 0x04000208: return IME[1];
case 0x04000304: return PowerControl7;
case 0x04000504: return _soundbias;
}
printf("unknown arm7 IO read16 %08X %08X\n", addr, ARM7->R[15]);
return 0;
case 0x04800000:
return Wifi::Read(addr);
case 0x06000000:
case 0x06800000:
{
u32 chunk = (addr >> 17) & 0x1;
u8* vram = GPU2D::VRAM_ARM7[chunk];
if (vram)
return *(u16*)&vram[addr & 0x3FFF];
}
return 0;
}
printf("unknown arm7 read16 %08X %08X\n", addr, ARM7->R[15]);
return 0;
}
u32 ARM7Read32(u32 addr)
{
if (addr < 0x00004000)
{
return *(u32*)&ARM7BIOS[addr];
}
switch (addr & 0xFF800000)
{
case 0x02000000:
return *(u32*)&MainRAM[addr & 0x3FFFFF];
case 0x03000000:
if (SWRAM_ARM7) return *(u32*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask];
else return *(u32*)&ARM7WRAM[addr & 0xFFFF];
case 0x03800000:
return *(u32*)&ARM7WRAM[addr & 0xFFFF];
case 0x04000000:
switch (addr)
{
case 0x04000004: return GPU2D::DispStat[1] | (GPU2D::VCount << 16);
case 0x04000100: return Timers[4].Counter | (Timers[4].Control << 16);
case 0x04000104: return Timers[5].Counter | (Timers[5].Control << 16);
case 0x04000108: return Timers[6].Counter | (Timers[6].Control << 16);
case 0x0400010C: return Timers[7].Counter | (Timers[7].Control << 16);
case 0x040001A4:
return ROMControl;
case 0x040001C0:
return SPI::ReadCnt() | (SPI::ReadData() << 16);
case 0x04000208: return IME[1];
case 0x04000210: return IE[1];
case 0x04000214: return IF[1];
case 0x04100010: return ROMReadData(1);
}
printf("unknown arm7 IO read32 %08X | %08X\n", addr, ARM7->R[15]);
return 0;
case 0x06000000:
case 0x06800000:
{
u32 chunk = (addr >> 17) & 0x1;
u8* vram = GPU2D::VRAM_ARM7[chunk];
if (vram)
return *(u32*)&vram[addr & 0x3FFF];
}
return 0;
}
printf("unknown arm7 read32 %08X | %08X\n", addr, ARM7->R[15]);
return 0;
}
void ARM7Write8(u32 addr, u8 val)
{
switch (addr & 0xFF800000)
{
case 0x02000000:
*(u8*)&MainRAM[addr & 0x3FFFFF] = val;
return;
case 0x03000000:
if (SWRAM_ARM7) *(u8*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask] = val;
else *(u8*)&ARM7WRAM[addr & 0xFFFF] = val;
return;
case 0x03800000:
*(u8*)&ARM7WRAM[addr & 0xFFFF] = val;
return;
case 0x04000000:
switch (addr)
{
case 0x04000138:
return;
case 0x040001A0:
ROMSPIControl &= 0xFF00;
ROMSPIControl |= val;
return;
case 0x040001A1:
ROMSPIControl &= 0x00FF;
ROMSPIControl |= (val << 8);
return;
case 0x040001A8: ROMCommand[0] = val; return;
case 0x040001A9: ROMCommand[1] = val; return;
case 0x040001AA: ROMCommand[2] = val; return;
case 0x040001AB: ROMCommand[3] = val; return;
case 0x040001AC: ROMCommand[4] = val; return;
case 0x040001AD: ROMCommand[5] = val; return;
case 0x040001AE: ROMCommand[6] = val; return;
case 0x040001AF: ROMCommand[7] = val; return;
case 0x040001C2:
SPI::WriteData(val);
return;
case 0x04000208: IME[1] = val; return;
case 0x04000301:
if (val == 0x80) ARM7->Halt(1);
return;
}
break;
case 0x06000000:
case 0x06800000:
{
u32 chunk = (addr >> 17) & 0x1;
u8* vram = GPU2D::VRAM_ARM7[chunk];
if (vram)
*(u8*)&vram[addr & 0x3FFF] = val;
}
return;
}
if (addr==0xA20)
{
//TriggerIRQ(1, IRQ_CartSendDone);
/*FILE* f = fopen("ram.bin", "wb");
fwrite(MainRAM, 0x400000, 1, f);
fclose(f);
fopen("wram.bin", "wb");
fwrite(ARM7WRAM, 0x10000, 1, f);
fclose(f);
fopen("swram.bin", "wb");
fwrite(ARM7WRAM, 0x8000, 1, f);
fclose(f);*/
}
printf("unknown arm7 write8 %08X %02X | %08X | %08X %08X %08X %08X\n", addr, val, ARM7->R[15], IME[1], IE[1], ARM7->R[0], ARM7->R[1]);
}
void ARM7Write16(u32 addr, u16 val)
{
switch (addr & 0xFF800000)
{
case 0x02000000:
*(u16*)&MainRAM[addr & 0x3FFFFF] = val;
return;
case 0x03000000:
if (SWRAM_ARM7) *(u16*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask] = val;
else *(u16*)&ARM7WRAM[addr & 0xFFFF] = val;
return;
case 0x03800000:
*(u16*)&ARM7WRAM[addr & 0xFFFF] = val;
return;
case 0x04000000:
switch (addr)
{
case 0x04000004: GPU2D::SetDispStat(1, val); return;
case 0x04000100: Timers[4].Reload = val; return;
case 0x04000102: TimerStart(4, val); return;
case 0x04000104: Timers[5].Reload = val; return;
case 0x04000106: TimerStart(5, val); return;
case 0x04000108: Timers[6].Reload = val; return;
case 0x0400010A: TimerStart(6, val); return;
case 0x0400010C: Timers[7].Reload = val; return;
case 0x0400010E: TimerStart(7, val); return;
case 0x04000138: return; // RTC shit
case 0x04000180:
IPCSync9 &= 0xFFF0;
IPCSync9 |= ((val & 0x0F00) >> 8);
IPCSync7 &= 0xB0FF;
IPCSync7 |= (val & 0x4F00);
if ((val & 0x2000) && (IPCSync9 & 0x4000))
{
TriggerIRQ(0, IRQ_IPCSync);
}
return;
case 0x040001A0:
ROMSPIControl = val;
return;
case 0x040001C0:
SPI::WriteCnt(val);
return;
case 0x040001C2:
SPI::WriteData(val & 0xFF);
return;
case 0x04000208: IME[1] = val; return;
case 0x04000304: PowerControl7 = val; return;
case 0x04000504:
_soundbias = val & 0x3FF;
return;
}
break;
case 0x04800000:
Wifi::Write(addr, val);
return;
case 0x06000000:
case 0x06800000:
{
u32 chunk = (addr >> 17) & 0x1;
u8* vram = GPU2D::VRAM_ARM7[chunk];
if (vram)
*(u16*)&vram[addr & 0x3FFF] = val;
}
return;
}
printf("unknown arm7 write16 %08X %04X | %08X\n", addr, val, ARM7->R[15]);
}
void ARM7Write32(u32 addr, u32 val)
{
switch (addr & 0xFF800000)
{
case 0x02000000:
*(u32*)&MainRAM[addr & 0x3FFFFF] = val;
return;
case 0x03000000:
if (SWRAM_ARM7) *(u32*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask] = val;
else *(u32*)&ARM7WRAM[addr & 0xFFFF] = val;
return;
case 0x03800000:
*(u32*)&ARM7WRAM[addr & 0xFFFF] = val;
return;
case 0x04000000:
switch (addr)
{
case 0x04000100:
Timers[4].Reload = val & 0xFFFF;
TimerStart(4, val>>16);
return;
case 0x04000104:
Timers[5].Reload = val & 0xFFFF;
TimerStart(5, val>>16);
return;
case 0x04000108:
Timers[6].Reload = val & 0xFFFF;
TimerStart(6, val>>16);
return;
case 0x0400010C:
Timers[7].Reload = val & 0xFFFF;
TimerStart(7, val>>16);
return;
case 0x040001A0:
ROMSPIControl = val & 0xFFFF;
// TODO: SPI shit
return;
case 0x040001A4:
val &= ~0x00800000;
ROMControl = val;
if (val & 0x80000000) ROMStartTransfer(1);
return;
case 0x04000208: IME[1] = val; return;
case 0x04000210: IE[1] = val; return;
case 0x04000214: IF[1] &= ~val; return;
}
return;
case 0x06000000:
case 0x06800000:
{
u32 chunk = (addr >> 17) & 0x1;
u8* vram = GPU2D::VRAM_ARM7[chunk];
if (vram)
*(u32*)&vram[addr & 0x3FFF] = val;
}
return;
}
printf("unknown arm7 write32 %08X %08X | %08X %08X\n", addr, val, ARM7->R[15], ARM7->CurInstr);
}
}