melonDS/NDS.cpp

2185 lines
54 KiB
C++

/*
Copyright 2016-2017 StapleButter
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include <stdio.h>
#include <string.h>
#include "NDS.h"
#include "ARM.h"
#include "CP15.h"
#include "NDSCart.h"
#include "DMA.h"
#include "FIFO.h"
#include "GPU.h"
#include "SPI.h"
#include "RTC.h"
#include "Wifi.h"
namespace NDS
{
// TODO LIST
// * stick all the variables in a big structure?
// would make it easier to deal with savestates
/*SchedEvent SchedBuffer[SCHED_BUF_LEN];
SchedEvent* SchedQueue;
bool NeedReschedule;*/
ARM* ARM9;
ARM* ARM7;
/*s32 ARM9Cycles, ARM7Cycles;
s32 CompensatedCycles;
s32 SchedCycles;*/
s32 CurIterationCycles;
s32 ARM7Offset;
SchedEvent SchedList[Event_MAX];
u32 SchedListMask;
u8 ARM9BIOS[0x1000];
u8 ARM7BIOS[0x4000];
u8 MainRAM[0x400000];
u8 SharedWRAM[0x8000];
u8 WRAMCnt;
u8* SWRAM_ARM9;
u8* SWRAM_ARM7;
u32 SWRAM_ARM9Mask;
u32 SWRAM_ARM7Mask;
u8 ARM7WRAM[0x10000];
u16 ExMemCnt[2];
u8 ROMSeed0[2*8];
u8 ROMSeed1[2*8];
// IO shit
u32 IME[2];
u32 IE[2], IF[2];
u8 PostFlag9;
u8 PostFlag7;
u16 PowerControl9;
u16 PowerControl7;
u16 ARM7BIOSProt;
Timer Timers[8];
DMA* DMAs[8];
u32 DMA9Fill[4];
u16 IPCSync9, IPCSync7;
u16 IPCFIFOCnt9, IPCFIFOCnt7;
FIFO<u32>* IPCFIFO9; // FIFO in which the ARM9 writes
FIFO<u32>* IPCFIFO7;
u16 DivCnt;
u32 DivNumerator[2];
u32 DivDenominator[2];
u32 DivQuotient[2];
u32 DivRemainder[2];
u16 SqrtCnt;
u32 SqrtVal[2];
u32 SqrtRes;
u32 KeyInput;
u16 _soundbias; // temp
bool Running;
bool Init()
{
ARM9 = new ARM(0);
ARM7 = new ARM(1);
DMAs[0] = new DMA(0, 0);
DMAs[1] = new DMA(0, 1);
DMAs[2] = new DMA(0, 2);
DMAs[3] = new DMA(0, 3);
DMAs[4] = new DMA(1, 0);
DMAs[5] = new DMA(1, 1);
DMAs[6] = new DMA(1, 2);
DMAs[7] = new DMA(1, 3);
IPCFIFO9 = new FIFO<u32>(16);
IPCFIFO7 = new FIFO<u32>(16);
if (!NDSCart::Init()) return false;
if (!GPU::Init()) return false;
if (!SPI::Init()) return false;
if (!RTC::Init()) return false;
Reset();
return true;
}
void DeInit()
{
delete ARM9;
delete ARM7;
for (int i = 0; i < 8; i++)
delete DMAs[i];
delete IPCFIFO9;
delete IPCFIFO7;
NDSCart::DeInit();
GPU::DeInit();
SPI::DeInit();
RTC::DeInit();
}
void SetupDirectBoot()
{
u32 bootparams[8];
memcpy(bootparams, &NDSCart::CartROM[0x20], 8*4);
printf("ARM9: offset=%08X entry=%08X RAM=%08X size=%08X\n",
bootparams[0], bootparams[1], bootparams[2], bootparams[3]);
printf("ARM7: offset=%08X entry=%08X RAM=%08X size=%08X\n",
bootparams[4], bootparams[5], bootparams[6], bootparams[7]);
MapSharedWRAM(3);
for (u32 i = 0; i < bootparams[3]; i+=4)
{
u32 tmp = *(u32*)&NDSCart::CartROM[bootparams[0]+i];
ARM9Write32(bootparams[2]+i, tmp);
}
for (u32 i = 0; i < bootparams[7]; i+=4)
{
u32 tmp = *(u32*)&NDSCart::CartROM[bootparams[4]+i];
ARM7Write32(bootparams[6]+i, tmp);
}
for (u32 i = 0; i < 0x170; i+=4)
{
u32 tmp = *(u32*)&NDSCart::CartROM[i];
ARM9Write32(0x027FFE00+i, tmp);
}
ARM9Write32(0x027FF800, 0x00001FC2);
ARM9Write32(0x027FF804, 0x00001FC2);
ARM9Write16(0x027FF808, *(u16*)&NDSCart::CartROM[0x15E]);
ARM9Write16(0x027FF80A, *(u16*)&NDSCart::CartROM[0x6C]);
ARM9Write16(0x027FF850, 0x5835);
ARM9Write32(0x027FFC00, 0x00001FC2);
ARM9Write32(0x027FFC04, 0x00001FC2);
ARM9Write16(0x027FFC08, *(u16*)&NDSCart::CartROM[0x15E]);
ARM9Write16(0x027FFC0A, *(u16*)&NDSCart::CartROM[0x6C]);
ARM9Write16(0x027FFC10, 0x5835);
ARM9Write16(0x027FFC30, 0xFFFF);
ARM9Write16(0x027FFC40, 0x0001);
CP15::Write(0x910, 0x0300000A);
CP15::Write(0x911, 0x00000020);
CP15::Write(0x100, 0x00050000);
ARM9->JumpTo(bootparams[1]);
ARM7->JumpTo(bootparams[5]);
PowerControl9 = 0x820F;
GPU::DisplaySwap(PowerControl9);
ARM7BIOSProt = 0x1204;
}
void Reset()
{
FILE* f;
u32 i;
f = fopen("bios9.bin", "rb");
if (!f)
printf("ARM9 BIOS not found\n");
else
{
fseek(f, 0, SEEK_SET);
fread(ARM9BIOS, 0x1000, 1, f);
printf("ARM9 BIOS loaded\n");
fclose(f);
}
f = fopen("bios7.bin", "rb");
if (!f)
printf("ARM7 BIOS not found\n");
else
{
fseek(f, 0, SEEK_SET);
fread(ARM7BIOS, 0x4000, 1, f);
printf("ARM7 BIOS loaded\n");
fclose(f);
}
memset(MainRAM, 0, 0x400000);
memset(SharedWRAM, 0, 0x8000);
memset(ARM7WRAM, 0, 0x10000);
MapSharedWRAM(0);
ExMemCnt[0] = 0;
ExMemCnt[1] = 0;
memset(ROMSeed0, 0, 2*8);
memset(ROMSeed1, 0, 2*8);
IME[0] = 0;
IME[1] = 0;
PostFlag9 = 0x00;
PostFlag7 = 0x00;
PowerControl9 = 0x0001;
PowerControl7 = 0x0001;
ARM7BIOSProt = 0;
IPCSync9 = 0;
IPCSync7 = 0;
IPCFIFOCnt9 = 0;
IPCFIFOCnt7 = 0;
IPCFIFO9->Clear();
IPCFIFO7->Clear();
DivCnt = 0;
SqrtCnt = 0;
ARM9->Reset();
ARM7->Reset();
CP15::Reset();
memset(Timers, 0, 8*sizeof(Timer));
for (i = 0; i < 8; i++) DMAs[i]->Reset();
memset(DMA9Fill, 0, 4*4);
NDSCart::Reset();
GPU::Reset();
SPI::Reset();
RTC::Reset();
Wifi::Reset();
// memset(SchedBuffer, 0, sizeof(SchedEvent)*SCHED_BUF_LEN);
// SchedQueue = NULL;
memset(SchedList, 0, sizeof(SchedList));
SchedListMask = 0;
/*ARM9Cycles = 0;
ARM7Cycles = 0;
SchedCycles = 0;*/
CurIterationCycles = 0;
ARM7Offset = 0;
KeyInput = 0x007F03FF;
_soundbias = 0;
// test
//LoadROM();
//LoadFirmware();
if (NDSCart::LoadROM("rom/nsmb.nds"))
Running = true; // hax
}
void CalcIterationCycles()
{
CurIterationCycles = 16;
for (int i = 0; i < Event_MAX; i++)
{
if (!(SchedListMask & (1<<i)))
continue;
if (SchedList[i].WaitCycles < CurIterationCycles)
CurIterationCycles = SchedList[i].WaitCycles;
}
}
void RunSystem(s32 cycles)
{
for (int i = 0; i < 8; i++)
{
if ((Timers[i].Cnt & 0x84) == 0x80)
Timers[i].Counter += (ARM9->Cycles >> 1) << Timers[i].CycleShift;
}
for (int i = 4; i < 8; i++)
{
if ((Timers[i].Cnt & 0x84) == 0x80)
Timers[i].Counter += ARM7->Cycles << Timers[i].CycleShift;
}
for (int i = 0; i < Event_MAX; i++)
{
if (!(SchedListMask & (1<<i)))
continue;
SchedList[i].WaitCycles -= cycles;
if (SchedList[i].WaitCycles < 1)
{
SchedListMask &= ~(1<<i);
SchedList[i].Func(SchedList[i].Param);
}
}
}
void RunFrame()
{
s32 framecycles = 560190;
if (!Running) return; // dorp
GPU::StartFrame();
while (Running && framecycles>0)
{
CalcIterationCycles();
ARM9->CyclesToRun = CurIterationCycles << 1;
ARM9->Execute();
s32 ndscyclestorun = ARM9->Cycles >> 1;
s32 ndscycles = 0;
ARM7->CyclesToRun = ndscyclestorun - ARM7Offset;
ARM7->Execute();
ARM7Offset = ARM7->Cycles - ARM7->CyclesToRun;
RunSystem(ndscyclestorun);
/*while (ndscycles < ndscyclestorun)
{
ARM7->CyclesToRun = ndscyclestorun - ndscycles - ARM7Offset;
ARM7->Execute();
ARM7Offset = 0;
RunEvents(ARM7->Cycles);
ndscycles += ARM7->Cycles;
}
ARM7Offset = ndscycles - ndscyclestorun;*/
framecycles -= ndscyclestorun;
}
}
void Reschedule()
{
CalcIterationCycles();
ARM9->CyclesToRun = CurIterationCycles << 1;
//ARM7->CyclesToRun = CurIterationCycles - ARM7Offset;
//ARM7->CyclesToRun = (ARM9->Cycles >> 1) - ARM7->Cycles - ARM7Offset;
}
void ScheduleEvent(u32 id, bool periodic, s32 delay, void (*func)(u32), u32 param)
{
if (SchedListMask & (1<<id))
{
printf("!! EVENT %d ALREADY SCHEDULED\n", id);
return;
}
SchedEvent* evt = &SchedList[id];
if (periodic) evt->WaitCycles += delay;
else evt->WaitCycles = delay + (ARM9->Cycles >> 1);
evt->Func = func;
evt->Param = param;
SchedListMask |= (1<<id);
Reschedule();
}
void CancelEvent(u32 id)
{
SchedListMask &= ~(1<<id);
}
void PressKey(u32 key)
{
KeyInput &= ~(1 << key);
}
void ReleaseKey(u32 key)
{
KeyInput |= (1 << key);
}
void TouchScreen(u16 x, u16 y)
{
SPI_TSC::SetTouchCoords(x, y);
}
void ReleaseScreen()
{
SPI_TSC::SetTouchCoords(0x000, 0xFFF);
}
void Halt()
{
printf("Halt()\n");
Running = false;
}
void MapSharedWRAM(u8 val)
{
WRAMCnt = val;
switch (WRAMCnt & 0x3)
{
case 0:
SWRAM_ARM9 = &SharedWRAM[0];
SWRAM_ARM9Mask = 0x7FFF;
SWRAM_ARM7 = NULL;
SWRAM_ARM7Mask = 0;
break;
case 1:
SWRAM_ARM9 = &SharedWRAM[0x4000];
SWRAM_ARM9Mask = 0x3FFF;
SWRAM_ARM7 = &SharedWRAM[0];
SWRAM_ARM7Mask = 0x3FFF;
break;
case 2:
SWRAM_ARM9 = &SharedWRAM[0];
SWRAM_ARM9Mask = 0x3FFF;
SWRAM_ARM7 = &SharedWRAM[0x4000];
SWRAM_ARM7Mask = 0x3FFF;
break;
case 3:
SWRAM_ARM9 = NULL;
SWRAM_ARM9Mask = 0;
SWRAM_ARM7 = &SharedWRAM[0];
SWRAM_ARM7Mask = 0x7FFF;
break;
}
}
void TriggerIRQ(u32 cpu, u32 irq)
{
irq = 1 << irq;
IF[cpu] |= irq;
// this is redundant
if (!(IME[cpu] & 0x1)) return;
//(cpu?ARM7:ARM9)->TriggerIRQ();
}
bool HaltInterrupted(u32 cpu)
{
if (cpu == 0)
{
if (!(IME[0] & 0x1))
return false;
}
if (IF[cpu] & IE[cpu])
return true;
return false;
}
void CheckDMAs(u32 cpu, u32 mode)
{
cpu <<= 2;
DMAs[cpu+0]->StartIfNeeded(mode);
DMAs[cpu+1]->StartIfNeeded(mode);
DMAs[cpu+2]->StartIfNeeded(mode);
DMAs[cpu+3]->StartIfNeeded(mode);
}
//const s32 TimerPrescaler[4] = {1, 64, 256, 1024};
const s32 TimerPrescaler[4] = {0, 6, 8, 10};
u16 TimerGetCounter(u32 timer)
{
u32 ret = Timers[timer].Counter;
if ((Timers[timer].Cnt & 0x84) == 0x80)
{
u32 c = (timer & 0x4) ? ARM7->Cycles : (ARM9->Cycles>>1);
ret += (c << Timers[timer].CycleShift);
}
return ret >> 16;
}
void TimerOverflow(u32 param)
{
Timer* timer = &Timers[param];
timer->Counter = 0;
u32 tid = param & 0x3;
u32 cpu = param >> 2;
for (;;)
{
if (tid == (param&0x3))
ScheduleEvent(Event_Timer9_0 + param, true, (0x10000 - timer->Reload) << TimerPrescaler[timer->Cnt & 0x03], TimerOverflow, param);
//timer->Event = ScheduleEvent(TimerPrescaler[timer->Control&0x3], TimerIncrement, param);
if (timer->Counter == 0)
{
timer->Counter = timer->Reload << 16;
if (timer->Cnt & (1<<6))
TriggerIRQ(cpu, IRQ_Timer0 + tid);
// cascade
if (tid == 3)
break;
timer++;
if ((timer->Cnt & 0x84) != 0x84)
break;
timer->Counter += 0x10000;
tid++;
continue;
}
break;
}
}
void TimerStart(u32 id, u16 cnt)
{
Timer* timer = &Timers[id];
u16 curstart = timer->Cnt & (1<<7);
u16 newstart = cnt & (1<<7);
timer->Cnt = cnt;
if ((!curstart) && newstart)
{
timer->Counter = timer->Reload << 16;
timer->CycleShift = 16 - TimerPrescaler[cnt & 0x03];
// start the timer, if it's not a cascading timer
if (!(cnt & (1<<2)))
ScheduleEvent(Event_Timer9_0 + id, false, (0x10000 - timer->Reload) << TimerPrescaler[cnt & 0x03], TimerOverflow, id);
else
CancelEvent(Event_Timer9_0 + id);
}
else if (curstart && (!newstart))
{
CancelEvent(Event_Timer9_0 + id);
}
}
void StartDiv()
{
// TODO: division isn't instant!
DivCnt &= ~0x2000;
switch (DivCnt & 0x0003)
{
case 0x0000:
{
s32 num = (s32)DivNumerator[0];
s32 den = (s32)DivDenominator[0];
if (den == 0)
{
DivQuotient[0] = (num<0) ? 1:-1;
DivQuotient[1] = (num<0) ? -1:1;
*(s64*)&DivRemainder[0] = num;
}
else if (num == -0x80000000 && den == -1)
{
*(s64*)&DivQuotient[0] = 0x80000000;
}
else
{
*(s64*)&DivQuotient[0] = (s64)(num / den);
*(s64*)&DivRemainder[0] = (s64)(num % den);
}
}
break;
case 0x0001:
case 0x0003:
{
s64 num = *(s64*)&DivNumerator[0];
s32 den = (s32)DivDenominator[0];
if (den == 0)
{
*(s64*)&DivQuotient[0] = (num<0) ? 1:-1;
*(s64*)&DivRemainder[0] = num;
}
else if (num == -0x8000000000000000 && den == -1)
{
*(s64*)&DivQuotient[0] = 0x8000000000000000;
}
else
{
*(s64*)&DivQuotient[0] = (s64)(num / den);
*(s64*)&DivRemainder[0] = (s64)(num % den);
}
}
break;
case 0x0002:
{
s64 num = *(s64*)&DivNumerator[0];
s64 den = *(s64*)&DivDenominator[0];
if (den == 0)
{
*(s64*)&DivQuotient[0] = (num<0) ? 1:-1;
*(s64*)&DivRemainder[0] = num;
}
else if (num == -0x8000000000000000 && den == -1)
{
*(s64*)&DivQuotient[0] = 0x8000000000000000;
}
else
{
*(s64*)&DivQuotient[0] = (s64)(num / den);
*(s64*)&DivRemainder[0] = (s64)(num % den);
}
}
break;
}
if ((DivDenominator[0] | DivDenominator[1]) == 0)
DivCnt |= 0x2000;
}
// http://stackoverflow.com/questions/1100090/looking-for-an-efficient-integer-square-root-algorithm-for-arm-thumb2
void StartSqrt()
{
// TODO: sqrt isn't instant either. oh well
u64 val;
u32 res = 0;
u64 rem = 0;
u32 prod = 0;
u32 nbits, topshift;
if (SqrtCnt & 0x0001)
{
val = *(u64*)&SqrtVal[0];
nbits = 32;
topshift = 62;
}
else
{
val = (u64)SqrtVal[0]; // 32bit
nbits = 16;
topshift = 30;
}
for (u32 i = 0; i < nbits; i++)
{
rem = (rem << 2) + ((val >> topshift) & 0x3);
val <<= 2;
res <<= 1;
prod = (res << 1) + 1;
if (rem >= prod)
{
rem -= prod;
res++;
}
}
SqrtRes = res;
}
void debug(u32 param)
{
printf("ARM9 PC=%08X LR=%08X %08X\n", ARM9->R[15], ARM9->R[14], ARM9->R_IRQ[1]);
printf("ARM7 PC=%08X LR=%08X %08X\n", ARM7->R[15], ARM7->R[14], ARM7->R_IRQ[1]);
}
u8 ARM9Read8(u32 addr)
{
if ((addr & 0xFFFFF000) == 0xFFFF0000)
{
return *(u8*)&ARM9BIOS[addr & 0xFFF];
}
switch (addr & 0xFF000000)
{
case 0x02000000:
return *(u8*)&MainRAM[addr & 0x3FFFFF];
case 0x03000000:
if (SWRAM_ARM9) return *(u8*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask];
else return 0;
case 0x04000000:
return ARM9IORead8(addr);
case 0x05000000:
return *(u8*)&GPU::Palette[addr & 0x7FF];
case 0x06000000:
{
u32 chunk = (addr >> 14) & 0x7F;
u8* vram = NULL;
switch (addr & 0x00E00000)
{
case 0x00000000: vram = GPU::VRAM_ABG[chunk]; break;
case 0x00200000: vram = GPU::VRAM_BBG[chunk]; break;
case 0x00400000: vram = GPU::VRAM_AOBJ[chunk]; break;
case 0x00600000: vram = GPU::VRAM_BOBJ[chunk]; break;
case 0x00800000: vram = GPU::VRAM_LCD[chunk]; break;
}
if (vram)
return *(u8*)&vram[addr & 0x3FFF];
}
return 0;
case 0x07000000:
return *(u8*)&GPU::OAM[addr & 0x7FF];
case 0x08000000:
case 0x09000000:
return 0xFF;
}
printf("unknown arm9 read8 %08X\n", addr);
return 0;
}
u16 ARM9Read16(u32 addr)
{
if ((addr & 0xFFFFF000) == 0xFFFF0000)
{
return *(u16*)&ARM9BIOS[addr & 0xFFF];
}
switch (addr & 0xFF000000)
{
case 0x02000000:
return *(u16*)&MainRAM[addr & 0x3FFFFF];
case 0x03000000:
if (SWRAM_ARM9) return *(u16*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask];
else return 0;
case 0x04000000:
return ARM9IORead16(addr);
case 0x05000000:
return *(u16*)&GPU::Palette[addr & 0x7FF];
case 0x06000000:
{
u32 chunk = (addr >> 14) & 0x7F;
u8* vram = NULL;
switch (addr & 0x00E00000)
{
case 0x00000000: vram = GPU::VRAM_ABG[chunk]; break;
case 0x00200000: vram = GPU::VRAM_BBG[chunk]; break;
case 0x00400000: vram = GPU::VRAM_AOBJ[chunk]; break;
case 0x00600000: vram = GPU::VRAM_BOBJ[chunk]; break;
case 0x00800000: vram = GPU::VRAM_LCD[chunk]; break;
}
if (vram)
return *(u16*)&vram[addr & 0x3FFF];
}
return 0;
case 0x07000000:
return *(u16*)&GPU::OAM[addr & 0x7FF];
case 0x08000000:
case 0x09000000:
return 0xFFFF;
}
//printf("unknown arm9 read16 %08X %08X %08X %08X\n", addr, ARM9->R[15], ARM9->R[1], ARM9->R[2]);
return 0;
}
u32 ARM9Read32(u32 addr)
{
if ((addr & 0xFFFFF000) == 0xFFFF0000)
{
return *(u32*)&ARM9BIOS[addr & 0xFFF];
}
switch (addr & 0xFF000000)
{
case 0x02000000:
return *(u32*)&MainRAM[addr & 0x3FFFFF];
case 0x03000000:
if (SWRAM_ARM9) return *(u32*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask];
else return 0;
case 0x04000000:
return ARM9IORead32(addr);
case 0x05000000:
return *(u32*)&GPU::Palette[addr & 0x7FF];
case 0x06000000:
{
u32 chunk = (addr >> 14) & 0x7F;
u8* vram = NULL;
switch (addr & 0x00E00000)
{
case 0x00000000: vram = GPU::VRAM_ABG[chunk]; break;
case 0x00200000: vram = GPU::VRAM_BBG[chunk]; break;
case 0x00400000: vram = GPU::VRAM_AOBJ[chunk]; break;
case 0x00600000: vram = GPU::VRAM_BOBJ[chunk]; break;
case 0x00800000: vram = GPU::VRAM_LCD[chunk]; break;
}
if (vram)
return *(u32*)&vram[addr & 0x3FFF];
}
return 0;
case 0x07000000:
return *(u32*)&GPU::OAM[addr & 0x7FF];
case 0x08000000:
case 0x09000000:
return 0xFFFFFFFF;
}
printf("unknown arm9 read32 %08X | %08X %08X %08X\n", addr, ARM9->R[15], ARM9->R[12], ARM9Read32(0x027FF820));
return 0;
}
void ARM9Write8(u32 addr, u8 val)
{
switch (addr & 0xFF000000)
{
case 0x02000000:
*(u8*)&MainRAM[addr & 0x3FFFFF] = val;
return;
case 0x03000000:
if (SWRAM_ARM9) *(u8*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask] = val;
return;
case 0x04000000:
ARM9IOWrite8(addr, val);
return;
case 0x05000000:
case 0x06000000:
case 0x07000000:
return;
}
printf("unknown arm9 write8 %08X %02X\n", addr, val);
}
void ARM9Write16(u32 addr, u16 val)
{
switch (addr & 0xFF000000)
{
case 0x02000000:
*(u16*)&MainRAM[addr & 0x3FFFFF] = val;
return;
case 0x03000000:
if (SWRAM_ARM9) *(u16*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask] = val;
return;
case 0x04000000:
ARM9IOWrite16(addr, val);
return;
case 0x05000000:
*(u16*)&GPU::Palette[addr & 0x7FF] = val;
return;
case 0x06000000:
{
u32 chunk = (addr >> 14) & 0x7F;
u8* vram = NULL;
switch (addr & 0x00E00000)
{
case 0x00000000: vram = GPU::VRAM_ABG[chunk]; break;
case 0x00200000: vram = GPU::VRAM_BBG[chunk]; break;
case 0x00400000: vram = GPU::VRAM_AOBJ[chunk]; break;
case 0x00600000: vram = GPU::VRAM_BOBJ[chunk]; break;
case 0x00800000: vram = GPU::VRAM_LCD[chunk]; break;
}
if (vram)
*(u16*)&vram[addr & 0x3FFF] = val;
}
return;
case 0x07000000:
*(u16*)&GPU::OAM[addr & 0x7FF] = val;
return;
}
//printf("unknown arm9 write16 %08X %04X\n", addr, val);
}
void ARM9Write32(u32 addr, u32 val)
{
switch (addr & 0xFF000000)
{
case 0x02000000:
*(u32*)&MainRAM[addr & 0x3FFFFF] = val;
return;
case 0x03000000:
if (SWRAM_ARM9) *(u32*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask] = val;
return;
case 0x04000000:
ARM9IOWrite32(addr, val);
return;
case 0x05000000:
*(u32*)&GPU::Palette[addr & 0x7FF] = val;
return;
case 0x06000000:
{
u32 chunk = (addr >> 14) & 0x7F;
u8* vram = NULL;
switch (addr & 0x00E00000)
{
case 0x00000000: vram = GPU::VRAM_ABG[chunk]; break;
case 0x00200000: vram = GPU::VRAM_BBG[chunk]; break;
case 0x00400000: vram = GPU::VRAM_AOBJ[chunk]; break;
case 0x00600000: vram = GPU::VRAM_BOBJ[chunk]; break;
case 0x00800000: vram = GPU::VRAM_LCD[chunk]; break;
}
if (vram)
*(u32*)&vram[addr & 0x3FFF] = val;
}
return;
case 0x07000000:
*(u32*)&GPU::OAM[addr & 0x7FF] = val;
return;
}
printf("unknown arm9 write32 %08X %08X | %08X\n", addr, val, ARM9->R[15]);
}
u8 ARM7Read8(u32 addr)
{
if (addr < 0x00004000)
{
if (ARM7->R[15] >= 0x4000)
return 0xFF;
if (addr < ARM7BIOSProt && ARM7->R[15] >= ARM7BIOSProt)
return 0xFF;
return *(u8*)&ARM7BIOS[addr];
}
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
return *(u8*)&MainRAM[addr & 0x3FFFFF];
case 0x03000000:
if (SWRAM_ARM7) return *(u8*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask];
else return *(u8*)&ARM7WRAM[addr & 0xFFFF];
case 0x03800000:
return *(u8*)&ARM7WRAM[addr & 0xFFFF];
case 0x04000000:
return ARM7IORead8(addr);
case 0x06000000:
case 0x06800000:
{
u32 chunk = (addr >> 17) & 0x1;
u8* vram = GPU::VRAM_ARM7[chunk];
if (vram)
return *(u8*)&vram[addr & 0x1FFFF];
}
return 0;
}
printf("unknown arm7 read8 %08X %08X %08X/%08X\n", addr, ARM7->R[15], ARM7->R[0], ARM7->R[1]);
return 0;
}
u16 ARM7Read16(u32 addr)
{
if (addr < 0x00004000)
{
if (ARM7->R[15] >= 0x4000)
return 0xFFFF;
if (addr < ARM7BIOSProt && ARM7->R[15] >= ARM7BIOSProt)
return 0xFFFF;
return *(u16*)&ARM7BIOS[addr];
}
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
return *(u16*)&MainRAM[addr & 0x3FFFFF];
case 0x03000000:
if (SWRAM_ARM7) return *(u16*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask];
else return *(u16*)&ARM7WRAM[addr & 0xFFFF];
case 0x03800000:
return *(u16*)&ARM7WRAM[addr & 0xFFFF];
case 0x04000000:
return ARM7IORead16(addr);
case 0x04800000:
return Wifi::Read(addr);
case 0x06000000:
case 0x06800000:
{
u32 chunk = (addr >> 17) & 0x1;
u8* vram = GPU::VRAM_ARM7[chunk];
if (vram)
return *(u16*)&vram[addr & 0x1FFFF];
}
return 0;
}
printf("unknown arm7 read16 %08X %08X\n", addr, ARM7->R[15]);
return 0;
}
u32 ARM7Read32(u32 addr)
{
if (addr < 0x00004000)
{
if (ARM7->R[15] >= 0x4000)
return 0xFFFFFFFF;
if (addr < ARM7BIOSProt && ARM7->R[15] >= ARM7BIOSProt)
return 0xFFFFFFFF;
return *(u32*)&ARM7BIOS[addr];
}
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
return *(u32*)&MainRAM[addr & 0x3FFFFF];
case 0x03000000:
if (SWRAM_ARM7) return *(u32*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask];
else return *(u32*)&ARM7WRAM[addr & 0xFFFF];
case 0x03800000:
return *(u32*)&ARM7WRAM[addr & 0xFFFF];
case 0x04000000:
return ARM7IORead32(addr);
case 0x06000000:
case 0x06800000:
{
u32 chunk = (addr >> 17) & 0x1;
u8* vram = GPU::VRAM_ARM7[chunk];
if (vram)
return *(u32*)&vram[addr & 0x1FFFF];
}
return 0;
}
printf("unknown arm7 read32 %08X | %08X\n", addr, ARM7->R[15]);
return 0;
}
void ARM7Write8(u32 addr, u8 val)
{
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
*(u8*)&MainRAM[addr & 0x3FFFFF] = val;
return;
case 0x03000000:
if (SWRAM_ARM7) *(u8*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask] = val;
else *(u8*)&ARM7WRAM[addr & 0xFFFF] = val;
return;
case 0x03800000:
*(u8*)&ARM7WRAM[addr & 0xFFFF] = val;
return;
case 0x04000000:
ARM7IOWrite8(addr, val);
return;
case 0x06000000:
case 0x06800000:
{
u32 chunk = (addr >> 17) & 0x1;
u8* vram = GPU::VRAM_ARM7[chunk];
if (vram)
*(u8*)&vram[addr & 0x1FFFF] = val;
}
return;
}
printf("unknown arm7 write8 %08X %02X | %08X | %08X %08X %08X %08X\n", addr, val, ARM7->R[15], IME[1], IE[1], ARM7->R[0], ARM7->R[1]);
}
void ARM7Write16(u32 addr, u16 val)
{
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
*(u16*)&MainRAM[addr & 0x3FFFFF] = val;
return;
case 0x03000000:
if (SWRAM_ARM7) *(u16*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask] = val;
else *(u16*)&ARM7WRAM[addr & 0xFFFF] = val;
return;
case 0x03800000:
*(u16*)&ARM7WRAM[addr & 0xFFFF] = val;
return;
case 0x04000000:
ARM7IOWrite16(addr, val);
return;
case 0x04800000:
Wifi::Write(addr, val);
return;
case 0x06000000:
case 0x06800000:
{
u32 chunk = (addr >> 17) & 0x1;
u8* vram = GPU::VRAM_ARM7[chunk];
if (vram)
*(u16*)&vram[addr & 0x1FFFF] = val;
}
return;
}
printf("unknown arm7 write16 %08X %04X | %08X\n", addr, val, ARM7->R[15]);
}
void ARM7Write32(u32 addr, u32 val)
{
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
*(u32*)&MainRAM[addr & 0x3FFFFF] = val;
return;
case 0x03000000:
if (SWRAM_ARM7) *(u32*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask] = val;
else *(u32*)&ARM7WRAM[addr & 0xFFFF] = val;
return;
case 0x03800000:
*(u32*)&ARM7WRAM[addr & 0xFFFF] = val;
return;
case 0x04000000:
ARM7IOWrite32(addr, val);
return;
case 0x06000000:
case 0x06800000:
{
u32 chunk = (addr >> 17) & 0x1;
u8* vram = GPU::VRAM_ARM7[chunk];
if (vram)
*(u32*)&vram[addr & 0x1FFFF] = val;
}
return;
}
printf("unknown arm7 write32 %08X %08X | %08X %08X\n", addr, val, ARM7->R[15], ARM7->CurInstr);
}
u8 ARM9IORead8(u32 addr)
{
switch (addr)
{
case 0x040001A2: return NDSCart::ReadSPIData();
case 0x04000208: return IME[0];
case 0x04000240: return GPU::VRAMCNT[0];
case 0x04000241: return GPU::VRAMCNT[1];
case 0x04000242: return GPU::VRAMCNT[2];
case 0x04000243: return GPU::VRAMCNT[3];
case 0x04000244: return GPU::VRAMCNT[4];
case 0x04000245: return GPU::VRAMCNT[5];
case 0x04000246: return GPU::VRAMCNT[6];
case 0x04000247: return WRAMCnt;
case 0x04000248: return GPU::VRAMCNT[7];
case 0x04000249: return GPU::VRAMCNT[8];
case 0x04000300: return PostFlag9;
}
if (addr >= 0x04000000 && addr < 0x04000060)
{
return GPU::GPU2D_A->Read8(addr);
}
if (addr >= 0x04001000 && addr < 0x04001060)
{
return GPU::GPU2D_B->Read8(addr);
}
if (addr >= 0x04000320 && addr < 0x040006A4)
{
return GPU3D::Read8(addr);
}
printf("unknown ARM9 IO read8 %08X\n", addr);
return 0;
}
u16 ARM9IORead16(u32 addr)
{
switch (addr)
{
case 0x04000004: return GPU::DispStat[0];
case 0x04000006: return GPU::VCount;
case 0x04000060: return 0;
case 0x040000B8: return DMAs[0]->Cnt & 0xFFFF;
case 0x040000BA: return DMAs[0]->Cnt >> 16;
case 0x040000C4: return DMAs[1]->Cnt & 0xFFFF;
case 0x040000C6: return DMAs[1]->Cnt >> 16;
case 0x040000D0: return DMAs[2]->Cnt & 0xFFFF;
case 0x040000D2: return DMAs[2]->Cnt >> 16;
case 0x040000DC: return DMAs[3]->Cnt & 0xFFFF;
case 0x040000DE: return DMAs[3]->Cnt >> 16;
case 0x040000E0: return ((u16*)DMA9Fill)[0];
case 0x040000E2: return ((u16*)DMA9Fill)[1];
case 0x040000E4: return ((u16*)DMA9Fill)[2];
case 0x040000E6: return ((u16*)DMA9Fill)[3];
case 0x040000E8: return ((u16*)DMA9Fill)[4];
case 0x040000EA: return ((u16*)DMA9Fill)[5];
case 0x040000EC: return ((u16*)DMA9Fill)[6];
case 0x040000EE: return ((u16*)DMA9Fill)[7];
case 0x04000100: return TimerGetCounter(0);
case 0x04000102: return Timers[0].Cnt;
case 0x04000104: return TimerGetCounter(1);
case 0x04000106: return Timers[1].Cnt;
case 0x04000108: return TimerGetCounter(2);
case 0x0400010A: return Timers[2].Cnt;
case 0x0400010C: return TimerGetCounter(3);
case 0x0400010E: return Timers[3].Cnt;
case 0x04000130: return KeyInput & 0xFFFF;
case 0x04000180: return IPCSync9;
case 0x04000184:
{
u16 val = IPCFIFOCnt9;
if (IPCFIFO9->IsEmpty()) val |= 0x0001;
else if (IPCFIFO9->IsFull()) val |= 0x0002;
if (IPCFIFO7->IsEmpty()) val |= 0x0100;
else if (IPCFIFO7->IsFull()) val |= 0x0200;
return val;
}
case 0x040001A0: return NDSCart::SPICnt;
case 0x040001A2: return NDSCart::ReadSPIData();
case 0x04000204: return ExMemCnt[0];
case 0x04000208: return IME[0];
case 0x04000280: return DivCnt;
case 0x040002B0: return SqrtCnt;
case 0x04000300: return PostFlag9;
case 0x04000304: return PowerControl9;
}
if (addr >= 0x04000000 && addr < 0x04000060)
{
return GPU::GPU2D_A->Read16(addr);
}
if (addr >= 0x04001000 && addr < 0x04001060)
{
return GPU::GPU2D_B->Read16(addr);
}
if (addr >= 0x04000320 && addr < 0x040006A4)
{
return GPU3D::Read16(addr);
}
printf("unknown ARM9 IO read16 %08X %08X\n", addr, ARM9->R[15]);
return 0;
}
u32 ARM9IORead32(u32 addr)
{
switch (addr)
{
case 0x04000004: return GPU::DispStat[0] | (GPU::VCount << 16);
case 0x040000B0: return DMAs[0]->SrcAddr;
case 0x040000B4: return DMAs[0]->DstAddr;
case 0x040000B8: return DMAs[0]->Cnt;
case 0x040000BC: return DMAs[1]->SrcAddr;
case 0x040000C0: return DMAs[1]->DstAddr;
case 0x040000C4: return DMAs[1]->Cnt;
case 0x040000C8: return DMAs[2]->SrcAddr;
case 0x040000CC: return DMAs[2]->DstAddr;
case 0x040000D0: return DMAs[2]->Cnt;
case 0x040000D4: return DMAs[3]->SrcAddr;
case 0x040000D8: return DMAs[3]->DstAddr;
case 0x040000DC: return DMAs[3]->Cnt;
case 0x040000E0: return DMA9Fill[0];
case 0x040000E4: return DMA9Fill[1];
case 0x040000E8: return DMA9Fill[2];
case 0x040000EC: return DMA9Fill[3];
case 0x04000100: return TimerGetCounter(0) | (Timers[0].Cnt << 16);
case 0x04000104: return TimerGetCounter(1) | (Timers[1].Cnt << 16);
case 0x04000108: return TimerGetCounter(2) | (Timers[2].Cnt << 16);
case 0x0400010C: return TimerGetCounter(3) | (Timers[3].Cnt << 16);
case 0x040001A0: return NDSCart::SPICnt | (NDSCart::ReadSPIData() << 16);
case 0x040001A4: return NDSCart::ROMCnt;
case 0x04000208: return IME[0];
case 0x04000210: return IE[0];
case 0x04000214: return IF[0];
case 0x04000290: return DivNumerator[0];
case 0x04000294: return DivNumerator[1];
case 0x04000298: return DivDenominator[0];
case 0x0400029C: return DivDenominator[1];
case 0x040002A0: return DivQuotient[0];
case 0x040002A4: return DivQuotient[1];
case 0x040002A8: return DivRemainder[0];
case 0x040002AC: return DivRemainder[1];
case 0x040002B4: return SqrtRes;
case 0x040002B8: return SqrtVal[0];
case 0x040002BC: return SqrtVal[1];
case 0x04100000:
if (IPCFIFOCnt9 & 0x8000)
{
u32 ret;
if (IPCFIFO7->IsEmpty())
{
IPCFIFOCnt9 |= 0x4000;
ret = IPCFIFO7->Peek();
}
else
{
ret = IPCFIFO7->Read();
if (IPCFIFO7->IsEmpty() && (IPCFIFOCnt7 & 0x0004))
TriggerIRQ(1, IRQ_IPCSendDone);
}
return ret;
}
else
return IPCFIFO7->Peek();
case 0x04100010:
if (!(ExMemCnt[0] & (1<<11))) return NDSCart::ReadROMData();
return 0;
}
if (addr >= 0x04000000 && addr < 0x04000060)
{
return GPU::GPU2D_A->Read32(addr);
}
if (addr >= 0x04001000 && addr < 0x04001060)
{
return GPU::GPU2D_B->Read32(addr);
}
if (addr >= 0x04000320 && addr < 0x040006A4)
{
return GPU3D::Read32(addr);
}
printf("unknown ARM9 IO read32 %08X\n", addr);
return 0;
}
void ARM9IOWrite8(u32 addr, u8 val)
{
switch (addr)
{
case 0x040001A0:
if (!(ExMemCnt[0] & (1<<11)))
{
NDSCart::WriteSPICnt((NDSCart::SPICnt & 0xFF00) | val);
}
return;
case 0x040001A1:
if (!(ExMemCnt[0] & (1<<11)))
{
NDSCart::WriteSPICnt((NDSCart::SPICnt & 0x00FF) | (val << 8));
}
return;
case 0x040001A2:
NDSCart::WriteSPIData(val);
return;
case 0x040001A8: NDSCart::ROMCommand[0] = val; return;
case 0x040001A9: NDSCart::ROMCommand[1] = val; return;
case 0x040001AA: NDSCart::ROMCommand[2] = val; return;
case 0x040001AB: NDSCart::ROMCommand[3] = val; return;
case 0x040001AC: NDSCart::ROMCommand[4] = val; return;
case 0x040001AD: NDSCart::ROMCommand[5] = val; return;
case 0x040001AE: NDSCart::ROMCommand[6] = val; return;
case 0x040001AF: NDSCart::ROMCommand[7] = val; return;
case 0x04000208: IME[0] = val & 0x1; return;
case 0x04000240: GPU::MapVRAM_AB(0, val); return;
case 0x04000241: GPU::MapVRAM_AB(1, val); return;
case 0x04000242: GPU::MapVRAM_CD(2, val); return;
case 0x04000243: GPU::MapVRAM_CD(3, val); return;
case 0x04000244: GPU::MapVRAM_E(4, val); return;
case 0x04000245: GPU::MapVRAM_FG(5, val); return;
case 0x04000246: GPU::MapVRAM_FG(6, val); return;
case 0x04000247: MapSharedWRAM(val); return;
case 0x04000248: GPU::MapVRAM_H(7, val); return;
case 0x04000249: GPU::MapVRAM_I(8, val); return;
case 0x04000300:
if (PostFlag9 & 0x01) val |= 0x01;
PostFlag9 = val & 0x03;
return;
}
if (addr >= 0x04000000 && addr < 0x04000060)
{
GPU::GPU2D_A->Write8(addr, val);
return;
}
if (addr >= 0x04001000 && addr < 0x04001060)
{
GPU::GPU2D_B->Write8(addr, val);
return;
}
if (addr >= 0x04000320 && addr < 0x040006A4)
{
GPU3D::Write8(addr, val);
return;
}
printf("unknown ARM9 IO write8 %08X %02X\n", addr, val);
}
void ARM9IOWrite16(u32 addr, u16 val)
{
switch (addr)
{
case 0x04000004: GPU::SetDispStat(0, val); return;
case 0x04000060: return;
case 0x040000B8: DMAs[0]->WriteCnt((DMAs[0]->Cnt & 0xFFFF0000) | val); return;
case 0x040000BA: DMAs[0]->WriteCnt((DMAs[0]->Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x040000C4: DMAs[1]->WriteCnt((DMAs[1]->Cnt & 0xFFFF0000) | val); return;
case 0x040000C6: DMAs[1]->WriteCnt((DMAs[1]->Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x040000D0: DMAs[2]->WriteCnt((DMAs[2]->Cnt & 0xFFFF0000) | val); return;
case 0x040000D2: DMAs[2]->WriteCnt((DMAs[2]->Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x040000DC: DMAs[3]->WriteCnt((DMAs[3]->Cnt & 0xFFFF0000) | val); return;
case 0x040000DE: DMAs[3]->WriteCnt((DMAs[3]->Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x04000100: Timers[0].Reload = val; return;
case 0x04000102: TimerStart(0, val); return;
case 0x04000104: Timers[1].Reload = val; return;
case 0x04000106: TimerStart(1, val); return;
case 0x04000108: Timers[2].Reload = val; return;
case 0x0400010A: TimerStart(2, val); return;
case 0x0400010C: Timers[3].Reload = val; return;
case 0x0400010E: TimerStart(3, val); return;
case 0x04000180:
IPCSync7 &= 0xFFF0;
IPCSync7 |= ((val & 0x0F00) >> 8);
IPCSync9 &= 0xB0FF;
IPCSync9 |= (val & 0x4F00);
if ((val & 0x2000) && (IPCSync7 & 0x4000))
{
TriggerIRQ(1, IRQ_IPCSync);
}
//CompensateARM7();
return;
case 0x04000184:
if (val & 0x0008)
IPCFIFO9->Clear();
if ((val & 0x0004) && (!(IPCFIFOCnt9 & 0x0004)) && IPCFIFO9->IsEmpty())
TriggerIRQ(0, IRQ_IPCSendDone);
if ((val & 0x0400) && (!(IPCFIFOCnt9 & 0x0400)) && (!IPCFIFO7->IsEmpty()))
TriggerIRQ(0, IRQ_IPCRecv);
if (val & 0x4000)
IPCFIFOCnt9 &= ~0x4000;
IPCFIFOCnt9 = val & 0x8404;
return;
case 0x040001A0:
if (!(ExMemCnt[0] & (1<<11))) NDSCart::WriteSPICnt(val);
return;
case 0x040001A2:
NDSCart::WriteSPIData(val & 0xFF);
return;
case 0x040001B8: ROMSeed0[4] = val & 0x7F; return;
case 0x040001BA: ROMSeed1[4] = val & 0x7F; return;
case 0x04000204:
ExMemCnt[0] = val;
ExMemCnt[1] = (ExMemCnt[1] & 0x007F) | (val & 0xFF80);
return;
case 0x04000208: IME[0] = val & 0x1; return;
case 0x04000240:
GPU::MapVRAM_AB(0, val & 0xFF);
GPU::MapVRAM_AB(1, val >> 8);
return;
case 0x04000242:
GPU::MapVRAM_CD(2, val & 0xFF);
GPU::MapVRAM_CD(3, val >> 8);
return;
case 0x04000244:
GPU::MapVRAM_E(4, val & 0xFF);
GPU::MapVRAM_FG(5, val >> 8);
return;
case 0x04000246:
GPU::MapVRAM_FG(6, val & 0xFF);
MapSharedWRAM(val >> 8);
return;
case 0x04000248:
GPU::MapVRAM_H(7, val & 0xFF);
GPU::MapVRAM_I(8, val >> 8);
return;
case 0x04000280: DivCnt = val; StartDiv(); return;
case 0x040002B0: SqrtCnt = val; StartSqrt(); return;
case 0x04000300:
if (PostFlag9 & 0x01) val |= 0x01;
PostFlag9 = val & 0x03;
return;
case 0x04000304:
PowerControl9 = val;
GPU::DisplaySwap(PowerControl9>>15);
return;
}
if (addr >= 0x04000000 && addr < 0x04000060)
{
GPU::GPU2D_A->Write16(addr, val);
return;
}
if (addr >= 0x04001000 && addr < 0x04001060)
{
GPU::GPU2D_B->Write16(addr, val);
return;
}
if (addr >= 0x04000320 && addr < 0x040006A4)
{
GPU3D::Write16(addr, val);
return;
}
printf("unknown ARM9 IO write16 %08X %04X %08X\n", addr, val, ARM9->R[14]);
}
void ARM9IOWrite32(u32 addr, u32 val)
{
switch (addr)
{
case 0x04000060: return;
case 0x040000B0: DMAs[0]->SrcAddr = val; return;
case 0x040000B4: DMAs[0]->DstAddr = val; return;
case 0x040000B8: DMAs[0]->WriteCnt(val); return;
case 0x040000BC: DMAs[1]->SrcAddr = val; return;
case 0x040000C0: DMAs[1]->DstAddr = val; return;
case 0x040000C4: DMAs[1]->WriteCnt(val); return;
case 0x040000C8: DMAs[2]->SrcAddr = val; return;
case 0x040000CC: DMAs[2]->DstAddr = val; return;
case 0x040000D0: DMAs[2]->WriteCnt(val); return;
case 0x040000D4: DMAs[3]->SrcAddr = val; return;
case 0x040000D8: DMAs[3]->DstAddr = val; return;
case 0x040000DC: DMAs[3]->WriteCnt(val); return;
case 0x040000E0: DMA9Fill[0] = val; return;
case 0x040000E4: DMA9Fill[1] = val; return;
case 0x040000E8: DMA9Fill[2] = val; return;
case 0x040000EC: DMA9Fill[3] = val; return;
case 0x04000100:
Timers[0].Reload = val & 0xFFFF;
TimerStart(0, val>>16);
return;
case 0x04000104:
Timers[1].Reload = val & 0xFFFF;
TimerStart(1, val>>16);
return;
case 0x04000108:
Timers[2].Reload = val & 0xFFFF;
TimerStart(2, val>>16);
return;
case 0x0400010C:
Timers[3].Reload = val & 0xFFFF;
TimerStart(3, val>>16);
return;
case 0x04000188:
if (IPCFIFOCnt9 & 0x8000)
{
if (IPCFIFO9->IsFull())
IPCFIFOCnt9 |= 0x4000;
else
{
bool wasempty = IPCFIFO9->IsEmpty();
IPCFIFO9->Write(val);
if ((IPCFIFOCnt7 & 0x0400) && wasempty)
TriggerIRQ(1, IRQ_IPCRecv);
}
}
return;
case 0x040001A0:
if (!(ExMemCnt[0] & (1<<11)))
{
NDSCart::WriteSPICnt(val & 0xFFFF);
NDSCart::WriteSPIData((val >> 16) & 0xFF);
}
return;
case 0x040001A4:
if (!(ExMemCnt[0] & (1<<11))) NDSCart::WriteROMCnt(val);
return;
case 0x040001B0: *(u32*)&ROMSeed0[0] = val; return;
case 0x040001B4: *(u32*)&ROMSeed1[0] = val; return;
case 0x04000208: IME[0] = val & 0x1; return;
case 0x04000210: IE[0] = val; return;
case 0x04000214: IF[0] &= ~val; GPU3D::CheckFIFOIRQ(); return;
case 0x04000240:
GPU::MapVRAM_AB(0, val & 0xFF);
GPU::MapVRAM_AB(1, (val >> 8) & 0xFF);
GPU::MapVRAM_CD(2, (val >> 16) & 0xFF);
GPU::MapVRAM_CD(3, val >> 24);
return;
case 0x04000244:
GPU::MapVRAM_E(4, val & 0xFF);
GPU::MapVRAM_FG(5, (val >> 8) & 0xFF);
GPU::MapVRAM_FG(6, (val >> 16) & 0xFF);
MapSharedWRAM(val >> 24);
return;
case 0x04000248:
GPU::MapVRAM_H(7, val & 0xFF);
GPU::MapVRAM_I(8, (val >> 8) & 0xFF);
return;
case 0x04000290: DivNumerator[0] = val; StartDiv(); return;
case 0x04000294: DivNumerator[1] = val; StartDiv(); return;
case 0x04000298: DivDenominator[0] = val; StartDiv(); return;
case 0x0400029C: DivDenominator[1] = val; StartDiv(); return;
case 0x040002B8: SqrtVal[0] = val; StartSqrt(); return;
case 0x040002BC: SqrtVal[1] = val; StartSqrt(); return;
}
if (addr >= 0x04000000 && addr < 0x04000060)
{
GPU::GPU2D_A->Write32(addr, val);
return;
}
if (addr >= 0x04001000 && addr < 0x04001060)
{
GPU::GPU2D_B->Write32(addr, val);
return;
}
if (addr >= 0x04000320 && addr < 0x040006A4)
{
GPU3D::Write32(addr, val);
return;
}
printf("unknown ARM9 IO write32 %08X %08X\n", addr, val);
}
u8 ARM7IORead8(u32 addr)
{
switch (addr)
{
case 0x04000138: return RTC::Read() & 0xFF;
case 0x040001A2: return NDSCart::ReadSPIData();
case 0x040001C2: return SPI::ReadData();
case 0x04000208: return IME[1];
case 0x04000240: return GPU::VRAMSTAT;
case 0x04000241: return WRAMCnt;
case 0x04000300: return PostFlag7;
}
if (addr >= 0x04000400 && addr < 0x04000520)
{
// sound I/O
return 0;
}
printf("unknown ARM7 IO read8 %08X\n", addr);
return 0;
}
u16 ARM7IORead16(u32 addr)
{
switch (addr)
{
case 0x04000004: return GPU::DispStat[1];
case 0x04000006: return GPU::VCount;
case 0x040000B8: return DMAs[4]->Cnt & 0xFFFF;
case 0x040000BA: return DMAs[4]->Cnt >> 16;
case 0x040000C4: return DMAs[5]->Cnt & 0xFFFF;
case 0x040000C6: return DMAs[5]->Cnt >> 16;
case 0x040000D0: return DMAs[6]->Cnt & 0xFFFF;
case 0x040000D2: return DMAs[6]->Cnt >> 16;
case 0x040000DC: return DMAs[7]->Cnt & 0xFFFF;
case 0x040000DE: return DMAs[7]->Cnt >> 16;
case 0x04000100: return TimerGetCounter(4);
case 0x04000102: return Timers[4].Cnt;
case 0x04000104: return TimerGetCounter(5);
case 0x04000106: return Timers[5].Cnt;
case 0x04000108: return TimerGetCounter(6);
case 0x0400010A: return Timers[6].Cnt;
case 0x0400010C: return TimerGetCounter(7);
case 0x0400010E: return Timers[7].Cnt;
case 0x04000130: return KeyInput & 0xFFFF;
case 0x04000136: return KeyInput >> 16;
case 0x04000134: return 0x8000;
case 0x04000138: return RTC::Read();
case 0x04000180: return IPCSync7;
case 0x04000184:
{
u16 val = IPCFIFOCnt7;
if (IPCFIFO7->IsEmpty()) val |= 0x0001;
else if (IPCFIFO7->IsFull()) val |= 0x0002;
if (IPCFIFO9->IsEmpty()) val |= 0x0100;
else if (IPCFIFO9->IsFull()) val |= 0x0200;
return val;
}
case 0x040001A0: return NDSCart::SPICnt;
case 0x040001A2: return NDSCart::ReadSPIData();
case 0x040001C0: return SPI::Cnt;
case 0x040001C2: return SPI::ReadData();
case 0x04000204: return ExMemCnt[1];
case 0x04000208: return IME[1];
case 0x04000300: return PostFlag7;
case 0x04000304: return PowerControl7;
case 0x04000308: return ARM7BIOSProt;
case 0x04000504: return _soundbias;
}
if (addr >= 0x04000400 && addr < 0x04000520)
{
// sound I/O
return 0;
}
printf("unknown ARM7 IO read16 %08X %08X\n", addr, ARM9->R[15]);
return 0;
}
u32 ARM7IORead32(u32 addr)
{
switch (addr)
{
case 0x04000004: return GPU::DispStat[1] | (GPU::VCount << 16);
case 0x040000B0: return DMAs[4]->SrcAddr;
case 0x040000B4: return DMAs[4]->DstAddr;
case 0x040000B8: return DMAs[4]->Cnt;
case 0x040000BC: return DMAs[5]->SrcAddr;
case 0x040000C0: return DMAs[5]->DstAddr;
case 0x040000C4: return DMAs[5]->Cnt;
case 0x040000C8: return DMAs[6]->SrcAddr;
case 0x040000CC: return DMAs[6]->DstAddr;
case 0x040000D0: return DMAs[6]->Cnt;
case 0x040000D4: return DMAs[7]->SrcAddr;
case 0x040000D8: return DMAs[7]->DstAddr;
case 0x040000DC: return DMAs[7]->Cnt;
case 0x04000100: return TimerGetCounter(4) | (Timers[4].Cnt << 16);
case 0x04000104: return TimerGetCounter(5) | (Timers[5].Cnt << 16);
case 0x04000108: return TimerGetCounter(6) | (Timers[6].Cnt << 16);
case 0x0400010C: return TimerGetCounter(7) | (Timers[7].Cnt << 16);
case 0x040001A0: return NDSCart::SPICnt | (NDSCart::ReadSPIData() << 16);
case 0x040001A4: return NDSCart::ROMCnt;
case 0x040001C0:
return SPI::Cnt | (SPI::ReadData() << 16);
case 0x04000208: return IME[1];
case 0x04000210: return IE[1];
case 0x04000214: return IF[1];
case 0x04100000:
if (IPCFIFOCnt7 & 0x8000)
{
u32 ret;
if (IPCFIFO9->IsEmpty())
{
IPCFIFOCnt7 |= 0x4000;
ret = IPCFIFO9->Peek();
}
else
{
ret = IPCFIFO9->Read();
if (IPCFIFO9->IsEmpty() && (IPCFIFOCnt9 & 0x0004))
TriggerIRQ(0, IRQ_IPCSendDone);
}
return ret;
}
else
return IPCFIFO9->Peek();
case 0x04100010:
if (ExMemCnt[0] & (1<<11)) return NDSCart::ReadROMData();
return 0;
}
if (addr >= 0x04000400 && addr < 0x04000520)
{
// sound I/O
return 0;
}
printf("unknown ARM7 IO read32 %08X\n", addr);
return 0;
}
void ARM7IOWrite8(u32 addr, u8 val)
{
switch (addr)
{
case 0x04000138: RTC::Write(val, true); return;
case 0x040001A0:
if (ExMemCnt[0] & (1<<11))
{
NDSCart::WriteSPICnt((NDSCart::SPICnt & 0xFF00) | val);
}
return;
case 0x040001A1:
if (ExMemCnt[0] & (1<<11))
{
NDSCart::WriteSPICnt((NDSCart::SPICnt & 0x00FF) | (val << 8));
}
return;
case 0x040001A2:
NDSCart::WriteSPIData(val);
return;
case 0x040001A8: NDSCart::ROMCommand[0] = val; return;
case 0x040001A9: NDSCart::ROMCommand[1] = val; return;
case 0x040001AA: NDSCart::ROMCommand[2] = val; return;
case 0x040001AB: NDSCart::ROMCommand[3] = val; return;
case 0x040001AC: NDSCart::ROMCommand[4] = val; return;
case 0x040001AD: NDSCart::ROMCommand[5] = val; return;
case 0x040001AE: NDSCart::ROMCommand[6] = val; return;
case 0x040001AF: NDSCart::ROMCommand[7] = val; return;
case 0x040001C2:
SPI::WriteData(val);
return;
case 0x04000208: IME[1] = val & 0x1; return;
case 0x04000300:
if (ARM7->R[15] >= 0x4000)
return;
if (!(PostFlag7 & 0x01))
PostFlag7 = val & 0x01;
return;
case 0x04000301:
if (val == 0x80) ARM7->Halt(1);
return;
}
if (addr >= 0x04000400 && addr < 0x04000520)
{
// sound I/O
return;
}
printf("unknown ARM7 IO write8 %08X %02X\n", addr, val);
}
void ARM7IOWrite16(u32 addr, u16 val)
{
switch (addr)
{
case 0x04000004: GPU::SetDispStat(1, val); return;
case 0x040000B8: DMAs[4]->WriteCnt((DMAs[4]->Cnt & 0xFFFF0000) | val); return;
case 0x040000BA: DMAs[4]->WriteCnt((DMAs[4]->Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x040000C4: DMAs[5]->WriteCnt((DMAs[5]->Cnt & 0xFFFF0000) | val); return;
case 0x040000C6: DMAs[5]->WriteCnt((DMAs[5]->Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x040000D0: DMAs[6]->WriteCnt((DMAs[6]->Cnt & 0xFFFF0000) | val); return;
case 0x040000D2: DMAs[6]->WriteCnt((DMAs[6]->Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x040000DC: DMAs[7]->WriteCnt((DMAs[7]->Cnt & 0xFFFF0000) | val); return;
case 0x040000DE: DMAs[7]->WriteCnt((DMAs[7]->Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x04000100: Timers[4].Reload = val; return;
case 0x04000102: TimerStart(4, val); return;
case 0x04000104: Timers[5].Reload = val; return;
case 0x04000106: TimerStart(5, val); return;
case 0x04000108: Timers[6].Reload = val; return;
case 0x0400010A: TimerStart(6, val); return;
case 0x0400010C: Timers[7].Reload = val; return;
case 0x0400010E: TimerStart(7, val); return;
case 0x04000134: return;printf("set debug port %04X %08X\n", val, ARM7Read32(ARM7->R[13]+4)); return;
case 0x04000138: RTC::Write(val, false); return;
case 0x04000180:
IPCSync9 &= 0xFFF0;
IPCSync9 |= ((val & 0x0F00) >> 8);
IPCSync7 &= 0xB0FF;
IPCSync7 |= (val & 0x4F00);
if ((val & 0x2000) && (IPCSync9 & 0x4000))
{
TriggerIRQ(0, IRQ_IPCSync);
}
return;
case 0x04000184:
if (val & 0x0008)
IPCFIFO7->Clear();
if ((val & 0x0004) && (!(IPCFIFOCnt7 & 0x0004)) && IPCFIFO7->IsEmpty())
TriggerIRQ(1, IRQ_IPCSendDone);
if ((val & 0x0400) && (!(IPCFIFOCnt7 & 0x0400)) && (!IPCFIFO9->IsEmpty()))
TriggerIRQ(1, IRQ_IPCRecv);
if (val & 0x4000)
IPCFIFOCnt7 &= ~0x4000;
IPCFIFOCnt7 = val & 0x8404;
return;
case 0x040001A0:
if (ExMemCnt[0] & (1<<11))
NDSCart::WriteSPICnt(val);
return;
case 0x040001A2:
NDSCart::WriteSPIData(val & 0xFF);
return;
case 0x040001B8: ROMSeed0[12] = val & 0x7F; return;
case 0x040001BA: ROMSeed1[12] = val & 0x7F; return;
case 0x040001C0:
SPI::WriteCnt(val);
return;
case 0x040001C2:
SPI::WriteData(val & 0xFF);
return;
case 0x04000204:
ExMemCnt[1] = (ExMemCnt[1] & 0xFF80) | (val & 0x007F);
return;
case 0x04000208: IME[1] = val & 0x1; return;
case 0x04000300:
if (ARM7->R[15] >= 0x4000)
return;
if (!(PostFlag7 & 0x01))
PostFlag7 = val & 0x01;
return;
case 0x04000304: PowerControl7 = val; return;
case 0x04000308:
if (ARM7BIOSProt == 0)
ARM7BIOSProt = val;
return;
case 0x04000504: // removeme
_soundbias = val & 0x3FF;
return;
}
if (addr >= 0x04000400 && addr < 0x04000520)
{
// sound I/O
return;
}
printf("unknown ARM7 IO write16 %08X %04X\n", addr, val);
}
void ARM7IOWrite32(u32 addr, u32 val)
{
switch (addr)
{
case 0x040000B0: DMAs[4]->SrcAddr = val; return;
case 0x040000B4: DMAs[4]->DstAddr = val; return;
case 0x040000B8: DMAs[4]->WriteCnt(val); return;
case 0x040000BC: DMAs[5]->SrcAddr = val; return;
case 0x040000C0: DMAs[5]->DstAddr = val; return;
case 0x040000C4: DMAs[5]->WriteCnt(val); return;
case 0x040000C8: DMAs[6]->SrcAddr = val; return;
case 0x040000CC: DMAs[6]->DstAddr = val; return;
case 0x040000D0: DMAs[6]->WriteCnt(val); return;
case 0x040000D4: DMAs[7]->SrcAddr = val; return;
case 0x040000D8: DMAs[7]->DstAddr = val; return;
case 0x040000DC: DMAs[7]->WriteCnt(val); return;
case 0x04000100:
Timers[4].Reload = val & 0xFFFF;
TimerStart(4, val>>16);
return;
case 0x04000104:
Timers[5].Reload = val & 0xFFFF;
TimerStart(5, val>>16);
return;
case 0x04000108:
Timers[6].Reload = val & 0xFFFF;
TimerStart(6, val>>16);
return;
case 0x0400010C:
Timers[7].Reload = val & 0xFFFF;
TimerStart(7, val>>16);
return;
case 0x04000188:
if (IPCFIFOCnt7 & 0x8000)
{
if (IPCFIFO7->IsFull())
IPCFIFOCnt7 |= 0x4000;
else
{
bool wasempty = IPCFIFO7->IsEmpty();
IPCFIFO7->Write(val);
if ((IPCFIFOCnt9 & 0x0400) && wasempty)
TriggerIRQ(0, IRQ_IPCRecv);
}
}
return;
case 0x040001A0:
if (ExMemCnt[0] & (1<<11))
{
NDSCart::WriteSPICnt(val & 0xFFFF);
NDSCart::WriteSPIData((val >> 16) & 0xFF);
}
return;
case 0x040001A4:
if (ExMemCnt[0] & (1<<11)) NDSCart::WriteROMCnt(val);
return;
case 0x040001B0: *(u32*)&ROMSeed0[8] = val; return;
case 0x040001B4: *(u32*)&ROMSeed1[8] = val; return;
case 0x04000208: IME[1] = val & 0x1; return;
case 0x04000210: IE[1] = val; return;
case 0x04000214: IF[1] &= ~val; return;
}
if (addr >= 0x04000400 && addr < 0x04000520)
{
// sound I/O
return;
}
printf("unknown ARM7 IO write32 %08X %08X\n", addr, val);
}
}