melonDS/src/ARMInterpreter_ALU.cpp

1571 lines
38 KiB
C++

/*
Copyright 2016-2022 melonDS team
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include <stdio.h>
#include "ARM.h"
#define CARRY_ADD(a, b) ((0xFFFFFFFF-a) < b)
#define CARRY_SUB(a, b) (a >= b)
#define OVERFLOW_ADD(a, b, res) ((!(((a) ^ (b)) & 0x80000000)) && (((a) ^ (res)) & 0x80000000))
#define OVERFLOW_SUB(a, b, res) ((((a) ^ (b)) & 0x80000000) && (((a) ^ (res)) & 0x80000000))
namespace ARMInterpreter
{
#define LSL_IMM(x, s) \
x <<= s;
#define LSR_IMM(x, s) \
if (s == 0) x = 0; \
else x >>= s;
#define ASR_IMM(x, s) \
if (s == 0) x = ((s32)x) >> 31; \
else x = ((s32)x) >> s;
#define ROR_IMM(x, s) \
if (s == 0) \
{ \
x = (x >> 1) | ((cpu->CPSR & 0x20000000) << 2); \
} \
else \
{ \
x = ROR(x, s); \
}
#define LSL_IMM_S(x, s) \
if (s > 0) \
{ \
cpu->SetC(x & (1<<(32-s))); \
x <<= s; \
}
#define LSR_IMM_S(x, s) \
if (s == 0) { \
cpu->SetC(x & (1<<31)); \
x = 0; \
} else { \
cpu->SetC(x & (1<<(s-1))); \
x >>= s; \
}
#define ASR_IMM_S(x, s) \
if (s == 0) { \
cpu->SetC(x & (1<<31)); \
x = ((s32)x) >> 31; \
} else { \
cpu->SetC(x & (1<<(s-1))); \
x = ((s32)x) >> s; \
}
#define ROR_IMM_S(x, s) \
if (s == 0) \
{ \
u32 newc = (x & 1); \
x = (x >> 1) | ((cpu->CPSR & 0x20000000) << 2); \
cpu->SetC(newc); \
} \
else \
{ \
cpu->SetC(x & (1<<(s-1))); \
x = ROR(x, s); \
}
#define LSL_REG(x, s) \
if (s > 31) x = 0; \
else x <<= s;
#define LSR_REG(x, s) \
if (s > 31) x = 0; \
else x >>= s;
#define ASR_REG(x, s) \
if (s > 31) x = ((s32)x) >> 31; \
else x = ((s32)x) >> s;
#define ROR_REG(x, s) \
x = ROR(x, (s&0x1F));
#define LSL_REG_S(x, s) \
if (s > 31) { cpu->SetC((s>32) ? 0 : (x & (1<<0))); x = 0; } \
else if (s > 0) { cpu->SetC(x & (1<<(32-s))); x <<= s; }
#define LSR_REG_S(x, s) \
if (s > 31) { cpu->SetC((s>32) ? 0 : (x & (1<<31))); x = 0; } \
else if (s > 0) { cpu->SetC(x & (1<<(s-1))); x >>= s; }
#define ASR_REG_S(x, s) \
if (s > 31) { cpu->SetC(x & (1<<31)); x = ((s32)x) >> 31; } \
else if (s > 0) { cpu->SetC(x & (1<<(s-1))); x = ((s32)x) >> s; }
#define ROR_REG_S(x, s) \
if (s > 0) cpu->SetC(x & (1<<(s-1))); \
x = ROR(x, (s&0x1F));
#define A_CALC_OP2_IMM \
u32 b = ROR(cpu->CurInstr&0xFF, (cpu->CurInstr>>7)&0x1E);
#define A_CALC_OP2_IMM_S \
u32 b = ROR(cpu->CurInstr&0xFF, (cpu->CurInstr>>7)&0x1E); \
if ((cpu->CurInstr>>7)&0x1E) \
cpu->SetC(b & 0x80000000);
#define A_CALC_OP2_REG_SHIFT_IMM(shiftop) \
u32 b = cpu->R[cpu->CurInstr&0xF]; \
u32 s = (cpu->CurInstr>>7)&0x1F; \
shiftop(b, s);
#define A_CALC_OP2_REG_SHIFT_REG(shiftop) \
u32 b = cpu->R[cpu->CurInstr&0xF]; \
if ((cpu->CurInstr&0xF)==15) b += 4; \
shiftop(b, (cpu->R[(cpu->CurInstr>>8)&0xF] & 0xFF));
#define A_IMPLEMENT_ALU_OP(x,s) \
\
void A_##x##_IMM(ARM* cpu) \
{ \
A_CALC_OP2_IMM \
A_##x(0) \
} \
void A_##x##_REG_LSL_IMM(ARM* cpu) \
{ \
A_CALC_OP2_REG_SHIFT_IMM(LSL_IMM) \
A_##x(0) \
} \
void A_##x##_REG_LSR_IMM(ARM* cpu) \
{ \
A_CALC_OP2_REG_SHIFT_IMM(LSR_IMM) \
A_##x(0) \
} \
void A_##x##_REG_ASR_IMM(ARM* cpu) \
{ \
A_CALC_OP2_REG_SHIFT_IMM(ASR_IMM) \
A_##x(0) \
} \
void A_##x##_REG_ROR_IMM(ARM* cpu) \
{ \
A_CALC_OP2_REG_SHIFT_IMM(ROR_IMM) \
A_##x(0) \
} \
void A_##x##_REG_LSL_REG(ARM* cpu) \
{ \
A_CALC_OP2_REG_SHIFT_REG(LSL_REG) \
A_##x(1) \
} \
void A_##x##_REG_LSR_REG(ARM* cpu) \
{ \
A_CALC_OP2_REG_SHIFT_REG(LSR_REG) \
A_##x(1) \
} \
void A_##x##_REG_ASR_REG(ARM* cpu) \
{ \
A_CALC_OP2_REG_SHIFT_REG(ASR_REG) \
A_##x(1) \
} \
void A_##x##_REG_ROR_REG(ARM* cpu) \
{ \
A_CALC_OP2_REG_SHIFT_REG(ROR_REG) \
A_##x(1) \
} \
void A_##x##_IMM_S(ARM* cpu) \
{ \
A_CALC_OP2_IMM##s \
A_##x##_S(0) \
} \
void A_##x##_REG_LSL_IMM_S(ARM* cpu) \
{ \
A_CALC_OP2_REG_SHIFT_IMM(LSL_IMM##s) \
A_##x##_S(0) \
} \
void A_##x##_REG_LSR_IMM_S(ARM* cpu) \
{ \
A_CALC_OP2_REG_SHIFT_IMM(LSR_IMM##s) \
A_##x##_S(0) \
} \
void A_##x##_REG_ASR_IMM_S(ARM* cpu) \
{ \
A_CALC_OP2_REG_SHIFT_IMM(ASR_IMM##s) \
A_##x##_S(0) \
} \
void A_##x##_REG_ROR_IMM_S(ARM* cpu) \
{ \
A_CALC_OP2_REG_SHIFT_IMM(ROR_IMM##s) \
A_##x##_S(0) \
} \
void A_##x##_REG_LSL_REG_S(ARM* cpu) \
{ \
A_CALC_OP2_REG_SHIFT_REG(LSL_REG##s) \
A_##x##_S(1) \
} \
void A_##x##_REG_LSR_REG_S(ARM* cpu) \
{ \
A_CALC_OP2_REG_SHIFT_REG(LSR_REG##s) \
A_##x##_S(1) \
} \
void A_##x##_REG_ASR_REG_S(ARM* cpu) \
{ \
A_CALC_OP2_REG_SHIFT_REG(ASR_REG##s) \
A_##x##_S(1) \
} \
void A_##x##_REG_ROR_REG_S(ARM* cpu) \
{ \
A_CALC_OP2_REG_SHIFT_REG(ROR_REG##s) \
A_##x##_S(1) \
}
#define A_IMPLEMENT_ALU_TEST(x,s) \
\
void A_##x##_IMM(ARM* cpu) \
{ \
A_CALC_OP2_IMM##s \
A_##x(0) \
} \
void A_##x##_REG_LSL_IMM(ARM* cpu) \
{ \
A_CALC_OP2_REG_SHIFT_IMM(LSL_IMM##s) \
A_##x(0) \
} \
void A_##x##_REG_LSR_IMM(ARM* cpu) \
{ \
A_CALC_OP2_REG_SHIFT_IMM(LSR_IMM##s) \
A_##x(0) \
} \
void A_##x##_REG_ASR_IMM(ARM* cpu) \
{ \
A_CALC_OP2_REG_SHIFT_IMM(ASR_IMM##s) \
A_##x(0) \
} \
void A_##x##_REG_ROR_IMM(ARM* cpu) \
{ \
A_CALC_OP2_REG_SHIFT_IMM(ROR_IMM##s) \
A_##x(0) \
} \
void A_##x##_REG_LSL_REG(ARM* cpu) \
{ \
A_CALC_OP2_REG_SHIFT_REG(LSL_REG##s) \
A_##x(1) \
} \
void A_##x##_REG_LSR_REG(ARM* cpu) \
{ \
A_CALC_OP2_REG_SHIFT_REG(LSR_REG##s) \
A_##x(1) \
} \
void A_##x##_REG_ASR_REG(ARM* cpu) \
{ \
A_CALC_OP2_REG_SHIFT_REG(ASR_REG##s) \
A_##x(1) \
} \
void A_##x##_REG_ROR_REG(ARM* cpu) \
{ \
A_CALC_OP2_REG_SHIFT_REG(ROR_REG##s) \
A_##x(1) \
}
#define A_AND(c) \
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 res = a & b; \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
cpu->JumpTo(res & ~1); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
}
#define A_AND_S(c) \
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 res = a & b; \
cpu->SetNZ(res & 0x80000000, \
!res); \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
cpu->JumpTo(res, true); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
}
A_IMPLEMENT_ALU_OP(AND,_S)
#define A_EOR(c) \
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 res = a ^ b; \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
cpu->JumpTo(res & ~1); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
}
#define A_EOR_S(c) \
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 res = a ^ b; \
cpu->SetNZ(res & 0x80000000, \
!res); \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
cpu->JumpTo(res, true); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
}
A_IMPLEMENT_ALU_OP(EOR,_S)
#define A_SUB(c) \
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 res = a - b; \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
cpu->JumpTo(res & ~1); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
}
#define A_SUB_S(c) \
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 res = a - b; \
cpu->SetNZCV(res & 0x80000000, \
!res, \
CARRY_SUB(a, b), \
OVERFLOW_SUB(a, b, res)); \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
cpu->JumpTo(res, true); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
}
A_IMPLEMENT_ALU_OP(SUB,)
#define A_RSB(c) \
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 res = b - a; \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
cpu->JumpTo(res & ~1); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
}
#define A_RSB_S(c) \
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 res = b - a; \
cpu->SetNZCV(res & 0x80000000, \
!res, \
CARRY_SUB(b, a), \
OVERFLOW_SUB(b, a, res)); \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
cpu->JumpTo(res, true); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
}
A_IMPLEMENT_ALU_OP(RSB,)
#define A_ADD(c) \
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 res = a + b; \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
cpu->JumpTo(res & ~1); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
}
#define A_ADD_S(c) \
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 res = a + b; \
cpu->SetNZCV(res & 0x80000000, \
!res, \
CARRY_ADD(a, b), \
OVERFLOW_ADD(a, b, res)); \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
cpu->JumpTo(res, true); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
}
A_IMPLEMENT_ALU_OP(ADD,)
#define A_ADC(c) \
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 res = a + b + (cpu->CPSR&0x20000000 ? 1:0); \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
cpu->JumpTo(res & ~1); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
}
#define A_ADC_S(c) \
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 res_tmp = a + b; \
u32 carry = (cpu->CPSR&0x20000000 ? 1:0); \
u32 res = res_tmp + carry; \
cpu->SetNZCV(res & 0x80000000, \
!res, \
CARRY_ADD(a, b) | CARRY_ADD(res_tmp, carry), \
OVERFLOW_ADD(a, b, res_tmp) | OVERFLOW_ADD(res_tmp, carry, res)); \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
cpu->JumpTo(res, true); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
}
A_IMPLEMENT_ALU_OP(ADC,)
#define A_SBC(c) \
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 res = a - b - (cpu->CPSR&0x20000000 ? 0:1); \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
cpu->JumpTo(res & ~1); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
}
#define A_SBC_S(c) \
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 res_tmp = a - b; \
u32 carry = (cpu->CPSR&0x20000000 ? 0:1); \
u32 res = res_tmp - carry; \
cpu->SetNZCV(res & 0x80000000, \
!res, \
CARRY_SUB(a, b) & CARRY_SUB(res_tmp, carry), \
OVERFLOW_SUB(a, b, res_tmp) | OVERFLOW_SUB(res_tmp, carry, res)); \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
cpu->JumpTo(res, true); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
}
A_IMPLEMENT_ALU_OP(SBC,)
#define A_RSC(c) \
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 res = b - a - (cpu->CPSR&0x20000000 ? 0:1); \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
cpu->JumpTo(res & ~1); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
}
#define A_RSC_S(c) \
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 res_tmp = b - a; \
u32 carry = (cpu->CPSR&0x20000000 ? 0:1); \
u32 res = res_tmp - carry; \
cpu->SetNZCV(res & 0x80000000, \
!res, \
CARRY_SUB(b, a) & CARRY_SUB(res_tmp, carry), \
OVERFLOW_SUB(b, a, res_tmp) | OVERFLOW_SUB(res_tmp, carry, res)); \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
cpu->JumpTo(res, true); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
}
A_IMPLEMENT_ALU_OP(RSC,)
#define A_TST(c) \
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 res = a & b; \
cpu->SetNZ(res & 0x80000000, \
!res); \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C();
A_IMPLEMENT_ALU_TEST(TST,_S)
#define A_TEQ(c) \
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 res = a ^ b; \
cpu->SetNZ(res & 0x80000000, \
!res); \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C();
A_IMPLEMENT_ALU_TEST(TEQ,_S)
#define A_CMP(c) \
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 res = a - b; \
cpu->SetNZCV(res & 0x80000000, \
!res, \
CARRY_SUB(a, b), \
OVERFLOW_SUB(a, b, res)); \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C();
A_IMPLEMENT_ALU_TEST(CMP,)
#define A_CMN(c) \
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 res = a + b; \
cpu->SetNZCV(res & 0x80000000, \
!res, \
CARRY_ADD(a, b), \
OVERFLOW_ADD(a, b, res)); \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C();
A_IMPLEMENT_ALU_TEST(CMN,)
#define A_ORR(c) \
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 res = a | b; \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
cpu->JumpTo(res & ~1); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
}
#define A_ORR_S(c) \
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 res = a | b; \
cpu->SetNZ(res & 0x80000000, \
!res); \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
cpu->JumpTo(res, true); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
}
A_IMPLEMENT_ALU_OP(ORR,_S)
#define A_MOV(c) \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
cpu->JumpTo(b & ~1); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = b; \
}
#define A_MOV_S(c) \
cpu->SetNZ(b & 0x80000000, \
!b); \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
cpu->JumpTo(b, true); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = b; \
}
A_IMPLEMENT_ALU_OP(MOV,_S)
// debug hook
void A_MOV_REG_LSL_IMM_DBG(ARM* cpu)
{
A_MOV_REG_LSL_IMM(cpu);
// nocash-style debugging hook
if ( cpu->CurInstr == 0xE1A0C00C && // mov r12, r12
(cpu->NextInstr[0] & 0xFF000000) == 0xEA000000 && // branch
(cpu->NextInstr[1] & 0xFFFF) == 0x6464)
{
// GBATek says the two bytes after the 2nd ID are _reserved_ for flags
// but since they serve no purpose ATTOW, we can skip them
u32 addr = cpu->R[15] + 4; // Skip 2nd ID and flags
// TODO: Pass flags to NocashPrint
NDS::NocashPrint(cpu->Num, addr);
}
}
#define A_BIC(c) \
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 res = a & ~b; \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
cpu->JumpTo(res & ~1); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
}
#define A_BIC_S(c) \
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 res = a & ~b; \
cpu->SetNZ(res & 0x80000000, \
!res); \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
cpu->JumpTo(res, true); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
}
A_IMPLEMENT_ALU_OP(BIC,_S)
#define A_MVN(c) \
b = ~b; \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
cpu->JumpTo(b & ~1); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = b; \
}
#define A_MVN_S(c) \
b = ~b; \
cpu->SetNZ(b & 0x80000000, \
!b); \
if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) \
{ \
cpu->JumpTo(b, true); \
} \
else \
{ \
cpu->R[(cpu->CurInstr>>12) & 0xF] = b; \
}
A_IMPLEMENT_ALU_OP(MVN,_S)
void A_MUL(ARM* cpu)
{
u32 rm = cpu->R[cpu->CurInstr & 0xF];
u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF];
u32 res = rm * rs;
cpu->R[(cpu->CurInstr >> 16) & 0xF] = res;
if (cpu->CurInstr & (1<<20))
{
cpu->SetNZ(res & 0x80000000,
!res);
if (cpu->Num==1) cpu->SetC(0);
}
u32 cycles;
if (cpu->Num == 0)
cycles = (cpu->CurInstr & (1<<20)) ? 3 : 1;
else
{
if ((rs & 0xFFFFFF00) == 0x00000000 || (rs & 0xFFFFFF00) == 0xFFFFFF00) cycles = 1;
else if ((rs & 0xFFFF0000) == 0x00000000 || (rs & 0xFFFF0000) == 0xFFFF0000) cycles = 2;
else if ((rs & 0xFF000000) == 0x00000000 || (rs & 0xFF000000) == 0xFF000000) cycles = 3;
else cycles = 4;
}
cpu->AddCycles_CI(cycles);
}
void A_MLA(ARM* cpu)
{
u32 rm = cpu->R[cpu->CurInstr & 0xF];
u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF];
u32 rn = cpu->R[(cpu->CurInstr >> 12) & 0xF];
u32 res = (rm * rs) + rn;
cpu->R[(cpu->CurInstr >> 16) & 0xF] = res;
if (cpu->CurInstr & (1<<20))
{
cpu->SetNZ(res & 0x80000000,
!res);
if (cpu->Num==1) cpu->SetC(0);
}
u32 cycles;
if (cpu->Num == 0)
cycles = (cpu->CurInstr & (1<<20)) ? 3 : 1;
else
{
if ((rs & 0xFFFFFF00) == 0x00000000 || (rs & 0xFFFFFF00) == 0xFFFFFF00) cycles = 2;
else if ((rs & 0xFFFF0000) == 0x00000000 || (rs & 0xFFFF0000) == 0xFFFF0000) cycles = 3;
else if ((rs & 0xFF000000) == 0x00000000 || (rs & 0xFF000000) == 0xFF000000) cycles = 4;
else cycles = 5;
}
cpu->AddCycles_CI(cycles);
}
void A_UMULL(ARM* cpu)
{
u32 rm = cpu->R[cpu->CurInstr & 0xF];
u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF];
u64 res = (u64)rm * (u64)rs;
cpu->R[(cpu->CurInstr >> 12) & 0xF] = (u32)res;
cpu->R[(cpu->CurInstr >> 16) & 0xF] = (u32)(res >> 32ULL);
if (cpu->CurInstr & (1<<20))
{
cpu->SetNZ((u32)(res >> 63ULL),
!res);
if (cpu->Num==1) cpu->SetC(0);
}
u32 cycles;
if (cpu->Num == 0)
cycles = (cpu->CurInstr & (1<<20)) ? 3 : 1;
else
{
if ((rs & 0xFFFFFF00) == 0x00000000) cycles = 2;
else if ((rs & 0xFFFF0000) == 0x00000000) cycles = 3;
else if ((rs & 0xFF000000) == 0x00000000) cycles = 4;
else cycles = 5;
}
cpu->AddCycles_CI(cycles);
}
void A_UMLAL(ARM* cpu)
{
u32 rm = cpu->R[cpu->CurInstr & 0xF];
u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF];
u64 res = (u64)rm * (u64)rs;
u64 rd = (u64)cpu->R[(cpu->CurInstr >> 12) & 0xF] | ((u64)cpu->R[(cpu->CurInstr >> 16) & 0xF] << 32ULL);
res += rd;
cpu->R[(cpu->CurInstr >> 12) & 0xF] = (u32)res;
cpu->R[(cpu->CurInstr >> 16) & 0xF] = (u32)(res >> 32ULL);
if (cpu->CurInstr & (1<<20))
{
cpu->SetNZ((u32)(res >> 63ULL),
!res);
if (cpu->Num==1) cpu->SetC(0);
}
u32 cycles;
if (cpu->Num == 0)
cycles = (cpu->CurInstr & (1<<20)) ? 3 : 1;
else
{
if ((rs & 0xFFFFFF00) == 0x00000000) cycles = 2;
else if ((rs & 0xFFFF0000) == 0x00000000) cycles = 3;
else if ((rs & 0xFF000000) == 0x00000000) cycles = 4;
else cycles = 5;
}
cpu->AddCycles_CI(cycles);
}
void A_SMULL(ARM* cpu)
{
u32 rm = cpu->R[cpu->CurInstr & 0xF];
u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF];
s64 res = (s64)(s32)rm * (s64)(s32)rs;
cpu->R[(cpu->CurInstr >> 12) & 0xF] = (u32)res;
cpu->R[(cpu->CurInstr >> 16) & 0xF] = (u32)(res >> 32ULL);
if (cpu->CurInstr & (1<<20))
{
cpu->SetNZ((u32)(res >> 63ULL),
!res);
if (cpu->Num==1) cpu->SetC(0);
}
u32 cycles;
if (cpu->Num == 0)
cycles = (cpu->CurInstr & (1<<20)) ? 3 : 1;
else
{
if ((rs & 0xFFFFFF00) == 0x00000000 || (rs & 0xFFFFFF00) == 0xFFFFFF00) cycles = 2;
else if ((rs & 0xFFFF0000) == 0x00000000 || (rs & 0xFFFF0000) == 0xFFFF0000) cycles = 3;
else if ((rs & 0xFF000000) == 0x00000000 || (rs & 0xFF000000) == 0xFF000000) cycles = 4;
else cycles = 5;
}
cpu->AddCycles_CI(cycles);
}
void A_SMLAL(ARM* cpu)
{
u32 rm = cpu->R[cpu->CurInstr & 0xF];
u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF];
s64 res = (s64)(s32)rm * (s64)(s32)rs;
s64 rd = (s64)((u64)cpu->R[(cpu->CurInstr >> 12) & 0xF] | ((u64)cpu->R[(cpu->CurInstr >> 16) & 0xF] << 32ULL));
res += rd;
cpu->R[(cpu->CurInstr >> 12) & 0xF] = (u32)res;
cpu->R[(cpu->CurInstr >> 16) & 0xF] = (u32)(res >> 32ULL);
if (cpu->CurInstr & (1<<20))
{
cpu->SetNZ((u32)(res >> 63ULL),
!res);
if (cpu->Num==1) cpu->SetC(0);
}
u32 cycles;
if (cpu->Num == 0)
cycles = (cpu->CurInstr & (1<<20)) ? 3 : 1;
else
{
if ((rs & 0xFFFFFF00) == 0x00000000 || (rs & 0xFFFFFF00) == 0xFFFFFF00) cycles = 2;
else if ((rs & 0xFFFF0000) == 0x00000000 || (rs & 0xFFFF0000) == 0xFFFF0000) cycles = 3;
else if ((rs & 0xFF000000) == 0x00000000 || (rs & 0xFF000000) == 0xFF000000) cycles = 4;
else cycles = 5;
}
cpu->AddCycles_CI(cycles);
}
void A_SMLAxy(ARM* cpu)
{
if (cpu->Num != 0) return;
u32 rm = cpu->R[cpu->CurInstr & 0xF];
u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF];
u32 rn = cpu->R[(cpu->CurInstr >> 12) & 0xF];
if (cpu->CurInstr & (1<<5)) rm >>= 16;
else rm &= 0xFFFF;
if (cpu->CurInstr & (1<<6)) rs >>= 16;
else rs &= 0xFFFF;
u32 res_mul = ((s16)rm * (s16)rs);
u32 res = res_mul + rn;
cpu->R[(cpu->CurInstr >> 16) & 0xF] = res;
if (OVERFLOW_ADD(res_mul, rn, res))
cpu->CPSR |= 0x08000000;
cpu->AddCycles_C(); // TODO: interlock??
}
void A_SMLAWy(ARM* cpu)
{
if (cpu->Num != 0) return;
u32 rm = cpu->R[cpu->CurInstr & 0xF];
u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF];
u32 rn = cpu->R[(cpu->CurInstr >> 12) & 0xF];
if (cpu->CurInstr & (1<<6)) rs >>= 16;
else rs &= 0xFFFF;
u32 res_mul = ((s64)(s32)rm * (s16)rs) >> 16;
u32 res = res_mul + rn;
cpu->R[(cpu->CurInstr >> 16) & 0xF] = res;
if (OVERFLOW_ADD(res_mul, rn, res))
cpu->CPSR |= 0x08000000;
cpu->AddCycles_C(); // TODO: interlock??
}
void A_SMULxy(ARM* cpu)
{
if (cpu->Num != 0) return;
u32 rm = cpu->R[cpu->CurInstr & 0xF];
u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF];
if (cpu->CurInstr & (1<<5)) rm >>= 16;
else rm &= 0xFFFF;
if (cpu->CurInstr & (1<<6)) rs >>= 16;
else rs &= 0xFFFF;
u32 res = ((s16)rm * (s16)rs);
cpu->R[(cpu->CurInstr >> 16) & 0xF] = res;
cpu->AddCycles_C(); // TODO: interlock??
}
void A_SMULWy(ARM* cpu)
{
if (cpu->Num != 0) return;
u32 rm = cpu->R[cpu->CurInstr & 0xF];
u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF];
if (cpu->CurInstr & (1<<6)) rs >>= 16;
else rs &= 0xFFFF;
u32 res = ((s64)(s32)rm * (s16)rs) >> 16;
cpu->R[(cpu->CurInstr >> 16) & 0xF] = res;
cpu->AddCycles_C(); // TODO: interlock??
}
void A_SMLALxy(ARM* cpu)
{
if (cpu->Num != 0) return;
u32 rm = cpu->R[cpu->CurInstr & 0xF];
u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF];
if (cpu->CurInstr & (1<<5)) rm >>= 16;
else rm &= 0xFFFF;
if (cpu->CurInstr & (1<<6)) rs >>= 16;
else rs &= 0xFFFF;
s64 res = (s64)(s16)rm * (s64)(s16)rs;
s64 rd = (s64)((u64)cpu->R[(cpu->CurInstr >> 12) & 0xF] | ((u64)cpu->R[(cpu->CurInstr >> 16) & 0xF] << 32ULL));
res += rd;
cpu->R[(cpu->CurInstr >> 12) & 0xF] = (u32)res;
cpu->R[(cpu->CurInstr >> 16) & 0xF] = (u32)(res >> 32ULL);
cpu->AddCycles_CI(1); // TODO: interlock??
}
void A_CLZ(ARM* cpu)
{
if (cpu->Num != 0) return A_UNK(cpu);
u32 val = cpu->R[cpu->CurInstr & 0xF];
u32 res = 0;
while ((val & 0xFF000000) == 0)
{
res += 8;
val <<= 8;
val |= 0xFF;
}
while ((val & 0x80000000) == 0)
{
res++;
val <<= 1;
val |= 0x1;
}
cpu->R[(cpu->CurInstr >> 12) & 0xF] = res;
cpu->AddCycles_C();
}
void A_QADD(ARM* cpu)
{
if (cpu->Num != 0) return A_UNK(cpu);
u32 rm = cpu->R[cpu->CurInstr & 0xF];
u32 rn = cpu->R[(cpu->CurInstr >> 16) & 0xF];
u32 res = rm + rn;
if (OVERFLOW_ADD(rm, rn, res))
{
res = (res & 0x80000000) ? 0x7FFFFFFF : 0x80000000;
cpu->CPSR |= 0x08000000;
}
cpu->R[(cpu->CurInstr >> 12) & 0xF] = res;
cpu->AddCycles_C(); // TODO: interlock??
}
void A_QSUB(ARM* cpu)
{
if (cpu->Num != 0) return A_UNK(cpu);
u32 rm = cpu->R[cpu->CurInstr & 0xF];
u32 rn = cpu->R[(cpu->CurInstr >> 16) & 0xF];
u32 res = rm - rn;
if (OVERFLOW_SUB(rm, rn, res))
{
res = (res & 0x80000000) ? 0x7FFFFFFF : 0x80000000;
cpu->CPSR |= 0x08000000;
}
cpu->R[(cpu->CurInstr >> 12) & 0xF] = res;
cpu->AddCycles_C(); // TODO: interlock??
}
void A_QDADD(ARM* cpu)
{
if (cpu->Num != 0) return A_UNK(cpu);
u32 rm = cpu->R[cpu->CurInstr & 0xF];
u32 rn = cpu->R[(cpu->CurInstr >> 16) & 0xF];
if (OVERFLOW_ADD(rn, rn, rn<<1))
{
rn = (rn & 0x80000000) ? 0x80000000 : 0x7FFFFFFF;
cpu->CPSR |= 0x08000000; // CHECKME
}
else
rn <<= 1;
u32 res = rm + rn;
if (OVERFLOW_ADD(rm, rn, res))
{
res = (res & 0x80000000) ? 0x7FFFFFFF : 0x80000000;
cpu->CPSR |= 0x08000000;
}
cpu->R[(cpu->CurInstr >> 12) & 0xF] = res;
cpu->AddCycles_C(); // TODO: interlock??
}
void A_QDSUB(ARM* cpu)
{
if (cpu->Num != 0) return A_UNK(cpu);
u32 rm = cpu->R[cpu->CurInstr & 0xF];
u32 rn = cpu->R[(cpu->CurInstr >> 16) & 0xF];
if (OVERFLOW_ADD(rn, rn, rn<<1))
{
rn = (rn & 0x80000000) ? 0x80000000 : 0x7FFFFFFF;
cpu->CPSR |= 0x08000000; // CHECKME
}
else
rn <<= 1;
u32 res = rm - rn;
if (OVERFLOW_SUB(rm, rn, res))
{
res = (res & 0x80000000) ? 0x7FFFFFFF : 0x80000000;
cpu->CPSR |= 0x08000000;
}
cpu->R[(cpu->CurInstr >> 12) & 0xF] = res;
cpu->AddCycles_C(); // TODO: interlock??
}
// ---- THUMB ----------------------------------
void T_LSL_IMM(ARM* cpu)
{
u32 op = cpu->R[(cpu->CurInstr >> 3) & 0x7];
u32 s = (cpu->CurInstr >> 6) & 0x1F;
LSL_IMM_S(op, s);
cpu->R[cpu->CurInstr & 0x7] = op;
cpu->SetNZ(op & 0x80000000,
!op);
cpu->AddCycles_C();
}
void T_LSR_IMM(ARM* cpu)
{
u32 op = cpu->R[(cpu->CurInstr >> 3) & 0x7];
u32 s = (cpu->CurInstr >> 6) & 0x1F;
LSR_IMM_S(op, s);
cpu->R[cpu->CurInstr & 0x7] = op;
cpu->SetNZ(op & 0x80000000,
!op);
cpu->AddCycles_C();
}
void T_ASR_IMM(ARM* cpu)
{
u32 op = cpu->R[(cpu->CurInstr >> 3) & 0x7];
u32 s = (cpu->CurInstr >> 6) & 0x1F;
ASR_IMM_S(op, s);
cpu->R[cpu->CurInstr & 0x7] = op;
cpu->SetNZ(op & 0x80000000,
!op);
cpu->AddCycles_C();
}
void T_ADD_REG_(ARM* cpu)
{
u32 a = cpu->R[(cpu->CurInstr >> 3) & 0x7];
u32 b = cpu->R[(cpu->CurInstr >> 6) & 0x7];
u32 res = a + b;
cpu->R[cpu->CurInstr & 0x7] = res;
cpu->SetNZCV(res & 0x80000000,
!res,
CARRY_ADD(a, b),
OVERFLOW_ADD(a, b, res));
cpu->AddCycles_C();
}
void T_SUB_REG_(ARM* cpu)
{
u32 a = cpu->R[(cpu->CurInstr >> 3) & 0x7];
u32 b = cpu->R[(cpu->CurInstr >> 6) & 0x7];
u32 res = a - b;
cpu->R[cpu->CurInstr & 0x7] = res;
cpu->SetNZCV(res & 0x80000000,
!res,
CARRY_SUB(a, b),
OVERFLOW_SUB(a, b, res));
cpu->AddCycles_C();
}
void T_ADD_IMM_(ARM* cpu)
{
u32 a = cpu->R[(cpu->CurInstr >> 3) & 0x7];
u32 b = (cpu->CurInstr >> 6) & 0x7;
u32 res = a + b;
cpu->R[cpu->CurInstr & 0x7] = res;
cpu->SetNZCV(res & 0x80000000,
!res,
CARRY_ADD(a, b),
OVERFLOW_ADD(a, b, res));
cpu->AddCycles_C();
}
void T_SUB_IMM_(ARM* cpu)
{
u32 a = cpu->R[(cpu->CurInstr >> 3) & 0x7];
u32 b = (cpu->CurInstr >> 6) & 0x7;
u32 res = a - b;
cpu->R[cpu->CurInstr & 0x7] = res;
cpu->SetNZCV(res & 0x80000000,
!res,
CARRY_SUB(a, b),
OVERFLOW_SUB(a, b, res));
cpu->AddCycles_C();
}
void T_MOV_IMM(ARM* cpu)
{
u32 b = cpu->CurInstr & 0xFF;
cpu->R[(cpu->CurInstr >> 8) & 0x7] = b;
cpu->SetNZ(0,
!b);
cpu->AddCycles_C();
}
void T_CMP_IMM(ARM* cpu)
{
u32 a = cpu->R[(cpu->CurInstr >> 8) & 0x7];
u32 b = cpu->CurInstr & 0xFF;
u32 res = a - b;
cpu->SetNZCV(res & 0x80000000,
!res,
CARRY_SUB(a, b),
OVERFLOW_SUB(a, b, res));
cpu->AddCycles_C();
}
void T_ADD_IMM(ARM* cpu)
{
u32 a = cpu->R[(cpu->CurInstr >> 8) & 0x7];
u32 b = cpu->CurInstr & 0xFF;
u32 res = a + b;
cpu->R[(cpu->CurInstr >> 8) & 0x7] = res;
cpu->SetNZCV(res & 0x80000000,
!res,
CARRY_ADD(a, b),
OVERFLOW_ADD(a, b, res));
cpu->AddCycles_C();
}
void T_SUB_IMM(ARM* cpu)
{
u32 a = cpu->R[(cpu->CurInstr >> 8) & 0x7];
u32 b = cpu->CurInstr & 0xFF;
u32 res = a - b;
cpu->R[(cpu->CurInstr >> 8) & 0x7] = res;
cpu->SetNZCV(res & 0x80000000,
!res,
CARRY_SUB(a, b),
OVERFLOW_SUB(a, b, res));
cpu->AddCycles_C();
}
void T_AND_REG(ARM* cpu)
{
u32 a = cpu->R[cpu->CurInstr & 0x7];
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7];
u32 res = a & b;
cpu->R[cpu->CurInstr & 0x7] = res;
cpu->SetNZ(res & 0x80000000,
!res);
cpu->AddCycles_C();
}
void T_EOR_REG(ARM* cpu)
{
u32 a = cpu->R[cpu->CurInstr & 0x7];
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7];
u32 res = a ^ b;
cpu->R[cpu->CurInstr & 0x7] = res;
cpu->SetNZ(res & 0x80000000,
!res);
cpu->AddCycles_C();
}
void T_LSL_REG(ARM* cpu)
{
u32 a = cpu->R[cpu->CurInstr & 0x7];
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7] & 0xFF;
LSL_REG_S(a, b);
cpu->R[cpu->CurInstr & 0x7] = a;
cpu->SetNZ(a & 0x80000000,
!a);
cpu->AddCycles_CI(1);
}
void T_LSR_REG(ARM* cpu)
{
u32 a = cpu->R[cpu->CurInstr & 0x7];
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7] & 0xFF;
LSR_REG_S(a, b);
cpu->R[cpu->CurInstr & 0x7] = a;
cpu->SetNZ(a & 0x80000000,
!a);
cpu->AddCycles_CI(1);
}
void T_ASR_REG(ARM* cpu)
{
u32 a = cpu->R[cpu->CurInstr & 0x7];
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7] & 0xFF;
ASR_REG_S(a, b);
cpu->R[cpu->CurInstr & 0x7] = a;
cpu->SetNZ(a & 0x80000000,
!a);
cpu->AddCycles_CI(1);
}
void T_ADC_REG(ARM* cpu)
{
u32 a = cpu->R[cpu->CurInstr & 0x7];
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7];
u32 res_tmp = a + b;
u32 carry = (cpu->CPSR&0x20000000 ? 1:0);
u32 res = res_tmp + carry;
cpu->R[cpu->CurInstr & 0x7] = res;
cpu->SetNZCV(res & 0x80000000,
!res,
CARRY_ADD(a, b) | CARRY_ADD(res_tmp, carry),
OVERFLOW_ADD(a, b, res_tmp) | OVERFLOW_ADD(res_tmp, carry, res));
cpu->AddCycles_C();
}
void T_SBC_REG(ARM* cpu)
{
u32 a = cpu->R[cpu->CurInstr & 0x7];
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7];
u32 res_tmp = a - b;
u32 carry = (cpu->CPSR&0x20000000 ? 0:1);
u32 res = res_tmp - carry;
cpu->R[cpu->CurInstr & 0x7] = res;
cpu->SetNZCV(res & 0x80000000,
!res,
CARRY_SUB(a, b) & CARRY_SUB(res_tmp, carry),
OVERFLOW_SUB(a, b, res_tmp) | OVERFLOW_SUB(res_tmp, carry, res));
cpu->AddCycles_C();
}
void T_ROR_REG(ARM* cpu)
{
u32 a = cpu->R[cpu->CurInstr & 0x7];
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7] & 0xFF;
ROR_REG_S(a, b);
cpu->R[cpu->CurInstr & 0x7] = a;
cpu->SetNZ(a & 0x80000000,
!a);
cpu->AddCycles_CI(1);
}
void T_TST_REG(ARM* cpu)
{
u32 a = cpu->R[cpu->CurInstr & 0x7];
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7];
u32 res = a & b;
cpu->SetNZ(res & 0x80000000,
!res);
cpu->AddCycles_C();
}
void T_NEG_REG(ARM* cpu)
{
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7];
u32 res = -b;
cpu->R[cpu->CurInstr & 0x7] = res;
cpu->SetNZCV(res & 0x80000000,
!res,
CARRY_SUB(0, b),
OVERFLOW_SUB(0, b, res));
cpu->AddCycles_C();
}
void T_CMP_REG(ARM* cpu)
{
u32 a = cpu->R[cpu->CurInstr & 0x7];
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7];
u32 res = a - b;
cpu->SetNZCV(res & 0x80000000,
!res,
CARRY_SUB(a, b),
OVERFLOW_SUB(a, b, res));
cpu->AddCycles_C();
}
void T_CMN_REG(ARM* cpu)
{
u32 a = cpu->R[cpu->CurInstr & 0x7];
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7];
u32 res = a + b;
cpu->SetNZCV(res & 0x80000000,
!res,
CARRY_ADD(a, b),
OVERFLOW_ADD(a, b, res));
cpu->AddCycles_C();
}
void T_ORR_REG(ARM* cpu)
{
u32 a = cpu->R[cpu->CurInstr & 0x7];
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7];
u32 res = a | b;
cpu->R[cpu->CurInstr & 0x7] = res;
cpu->SetNZ(res & 0x80000000,
!res);
cpu->AddCycles_C();
}
void T_MUL_REG(ARM* cpu)
{
u32 a = cpu->R[cpu->CurInstr & 0x7];
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7];
u32 res = a * b;
cpu->R[cpu->CurInstr & 0x7] = res;
cpu->SetNZ(res & 0x80000000,
!res);
s32 cycles = 0;
if (cpu->Num == 0)
{
cycles += 3;
}
else
{
cpu->SetC(0); // carry flag destroyed, they say. whatever that means...
if (a & 0xFF000000) cycles += 4;
else if (a & 0x00FF0000) cycles += 3;
else if (a & 0x0000FF00) cycles += 2;
else cycles += 1;
}
cpu->AddCycles_CI(cycles);
}
void T_BIC_REG(ARM* cpu)
{
u32 a = cpu->R[cpu->CurInstr & 0x7];
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7];
u32 res = a & ~b;
cpu->R[cpu->CurInstr & 0x7] = res;
cpu->SetNZ(res & 0x80000000,
!res);
cpu->AddCycles_C();
}
void T_MVN_REG(ARM* cpu)
{
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7];
u32 res = ~b;
cpu->R[cpu->CurInstr & 0x7] = res;
cpu->SetNZ(res & 0x80000000,
!res);
cpu->AddCycles_C();
}
// TODO: check those when MSBs and MSBd are cleared
// GBAtek says it's not allowed, but it works atleast on the ARM9
void T_ADD_HIREG(ARM* cpu)
{
u32 rd = (cpu->CurInstr & 0x7) | ((cpu->CurInstr >> 4) & 0x8);
u32 rs = (cpu->CurInstr >> 3) & 0xF;
u32 a = cpu->R[rd];
u32 b = cpu->R[rs];
cpu->AddCycles_C();
if (rd == 15)
{
cpu->JumpTo((a + b) | 1);
}
else
{
cpu->R[rd] = a + b;
}
}
void T_CMP_HIREG(ARM* cpu)
{
u32 rd = (cpu->CurInstr & 0x7) | ((cpu->CurInstr >> 4) & 0x8);
u32 rs = (cpu->CurInstr >> 3) & 0xF;
u32 a = cpu->R[rd];
u32 b = cpu->R[rs];
u32 res = a - b;
cpu->SetNZCV(res & 0x80000000,
!res,
CARRY_SUB(a, b),
OVERFLOW_SUB(a, b, res));
cpu->AddCycles_C();
}
void T_MOV_HIREG(ARM* cpu)
{
u32 rd = (cpu->CurInstr & 0x7) | ((cpu->CurInstr >> 4) & 0x8);
u32 rs = (cpu->CurInstr >> 3) & 0xF;
cpu->AddCycles_C();
if (rd == 15)
{
cpu->JumpTo(cpu->R[rs] | 1);
}
else
{
cpu->R[rd] = cpu->R[rs];
}
// nocash-style debugging hook
if ((cpu->CurInstr & 0xFFFF) == 0x46E4 && // mov r12, r12
(cpu->NextInstr[0] & 0xF800) == 0xE000 && // branch
(cpu->NextInstr[1] & 0xFFFF) == 0x6464)
{
// GBATek says the two bytes after the 2nd ID are _reserved_ for flags
// but since they serve no purpose ATTOW, we can skip them
u32 addr = cpu->R[15] + 4; // Skip 2nd ID and flags
// TODO: Pass flags to NocashPrint
NDS::NocashPrint(cpu->Num, addr);
}
}
void T_ADD_PCREL(ARM* cpu)
{
u32 val = cpu->R[15] & ~2;
val += ((cpu->CurInstr & 0xFF) << 2);
cpu->R[(cpu->CurInstr >> 8) & 0x7] = val;
cpu->AddCycles_C();
}
void T_ADD_SPREL(ARM* cpu)
{
u32 val = cpu->R[13];
val += ((cpu->CurInstr & 0xFF) << 2);
cpu->R[(cpu->CurInstr >> 8) & 0x7] = val;
cpu->AddCycles_C();
}
void T_ADD_SP(ARM* cpu)
{
u32 val = cpu->R[13];
if (cpu->CurInstr & (1<<7))
val -= ((cpu->CurInstr & 0x7F) << 2);
else
val += ((cpu->CurInstr & 0x7F) << 2);
cpu->R[13] = val;
cpu->AddCycles_C();
}
}