melonDS/GPU.cpp

860 lines
19 KiB
C++

/*
Copyright 2016-2017 StapleButter
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include <stdio.h>
#include <string.h>
#include "NDS.h"
#include "GPU.h"
namespace GPU
{
#define LINE_CYCLES (355*6)
#define HBLANK_CYCLES (256*6)
#define FRAME_CYCLES (LINE_CYCLES * 263)
u16 VCount;
u16 DispStat[2], VMatch[2];
u8 Palette[2*1024];
u8 OAM[2*1024];
u8 VRAM_A[128*1024];
u8 VRAM_B[128*1024];
u8 VRAM_C[128*1024];
u8 VRAM_D[128*1024];
u8 VRAM_E[ 64*1024];
u8 VRAM_F[ 16*1024];
u8 VRAM_G[ 16*1024];
u8 VRAM_H[ 32*1024];
u8 VRAM_I[ 16*1024];
u8* VRAM[9] = {VRAM_A, VRAM_B, VRAM_C, VRAM_D, VRAM_E, VRAM_F, VRAM_G, VRAM_H, VRAM_I};
u8 VRAMCNT[9];
u8 VRAMSTAT;
u8* VRAM_ABG[128];
u8* VRAM_AOBJ[128];
u8* VRAM_BBG[128];
u8* VRAM_BOBJ[128];
u8* VRAM_LCD[128];
u8* VRAM_ARM7[2];
u8* VRAM_ABGExtPal[4];
u8* VRAM_AOBJExtPal;
u8* VRAM_BBGExtPal[4];
u8* VRAM_BOBJExtPal;
u16 Framebuffer[256*192*2];
GPU2D* GPU2D_A;
GPU2D* GPU2D_B;
bool Init()
{
GPU2D_A = new GPU2D(0);
GPU2D_B = new GPU2D(1);
if (!GPU3D::Init()) return false;
return true;
}
void DeInit()
{
delete GPU2D_A;
delete GPU2D_B;
GPU3D::DeInit();
}
void Reset()
{
VCount = 0;
DispStat[0] = 0;
DispStat[1] = 0;
VMatch[0] = 0;
VMatch[1] = 0;
memset(Palette, 0, 2*1024);
memset(OAM, 0, 2*1024);
memset(VRAM_A, 0, 128*1024);
memset(VRAM_B, 0, 128*1024);
memset(VRAM_C, 0, 128*1024);
memset(VRAM_D, 0, 128*1024);
memset(VRAM_E, 0, 64*1024);
memset(VRAM_F, 0, 16*1024);
memset(VRAM_G, 0, 16*1024);
memset(VRAM_H, 0, 32*1024);
memset(VRAM_I, 0, 16*1024);
memset(VRAMCNT, 0, 9);
VRAMSTAT = 0;
memset(VRAM_ABG, 0, sizeof(u8*)*128);
memset(VRAM_AOBJ, 0, sizeof(u8*)*128);
memset(VRAM_BBG, 0, sizeof(u8*)*128);
memset(VRAM_BOBJ, 0, sizeof(u8*)*128);
memset(VRAM_LCD, 0, sizeof(u8*)*128);
memset(VRAM_ARM7, 0, sizeof(u8*)*2);
memset(VRAM_ABGExtPal, 0, sizeof(u8*)*4);
VRAM_AOBJExtPal = NULL;
memset(VRAM_BBGExtPal, 0, sizeof(u8*)*4);
VRAM_BOBJExtPal = NULL;
for (int i = 0; i < 256*192*2; i++)
{
Framebuffer[i] = 0x7FFF;
}
GPU2D_A->Reset();
GPU2D_B->Reset();
GPU3D::Reset();
GPU2D_A->SetFramebuffer(&Framebuffer[256*192]);
GPU2D_B->SetFramebuffer(&Framebuffer[256*0]);
}
// VRAM mapping notes
//
// mirroring:
// unmapped range reads zero
// LCD is mirrored every 0x100000 bytes, the gap between each mirror reads zero
// ABG:
// bank A,B,C,D,E mirror every 0x80000 bytes
// bank F,G mirror at base+0x8000, mirror every 0x80000 bytes
// AOBJ:
// bank A,B,E mirror every 0x40000 bytes
// bank F,G mirror at base+0x8000, mirror every 0x40000 bytes
// BBG:
// bank C mirrors every 0x20000 bytes
// bank H mirrors every 0x10000 bytes
// bank I mirrors at base+0x4000, mirrors every 0x10000 bytes
// BOBJ:
// bank D mirrors every 0x20000 bytes
// bank I mirrors every 0x4000 bytes
//
// untested:
// ARM7 (TODO)
// extended palette (mirroring doesn't apply)
// texture/texpal (does mirroring apply?)
// -> trying to use extpal/texture/texpal with no VRAM mapped.
// would likely read all black, but has to be tested.
//
// overlap:
// when reading: values are read from each bank and ORed together
// when writing: value is written to each bank
void MapVRAM_AB(u32 bank, u8 cnt)
{
u8 oldcnt = VRAMCNT[bank];
VRAMCNT[bank] = cnt;
if (oldcnt == cnt) return;
u8 oldofs = (oldcnt >> 3) & 0x3;
u8 ofs = (cnt >> 3) & 0x3;
u8* vram = VRAM[bank];
if (oldcnt & (1<<7))
{
u8** vrammap = NULL;
switch (oldcnt & 0x3)
{
case 0:
vrammap = &VRAM_LCD[bank<<3];
break;
case 1:
vrammap = &VRAM_ABG[oldofs<<3];
break;
case 2:
oldofs &= 0x1;
vrammap = &VRAM_AOBJ[oldofs<<3];
break;
case 3:
// not mapped to memory
break;
}
if (vrammap && *vrammap == vram)
{
*vrammap++ = NULL;
*vrammap++ = NULL;
*vrammap++ = NULL;
*vrammap++ = NULL;
*vrammap++ = NULL;
*vrammap++ = NULL;
*vrammap++ = NULL;
*vrammap = NULL;
}
}
if (cnt & (1<<7))
{
u8** vrammap = NULL;
switch (cnt & 0x3)
{
case 0:
vrammap = &VRAM_LCD[bank<<3];
break;
case 1:
vrammap = &VRAM_ABG[ofs<<3];
break;
case 2:
ofs &= 0x1;
vrammap = &VRAM_AOBJ[ofs<<3];
break;
case 3:
// not mapped to memory
break;
}
if (vrammap)
{
*vrammap++ = vram; vram += 0x4000;
*vrammap++ = vram; vram += 0x4000;
*vrammap++ = vram; vram += 0x4000;
*vrammap++ = vram; vram += 0x4000;
*vrammap++ = vram; vram += 0x4000;
*vrammap++ = vram; vram += 0x4000;
*vrammap++ = vram; vram += 0x4000;
*vrammap = vram;
}
}
}
void MapVRAM_CD(u32 bank, u8 cnt)
{
u8 oldcnt = VRAMCNT[bank];
VRAMCNT[bank] = cnt;
VRAMSTAT &= ~(1 << (bank-2));
if (oldcnt == cnt) return;
u8 oldofs = (oldcnt >> 3) & 0x7;
u8 ofs = (cnt >> 3) & 0x7;
u8* vram = VRAM[bank];
if (oldcnt & (1<<7))
{
u8** vrammap = NULL;
switch (oldcnt & 0x7)
{
case 0:
vrammap = &VRAM_LCD[bank<<3];
break;
case 1:
vrammap = &VRAM_ABG[oldofs<<3];
break;
case 2:
oldofs &= 0x1;
VRAM_ARM7[oldofs] = NULL;
break;
case 3:
// not mapped to memory
break;
case 4:
if (bank == 2)
vrammap = &VRAM_BBG[0];
else
vrammap = &VRAM_BOBJ[0];
break;
}
if (vrammap && *vrammap == vram)
{
*vrammap++ = NULL;
*vrammap++ = NULL;
*vrammap++ = NULL;
*vrammap++ = NULL;
*vrammap++ = NULL;
*vrammap++ = NULL;
*vrammap++ = NULL;
*vrammap = NULL;
}
}
if (cnt & (1<<7))
{
u8** vrammap = NULL;
switch (cnt & 0x7)
{
case 0:
vrammap = &VRAM_LCD[bank<<3];
break;
case 1:
vrammap = &VRAM_ABG[ofs<<3];
break;
case 2:
ofs &= 0x1;
VRAM_ARM7[ofs] = vram;
VRAMSTAT |= (1 << (bank-2));
break;
case 3:
// not mapped to memory
break;
case 4:
if (bank == 2)
vrammap = &VRAM_BBG[0];
else
vrammap = &VRAM_BOBJ[0];
break;
}
if (vrammap)
{
*vrammap++ = vram; vram += 0x4000;
*vrammap++ = vram; vram += 0x4000;
*vrammap++ = vram; vram += 0x4000;
*vrammap++ = vram; vram += 0x4000;
*vrammap++ = vram; vram += 0x4000;
*vrammap++ = vram; vram += 0x4000;
*vrammap++ = vram; vram += 0x4000;
*vrammap = vram;
}
}
}
void MapVRAM_E(u32 bank, u8 cnt)
{
u8 oldcnt = VRAMCNT[bank];
VRAMCNT[bank] = cnt;
if (oldcnt == cnt) return;
u8 oldofs = (oldcnt >> 3) & 0x7;
u8 ofs = (cnt >> 3) & 0x7;
u8* vram = VRAM[bank];
if (oldcnt & (1<<7))
{
u8** vrammap = NULL;
switch (oldcnt & 0x7)
{
case 0:
VRAM_LCD[0x20] = NULL;
VRAM_LCD[0x21] = NULL;
VRAM_LCD[0x22] = NULL;
VRAM_LCD[0x23] = NULL;
break;
case 1:
vrammap = &VRAM_ABG[0];
break;
case 2:
vrammap = &VRAM_AOBJ[0];
break;
case 3:
// not mapped to memory
break;
case 4:
VRAM_ABGExtPal[0] = NULL;
VRAM_ABGExtPal[1] = NULL;
VRAM_ABGExtPal[2] = NULL;
VRAM_ABGExtPal[3] = NULL;
break;
}
if (vrammap && *vrammap == vram)
{
*vrammap++ = NULL;
*vrammap++ = NULL;
*vrammap++ = NULL;
*vrammap++ = NULL;
}
else if (vrammap) vrammap += 4;
if (vrammap && *vrammap == vram)
{
*vrammap++ = NULL;
*vrammap++ = NULL;
*vrammap++ = NULL;
*vrammap = NULL;
}
}
if (cnt & (1<<7))
{
u8** vrammap = NULL;
switch (cnt & 0x7)
{
case 0:
VRAM_LCD[0x20] = &vram[0x0000];
VRAM_LCD[0x21] = &vram[0x4000];
VRAM_LCD[0x22] = &vram[0x8000];
VRAM_LCD[0x23] = &vram[0xC000];
break;
case 1:
vrammap = &VRAM_ABG[0];
break;
case 2:
vrammap = &VRAM_AOBJ[0];
break;
case 3:
// not mapped to memory
break;
case 4:
VRAM_ABGExtPal[0] = &vram[0x0000];
VRAM_ABGExtPal[1] = &vram[0x2000];
VRAM_ABGExtPal[2] = &vram[0x4000];
VRAM_ABGExtPal[3] = &vram[0x6000];
break;
}
if (vrammap)
{
*vrammap++ = &vram[0x0000];
*vrammap++ = &vram[0x4000];
*vrammap++ = &vram[0x8000];
*vrammap++ = &vram[0xC000];
*vrammap++ = &vram[0x0000];
*vrammap++ = &vram[0x4000];
*vrammap++ = &vram[0x8000];
*vrammap = &vram[0xC000];
}
}
}
void MapVRAM_FG(u32 bank, u8 cnt)
{
u8 oldcnt = VRAMCNT[bank];
VRAMCNT[bank] = cnt;
if (oldcnt == cnt) return;
u8 oldofs = (oldcnt >> 3) & 0x7;
u8 ofs = (cnt >> 3) & 0x7;
u8* vram = VRAM[bank];
bank -= 5;
if (oldcnt & (1<<7))
{
u8** vrammap = NULL;
switch (oldcnt & 0x7)
{
case 0:
VRAM_LCD[0x24 + bank] = NULL;
break;
case 1:
vrammap = &VRAM_ABG[(oldofs & 0x1) | ((oldofs & 0x2) << 1)];
break;
case 2:
vrammap = &VRAM_AOBJ[(oldofs & 0x1) | ((oldofs & 0x2) << 1)];
break;
case 3:
// not mapped to memory
break;
case 4:
VRAM_ABGExtPal[(oldofs<<1)+0] = NULL;
VRAM_ABGExtPal[(oldofs<<1)+1] = NULL;
break;
case 5:
VRAM_AOBJExtPal = NULL;
break;
}
if (vrammap)
{
if (*vrammap == vram) *vrammap++ = NULL; else vrammap++;
if (*vrammap == vram) *vrammap++ = NULL; else vrammap++;
if (*vrammap == vram) *vrammap++ = NULL; else vrammap++;
if (*vrammap == vram) *vrammap++ = NULL; else vrammap++;
if (*vrammap == vram) *vrammap++ = NULL; else vrammap++;
if (*vrammap == vram) *vrammap++ = NULL; else vrammap++;
if (*vrammap == vram) *vrammap++ = NULL; else vrammap++;
if (*vrammap == vram) *vrammap = NULL;
}
}
if (cnt & (1<<7))
{
u8** vrammap = NULL;
switch (cnt & 0x7)
{
case 0:
VRAM_LCD[0x24 + bank] = vram;
break;
case 1:
vrammap = &VRAM_ABG[(ofs & 0x1) | ((ofs & 0x2) << 1)];
break;
case 2:
vrammap = &VRAM_AOBJ[(ofs & 0x1) | ((ofs & 0x2) << 1)];
break;
case 3:
// not mapped to memory
break;
case 4:
VRAM_ABGExtPal[(ofs<<1)+0] = &vram[0x0000];
VRAM_ABGExtPal[(ofs<<1)+1] = &vram[0x2000];
break;
case 5:
VRAM_AOBJExtPal = vram;
break;
}
if (vrammap)
{
*vrammap++ = vram;
*vrammap++ = vram;
*vrammap++ = vram;
*vrammap++ = vram;
*vrammap++ = vram;
*vrammap++ = vram;
*vrammap++ = vram;
*vrammap = vram;
}
}
}
void MapVRAM_H(u32 bank, u8 cnt)
{
u8 oldcnt = VRAMCNT[bank];
VRAMCNT[bank] = cnt;
if (oldcnt == cnt) return;
u8 oldofs = (oldcnt >> 3) & 0x7;
u8 ofs = (cnt >> 3) & 0x7;
u8* vram = VRAM[bank];
if (oldcnt & (1<<7))
{
u8** vrammap = NULL;
switch (oldcnt & 0x3)
{
case 0:
VRAM_LCD[0x26] = NULL;
VRAM_LCD[0x27] = NULL;
break;
case 1:
vrammap = &VRAM_BBG[0x00];
break;
case 2:
VRAM_BBGExtPal[0] = NULL;
VRAM_BBGExtPal[1] = NULL;
VRAM_BBGExtPal[2] = NULL;
VRAM_BBGExtPal[3] = NULL;
break;
}
if (vrammap && *vrammap == vram)
{
*vrammap++ = NULL;
*vrammap++ = NULL;
} else if (vrammap) vrammap += 2;
if (vrammap && *vrammap == vram)
{
*vrammap++ = NULL;
*vrammap++ = NULL;
} else if (vrammap) vrammap += 2;
if (vrammap && *vrammap == vram)
{
*vrammap++ = NULL;
*vrammap++ = NULL;
} else if (vrammap) vrammap += 2;
if (vrammap && *vrammap == vram)
{
*vrammap++ = NULL;
*vrammap = NULL;
}
}
if (cnt & (1<<7))
{
u8** vrammap = NULL;
switch (cnt & 0x3)
{
case 0:
VRAM_LCD[0x26] = &vram[0x0000];
VRAM_LCD[0x27] = &vram[0x4000];
break;
case 1:
vrammap = &VRAM_BBG[0x00];
break;
case 2:
VRAM_BBGExtPal[0] = &vram[0x0000];
VRAM_BBGExtPal[1] = &vram[0x2000];
VRAM_BBGExtPal[2] = &vram[0x4000];
VRAM_BBGExtPal[3] = &vram[0x6000];
break;
}
if (vrammap)
{
*vrammap++ = &vram[0x0000];
*vrammap++ = &vram[0x4000];
*vrammap++ = &vram[0x0000];
*vrammap++ = &vram[0x4000];
*vrammap++ = &vram[0x0000];
*vrammap++ = &vram[0x4000];
*vrammap++ = &vram[0x0000];
*vrammap = &vram[0x4000];
}
}
}
void MapVRAM_I(u32 bank, u8 cnt)
{
u8 oldcnt = VRAMCNT[bank];
VRAMCNT[bank] = cnt;
if (oldcnt == cnt) return;
u8 oldofs = (oldcnt >> 3) & 0x7;
u8 ofs = (cnt >> 3) & 0x7;
u8* vram = VRAM[bank];
bank -= 5;
if (oldcnt & (1<<7))
{
u8** vrammap = NULL;
switch (oldcnt & 0x3)
{
case 0:
VRAM_LCD[0x28] = NULL;
break;
case 1:
vrammap = &VRAM_BBG[0x02];
break;
case 2:
vrammap = &VRAM_BOBJ[0x00];
break;
case 3:
VRAM_BOBJExtPal = NULL;
break;
}
if (vrammap)
{
if (*vrammap == vram) *vrammap++ = NULL; else vrammap++;
if (*vrammap == vram) *vrammap++ = NULL; else vrammap++;
if (*vrammap == vram) *vrammap++ = NULL; else vrammap++;
if (*vrammap == vram) *vrammap++ = NULL; else vrammap++;
if (*vrammap == vram) *vrammap++ = NULL; else vrammap++;
if (*vrammap == vram) *vrammap++ = NULL; else vrammap++;
if (*vrammap == vram) *vrammap++ = NULL; else vrammap++;
if (*vrammap == vram) *vrammap = NULL;
}
}
if (cnt & (1<<7))
{
u8** vrammap = NULL;
switch (cnt & 0x3)
{
case 0:
VRAM_LCD[0x28] = vram;
break;
case 1:
vrammap = &VRAM_BBG[0x02];
break;
case 2:
vrammap = &VRAM_BOBJ[0x00];
break;
case 3:
VRAM_BOBJExtPal = vram;
break;
}
if (vrammap)
{
*vrammap++ = vram;
*vrammap++ = vram;
*vrammap++ = vram;
*vrammap++ = vram;
*vrammap++ = vram;
*vrammap++ = vram;
*vrammap++ = vram;
*vrammap = vram;
}
}
}
void DisplaySwap(u32 val)
{
if (val)
{
GPU2D_A->SetFramebuffer(&Framebuffer[256*0]);
GPU2D_B->SetFramebuffer(&Framebuffer[256*192]);
}
else
{
GPU2D_A->SetFramebuffer(&Framebuffer[256*192]);
GPU2D_B->SetFramebuffer(&Framebuffer[256*0]);
}
}
void StartFrame()
{
StartScanline(0);
}
void StartHBlank(u32 line)
{
DispStat[0] |= (1<<1);
DispStat[1] |= (1<<1);
if (line < 192) NDS::CheckDMAs(0, 0x02);
if (DispStat[0] & (1<<4)) NDS::TriggerIRQ(0, NDS::IRQ_HBlank);
if (DispStat[1] & (1<<4)) NDS::TriggerIRQ(1, NDS::IRQ_HBlank);
if (line < 262)
NDS::ScheduleEvent(NDS::Event_LCD, true, (LINE_CYCLES - HBLANK_CYCLES), StartScanline, line+1);
}
void StartScanline(u32 line)
{
VCount = line;
DispStat[0] &= ~(1<<1);
DispStat[1] &= ~(1<<1);
if (line == VMatch[0])
{
DispStat[0] |= (1<<2);
if (DispStat[0] & (1<<5)) NDS::TriggerIRQ(0, NDS::IRQ_VCount);
}
else
DispStat[0] &= ~(1<<2);
if (line == VMatch[1])
{
DispStat[1] |= (1<<2);
if (DispStat[1] & (1<<5)) NDS::TriggerIRQ(1, NDS::IRQ_VCount);
}
else
DispStat[1] &= ~(1<<2);
if (line < 192)
{
// draw
GPU2D_A->DrawScanline(line);
GPU2D_B->DrawScanline(line);
//NDS::ScheduleEvent(LINE_CYCLES, StartScanline, line+1);
}
else if (line == 262)
{
// frame end
DispStat[0] &= ~(1<<0);
DispStat[1] &= ~(1<<0);
}
else
{
if (line == 192)
{
// VBlank
DispStat[0] |= (1<<0);
DispStat[1] |= (1<<0);
NDS::CheckDMAs(0, 0x01);
NDS::CheckDMAs(1, 0x11);
if (DispStat[0] & (1<<3)) NDS::TriggerIRQ(0, NDS::IRQ_VBlank);
if (DispStat[1] & (1<<3)) NDS::TriggerIRQ(1, NDS::IRQ_VBlank);
}
//NDS::ScheduleEvent(LINE_CYCLES, StartScanline, line+1);
//NDS::ScheduleEvent(NDS::Event_LCD, true, LINE_CYCLES, StartScanline, line+1);
}
NDS::ScheduleEvent(NDS::Event_LCD, true, HBLANK_CYCLES, StartHBlank, line);
}
void SetDispStat(u32 cpu, u16 val)
{
val &= 0xFFB8;
DispStat[cpu] &= 0x0047;
DispStat[cpu] |= val;
VMatch[cpu] = (val >> 8) | ((val & 0x80) << 1);
}
}