melonDS/src/NDS.cpp

5217 lines
155 KiB
C++

/*
Copyright 2016-2024 melonDS team
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "NDS.h"
#include "ARM.h"
#include "NDSCart.h"
#include "GBACart.h"
#include "DMA.h"
#include "FIFO.h"
#include "GPU.h"
#include "SPU.h"
#include "SPI.h"
#include "RTC.h"
#include "Wifi.h"
#include "AREngine.h"
#include "Platform.h"
#include "FreeBIOS.h"
#include "Args.h"
#include "version.h"
#include "DSi.h"
#include "DSi_SPI_TSC.h"
#include "DSi_NWifi.h"
#include "DSi_Camera.h"
#include "DSi_DSP.h"
#include "ARMJIT.h"
#include "ARMJIT_Memory.h"
namespace melonDS
{
using namespace Platform;
const s32 kMaxIterationCycles = 64;
const s32 kIterationCycleMargin = 8;
// timing notes
//
// * this implementation is technically wrong for VRAM
// each bank is considered a separate region
// but this would only matter in specific VRAM->VRAM DMA transfers or
// when running code in VRAM, which is way unlikely
//
// bus/basedelay/nspenalty
//
// bus types:
// * 0 / 32-bit: nothing special
// * 1 / 16-bit: 32-bit accesses split into two 16-bit accesses, second is always sequential
// * 2 / 8-bit/GBARAM: (presumably) split into multiple 8-bit accesses?
// * 3 / ARM9 internal: cache/TCM
//
// ARM9 always gets 3c nonseq penalty when using the bus (except for mainRAM where the penalty is 7c)
// /!\ 3c penalty doesn't apply to DMA!
//
// ARM7 only gets nonseq penalty when accessing mainRAM (7c as for ARM9)
//
// timings for GBA slot and wifi are set up at runtime
thread_local NDS* NDS::Current = nullptr;
NDS::NDS() noexcept :
NDS(
NDSArgs {
std::make_unique<ARM9BIOSImage>(bios_arm9_bin),
std::make_unique<ARM7BIOSImage>(bios_arm7_bin),
Firmware(0),
}
)
{
}
NDS::NDS(NDSArgs&& args, int type, void* userdata) noexcept :
ConsoleType(type),
UserData(userdata),
ARM7BIOS(*args.ARM7BIOS),
ARM9BIOS(*args.ARM9BIOS),
ARM7BIOSNative(CRC32(ARM7BIOS.data(), ARM7BIOS.size()) == ARM7BIOSCRC32),
ARM9BIOSNative(CRC32(ARM9BIOS.data(), ARM9BIOS.size()) == ARM9BIOSCRC32),
JIT(*this, args.JIT),
SPU(*this, args.BitDepth, args.Interpolation),
GPU(*this, std::move(args.Renderer3D)),
SPI(*this, std::move(args.Firmware)),
RTC(*this),
Wifi(*this),
NDSCartSlot(*this, nullptr),
GBACartSlot(*this, nullptr),
AREngine(*this),
ARM9(*this, args.GDB, args.JIT.has_value()),
ARM7(*this, args.GDB, args.JIT.has_value()),
#ifdef GDBSTUB_ENABLED
EnableGDBStub(args.GDB.has_value()),
#endif
#ifdef JIT_ENABLED
EnableJIT(args.JIT.has_value()),
#endif
DMAs {
DMA(0, 0, *this),
DMA(0, 1, *this),
DMA(0, 2, *this),
DMA(0, 3, *this),
DMA(1, 0, *this),
DMA(1, 1, *this),
DMA(1, 2, *this),
DMA(1, 3, *this),
}
{
RegisterEventFuncs(Event_Div, this, {MakeEventThunk(NDS, DivDone)});
RegisterEventFuncs(Event_Sqrt, this, {MakeEventThunk(NDS, SqrtDone)});
RegisterEventFuncs(Event_DMA, this, {MakeEventThunk(NDS, QueueDMAs)});
MainRAM = JIT.Memory.GetMainRAM();
SharedWRAM = JIT.Memory.GetSharedWRAM();
ARM7WRAM = JIT.Memory.GetARM7WRAM();
}
NDS::~NDS() noexcept
{
UnregisterEventFuncs(Event_Div);
UnregisterEventFuncs(Event_Sqrt);
UnregisterEventFuncs(Event_DMA);
// The destructor for each component is automatically called by the compiler
}
void NDS::SetARM9RegionTimings(u32 addrstart, u32 addrend, u32 region, int buswidth, int nonseq, int seq)
{
addrstart >>= 2;
addrend >>= 2;
int N16, S16, N32, S32, cpuN;
N16 = nonseq;
S16 = seq;
if (buswidth == 16)
{
N32 = N16 + S16;
S32 = S16 + S16;
}
else
{
N32 = N16;
S32 = S16;
}
// nonseq accesses on the CPU get a 3-cycle penalty for all regions except main RAM
cpuN = (region == Mem9_MainRAM) ? 0 : 3;
for (u32 i = addrstart; i < addrend; i++)
{
// CPU timings
ARM9MemTimings[i][0] = N16 + cpuN;
ARM9MemTimings[i][1] = S16;
ARM9MemTimings[i][2] = N32 + cpuN;
ARM9MemTimings[i][3] = S32;
// DMA timings
ARM9MemTimings[i][4] = N16;
ARM9MemTimings[i][5] = S16;
ARM9MemTimings[i][6] = N32;
ARM9MemTimings[i][7] = S32;
ARM9Regions[i] = region;
}
ARM9.UpdateRegionTimings(addrstart, addrend);
}
void NDS::SetARM7RegionTimings(u32 addrstart, u32 addrend, u32 region, int buswidth, int nonseq, int seq)
{
addrstart >>= 3;
addrend >>= 3;
int N16, S16, N32, S32;
N16 = nonseq;
S16 = seq;
if (buswidth == 16)
{
N32 = N16 + S16;
S32 = S16 + S16;
}
else
{
N32 = N16;
S32 = S16;
}
for (u32 i = addrstart; i < addrend; i++)
{
// CPU and DMA timings are the same
ARM7MemTimings[i][0] = N16;
ARM7MemTimings[i][1] = S16;
ARM7MemTimings[i][2] = N32;
ARM7MemTimings[i][3] = S32;
ARM7Regions[i] = region;
}
}
#ifdef JIT_ENABLED
void NDS::SetJITArgs(std::optional<JITArgs> args) noexcept
{
if (args)
{ // If we want to turn the JIT on...
JIT.SetJITArgs(*args);
}
else if (args.has_value() != EnableJIT)
{ // Else if we want to turn the JIT off, and it wasn't already off...
JIT.ResetBlockCache();
}
EnableJIT = args.has_value();
}
#endif
#ifdef GDBSTUB_ENABLED
void NDS::SetGdbArgs(std::optional<GDBArgs> args) noexcept
{
ARM9.SetGdbArgs(args);
ARM7.SetGdbArgs(args);
EnableGDBStub = args.has_value();
}
#endif
void NDS::InitTimings()
{
// TODO, eventually:
// VRAM is initially unmapped. The timings should be those of void regions.
// Similarly for any unmapped VRAM area.
// Need to check whether supporting these timing characteristics would impact performance
// (especially wrt VRAM mirroring and overlapping and whatnot).
// Also, each VRAM bank is its own memory region. This would matter when DMAing from a VRAM
// bank to another (if this is a thing) for example.
// TODO: check in detail how WRAM works, although it seems to be one region.
// TODO: DSi-specific timings!!
SetARM9RegionTimings(0x00000, 0x100000, 0, 32, 1, 1); // void
SetARM9RegionTimings(0xFFFF0, 0x100000, Mem9_BIOS, 32, 1, 1); // BIOS
SetARM9RegionTimings(0x02000, 0x03000, Mem9_MainRAM, 16, 8, 1); // main RAM
SetARM9RegionTimings(0x03000, 0x04000, Mem9_WRAM, 32, 1, 1); // ARM9/shared WRAM
SetARM9RegionTimings(0x04000, 0x05000, Mem9_IO, 32, 1, 1); // IO
SetARM9RegionTimings(0x05000, 0x06000, Mem9_Pal, 16, 1, 1); // palette
SetARM9RegionTimings(0x06000, 0x07000, Mem9_VRAM, 16, 1, 1); // VRAM
SetARM9RegionTimings(0x07000, 0x08000, Mem9_OAM, 32, 1, 1); // OAM
// ARM7
SetARM7RegionTimings(0x00000, 0x100000, 0, 32, 1, 1); // void
SetARM7RegionTimings(0x00000, 0x00010, Mem7_BIOS, 32, 1, 1); // BIOS
SetARM7RegionTimings(0x02000, 0x03000, Mem7_MainRAM, 16, 8, 1); // main RAM
SetARM7RegionTimings(0x03000, 0x04000, Mem7_WRAM, 32, 1, 1); // ARM7/shared WRAM
SetARM7RegionTimings(0x04000, 0x04800, Mem7_IO, 32, 1, 1); // IO
SetARM7RegionTimings(0x06000, 0x07000, Mem7_VRAM, 32, 1, 1); // ARM7 VRAM
// handled later: GBA slot, wifi
}
bool NDS::NeedsDirectBoot() const
{
if (ConsoleType == 1)
{
// for now, DSi mode requires original BIOS/NAND
return false;
}
else
{
// DSi/3DS firmwares aren't bootable, neither is the generated firmware
if (!SPI.GetFirmware().IsBootable())
return true;
// FreeBIOS requires direct boot (it can't boot firmware)
if (!IsLoadedARM9BIOSKnownNative() || !IsLoadedARM7BIOSKnownNative())
return true;
return false;
}
}
void NDS::SetupDirectBoot()
{
const NDSHeader& header = NDSCartSlot.GetCart()->GetHeader();
u32 cartid = NDSCartSlot.GetCart()->ID();
const u8* cartrom = NDSCartSlot.GetCart()->GetROM();
MapSharedWRAM(3);
// Copy the Nintendo logo from the NDS ROM header to the ARM9 BIOS if using FreeBIOS
// Games need this for DS<->GBA comm to work
if (!IsLoadedARM9BIOSKnownNative())
{
memcpy(ARM9BIOS.data() + 0x20, header.NintendoLogo, 0x9C);
}
// setup main RAM data
for (u32 i = 0; i < 0x170; i+=4)
{
u32 tmp = *(u32*)&cartrom[i];
NDS::ARM9Write32(0x027FFE00+i, tmp);
}
NDS::ARM9Write32(0x027FF800, cartid);
NDS::ARM9Write32(0x027FF804, cartid);
NDS::ARM9Write16(0x027FF808, header.HeaderCRC16);
NDS::ARM9Write16(0x027FF80A, header.SecureAreaCRC16);
NDS::ARM9Write16(0x027FF850, 0x5835);
NDS::ARM9Write32(0x027FFC00, cartid);
NDS::ARM9Write32(0x027FFC04, cartid);
NDS::ARM9Write16(0x027FFC08, header.HeaderCRC16);
NDS::ARM9Write16(0x027FFC0A, header.SecureAreaCRC16);
NDS::ARM9Write16(0x027FFC10, 0x5835);
NDS::ARM9Write16(0x027FFC30, 0xFFFF);
NDS::ARM9Write16(0x027FFC40, 0x0001);
u32 arm9start = 0;
// load the ARM9 secure area
if (header.ARM9ROMOffset >= 0x4000 && header.ARM9ROMOffset < 0x8000)
{
u8 securearea[0x800];
NDSCartSlot.DecryptSecureArea(securearea);
for (u32 i = 0; i < 0x800; i+=4)
{
NDS::ARM9Write32(header.ARM9RAMAddress+i, *(u32*)&securearea[i]);
arm9start += 4;
}
}
// CHECKME: firmware seems to load this in 0x200 byte chunks
for (u32 i = arm9start; i < header.ARM9Size; i+=4)
{
u32 tmp = *(u32*)&cartrom[header.ARM9ROMOffset+i];
NDS::ARM9Write32(header.ARM9RAMAddress+i, tmp);
}
for (u32 i = 0; i < header.ARM7Size; i+=4)
{
u32 tmp = *(u32*)&cartrom[header.ARM7ROMOffset+i];
NDS::ARM7Write32(header.ARM7RAMAddress+i, tmp);
}
ARM7BIOSProt = 0x1204;
SPI.GetFirmwareMem()->SetupDirectBoot();
ARM9.CP15Write(0x100, 0x00012078);
ARM9.CP15Write(0x200, 0x00000042);
ARM9.CP15Write(0x201, 0x00000042);
ARM9.CP15Write(0x300, 0x00000002);
ARM9.CP15Write(0x502, 0x15111011);
ARM9.CP15Write(0x503, 0x05100011);
ARM9.CP15Write(0x600, 0x04000033);
ARM9.CP15Write(0x601, 0x04000033);
ARM9.CP15Write(0x610, 0x0200002B);
ARM9.CP15Write(0x611, 0x0200002B);
ARM9.CP15Write(0x620, 0x00000000);
ARM9.CP15Write(0x621, 0x00000000);
ARM9.CP15Write(0x630, 0x08000035);
ARM9.CP15Write(0x631, 0x08000035);
ARM9.CP15Write(0x640, 0x0300001B);
ARM9.CP15Write(0x641, 0x0300001B);
ARM9.CP15Write(0x650, 0x00000000);
ARM9.CP15Write(0x651, 0x00000000);
ARM9.CP15Write(0x660, 0xFFFF001D);
ARM9.CP15Write(0x661, 0xFFFF001D);
ARM9.CP15Write(0x670, 0x027FF017);
ARM9.CP15Write(0x671, 0x027FF017);
ARM9.CP15Write(0x910, 0x0300000A);
ARM9.CP15Write(0x911, 0x00000020);
}
void NDS::SetupDirectBoot(const std::string& romname)
{
const NDSHeader& header = NDSCartSlot.GetCart()->GetHeader();
SetupDirectBoot();
NDSCartSlot.SetupDirectBoot(romname);
ARM9.R[12] = header.ARM9EntryAddress;
ARM9.R[13] = 0x03002F7C;
ARM9.R[14] = header.ARM9EntryAddress;
ARM9.R_IRQ[0] = 0x03003F80;
ARM9.R_SVC[0] = 0x03003FC0;
ARM7.R[12] = header.ARM7EntryAddress;
ARM7.R[13] = 0x0380FD80;
ARM7.R[14] = header.ARM7EntryAddress;
ARM7.R_IRQ[0] = 0x0380FF80;
ARM7.R_SVC[0] = 0x0380FFC0;
ARM9.JumpTo(header.ARM9EntryAddress);
ARM7.JumpTo(header.ARM7EntryAddress);
if (ARM9.FuncQueueFill > 0) // check if we started the queue up
{
ARM9.FuncQueueEnd = ARM9.FuncQueueFill;
ARM9.FuncQueueFill = 0;
ARM9.FuncQueueActive = true;
}
if (ARM7.FuncQueueFill > 0) // check if we started the queue up
{
ARM7.FuncQueueEnd = ARM7.FuncQueueFill;
ARM7.FuncQueueFill = 0;
ARM7.FuncQueueActive = true;
}
PostFlag9 = 0x01;
PostFlag7 = 0x01;
PowerControl9 = 0x820F;
GPU.SetPowerCnt(PowerControl9);
// checkme
RCnt = 0x8000;
NDSCartSlot.SetSPICnt(0x8000);
SPU.SetBias(0x200);
SetWifiWaitCnt(0x0030);
}
void NDS::Reset()
{
Platform::FileHandle* f;
u32 i;
RunningGame = false;
LastSysClockCycles = 0;
// BIOS files are now loaded by the frontend
JIT.Reset();
if (ConsoleType == 1)
{
// BIOS files are now loaded by the frontend
ARM9ClockShift = 2;
MainRAMMask = 0xFFFFFF;
}
else
{
ARM9ClockShift = 1;
MainRAMMask = 0x3FFFFF;
}
// has to be called before InitTimings
// otherwise some PU settings are completely
// unitialised on the first run
ARM9.CP15Reset();
ARM9Timestamp = 0; DMA9Timestamp = 0; ARM9Target = 0;
ARM7Timestamp = 0; ARM7Target = 0;
MainRAMTimestamp = 0;
A9ContentionTS = 0; ConTSLock = false;
SysTimestamp = 0;
InitTimings();
memset(MainRAM, 0, MainRAMMask + 1);
memset(SharedWRAM, 0, 0x8000);
memset(ARM7WRAM, 0, 0x10000);
MapSharedWRAM(0);
ExMemCnt[0] = 0xE88C; // checkme: is this correct?
ExMemCnt[1] = 0xE88C; // note: these should only matter for direct boot; bios sets these values fairly quickly during native boot
memset(ROMSeed0, 0, 2*8);
memset(ROMSeed1, 0, 2*8);
SetGBASlotTimings();
IME[0] = 0;
IE[0] = 0;
IF[0] = 0;
IME[1] = 0;
IE[1] = 0;
IF[1] = 0;
IE2 = 0;
IF2 = 0;
PostFlag9 = 0x00;
PostFlag7 = 0x00;
PowerControl9 = 0x0001;
PowerControl7 = 0x0001;
WifiWaitCnt = 0xFFFF; // temp
SetWifiWaitCnt(0);
ARM7BIOSProt = 0;
IPCSync9 = 0;
IPCSync7 = 0;
IPCFIFOCnt9 = 0;
IPCFIFOCnt7 = 0;
IPCFIFO9.Clear();
IPCFIFO7.Clear();
DivCnt = 0;
SqrtCnt = 0;
ARM9.Reset();
ARM7.Reset();
CPUStop = 0;
memset(Timers, 0, 8*sizeof(Timer));
TimerCheckMask[0] = 0;
TimerCheckMask[1] = 0;
TimerTimestamp[0] = 0;
TimerTimestamp[1] = 0;
for (i = 0; i < 8; i++) DMAs[i].Reset();
memset(DMA9Fill, 0, 4*4);
for (i = 0; i < Event_MAX; i++)
{
SchedEvent& evt = SchedList[i];
evt.Timestamp = 0;
evt.FuncID = 0;
evt.Param = 0;
}
SchedListMask = 0;
KeyInput = 0x007F03FF;
KeyCnt[0] = 0;
KeyCnt[1] = 0;
RCnt = 0;
memset(DMAsQueued, 0, sizeof(DMAsQueued));
DMAQueuePtr = 0;
GPU.Reset();
NDSCartSlot.Reset();
GBACartSlot.Reset();
SPU.Reset();
SPI.Reset();
RTC.Reset();
Wifi.Reset();
}
void NDS::Start()
{
Running = true;
}
static const char* StopReasonName(Platform::StopReason reason)
{
switch (reason)
{
case Platform::StopReason::External:
return "External";
case Platform::StopReason::PowerOff:
return "PowerOff";
case Platform::StopReason::GBAModeNotSupported:
return "GBAModeNotSupported";
case Platform::StopReason::BadExceptionRegion:
return "BadExceptionRegion";
default:
return "Unknown";
}
}
void NDS::Stop(Platform::StopReason reason)
{
Platform::LogLevel level;
switch (reason)
{
case Platform::StopReason::External:
case Platform::StopReason::PowerOff:
level = LogLevel::Info;
break;
case Platform::StopReason::GBAModeNotSupported:
case Platform::StopReason::BadExceptionRegion:
level = LogLevel::Error;
break;
default:
level = LogLevel::Warn;
break;
}
Log(level, "Stopping emulated console (Reason: %s)\n", StopReasonName(reason));
Running = false;
Platform::SignalStop(reason, UserData);
GPU.Stop();
SPU.Stop();
}
bool NDS::DoSavestate(Savestate* file)
{
file->Section("NDSG");
if (file->Saving)
{
u32 console = ConsoleType;
file->Var32(&console);
}
else
{
u32 console;
file->Var32(&console);
if (console != ConsoleType)
{
Log(LogLevel::Error, "savestate: Expected console type %d, got console type %d. cannot load.\n", ConsoleType, console);
return false;
}
}
file->VarArray(MainRAM, MainRAMMaxSize);
file->VarArray(SharedWRAM, SharedWRAMSize);
file->VarArray(ARM7WRAM, ARM7WRAMSize);
//file->VarArray(ARM9BIOS, 0x1000);
//file->VarArray(ARM7BIOS, 0x4000);
file->VarArray(ExMemCnt, 2*sizeof(u16));
file->VarArray(ROMSeed0, 2*8);
file->VarArray(ROMSeed1, 2*8);
file->Var16(&WifiWaitCnt);
file->VarArray(IME, 2*sizeof(u32));
file->VarArray(IE, 2*sizeof(u32));
file->VarArray(IF, 2*sizeof(u32));
file->Var32(&IE2);
file->Var32(&IF2);
file->Var8(&PostFlag9);
file->Var8(&PostFlag7);
file->Var16(&PowerControl9);
file->Var16(&PowerControl7);
file->Var16(&ARM7BIOSProt);
file->Var16(&IPCSync9);
file->Var16(&IPCSync7);
file->Var16(&IPCFIFOCnt9);
file->Var16(&IPCFIFOCnt7);
IPCFIFO9.DoSavestate(file);
IPCFIFO7.DoSavestate(file);
file->Var16(&DivCnt);
file->Var16(&SqrtCnt);
file->Var32(&CPUStop);
for (int i = 0; i < 8; i++)
{
Timer* timer = &Timers[i];
file->Var16(&timer->Reload);
file->Var16(&timer->Cnt);
file->Var32(&timer->Counter);
file->Var32(&timer->CycleShift);
}
file->VarArray(TimerCheckMask, 2*sizeof(u8));
file->VarArray(TimerTimestamp, 2*sizeof(u64));
file->VarArray(DMA9Fill, 4*sizeof(u32));
for (int i = 0; i < Event_MAX; i++)
{
SchedEvent& evt = SchedList[i];
file->Var64(&evt.Timestamp);
file->Var32(&evt.FuncID);
file->Var32(&evt.Param);
}
file->Var32(&SchedListMask);
file->Var64(&ARM9Timestamp);
file->Var64(&ARM9Target);
file->Var64(&ARM7Timestamp);
file->Var64(&ARM7Target);
file->Var64(&SysTimestamp);
file->Var64(&LastSysClockCycles);
file->Var64(&FrameStartTimestamp);
file->Var32(&NumFrames);
file->Var32(&NumLagFrames);
file->Bool32(&LagFrameFlag);
// TODO: save KeyInput????
file->VarArray(KeyCnt, 2*sizeof(u16));
file->Var16(&RCnt);
file->Var8(&WRAMCnt);
file->Bool32(&RunningGame);
if (!file->Saving)
{
// 'dept of redundancy dept'
// but we do need to update the mappings
MapSharedWRAM(WRAMCnt);
InitTimings();
SetGBASlotTimings();
UpdateWifiTimings();
}
for (int i = 0; i < 8; i++)
DMAs[i].DoSavestate(file);
ARM9.DoSavestate(file);
ARM7.DoSavestate(file);
NDSCartSlot.DoSavestate(file);
if (ConsoleType == 0)
GBACartSlot.DoSavestate(file);
GPU.DoSavestate(file);
SPU.DoSavestate(file);
SPI.DoSavestate(file);
RTC.DoSavestate(file);
Wifi.DoSavestate(file);
DoSavestateExtra(file); // Handles DSi state if applicable
if (!file->Saving)
{
GPU.SetPowerCnt(PowerControl9);
SPU.SetPowerCnt(PowerControl7 & 0x0001);
Wifi.SetPowerCnt(PowerControl7 & 0x0002);
#ifdef JIT_ENABLED
JIT.Reset();
#endif
}
file->Finish();
return true;
}
void NDS::SetNDSCart(std::unique_ptr<NDSCart::CartCommon>&& cart)
{
NDSCartSlot.SetCart(std::move(cart));
// The existing cart will always be ejected;
// if cart is null, then that's equivalent to ejecting a cart
// without inserting a new one.
}
void NDS::SetNDSSave(const u8* savedata, u32 savelen)
{
if (savedata && savelen)
NDSCartSlot.SetSaveMemory(savedata, savelen);
}
void NDS::SetGBASave(const u8* savedata, u32 savelen)
{
if (ConsoleType == 0 && savedata && savelen)
{
GBACartSlot.SetSaveMemory(savedata, savelen);
}
}
void NDS::LoadBIOS()
{
Reset();
}
void NDS::SetARM7BIOS(const std::array<u8, ARM7BIOSSize>& bios) noexcept
{
ARM7BIOS = bios;
ARM7BIOSNative = CRC32(ARM7BIOS.data(), ARM7BIOS.size()) == ARM7BIOSCRC32;
}
void NDS::SetARM9BIOS(const std::array<u8, ARM9BIOSSize>& bios) noexcept
{
ARM9BIOS = bios;
ARM9BIOSNative = CRC32(ARM9BIOS.data(), ARM9BIOS.size()) == ARM9BIOSCRC32;
}
u64 NDS::NextTarget()
{
u64 minEvent = std::max(SysTimestamp+1, NDSCartSlot.ROMTransferTime[0]);
u32 mask = SchedListMask;
for (int i = 0; i < Event_MAX; i++)
{
if (!mask) break;
if (mask & 0x1)
{
if (SchedList[i].Timestamp < minEvent)
minEvent = SchedList[i].Timestamp;
}
mask >>= 1;
}
u64 max = SysTimestamp + kMaxIterationCycles;
if (minEvent < max + kIterationCycleMargin)
return minEvent;
return max;
}
void NDS::RunSystem(u64 timestamp)
{
SysTimestamp = timestamp;
u32 mask = SchedListMask;
for (int i = 0; i < Event_MAX; i++)
{
if (!mask) break;
if (mask & 0x1)
{
SchedEvent& evt = SchedList[i];
if (evt.Timestamp <= SysTimestamp)
{
SchedListMask &= ~(1<<i);
EventFunc func = evt.Funcs[evt.FuncID];
func(evt.That, evt.Param);
}
}
mask >>= 1;
}
}
u64 NDS::NextTargetSleep()
{
u64 minEvent = UINT64_MAX;
u32 mask = SchedListMask;
for (int i = 0; i < Event_MAX; i++)
{
if (!mask) break;
if (i == Event_SPU || i == Event_RTC)
{
if (mask & 0x1)
{
if (SchedList[i].Timestamp < minEvent)
minEvent = SchedList[i].Timestamp;
}
}
mask >>= 1;
}
return minEvent;
}
void NDS::RunSystemSleep(u64 timestamp)
{
u64 offset = timestamp - SysTimestamp;
SysTimestamp = timestamp;
u32 mask = SchedListMask;
for (int i = 0; i < Event_MAX; i++)
{
if (!mask) break;
if (i == Event_SPU || i == Event_RTC)
{
if (mask & 0x1)
{
SchedEvent& evt = SchedList[i];
if (evt.Timestamp <= SysTimestamp)
{
SchedListMask &= ~(1<<i);
u32 param;
if (i == Event_SPU)
param = 1;
else
param = evt.Param;
EventFunc func = evt.Funcs[evt.FuncID];
func(evt.That, param);
}
}
}
else if (mask & 0x1)
{
if (SchedList[i].Timestamp <= SysTimestamp)
{
SchedList[i].Timestamp += offset;
}
}
mask >>= 1;
}
}
#define A9WENTLAST (!MainRAMLastAccess)
#define A7WENTLAST ( MainRAMLastAccess)
#define A9LAST false
#define A7LAST true
#define A9PRIORITY !(ExMemCnt[0] & 0x8000)
#define A7PRIORITY (ExMemCnt[0] & 0x8000)
void NDS::MainRAMHandleARM9()
{
CurCPU = 0;
switch (ARM9.MRTrack.Type)
{
default:
{
Platform::Log(Platform::LogLevel::Error, "INVALID MAIN RAM TYPE ARM9");
break;
}
case MainRAMType::Fetch:
{
u8 var = ARM9.MRTrack.Var;
u32 addr = (var & MRCodeFetch) ? ARM9.FetchAddr[16] : ARM9.FetchAddr[ARM9.MRTrack.Progress];
if ((var & MRSequential) && A9WENTLAST && !(MainRAMBork && ((addr & 0x1F) == 0)))
{
A9ContentionTS += 2;
MainRAMTimestamp += 2;
if (!(var & MRWrite)) ARM9.DataCycles = 2 << ARM9ClockShift;
}
else
{
if (A9ContentionTS < MainRAMTimestamp) { A9ContentionTS = MainRAMTimestamp; if (A7PRIORITY) return; }
MainRAMBork = !(var & MRWrite) && ((addr & 0x1F) >= 0x1A);
MainRAMTimestamp = A9ContentionTS + ((var & MR16) ? 8 : 9); // checkme: are these correct for 8bit?
if (var & MRWrite) A9ContentionTS += ((var & MR16) ? 6 : 7); // checkme: is this correct for 133mhz?
else
{
if (ARM9ClockShift == 1) A9ContentionTS += ((var & MR16) ? 8 : 9);
else A9ContentionTS += ((var & MR16) ? 7 : 8);
ARM9.DataCycles = 3 << ARM9ClockShift;
}
MainRAMLastAccess = A9LAST;
}
ARM9Timestamp = (A9ContentionTS << ARM9ClockShift) - 1;
if (var & MRCodeFetch)
{
u32 addr = ARM9.FetchAddr[16];
ARM9.RetVal = *(u32*)&MainRAM[addr&MainRAMMask];
}
else
{
ARM9.DataRegion = Mem9_MainRAM;
u8 reg = ARM9.MRTrack.Progress;
u32 addr = ARM9.FetchAddr[reg];
if (var & MRWrite) // write
{
u32 val = ARM9.STRVal[reg];
if (var & MR32) *(u32*)&MainRAM[addr&MainRAMMask] = val;
else if (var & MR16) *(u16*)&MainRAM[addr&MainRAMMask] = val;
else *(u8 *)&MainRAM[addr&MainRAMMask] = val;
}
else // read
{
u32 dummy;
u32* val = ((ARM9.LDRFailedRegs & (1<<reg)) ? &dummy : &ARM9.R[reg]);
if (var & MR32) *val = *(u32*)&MainRAM[addr&MainRAMMask];
else if (var & MR16) *val = *(u16*)&MainRAM[addr&MainRAMMask];
else *val = *(u8 *)&MainRAM[addr&MainRAMMask];
}
}
int sub = 0;
if (var & MRWrite) sub = 3<<ARM9ClockShift;
u64 ts = (ARM9Timestamp - sub + ((1<<ARM9ClockShift)-1)) & ~((1<<ARM9ClockShift)-1);
if (ARM9.WBTimestamp < ts) ARM9.WBTimestamp = ts;
memset(&ARM9.MRTrack, 0, sizeof(ARM9.MRTrack));
ConTSLock = false;
break;
}
case MainRAMType::ICacheStream:
{
u8* prog = &ARM9.MRTrack.Progress;
u32 addr = (ARM9.FetchAddr[16] & ~0x1F) | (*prog * 4);
u32* icache = (u32*)&ARM9.ICache[ARM9.MRTrack.Var << 5];
if ((*prog > 0) && A9WENTLAST)
{
MainRAMTimestamp += 2;
A9ContentionTS += 2;
}
else
{
if (A9ContentionTS < MainRAMTimestamp) { A9ContentionTS = MainRAMTimestamp; if (A7PRIORITY) return; }
MainRAMTimestamp = A9ContentionTS + 9;
A9ContentionTS += ((ARM9ClockShift == 1) ? 9 : 8);
MainRAMLastAccess = A9LAST;
}
icache[*prog] = *(u32*)&MainRAM[addr&MainRAMMask];
if (*prog == ARM9.ICacheStreamPtr) ARM9Timestamp = (A9ContentionTS << ARM9ClockShift) - 1;
else if (*prog > ARM9.ICacheStreamPtr) ARM9.ICacheStreamTimes[*prog-1] = (A9ContentionTS << ARM9ClockShift) - 1;
(*prog)++;
if (*prog >= 8)
{
ARM9.RetVal = icache[(ARM9.FetchAddr[16] & 0x1F) / 4];
memset(&ARM9.MRTrack, 0, sizeof(ARM9.MRTrack));
ConTSLock = false;
}
break;
}
case MainRAMType::DCacheStream:
{
u8* prog = &ARM9.MRTrack.Progress;
u32 addr = (ARM9.FetchAddr[16] & ~0x1F) | (*prog * 4);
u32* dcache = (u32*)&ARM9.DCache[ARM9.MRTrack.Var << 5];
if ((*prog > 0) && A9WENTLAST)
{
MainRAMTimestamp += 2;
A9ContentionTS += 2;
}
else
{
if (A9ContentionTS < MainRAMTimestamp) { A9ContentionTS = MainRAMTimestamp; if (A7PRIORITY) return; }
MainRAMTimestamp = A9ContentionTS + 9;
A9ContentionTS += ((ARM9ClockShift == 1) ? 9 : 8);
MainRAMLastAccess = A9LAST;
}
dcache[*prog] = *(u32*)&MainRAM[addr&MainRAMMask];
if (*prog == ARM9.DCacheStreamPtr) ARM9Timestamp = (A9ContentionTS << ARM9ClockShift) - 1;
else if (*prog > ARM9.DCacheStreamPtr) ARM9.DCacheStreamTimes[*prog-1] = (A9ContentionTS << ARM9ClockShift) - 1;
(*prog)++;
if (*prog >= 8)
{
ARM9.DataRegion = Mem9_MainRAM;
ARM9.DataCycles = 3 << ARM9ClockShift;
ARM9.RetVal = dcache[(ARM9.FetchAddr[16] & 0x1F) / 4];
memset(&ARM9.MRTrack, 0, sizeof(ARM9.MRTrack));
ConTSLock = false;
}
break;
}
case MainRAMType::DMA32:
{
DMA* dma = &DMAs[ARM9.MRTrack.Var];
int burststart = dma->Running - 1;
u32 srcaddr = dma->CurSrcAddr;
u32 srcrgn = ARM9Regions[srcaddr>>14];
u32 dstaddr = dma->CurDstAddr;
u32 dstrgn = ARM9Regions[dstaddr>>14];
if (!ARM9.MRTrack.Progress)
{
if (srcrgn == Mem9_MainRAM)
{
if (burststart == 2 || A7WENTLAST || DMALastWasMainRAM || dma->SrcAddrInc <= 0 || ((A9ContentionTS - MainRAMBurstStart) >= 242) || (MainRAMBork && ((dma->CurSrcAddr & 0x1F) == 0)))
{
if (A9ContentionTS < MainRAMTimestamp) { A9ContentionTS = MainRAMTimestamp; if (A7PRIORITY) return; }
MainRAMBork = ((dma->CurSrcAddr & 0x1F) >= 0x1A);
MainRAMBurstStart = A9ContentionTS;
MainRAMTimestamp = A9ContentionTS + 9;
A9ContentionTS += 6;
MainRAMLastAccess = A9LAST;
}
else
{
A9ContentionTS += 2;
MainRAMTimestamp = A9ContentionTS + 3;
}
DMALastWasMainRAM = true;
}
else
{
if (burststart == 2 || dma->SrcAddrInc <= 0)
{
A9ContentionTS += ARM9MemTimings[srcaddr>>14][6] + ((burststart == 2) && (ARM9MemTimings[srcaddr>>14][6] == 1));
MainRAMTimestamp += ARM9MemTimings[srcaddr>>14][6] + ((burststart == 2) && (ARM9MemTimings[srcaddr>>14][6] == 1));
}
else
{
A9ContentionTS += ARM9MemTimings[srcaddr>>14][7];
MainRAMTimestamp += ARM9MemTimings[srcaddr>>14][7];
}
DMALastWasMainRAM = false;
}
DMA9Timestamp = (A9ContentionTS << ARM9ClockShift);
ConTSLock = false;
DMAReadHold[0] = ARM9Read32(srcaddr);
ARM9.MRTrack.Progress = 1;
}
else
{
if (dstrgn == Mem9_MainRAM)
{
if (burststart == 2 || A7WENTLAST || DMALastWasMainRAM || dma->DstAddrInc <= 0 || ((A9ContentionTS - MainRAMBurstStart) >= 242))
{
if (A9ContentionTS < MainRAMTimestamp) { A9ContentionTS = MainRAMTimestamp; if (A7PRIORITY) return; }
MainRAMTimestamp = A9ContentionTS + 9;
MainRAMBurstStart = A9ContentionTS;
A9ContentionTS += 4;
MainRAMLastAccess = A9LAST;
}
else
{
A9ContentionTS += 2;
MainRAMTimestamp = A9ContentionTS + 5;
}
DMALastWasMainRAM = true;
}
else
{
if (burststart == 2 || dma->DstAddrInc <= 0)
{
A9ContentionTS += ARM9MemTimings[dstaddr>>14][6] - (burststart <= 0);
MainRAMTimestamp += ARM9MemTimings[dstaddr>>14][6] + (burststart == 1);
}
else
{
A9ContentionTS += ARM9MemTimings[dstaddr>>14][7] - (burststart <= 0);
MainRAMTimestamp += ARM9MemTimings[dstaddr>>14][7] + (burststart == 1);
}
DMALastWasMainRAM = false;
}
DMA9Timestamp = (A9ContentionTS << ARM9ClockShift);
ConTSLock = false;
ARM9Write32(dstaddr, DMAReadHold[0]);
dma->CurSrcAddr += dma->SrcAddrInc<<2;
dma->CurDstAddr += dma->DstAddrInc<<2;
dma->IterCount--;
dma->RemCount--;
if (burststart <= 1) dma->Running = 1;
else dma->Running = 2;
if ((dma->IterCount == 0) || ((ARM9Regions[dma->CurSrcAddr>>14] != Mem9_MainRAM) && (ARM9Regions[dma->CurDstAddr>>14] != Mem9_MainRAM)))
memset(&ARM9.MRTrack, 0, sizeof(ARM9.MRTrack));
else
ARM9.MRTrack.Progress = 0;
}
break;
}
case MainRAMType::DMA16:
{
DMA* dma = &DMAs[ARM9.MRTrack.Var];
int burststart = dma->Running - 1;
u32 srcaddr = dma->CurSrcAddr;
u32 srcrgn = ARM9Regions[srcaddr>>14];
u32 dstaddr = dma->CurDstAddr;
u32 dstrgn = ARM9Regions[dstaddr>>14];
if (!ARM9.MRTrack.Progress)
{
if (srcrgn == Mem9_MainRAM)
{
if (burststart == 2 || A7WENTLAST || DMALastWasMainRAM || dma->SrcAddrInc <= 0 || ((A9ContentionTS - MainRAMBurstStart) >= 242) || (MainRAMBork && ((dma->CurSrcAddr & 0x1F) == 0)))
{
if (A9ContentionTS < MainRAMTimestamp) { A9ContentionTS = MainRAMTimestamp; if (A7PRIORITY) return; }
MainRAMBork = ((dma->CurSrcAddr & 0x1F) >= 0x1A);
MainRAMBurstStart = A9ContentionTS;
MainRAMTimestamp = A9ContentionTS + 8;
A9ContentionTS += 5;
MainRAMLastAccess = A9LAST;
}
else
{
A9ContentionTS += 1;
MainRAMTimestamp = A9ContentionTS + 3;
}
DMALastWasMainRAM = true;
}
else
{
if (burststart == 2 || dma->SrcAddrInc <= 0)
{
A9ContentionTS += ARM9MemTimings[srcaddr>>14][4] + ((burststart == 2) && (ARM9MemTimings[srcaddr>>14][4] == 1));
MainRAMTimestamp += ARM9MemTimings[srcaddr>>14][4] + ((burststart == 2) && (ARM9MemTimings[srcaddr>>14][4] == 1));
}
else
{
A9ContentionTS += ARM9MemTimings[srcaddr>>14][5];
MainRAMTimestamp += ARM9MemTimings[srcaddr>>14][5];
}
DMALastWasMainRAM = false;
}
DMA9Timestamp = (A9ContentionTS << ARM9ClockShift);
ConTSLock = false;
DMAReadHold[0] = ARM9Read16(srcaddr);
ARM9.MRTrack.Progress = 1;
}
else
{
if (dstrgn == Mem9_MainRAM)
{
if (burststart == 2 || A7WENTLAST || DMALastWasMainRAM || dma->DstAddrInc <= 0 || ((A9ContentionTS - MainRAMBurstStart) >= 242))
{
if (A9ContentionTS < MainRAMTimestamp) { A9ContentionTS = MainRAMTimestamp; if (A7PRIORITY) return; }
MainRAMBurstStart = A9ContentionTS;
MainRAMTimestamp = A9ContentionTS + 8;
A9ContentionTS += 3;
MainRAMLastAccess = A9LAST;
}
else
{
A9ContentionTS += 1;
MainRAMTimestamp = A9ContentionTS + 5;
}
DMALastWasMainRAM = true;
}
else
{
if (burststart == 2 || dma->DstAddrInc <= 0)
{
A9ContentionTS += ARM9MemTimings[dstaddr>>14][4] + (burststart == 1);
MainRAMTimestamp += ARM9MemTimings[dstaddr>>14][4];
}
else
{
A9ContentionTS += ARM9MemTimings[dstaddr>>14][5] + (burststart == 1);
MainRAMTimestamp += ARM9MemTimings[dstaddr>>14][5];
}
DMALastWasMainRAM = false;
}
DMA9Timestamp = (A9ContentionTS << ARM9ClockShift);
ConTSLock = false;
ARM9Write16(dstaddr, DMAReadHold[0]);
dma->CurSrcAddr += dma->SrcAddrInc<<1;
dma->CurDstAddr += dma->DstAddrInc<<1;
dma->IterCount--;
dma->RemCount--;
if (burststart <= 1) dma->Running = 1;
else dma->Running = 2;
if ((dma->IterCount == 0) || ((ARM9Regions[dma->CurSrcAddr>>14] != Mem9_MainRAM) && (ARM9Regions[dma->CurDstAddr>>14] != Mem9_MainRAM)))
memset(&ARM9.MRTrack, 0, sizeof(ARM9.MRTrack));
else
ARM9.MRTrack.Progress = 0;
}
break;
}
case MainRAMType::WBDrain:
{
if (!ARM9.WriteBufferHandle<WBMode::Force>()) return;
if ((ARM9.WBWritePointer == 16) && !ARM9.WBWriting)
{
memset(&ARM9.MRTrack, 0, sizeof(ARM9.MRTrack));
ConTSLock = false;
}
break;
}
case MainRAMType::WBWrite:
{
if (!ARM9.WriteBufferHandle<WBMode::Check>()) return;
if (ARM9.WBWritePointer == ARM9.WBFillPointer)
{
if (!ARM9.WriteBufferHandle<WBMode::WaitEntry>()) return;
}
else if (ARM9.WBWritePointer == 16)
{
ARM9.WBWritePointer = 0;
if (!ARM9.WBWriting)
{
u64 ts = (ARM9Timestamp + 1 + ((1<<ARM9ClockShift)-1)) & ~((1<<ARM9ClockShift)-1);
if (ARM9.WBTimestamp < ts) ARM9.WBTimestamp = ts;
}
}
ARM9.WriteBufferFifo[ARM9.WBFillPointer] = ARM9.WBValQueued[ARM9.MRTrack.Progress];
ARM9.storeaddr[ARM9.WBFillPointer] = ARM9.WBAddrQueued[ARM9.MRTrack.Progress];
ARM9.WBFillPointer = (ARM9.WBFillPointer + 1) & 0xF;
if ((ARM9.WBValQueued[ARM9.MRTrack.Progress] >> 61) != 4)
{
ARM9Timestamp += ARM9.DataCycles = 1;
ARM9.WBDelay = ARM9Timestamp + 1;
}
ARM9.MRTrack.Progress++;
if (ARM9.MRTrack.Progress >= ARM9.MRTrack.Var)
{
memset(&ARM9.MRTrack, 0, sizeof(ARM9.MRTrack));
ConTSLock = false;
}
break;
}
case MainRAMType::WBCheck:
{
if (!ARM9.WriteBufferHandle<WBMode::Check>()) return;
memset(&ARM9.MRTrack, 0, sizeof(ARM9.MRTrack));
ConTSLock = false;
break;
}
case MainRAMType::WBWaitRead:
{
if (!ARM9.WriteBufferHandle<WBMode::Check>()) return;
if (ARM9Timestamp >= ARM9.WBInitialTS)
{
if (!ARM9.WriteBufferHandle<WBMode::SingleBurst>()) return;
if (ARM9Timestamp < ARM9.WBReleaseTS) ARM9Timestamp = ARM9.WBReleaseTS;
}
memset(&ARM9.MRTrack, 0, sizeof(ARM9.MRTrack));
ConTSLock = false;
break;
}
case MainRAMType::WBWaitWrite:
{
if (!ARM9.WriteBufferHandle<WBMode::Check>()) return;
if (!ARM9.WriteBufferHandle<WBMode::SingleBurst>()) return;
if (ARM9Timestamp < ARM9.WBReleaseTS) ARM9Timestamp = ARM9.WBReleaseTS;
memset(&ARM9.MRTrack, 0, sizeof(ARM9.MRTrack));
ConTSLock = false;
break;
}
}
}
void NDS::MainRAMHandleARM7()
{
CurCPU = 1;
switch (ARM7.MRTrack.Type)
{
default:
{
Platform::Log(Platform::LogLevel::Error, "INVALID MAIN RAM TYPE ARM7");
break;
}
case MainRAMType::Fetch:
{
u8 var = ARM7.MRTrack.Var;
u32 addr = (var & MRCodeFetch) ? ARM7.FetchAddr[16] : ARM7.FetchAddr[ARM7.MRTrack.Progress];
if ((var & MRSequential) && A7WENTLAST && !(MainRAMBork && ((addr & 0x1F) == 0)) && ((ARM7Timestamp - MainRAMBurstStart) < 242))
{
int cycles = ((var & MR32) ? 2 : 1);
MainRAMTimestamp += cycles;
ARM7Timestamp += cycles;
//printf("%lli %lli\n", MainRAMTimestamp, ARM7Timestamp);
}
else
{
if (ARM7Timestamp < MainRAMTimestamp) { ARM7Timestamp = MainRAMTimestamp; if (A9PRIORITY) return; }
MainRAMBork = !(var & MRWrite) && ((addr & 0x1F) >= 0x1A);
MainRAMBurstStart = ARM7Timestamp;
MainRAMTimestamp = ARM7Timestamp + ((var & MR16) ? 8 : 9); // checkme: are these correct for 8bit?
if (var & MRWrite) ARM7Timestamp += ((var & MR16) ? 3 : 4);
else ARM7Timestamp += ((var & MR16) ? 5 : 6);
MainRAMLastAccess = A7LAST;
}
if (var & MRCodeFetch)
{
ARM7.RetVal = ((var & MR32) ? *(u32*)&MainRAM[addr&MainRAMMask] : *(u16*)&MainRAM[addr&MainRAMMask]);
}
else
{
u8 reg = ARM7.MRTrack.Progress;
if (var & MRWrite) // write
{
u32 val = ARM7.STRVal[reg];
if (var & MR32) *(u32*)&MainRAM[addr&MainRAMMask] = val;
else if (var & MR16) *(u16*)&MainRAM[addr&MainRAMMask] = val;
else *(u8 *)&MainRAM[addr&MainRAMMask] = val;
}
else // read
{
u32 dummy;
u32* val = ((ARM7.LDRFailedRegs & (1<<reg)) ? &dummy : &ARM7.R[reg]);
if (var & MR32) *val = *(u32*)&MainRAM[addr&MainRAMMask];
else if (var & MR16) *val = *(u16*)&MainRAM[addr&MainRAMMask];
else *val = *(u8 *)&MainRAM[addr&MainRAMMask];
}
}
memset(&ARM7.MRTrack, 0, sizeof(ARM7.MRTrack));
break;
}
case MainRAMType::DMA32:
{
DMA* dma = &DMAs[ARM7.MRTrack.Var];
int burststart = dma->Running - 1;
u32 srcaddr = dma->CurSrcAddr;
u32 srcrgn = ARM7Regions[srcaddr>>15];
u32 dstaddr = dma->CurDstAddr;
u32 dstrgn = ARM7Regions[dstaddr>>15];
if (!ARM7.MRTrack.Progress)
{
if (srcrgn == Mem7_MainRAM)
{
if (burststart == 2 || A9WENTLAST || DMALastWasMainRAM || dma->SrcAddrInc <= 0 || ((ARM7Timestamp - MainRAMBurstStart) >= 242) || (MainRAMBork && ((dma->CurSrcAddr & 0x1F) == 0)))
{
if (ARM7Timestamp < MainRAMTimestamp) { ARM7Timestamp = MainRAMTimestamp; if (A9PRIORITY) return; }
MainRAMBork = ((dma->CurSrcAddr & 0x1F) >= 0x1A);
MainRAMBurstStart = ARM7Timestamp;
MainRAMTimestamp = ARM7Timestamp + 9;
ARM7Timestamp += 6;
MainRAMLastAccess = A7LAST;
}
else
{
ARM7Timestamp += 2;
MainRAMTimestamp = ARM7Timestamp + 3;
}
DMALastWasMainRAM = true;
}
else
{
if (burststart == 2 || dma->SrcAddrInc <= 0)
{
ARM7Timestamp += ARM7MemTimings[srcaddr>>15][2] + ((burststart == 2) && (ARM7MemTimings[srcaddr>>15][2] == 1));
MainRAMTimestamp += ARM7MemTimings[srcaddr>>15][2] + ((burststart == 2) && (ARM7MemTimings[srcaddr>>15][2] == 1));
}
else
{
ARM7Timestamp += ARM7MemTimings[srcaddr>>15][3];
MainRAMTimestamp += ARM7MemTimings[srcaddr>>15][3];
}
DMALastWasMainRAM = false;
}
DMAReadHold[1] = ARM7Read32(srcaddr);
ARM7.MRTrack.Progress = 1;
}
else
{
if (dstrgn == Mem7_MainRAM)
{
if (burststart == 2 || A9WENTLAST || DMALastWasMainRAM || dma->DstAddrInc <= 0 || ((ARM7Timestamp - MainRAMBurstStart) >= 242))
{
if (ARM7Timestamp < MainRAMTimestamp) { ARM7Timestamp = MainRAMTimestamp; if (A9PRIORITY) return; }
MainRAMBurstStart = ARM7Timestamp;
MainRAMTimestamp = ARM7Timestamp + 9;
ARM7Timestamp += 4;
MainRAMLastAccess = A7LAST;
}
else
{
ARM7Timestamp += 2;
MainRAMTimestamp = ARM7Timestamp + 5;
}
DMALastWasMainRAM = true;
}
else
{
if (burststart == 2 || dma->DstAddrInc <= 0)
{
ARM7Timestamp += ARM7MemTimings[dstaddr>>15][2] - (burststart <= 0);
MainRAMTimestamp += ARM7MemTimings[dstaddr>>15][2] + (burststart == 1);
}
else
{
ARM7Timestamp += ARM7MemTimings[dstaddr>>15][3] - (burststart <= 0);
MainRAMTimestamp += ARM7MemTimings[dstaddr>>15][3] + (burststart == 1);
}
DMALastWasMainRAM = false;
}
ARM7Write32(dstaddr, DMAReadHold[1]);
dma->CurSrcAddr += dma->SrcAddrInc<<2;
dma->CurDstAddr += dma->DstAddrInc<<2;
dma->IterCount--;
dma->RemCount--;
if (burststart <= 1) dma->Running = 1;
else dma->Running = 2;
if ((dma->IterCount == 0) || ((ARM7Regions[dma->CurSrcAddr>>15] != Mem7_MainRAM) && (ARM7Regions[dma->CurDstAddr>>15] != Mem7_MainRAM)))
memset(&ARM7.MRTrack, 0, sizeof(ARM7.MRTrack));
else
ARM7.MRTrack.Progress = 0;
}
break;
}
case MainRAMType::DMA16:
{
DMA* dma = &DMAs[ARM7.MRTrack.Var];
int burststart = dma->Running - 1;
u32 srcaddr = dma->CurSrcAddr;
u32 srcrgn = ARM7Regions[srcaddr>>15];
u32 dstaddr = dma->CurDstAddr;
u32 dstrgn = ARM7Regions[dstaddr>>15];
if (!ARM7.MRTrack.Progress)
{
if (srcrgn == Mem7_MainRAM)
{
if (burststart == 2 || A9WENTLAST || DMALastWasMainRAM || dma->SrcAddrInc <= 0 || ((ARM7Timestamp - MainRAMBurstStart) >= 242) || (MainRAMBork && ((dma->CurSrcAddr & 0x1F) == 0)))
{
if (ARM7Timestamp < MainRAMTimestamp) { ARM7Timestamp = MainRAMTimestamp; if (A9PRIORITY) return; }
MainRAMBork = ((dma->CurSrcAddr & 0x1F) >= 0x1A);
MainRAMBurstStart = ARM7Timestamp;
MainRAMTimestamp = ARM7Timestamp + 8;
ARM7Timestamp += 5;
MainRAMLastAccess = A7LAST;
}
else
{
ARM7Timestamp += 1;
MainRAMTimestamp = ARM7Timestamp + 3;
}
DMALastWasMainRAM = true;
}
else
{
if (burststart == 2 || dma->SrcAddrInc <= 0)
{
ARM7Timestamp += ARM7MemTimings[srcaddr>>15][0] + ((burststart == 2) && (ARM7MemTimings[srcaddr>>15][0] == 1));
MainRAMTimestamp += ARM7MemTimings[srcaddr>>15][0] + ((burststart == 2) && (ARM7MemTimings[srcaddr>>15][0] == 1));
}
else
{
ARM7Timestamp += ARM7MemTimings[srcaddr>>15][1];
MainRAMTimestamp += ARM7MemTimings[srcaddr>>15][1];
}
DMALastWasMainRAM = false;
}
DMAReadHold[1] = ARM7Read16(srcaddr);
ARM7.MRTrack.Progress = 1;
}
else
{
if (dstrgn == Mem7_MainRAM)
{
if (burststart == 2 || A9WENTLAST || DMALastWasMainRAM || dma->DstAddrInc <= 0 || ((ARM7Timestamp - MainRAMBurstStart) >= 242))
{
if (ARM7Timestamp < MainRAMTimestamp) { ARM7Timestamp = MainRAMTimestamp; if (A9PRIORITY) return; }
MainRAMBurstStart = ARM7Timestamp;
MainRAMTimestamp = ARM7Timestamp + 8;
ARM7Timestamp += 3;
MainRAMLastAccess = A7LAST;
}
else
{
ARM7Timestamp += 1;
MainRAMTimestamp = ARM7Timestamp + 5;
}
DMALastWasMainRAM = true;
}
else
{
if (burststart == 2 || dma->DstAddrInc <= 0)
{
ARM7Timestamp += ARM7MemTimings[dstaddr>>15][0] + (burststart == 1);
MainRAMTimestamp += ARM7MemTimings[dstaddr>>15][0];
}
else
{
ARM7Timestamp += ARM7MemTimings[dstaddr>>15][1] + (burststart == 1);
MainRAMTimestamp += ARM7MemTimings[dstaddr>>15][1];
}
DMALastWasMainRAM = false;
}
ARM7Write16(dstaddr, DMAReadHold[1]);
dma->CurSrcAddr += dma->SrcAddrInc<<1;
dma->CurDstAddr += dma->DstAddrInc<<1;
dma->IterCount--;
dma->RemCount--;
if (burststart <= 1) dma->Running = 1;
else dma->Running = 2;
if ((dma->IterCount == 0) || ((ARM7Regions[dma->CurSrcAddr>>15] != Mem7_MainRAM) && (ARM7Regions[dma->CurDstAddr>>15] != Mem7_MainRAM)))
memset(&ARM7.MRTrack, 0, sizeof(ARM7.MRTrack));
else
ARM7.MRTrack.Progress = 0;
}
break;
}
}
}
bool NDS::MainRAMHandle()
{
if (!ConTSLock)
{
if (ARM9.MRTrack.Type != MainRAMType::Null) ConTSLock = true;
if (ARM9.MRTrack.Type > MainRAMType::WriteBufferCmds)
A9ContentionTS = (ARM9.WBTimestamp + ((1<<ARM9ClockShift)-1)) >> ARM9ClockShift;
else if (ARM9.MRTrack.Type == MainRAMType::DMA16 || ARM9.MRTrack.Type == MainRAMType::DMA32)
A9ContentionTS = (DMA9Timestamp + ((1<<ARM9ClockShift)-1)) >> ARM9ClockShift;
else
A9ContentionTS = (ARM9Timestamp + ((1<<ARM9ClockShift)-1)) >> ARM9ClockShift;
}
if (A7PRIORITY)
{
while (true)
{
if (A9ContentionTS < ARM7Timestamp)
{
if (ARM9.MRTrack.Type == MainRAMType::Null || (CPUStop & CPUStop_GXStall)) return 0;
MainRAMHandleARM9();
}
else
{
if (ARM7.MRTrack.Type == MainRAMType::Null) return 1;
MainRAMHandleARM7();
}
}
}
else
{
while (true)
{
if (A9ContentionTS <= ARM7Timestamp)
{
if (ARM9.MRTrack.Type == MainRAMType::Null || (CPUStop & CPUStop_GXStall)) return 0;
MainRAMHandleARM9();
}
else
{
if (ARM7.MRTrack.Type == MainRAMType::Null) return 1;
MainRAMHandleARM7();
}
}
}
}
#undef A9WENTLAST
#undef A7WENTLAST
#undef A9LAST
#undef A7LAST
#undef A9PRIORITY
#undef A7PRIORITY
template <CPUExecuteMode cpuMode>
u32 NDS::RunFrame()
{
Current = this;
FrameStartTimestamp = SysTimestamp;
GPU.TotalScanlines = 0;
LagFrameFlag = true;
bool runFrame = Running && !(CPUStop & CPUStop_Sleep);
while (Running)
{
u64 frametarget = SysTimestamp + 560190;
if (CPUStop & CPUStop_Sleep)
{
// we are running in sleep mode
// we still need to run the RTC during this mode
// we also keep outputting audio, so that frontends using audio sync don't skyrocket to 1000+FPS
while (Running && (SysTimestamp < frametarget))
{
u64 target = NextTargetSleep();
if (target > frametarget)
target = frametarget;
ARM9Timestamp = target << ARM9ClockShift;
ARM7Timestamp = target;
TimerTimestamp[0] = target;
TimerTimestamp[1] = target;
GPU.GPU3D.Timestamp = target;
RunSystemSleep(target);
if (!(CPUStop & CPUStop_Sleep))
break;
}
if (SysTimestamp >= frametarget)
GPU.BlankFrame();
}
else
{
if (cpuMode == CPUExecuteMode::InterpreterGDB)
{
ARM9.CheckGdbIncoming();
ARM7.CheckGdbIncoming();
}
if (!(CPUStop & CPUStop_Wakeup))
{
GPU.StartFrame();
}
CPUStop &= ~CPUStop_Wakeup;
while (Running && GPU.TotalScanlines==0)
{
u64 target = NextTarget();
ARM9Target = target << ARM9ClockShift;
while (std::max(std::max(ARM9Timestamp, DMA9Timestamp), A9ContentionTS << ARM9ClockShift) < ARM9Target)
{
CurCPU = 0;
RunTimers(0);
GPU.GPU3D.Run();
if (CPUStop & CPUStop_GXStall)
{
// GXFIFO stall
s32 cycles = GPU.GPU3D.CyclesToRunFor();
DMA9Timestamp = std::min(ARM9Target, std::max(ARM9Timestamp, DMA9Timestamp)+(cycles<<ARM9ClockShift));
}
else if (ARM9.MRTrack.Type == MainRAMType::Null)
{
if (CPUStop & CPUStop_DMA9)
{
DMAs[0].Run();
if (!(CPUStop & CPUStop_GXStall) && (ARM9.MRTrack.Type == MainRAMType::Null)) DMAs[1].Run();
if (!(CPUStop & CPUStop_GXStall) && (ARM9.MRTrack.Type == MainRAMType::Null)) DMAs[2].Run();
if (!(CPUStop & CPUStop_GXStall) && (ARM9.MRTrack.Type == MainRAMType::Null)) DMAs[3].Run();
if (ConsoleType == 1)
{
auto& dsi = dynamic_cast<melonDS::DSi&>(*this);
dsi.RunNDMAs(0);
}
}
else
{
//if (ARM9.abt) ARM9Timestamp = ARM9Target;
ARM9.Execute<cpuMode>();
}
}
//printf("MAIN LOOP: 9 %lli %08X %08llX %i 7 %lli %08X %08llX %i %i %08X\n", ARM9Timestamp>>ARM9ClockShift, ARM9.PC, ARM9.CurInstr, (u8)ARM9.MRTrack.Type, ARM7Timestamp, ARM7.R[15], ARM7.CurInstr, (u8)ARM7.MRTrack.Type, IME[1], IE[1]);
RunTimers(0);
GPU.GPU3D.Run();
MainRAMHandle();
target = std::max(std::max(ARM9Timestamp, DMA9Timestamp) >> ARM9ClockShift, A9ContentionTS);
if (target == ARM7Timestamp) target++;
while (ARM7Timestamp < target)
{
ARM7Target = target;
//printf("A7 LOOP: %lli %lli\n", ARM9Timestamp>>ARM9ClockShift, ARM7Timestamp);
CurCPU = 1;
RunTimers(1);
if (ARM7.MRTrack.Type == MainRAMType::Null)
{
if (CPUStop & CPUStop_DMA7)
{
DMAs[4].Run();
if (ARM7.MRTrack.Type == MainRAMType::Null) DMAs[5].Run();
if (ARM7.MRTrack.Type == MainRAMType::Null) DMAs[6].Run();
if (ARM7.MRTrack.Type == MainRAMType::Null) DMAs[7].Run();
if (ConsoleType == 1)
{
auto& dsi = dynamic_cast<melonDS::DSi&>(*this);
dsi.RunNDMAs(1);
}
}
else
{
//if (ARM7.abt > 16) ARM7Timestamp = ARM7Target;
ARM7.Execute<cpuMode>();
}
}
RunTimers(1);
if (!MainRAMHandle()) break;
}
}
RunSystem(target);
NDSCartSlot.ROMPrepareData();
if (CPUStop & CPUStop_Sleep)
{
break;
}
}
}
if (GPU.TotalScanlines == 0)
continue;
#ifdef DEBUG_CHECK_DESYNC
Log(LogLevel::Debug, "[%08X%08X] ARM9=%ld, ARM7=%ld, GPU=%ld\n",
(u32)(SysTimestamp>>32), (u32)SysTimestamp,
std::max(std::max(ARM9Timestamp,DMA9Timestamp)>>ARM9ClockShift, A9ContentionTS)-SysTimestamp,
ARM7Timestamp-SysTimestamp,
GPU.GPU3D.Timestamp-SysTimestamp);
#endif
SPU.TransferOutput();
break;
}
//printf("MAIN LOOP: 9 %lli %08X %08llX %i 7 %lli %08X %08llX %i %i %08X\n", ARM9Timestamp>>ARM9ClockShift, ARM9.PC, ARM9.CurInstr, (u8)ARM9.MRTrack.Type, ARM7Timestamp, ARM7.R[15], ARM7.CurInstr, (u8)ARM7.MRTrack.Type, IME[1], IE[1]);
// In the context of TASes, frame count is traditionally the primary measure of emulated time,
// so it needs to be tracked even if NDS is powered off.
NumFrames++;
if (LagFrameFlag)
NumLagFrames++;
if (Running)
return GPU.TotalScanlines;
else
return 263;
}
u32 NDS::RunFrame()
{
#ifdef JIT_ENABLED
if (EnableJIT)
return RunFrame<CPUExecuteMode::JIT>();
else
#endif
#ifdef GDBSTUB_ENABLED
if (EnableGDBStub)
{
return RunFrame<CPUExecuteMode::InterpreterGDB>();
} else
#endif
{
return RunFrame<CPUExecuteMode::Interpreter>();
}
}
void NDS::Reschedule(u64 target)
{
if (CurCPU == 0)
{
if (target < (ARM9Target >> ARM9ClockShift))
ARM9Target = (target << ARM9ClockShift);
}
else if (target < ARM7Target)
ARM7Target = target;
}
void NDS::RegisterEventFuncs(u32 id, void* that, const std::initializer_list<EventFunc>& funcs)
{
SchedEvent& evt = SchedList[id];
evt.That = that;
assert(funcs.size() <= MaxEventFunctions);
int i = 0;
for (EventFunc func : funcs)
{
evt.Funcs[i++] = func;
}
}
void NDS::UnregisterEventFuncs(u32 id)
{
SchedEvent& evt = SchedList[id];
evt.That = nullptr;
for (int i = 0; i < MaxEventFunctions; i++)
evt.Funcs[i] = nullptr;
}
void NDS::ScheduleEvent(u32 id, bool periodic, s32 delay, u32 funcid, u32 param)
{
if (SchedListMask & (1<<id))
{
Log(LogLevel::Debug, "!! EVENT %d ALREADY SCHEDULED\n", id);
return;
}
SchedEvent& evt = SchedList[id];
if (periodic)
evt.Timestamp += delay;
else
{
if (CurCPU == 0)
evt.Timestamp = ((ARM9Timestamp + ((1<<ARM9ClockShift)-1)) >> ARM9ClockShift) + delay;
else
evt.Timestamp = ARM7Timestamp + delay;
}
evt.FuncID = funcid;
evt.Param = param;
SchedListMask |= (1<<id);
Reschedule(evt.Timestamp);
}
void NDS::CancelEvent(u32 id)
{
SchedListMask &= ~(1<<id);
}
void NDS::TouchScreen(u16 x, u16 y)
{
SPI.GetTSC()->SetTouchCoords(x, y);
}
void NDS::ReleaseScreen()
{
SPI.GetTSC()->SetTouchCoords(0x000, 0xFFF);
}
void NDS::CheckKeyIRQ(u32 cpu, u32 oldkey, u32 newkey)
{
u16 cnt = KeyCnt[cpu];
if (!(cnt & (1<<14))) // IRQ disabled
return;
u32 mask = (cnt & 0x03FF);
oldkey &= mask;
newkey &= mask;
bool oldmatch, newmatch;
if (cnt & (1<<15))
{
// logical AND
oldmatch = (oldkey == 0);
newmatch = (newkey == 0);
}
else
{
// logical OR
oldmatch = (oldkey != mask);
newmatch = (newkey != mask);
}
if ((!oldmatch) && newmatch)
SetIRQ(cpu, IRQ_Keypad);
}
void NDS::SetKeyMask(u32 mask)
{
u32 key_lo = mask & 0x3FF;
u32 key_hi = (mask >> 10) & 0x3;
u32 oldkey = KeyInput;
KeyInput &= 0xFFFCFC00;
KeyInput |= key_lo | (key_hi << 16);
CheckKeyIRQ(0, oldkey, KeyInput);
CheckKeyIRQ(1, oldkey, KeyInput);
}
bool NDS::IsLidClosed() const
{
if (KeyInput & (1<<23)) return true;
return false;
}
void NDS::SetLidClosed(bool closed)
{
if (closed)
{
KeyInput |= (1<<23);
}
else
{
KeyInput &= ~(1<<23);
SetIRQ(1, IRQ_LidOpen);
}
}
void NDS::MicInputFrame(s16* data, int samples)
{
return SPI.GetTSC()->MicInputFrame(data, samples);
}
/*int ImportSRAM(u8* data, u32 length)
{
return NDSCart::ImportSRAM(data, length);
}*/
void NDS::Halt()
{
Log(LogLevel::Info, "Halt()\n");
Running = false;
}
void NDS::MapSharedWRAM(u8 val)
{
if (val == WRAMCnt)
return;
JIT.Memory.RemapSWRAM();
WRAMCnt = val;
switch (WRAMCnt & 0x3)
{
case 0:
SWRAM_ARM9.Mem = &SharedWRAM[0];
SWRAM_ARM9.Mask = 0x7FFF;
SWRAM_ARM7.Mem = NULL;
SWRAM_ARM7.Mask = 0;
break;
case 1:
SWRAM_ARM9.Mem = &SharedWRAM[0x4000];
SWRAM_ARM9.Mask = 0x3FFF;
SWRAM_ARM7.Mem = &SharedWRAM[0];
SWRAM_ARM7.Mask = 0x3FFF;
break;
case 2:
SWRAM_ARM9.Mem = &SharedWRAM[0];
SWRAM_ARM9.Mask = 0x3FFF;
SWRAM_ARM7.Mem = &SharedWRAM[0x4000];
SWRAM_ARM7.Mask = 0x3FFF;
break;
case 3:
SWRAM_ARM9.Mem = NULL;
SWRAM_ARM9.Mask = 0;
SWRAM_ARM7.Mem = &SharedWRAM[0];
SWRAM_ARM7.Mask = 0x7FFF;
break;
}
}
void NDS::UpdateWifiTimings()
{
if (PowerControl7 & 0x0002)
{
const int ntimings[4] = {10, 8, 6, 18};
u16 val = WifiWaitCnt;
SetARM7RegionTimings(0x04800, 0x04808, Mem7_Wifi0, 16, ntimings[val & 0x3], (val & 0x4) ? 4 : 6);
SetARM7RegionTimings(0x04808, 0x04810, Mem7_Wifi1, 16, ntimings[(val>>3) & 0x3], (val & 0x20) ? 4 : 10);
}
else
{
SetARM7RegionTimings(0x04800, 0x04808, Mem7_Wifi0, 32, 1, 1);
SetARM7RegionTimings(0x04808, 0x04810, Mem7_Wifi1, 32, 1, 1);
}
}
void NDS::SetWifiWaitCnt(u16 val)
{
if (WifiWaitCnt == val) return;
WifiWaitCnt = val;
UpdateWifiTimings();
}
void NDS::SetGBASlotTimings()
{
const int ntimings[4] = {10, 8, 6, 18};
const u16 openbus[4] = {0xFE08, 0x0000, 0x0000, 0xFFFF};
u16 curcpu = (ExMemCnt[0] >> 7) & 0x1;
u16 curcnt = ExMemCnt[curcpu];
int ramN = ntimings[curcnt & 0x3];
int romN = ntimings[(curcnt>>2) & 0x3];
int romS = (curcnt & 0x10) ? 4 : 6;
// GBA slot timings only apply on the selected side
if (curcpu == 0)
{
SetARM9RegionTimings(0x08000, 0x0A000, Mem9_GBAROM, 16, romN, romS);
SetARM9RegionTimings(0x0A000, 0x0B000, Mem9_GBARAM, 8, ramN, ramN);
SetARM7RegionTimings(0x08000, 0x0A000, 0, 32, 1, 1);
SetARM7RegionTimings(0x0A000, 0x0B000, 0, 32, 1, 1);
}
else
{
SetARM9RegionTimings(0x08000, 0x0A000, 0, 32, 1, 1);
SetARM9RegionTimings(0x0A000, 0x0B000, 0, 32, 1, 1);
SetARM7RegionTimings(0x08000, 0x0A000, Mem7_GBAROM, 16, romN, romS);
SetARM7RegionTimings(0x0A000, 0x0B000, Mem7_GBARAM, 8, ramN, ramN);
}
// this open-bus implementation is a rough way of simulating the way values
// lingering on the bus decay after a while, which is visible at higher waitstates
// for example, the Cartridge Construction Kit relies on this to determine that
// the GBA slot is empty
GBACartSlot.SetOpenBusDecay(openbus[(curcnt>>2) & 0x3]);
}
void NDS::UpdateIRQ(u32 cpu)
{
ARM& arm = cpu ? (ARM&)ARM7 : (ARM&)ARM9;
if (IME[cpu] & 0x1)
{
arm.IRQ = !!(IE[cpu] & IF[cpu]);
if ((ConsoleType == 1) && cpu)
arm.IRQ |= !!(IE2 & IF2);
}
else
{
arm.IRQ = 0;
}
}
void NDS::SetIRQ(u32 cpu, u32 irq)
{
IF[cpu] |= (1 << irq);
UpdateIRQ(cpu);
if ((cpu == 1) && (CPUStop & CPUStop_Sleep))
{
if (IE[1] & (1 << irq))
{
CPUStop &= ~CPUStop_Sleep;
CPUStop |= CPUStop_Wakeup;
GPU.GPU3D.RestartFrame(GPU);
}
}
}
void NDS::ClearIRQ(u32 cpu, u32 irq)
{
IF[cpu] &= ~(1 << irq);
UpdateIRQ(cpu);
}
void NDS::SetIRQ2(u32 irq)
{
IF2 |= (1 << irq);
UpdateIRQ(1);
}
void NDS::ClearIRQ2(u32 irq)
{
IF2 &= ~(1 << irq);
UpdateIRQ(1);
}
bool NDS::HaltInterrupted(u32 cpu) const
{
if (cpu == 0)
{
if (!(IME[0] & 0x1))
return false;
}
if (IF[cpu] & IE[cpu])
return true;
if ((ConsoleType == 1) && cpu && (IF2 & IE2))
return true;
return false;
}
void NDS::StopCPU(u32 cpu, u32 mask)
{
if (cpu)
{
CPUStop |= (mask << 16);
ARM7.Halt(2);
}
else
{
CPUStop |= mask;
ARM9.Halt(2);
}
}
void NDS::ResumeCPU(u32 cpu, u32 mask)
{
if (cpu) mask <<= 16;
CPUStop &= ~mask;
}
void NDS::GXFIFOStall()
{
if (CPUStop & CPUStop_GXStall) return;
CPUStop |= CPUStop_GXStall;
if (CurCPU == 1) ARM9.Halt(2);
else
{
DMAs[0].StallIfRunning();
DMAs[1].StallIfRunning();
DMAs[2].StallIfRunning();
DMAs[3].StallIfRunning();
if (ConsoleType == 1)
{
auto& dsi = dynamic_cast<melonDS::DSi&>(*this);
dsi.StallNDMAs();
}
}
}
void NDS::GXFIFOUnstall()
{
CPUStop &= ~CPUStop_GXStall;
}
void NDS::EnterSleepMode()
{
if (CPUStop & CPUStop_Sleep) return;
CPUStop |= CPUStop_Sleep;
ARM7.Halt(2);
}
u32 NDS::GetPC(u32 cpu) const
{
return cpu ? ARM7.R[15] : ARM9.R[15];
}
u64 NDS::GetSysClockCycles(int num)
{
u64 ret;
if (num == 0 || num == 2)
{
if (CurCPU == 0)
ret = ARM9Timestamp >> ARM9ClockShift;
else
ret = ARM7Timestamp;
if (num == 2) ret -= FrameStartTimestamp;
}
else if (num == 1)
{
ret = LastSysClockCycles;
LastSysClockCycles = 0;
if (CurCPU == 0)
LastSysClockCycles = ARM9Timestamp >> ARM9ClockShift;
else
LastSysClockCycles = ARM7Timestamp;
}
return ret;
}
void NDS::NocashPrint(u32 ncpu, u32 addr, bool appendNewline)
{
// addr: debug string
ARM* cpu = ncpu ? (ARM*)&ARM7 : (ARM*)&ARM9;
u8 (NDS::*readfn)(u32) = ncpu ? &NDS::ARM7Read8 : &NDS::ARM9Read8;
char output[1024];
int ptr = 0;
for (int i = 0; i < 120 && ptr < 1023; )
{
char ch = (this->*readfn)(addr++);
i++;
if (ch == '%')
{
char cmd[16]; int j;
for (j = 0; j < 15; )
{
char ch2 = (this->*readfn)(addr++);
i++;
if (i >= 120) break;
if (ch2 == '%') break;
cmd[j++] = ch2;
}
cmd[j] = '\0';
char subs[64];
if (cmd[0] == 'r')
{
if (!strcmp(cmd, "r0")) snprintf(subs, sizeof(subs), "%08X", cpu->R[0]);
else if (!strcmp(cmd, "r1")) snprintf(subs, sizeof(subs), "%08X", cpu->R[1]);
else if (!strcmp(cmd, "r2")) snprintf(subs, sizeof(subs), "%08X", cpu->R[2]);
else if (!strcmp(cmd, "r3")) snprintf(subs, sizeof(subs), "%08X", cpu->R[3]);
else if (!strcmp(cmd, "r4")) snprintf(subs, sizeof(subs), "%08X", cpu->R[4]);
else if (!strcmp(cmd, "r5")) snprintf(subs, sizeof(subs), "%08X", cpu->R[5]);
else if (!strcmp(cmd, "r6")) snprintf(subs, sizeof(subs), "%08X", cpu->R[6]);
else if (!strcmp(cmd, "r7")) snprintf(subs, sizeof(subs), "%08X", cpu->R[7]);
else if (!strcmp(cmd, "r8")) snprintf(subs, sizeof(subs), "%08X", cpu->R[8]);
else if (!strcmp(cmd, "r9")) snprintf(subs, sizeof(subs), "%08X", cpu->R[9]);
else if (!strcmp(cmd, "r10")) snprintf(subs, sizeof(subs), "%08X", cpu->R[10]);
else if (!strcmp(cmd, "r11")) snprintf(subs, sizeof(subs), "%08X", cpu->R[11]);
else if (!strcmp(cmd, "r12")) snprintf(subs, sizeof(subs), "%08X", cpu->R[12]);
else if (!strcmp(cmd, "r13")) snprintf(subs, sizeof(subs), "%08X", cpu->R[13]);
else if (!strcmp(cmd, "r14")) snprintf(subs, sizeof(subs), "%08X", cpu->R[14]);
else if (!strcmp(cmd, "r15")) snprintf(subs, sizeof(subs), "%08X", cpu->R[15]);
}
else
{
if (!strcmp(cmd, "sp")) snprintf(subs, sizeof(subs), "%08X", cpu->R[13]);
else if (!strcmp(cmd, "lr")) snprintf(subs, sizeof(subs), "%08X", cpu->R[14]);
else if (!strcmp(cmd, "pc")) snprintf(subs, sizeof(subs), "%08X", cpu->R[15]);
else if (!strcmp(cmd, "frame")) snprintf(subs, sizeof(subs), "%u", NumFrames);
else if (!strcmp(cmd, "scanline")) snprintf(subs, sizeof(subs), "%u", GPU.VCount);
else if (!strcmp(cmd, "totalclks")) snprintf(subs, sizeof(subs), "%" PRIu64, GetSysClockCycles(0));
else if (!strcmp(cmd, "lastclks")) snprintf(subs, sizeof(subs), "%" PRIu64, GetSysClockCycles(1));
else if (!strcmp(cmd, "zeroclks"))
{
snprintf(subs, sizeof(subs), "%s", "");
GetSysClockCycles(1);
}
}
int slen = strnlen(subs, sizeof(subs));
if ((ptr+slen) > 1023) slen = 1023-ptr;
strncpy(&output[ptr], subs, slen);
ptr += slen;
}
else
{
output[ptr++] = ch;
if (ch == '\0') break;
}
}
output[ptr] = '\0';
Log(LogLevel::Debug, appendNewline ? "%s\n" : "%s", output);
}
void NDS::MonitorARM9Jump(u32 addr)
{
// checkme: can the entrypoint addr be THUMB?
// also TODO: make it work in DSi mode
if ((!RunningGame) && NDSCartSlot.GetCart())
{
const NDSHeader& header = NDSCartSlot.GetCart()->GetHeader();
if (addr == header.ARM9EntryAddress)
{
Log(LogLevel::Info, "Game is now booting\n");
RunningGame = true;
}
}
}
void NDS::HandleTimerOverflow(u32 tid)
{
Timer* timer = &Timers[tid];
timer->Counter += (timer->Reload << 10);
if (timer->Cnt & (1<<6))
SetIRQ(tid >> 2, IRQ_Timer0 + (tid & 0x3));
if ((tid & 0x3) == 3)
return;
for (;;)
{
tid++;
timer = &Timers[tid];
if ((timer->Cnt & 0x84) != 0x84)
break;
timer->Counter += (1 << 10);
if (!(timer->Counter >> 26))
break;
timer->Counter = timer->Reload << 10;
if (timer->Cnt & (1<<6))
SetIRQ(tid >> 2, IRQ_Timer0 + (tid & 0x3));
if ((tid & 0x3) == 3)
break;
}
}
void NDS::RunTimer(u32 tid, s32 cycles)
{
Timer* timer = &Timers[tid];
timer->Counter += (cycles << timer->CycleShift);
while (timer->Counter >> 26)
{
timer->Counter -= (1 << 26);
HandleTimerOverflow(tid);
}
}
void NDS::RunTimers(u32 cpu)
{
u32 timermask = TimerCheckMask[cpu];
s32 cycles;
if (cpu == 0)
cycles = (ARM9Timestamp >> ARM9ClockShift) - TimerTimestamp[0];
else
cycles = ARM7Timestamp - TimerTimestamp[1];
if (timermask & 0x1) RunTimer((cpu<<2)+0, cycles);
if (timermask & 0x2) RunTimer((cpu<<2)+1, cycles);
if (timermask & 0x4) RunTimer((cpu<<2)+2, cycles);
if (timermask & 0x8) RunTimer((cpu<<2)+3, cycles);
TimerTimestamp[cpu] += cycles;
}
const s32 TimerPrescaler[4] = {0, 6, 8, 10};
u16 NDS::TimerGetCounter(u32 timer)
{
RunTimers(timer>>2);
u32 ret = Timers[timer].Counter;
return ret >> 10;
}
void NDS::TimerStart(u32 id, u16 cnt)
{
Timer* timer = &Timers[id];
u16 curstart = timer->Cnt & (1<<7);
u16 newstart = cnt & (1<<7);
RunTimers(id>>2);
timer->Cnt = cnt;
timer->CycleShift = 10 - TimerPrescaler[cnt & 0x03];
if ((!curstart) && newstart)
{
timer->Counter = timer->Reload << 10;
}
if ((cnt & 0x84) == 0x80)
TimerCheckMask[id>>2] |= 0x01 << (id&0x3);
else
TimerCheckMask[id>>2] &= ~(0x01 << (id&0x3));
}
bool NDS::DMAsInMode(u32 cpu, u32 mode) const
{
cpu <<= 2;
if (DMAs[cpu+0].IsInMode(mode)) return true;
if (DMAs[cpu+1].IsInMode(mode)) return true;
if (DMAs[cpu+2].IsInMode(mode)) return true;
if (DMAs[cpu+3].IsInMode(mode)) return true;
return false;
}
bool NDS::DMAsRunning(u32 cpu) const
{
cpu <<= 2;
if (DMAs[cpu+0].IsRunning()) return true;
if (DMAs[cpu+1].IsRunning()) return true;
if (DMAs[cpu+2].IsRunning()) return true;
if (DMAs[cpu+3].IsRunning()) return true;
return false;
}
void NDS::CheckDMAs(u32 cpu, u32 mode)
{
cpu <<= 2;
DMAs[cpu+0].StartIfNeeded(mode);
DMAs[cpu+1].StartIfNeeded(mode);
DMAs[cpu+2].StartIfNeeded(mode);
DMAs[cpu+3].StartIfNeeded(mode);
}
void NDS::StopDMAs(u32 cpu, u32 mode)
{
cpu <<= 2;
DMAs[cpu+0].StopIfNeeded(mode);
DMAs[cpu+1].StopIfNeeded(mode);
DMAs[cpu+2].StopIfNeeded(mode);
DMAs[cpu+3].StopIfNeeded(mode);
}
void NDS::QueueDMAs(u32 param)
{
DMAs[DMAsQueued[0]].Start();
for(int i = 0; i < 7; i++) DMAsQueued[i] = DMAsQueued[i+1];
DMAQueuePtr--;
if (DMAQueuePtr != 0) ScheduleEvent(Event_DMA, false, 1, 0, 0);
}
void NDS::DivDone(u32 param)
{
DivCnt &= ~0xC000;
switch (DivCnt & 0x0003)
{
case 0x0000:
{
s32 num = (s32)DivNumerator[0];
s32 den = (s32)DivDenominator[0];
if (den == 0)
{
DivQuotient[0] = (num<0) ? 1:-1;
DivQuotient[1] = (num<0) ? -1:0;
*(s64*)&DivRemainder[0] = num;
}
else if (num == -0x80000000 && den == -1)
{
*(s64*)&DivQuotient[0] = 0x80000000;
}
else
{
*(s64*)&DivQuotient[0] = (s64)(num / den);
*(s64*)&DivRemainder[0] = (s64)(num % den);
}
}
break;
case 0x0001:
case 0x0003:
{
s64 num = *(s64*)&DivNumerator[0];
s32 den = (s32)DivDenominator[0];
if (den == 0)
{
*(s64*)&DivQuotient[0] = (num<0) ? 1:-1;
*(s64*)&DivRemainder[0] = num;
}
else if (num == -0x8000000000000000 && den == -1)
{
*(s64*)&DivQuotient[0] = 0x8000000000000000;
*(s64*)&DivRemainder[0] = 0;
}
else
{
*(s64*)&DivQuotient[0] = (s64)(num / den);
*(s64*)&DivRemainder[0] = (s64)(num % den);
}
}
break;
case 0x0002:
{
s64 num = *(s64*)&DivNumerator[0];
s64 den = *(s64*)&DivDenominator[0];
if (den == 0)
{
*(s64*)&DivQuotient[0] = (num<0) ? 1:-1;
*(s64*)&DivRemainder[0] = num;
}
else if (num == -0x8000000000000000 && den == -1)
{
*(s64*)&DivQuotient[0] = 0x8000000000000000;
*(s64*)&DivRemainder[0] = 0;
}
else
{
*(s64*)&DivQuotient[0] = (s64)(num / den);
*(s64*)&DivRemainder[0] = (s64)(num % den);
}
}
break;
}
if ((DivDenominator[0] | DivDenominator[1]) == 0)
DivCnt |= 0x4000;
}
void NDS::StartDiv()
{
CancelEvent(Event_Div);
DivCnt |= 0x8000;
ScheduleEvent(Event_Div, false, ((DivCnt&0x3)==0) ? 18:34, 0, 0);
}
// http://stackoverflow.com/questions/1100090/looking-for-an-efficient-integer-square-root-algorithm-for-arm-thumb2
void NDS::SqrtDone(u32 param)
{
u64 val;
u32 res = 0;
u64 rem = 0;
u32 prod = 0;
u32 nbits, topshift;
SqrtCnt &= ~0x8000;
if (SqrtCnt & 0x0001)
{
val = *(u64*)&SqrtVal[0];
nbits = 32;
topshift = 62;
}
else
{
val = (u64)SqrtVal[0]; // 32bit
nbits = 16;
topshift = 30;
}
for (u32 i = 0; i < nbits; i++)
{
rem = (rem << 2) + ((val >> topshift) & 0x3);
val <<= 2;
res <<= 1;
prod = (res << 1) + 1;
if (rem >= prod)
{
rem -= prod;
res++;
}
}
SqrtRes = res;
}
void NDS::StartSqrt()
{
CancelEvent(Event_Sqrt);
SqrtCnt |= 0x8000;
ScheduleEvent(Event_Sqrt, false, 13, 0, 0);
}
void NDS::debug(u32 param)
{
Log(LogLevel::Debug, "ARM9 PC=%08X LR=%08X %08X\n", ARM9.R[15], ARM9.R[14], ARM9.R_IRQ[1]);
Log(LogLevel::Debug, "ARM7 PC=%08X LR=%08X %08X\n", ARM7.R[15], ARM7.R[14], ARM7.R_IRQ[1]);
Log(LogLevel::Debug, "ARM9 IME=%08X IE=%08X IF=%08X\n", IME[0], IE[0], IF[0]);
Log(LogLevel::Debug, "ARM7 IME=%08X IE=%08X IF=%08X IE2=%04X IF2=%04X\n", IME[1], IE[1], IF[1], IE2, IF2);
//for (int i = 0; i < 9; i++)
// printf("VRAM %c: %02X\n", 'A'+i, GPU->VRAMCNT[i]);
Platform::FileHandle* shit = Platform::OpenFile("debug/pokeplat.bin", FileMode::Write);
Platform::FileWrite(ARM9.ITCM, 0x8000, 1, shit);
for (u32 i = 0x02000000; i < 0x02400000; i+=4)
{
u32 val = NDS::ARM7Read32(i);
Platform::FileWrite(&val, 4, 1, shit);
}
for (u32 i = 0x037F0000; i < 0x03810000; i+=4)
{
u32 val = NDS::ARM7Read32(i);
Platform::FileWrite(&val, 4, 1, shit);
}
for (u32 i = 0x06000000; i < 0x06040000; i+=4)
{
u32 val = NDS::ARM7Read32(i);
Platform::FileWrite(&val, 4, 1, shit);
}
Platform::CloseFile(shit);
/*FILE*
shit = fopen("debug/directboot9.bin", "wb");
for (u32 i = 0x02000000; i < 0x04000000; i+=4)
{
u32 val = DSi::ARM9Read32(i);
fwrite(&val, 4, 1, shit);
}
fclose(shit);
shit = fopen("debug/camera7.bin", "wb");
for (u32 i = 0x02000000; i < 0x04000000; i+=4)
{
u32 val = DSi::ARM7Read32(i);
fwrite(&val, 4, 1, shit);
}
fclose(shit);*/
}
u8 NDS::ARM9Read8(u32 addr)
{
if ((addr & 0xFFFFF000) == 0xFFFF0000)
{
return *(u8*)&ARM9BIOS[addr & 0xFFF];
}
switch (addr & 0xFF000000)
{
case 0x02000000:
return *(u8*)&MainRAM[addr & MainRAMMask];
case 0x03000000:
if (SWRAM_ARM9.Mem)
{
return *(u8*)&SWRAM_ARM9.Mem[addr & SWRAM_ARM9.Mask];
}
else
{
return 0;
}
case 0x04000000:
// Specifically want to call the NDS version, not a subclass
return NDS::ARM9IORead8(addr);
case 0x05000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return 0;
return GPU.ReadPalette<u8>(addr);
case 0x06000000:
switch (addr & 0x00E00000)
{
case 0x00000000: return GPU.ReadVRAM_ABG<u8>(addr);
case 0x00200000: return GPU.ReadVRAM_BBG<u8>(addr);
case 0x00400000: return GPU.ReadVRAM_AOBJ<u8>(addr);
case 0x00600000: return GPU.ReadVRAM_BOBJ<u8>(addr);
default: return GPU.ReadVRAM_LCDC<u8>(addr);
}
case 0x07000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return 0;
return GPU.ReadOAM<u8>(addr);
case 0x08000000:
case 0x09000000:
if (ExMemCnt[0] & (1<<7)) return 0x00; // deselected CPU is 00h-filled
if (addr & 0x1) return GBACartSlot.ROMRead(addr-1) >> 8;
return GBACartSlot.ROMRead(addr) & 0xFF;
case 0x0A000000:
if (ExMemCnt[0] & (1<<7)) return 0x00; // deselected CPU is 00h-filled
return GBACartSlot.SRAMRead(addr);
}
Log(LogLevel::Debug, "unknown arm9 read8 %08X\n", addr);
return 0;
}
u16 NDS::ARM9Read16(u32 addr)
{
addr &= ~0x1;
if ((addr & 0xFFFFF000) == 0xFFFF0000)
{
return *(u16*)&ARM9BIOS[addr & 0xFFF];
}
switch (addr & 0xFF000000)
{
case 0x02000000:
return *(u16*)&MainRAM[addr & MainRAMMask];
case 0x03000000:
if (SWRAM_ARM9.Mem)
{
return *(u16*)&SWRAM_ARM9.Mem[addr & SWRAM_ARM9.Mask];
}
else
{
return 0;
}
case 0x04000000:
return NDS::ARM9IORead16(addr);
case 0x05000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return 0;
return GPU.ReadPalette<u16>(addr);
case 0x06000000:
switch (addr & 0x00E00000)
{
case 0x00000000: return GPU.ReadVRAM_ABG<u16>(addr);
case 0x00200000: return GPU.ReadVRAM_BBG<u16>(addr);
case 0x00400000: return GPU.ReadVRAM_AOBJ<u16>(addr);
case 0x00600000: return GPU.ReadVRAM_BOBJ<u16>(addr);
default: return GPU.ReadVRAM_LCDC<u16>(addr);
}
case 0x07000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return 0;
return GPU.ReadOAM<u16>(addr);
case 0x08000000:
case 0x09000000:
if (ExMemCnt[0] & (1<<7)) return 0x0000; // deselected CPU is 00h-filled
return GBACartSlot.ROMRead(addr);
case 0x0A000000:
if (ExMemCnt[0] & (1<<7)) return 0x0000; // deselected CPU is 00h-filled
return GBACartSlot.SRAMRead(addr) |
(GBACartSlot.SRAMRead(addr+1) << 8);
}
//if (addr) Log(LogLevel::Warn, "unknown arm9 read16 %08X %08X\n", addr, ARM9.R[15]);
return 0;
}
u32 NDS::ARM9Read32(u32 addr)
{
addr &= ~0x3;
if ((addr & 0xFFFFF000) == 0xFFFF0000)
{
return *(u32*)&ARM9BIOS[addr & 0xFFF];
}
switch (addr & 0xFF000000)
{
case 0x02000000:
return *(u32*)&MainRAM[addr & MainRAMMask];
case 0x03000000:
if (SWRAM_ARM9.Mem)
{
return *(u32*)&SWRAM_ARM9.Mem[addr & SWRAM_ARM9.Mask];
}
else
{
return 0;
}
case 0x04000000:
return NDS::ARM9IORead32(addr);
case 0x05000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return 0;
return GPU.ReadPalette<u32>(addr);
case 0x06000000:
switch (addr & 0x00E00000)
{
case 0x00000000: return GPU.ReadVRAM_ABG<u32>(addr);
case 0x00200000: return GPU.ReadVRAM_BBG<u32>(addr);
case 0x00400000: return GPU.ReadVRAM_AOBJ<u32>(addr);
case 0x00600000: return GPU.ReadVRAM_BOBJ<u32>(addr);
default: return GPU.ReadVRAM_LCDC<u32>(addr);
}
case 0x07000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return 0;
return GPU.ReadOAM<u32>(addr & 0x7FF);
case 0x08000000:
case 0x09000000:
if (ExMemCnt[0] & (1<<7)) return 0x00000000; // deselected CPU is 00h-filled
return GBACartSlot.ROMRead(addr) |
(GBACartSlot.ROMRead(addr+2) << 16);
case 0x0A000000:
if (ExMemCnt[0] & (1<<7)) return 0x00000000; // deselected CPU is 00h-filled
return GBACartSlot.SRAMRead(addr) |
(GBACartSlot.SRAMRead(addr+1) << 8) |
(GBACartSlot.SRAMRead(addr+2) << 16) |
(GBACartSlot.SRAMRead(addr+3) << 24);
}
//Log(LogLevel::Warn, "unknown arm9 read32 %08X | %08X %08X\n", addr, ARM9.R[15], ARM9.R[12]);
return 0;
}
void NDS::ARM9Write8(u32 addr, u8 val)
{
switch (addr & 0xFF000000)
{
case 0x02000000:
JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_MainRAM>(addr);
*(u8*)&MainRAM[addr & MainRAMMask] = val;
return;
case 0x03000000:
if (SWRAM_ARM9.Mem)
{
JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_SharedWRAM>(addr);
*(u8*)&SWRAM_ARM9.Mem[addr & SWRAM_ARM9.Mask] = val;
}
return;
case 0x04000000:
NDS::ARM9IOWrite8(addr, val);
return;
case 0x05000000:
case 0x06000000:
case 0x07000000:
return;
case 0x08000000:
case 0x09000000:
return;
case 0x0A000000:
if (ExMemCnt[0] & (1<<7)) return; // deselected CPU, skip the write
GBACartSlot.SRAMWrite(addr, val);
return;
}
Log(LogLevel::Debug, "unknown arm9 write8 %08X %02X\n", addr, val);
}
void NDS::ARM9Write16(u32 addr, u16 val)
{
addr &= ~0x1;
switch (addr & 0xFF000000)
{
case 0x02000000:
JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_MainRAM>(addr);
*(u16*)&MainRAM[addr & MainRAMMask] = val;
return;
case 0x03000000:
if (SWRAM_ARM9.Mem)
{
JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_SharedWRAM>(addr);
*(u16*)&SWRAM_ARM9.Mem[addr & SWRAM_ARM9.Mask] = val;
}
return;
case 0x04000000:
NDS::ARM9IOWrite16(addr, val);
return;
case 0x05000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return;
GPU.WritePalette<u16>(addr, val);
return;
case 0x06000000:
JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_VRAM>(addr);
switch (addr & 0x00E00000)
{
case 0x00000000: GPU.WriteVRAM_ABG<u16>(addr, val); return;
case 0x00200000: GPU.WriteVRAM_BBG<u16>(addr, val); return;
case 0x00400000: GPU.WriteVRAM_AOBJ<u16>(addr, val); return;
case 0x00600000: GPU.WriteVRAM_BOBJ<u16>(addr, val); return;
default: GPU.WriteVRAM_LCDC<u16>(addr, val); return;
}
case 0x07000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return;
GPU.WriteOAM<u16>(addr, val);
return;
case 0x08000000:
case 0x09000000:
if (ExMemCnt[0] & (1<<7)) return; // deselected CPU, skip the write
GBACartSlot.ROMWrite(addr, val);
return;
case 0x0A000000:
if (ExMemCnt[0] & (1<<7)) return; // deselected CPU, skip the write
GBACartSlot.SRAMWrite(addr, val & 0xFF);
GBACartSlot.SRAMWrite(addr+1, val >> 8);
return;
}
//if (addr) Log(LogLevel::Warn, "unknown arm9 write16 %08X %04X\n", addr, val);
}
void NDS::ARM9Write32(u32 addr, u32 val)
{
addr &= ~0x3;
switch (addr & 0xFF000000)
{
case 0x02000000:
JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_MainRAM>(addr);
*(u32*)&MainRAM[addr & MainRAMMask] = val;
return ;
case 0x03000000:
if (SWRAM_ARM9.Mem)
{
JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_SharedWRAM>(addr);
*(u32*)&SWRAM_ARM9.Mem[addr & SWRAM_ARM9.Mask] = val;
}
return;
case 0x04000000:
NDS::ARM9IOWrite32(addr, val);
return;
case 0x05000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return;
GPU.WritePalette(addr, val);
return;
case 0x06000000:
JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_VRAM>(addr);
switch (addr & 0x00E00000)
{
case 0x00000000: GPU.WriteVRAM_ABG<u32>(addr, val); return;
case 0x00200000: GPU.WriteVRAM_BBG<u32>(addr, val); return;
case 0x00400000: GPU.WriteVRAM_AOBJ<u32>(addr, val); return;
case 0x00600000: GPU.WriteVRAM_BOBJ<u32>(addr, val); return;
default: GPU.WriteVRAM_LCDC<u32>(addr, val); return;
}
case 0x07000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return;
GPU.WriteOAM<u32>(addr, val);
return;
case 0x08000000:
case 0x09000000:
if (ExMemCnt[0] & (1<<7)) return; // deselected CPU, skip the write
GBACartSlot.ROMWrite(addr, val & 0xFFFF);
GBACartSlot.ROMWrite(addr+2, val >> 16);
return;
case 0x0A000000:
if (ExMemCnt[0] & (1<<7)) return; // deselected CPU, skip the write
GBACartSlot.SRAMWrite(addr, val & 0xFF);
GBACartSlot.SRAMWrite(addr+1, (val >> 8) & 0xFF);
GBACartSlot.SRAMWrite(addr+2, (val >> 16) & 0xFF);
GBACartSlot.SRAMWrite(addr+3, val >> 24);
return;
}
//Log(LogLevel::Warn, "unknown arm9 write32 %08X %08X | %08X\n", addr, val, ARM9.R[15]);
}
bool NDS::ARM9GetMemRegion(const u32 addr, const bool write, MemRegion* region)
{
switch (addr & 0xFF000000)
{
case 0x02000000:
region->Mem = MainRAM;
region->Mask = MainRAMMask;
return true;
case 0x03000000:
if (SWRAM_ARM9.Mem)
{
region->Mem = SWRAM_ARM9.Mem;
region->Mask = SWRAM_ARM9.Mask;
return true;
}
break;
}
if ((addr & 0xFFFFF000) == 0xFFFF0000 && !write)
{
region->Mem = &ARM9BIOS[0];
region->Mask = 0xFFF;
return true;
}
region->Mem = NULL;
return false;
}
u8 NDS::ARM7Read8(u32 addr)
{
if (addr < 0x00004000)
{
// TODO: check the boundary? is it 4000 or higher on regular DS?
if (ARM7.R[15] >= 0x00004000)
return 0xFF;
if (addr < ARM7BIOSProt && ARM7.R[15] >= ARM7BIOSProt)
return 0xFF;
return *(u8*)&ARM7BIOS[addr];
}
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
return *(u8*)&MainRAM[addr & MainRAMMask];
case 0x03000000:
if (SWRAM_ARM7.Mem)
{
return *(u8*)&SWRAM_ARM7.Mem[addr & SWRAM_ARM7.Mask];
}
else
{
return *(u8*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)];
}
case 0x03800000:
return *(u8*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)];
case 0x04000000:
return NDS::ARM7IORead8(addr);
case 0x04800000:
if (addr < 0x04810000)
{
if (!(PowerControl7 & (1<<1))) return 0;
if (addr & 0x1) return Wifi.Read(addr-1) >> 8;
return Wifi.Read(addr) & 0xFF;
}
break;
case 0x06000000:
case 0x06800000:
return GPU.ReadVRAM_ARM7<u8>(addr);
case 0x08000000:
case 0x08800000:
case 0x09000000:
case 0x09800000:
if (!(ExMemCnt[0] & (1<<7))) return 0x00; // deselected CPU is 00h-filled
if (addr & 0x1) return GBACartSlot.ROMRead(addr-1) >> 8;
return GBACartSlot.ROMRead(addr) & 0xFF;
case 0x0A000000:
case 0x0A800000:
if (!(ExMemCnt[0] & (1<<7))) return 0x00; // deselected CPU is 00h-filled
return GBACartSlot.SRAMRead(addr);
}
Log(LogLevel::Debug, "unknown arm7 read8 %08X %08X %08X/%08X\n", addr, ARM7.R[15], ARM7.R[0], ARM7.R[1]);
return 0;
}
u16 NDS::ARM7Read16(u32 addr)
{
addr &= ~0x1;
if (addr < 0x00004000)
{
if (ARM7.R[15] >= 0x00004000)
return 0xFFFF;
if (addr < ARM7BIOSProt && ARM7.R[15] >= ARM7BIOSProt)
return 0xFFFF;
return *(u16*)&ARM7BIOS[addr];
}
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
return *(u16*)&MainRAM[addr & MainRAMMask];
case 0x03000000:
if (SWRAM_ARM7.Mem)
{
return *(u16*)&SWRAM_ARM7.Mem[addr & SWRAM_ARM7.Mask];
}
else
{
return *(u16*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)];
}
case 0x03800000:
return *(u16*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)];
case 0x04000000:
return NDS::ARM7IORead16(addr);
case 0x04800000:
if (addr < 0x04810000)
{
if (!(PowerControl7 & (1<<1))) return 0;
return Wifi.Read(addr);
}
break;
case 0x06000000:
case 0x06800000:
return GPU.ReadVRAM_ARM7<u16>(addr);
case 0x08000000:
case 0x08800000:
case 0x09000000:
case 0x09800000:
if (!(ExMemCnt[0] & (1<<7))) return 0x0000; // deselected CPU is 00h-filled
return GBACartSlot.ROMRead(addr);
case 0x0A000000:
case 0x0A800000:
if (!(ExMemCnt[0] & (1<<7))) return 0x0000; // deselected CPU is 00h-filled
return GBACartSlot.SRAMRead(addr) |
(GBACartSlot.SRAMRead(addr+1) << 8);
}
Log(LogLevel::Debug, "unknown arm7 read16 %08X %08X\n", addr, ARM7.R[15]);
return 0;
}
u32 NDS::ARM7Read32(u32 addr)
{
addr &= ~0x3;
if (addr < 0x00004000)
{
if (ARM7.R[15] >= 0x00004000)
return 0xFFFFFFFF;
if (addr < ARM7BIOSProt && ARM7.R[15] >= ARM7BIOSProt)
return 0xFFFFFFFF;
return *(u32*)&ARM7BIOS[addr];
}
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
return *(u32*)&MainRAM[addr & MainRAMMask];
case 0x03000000:
if (SWRAM_ARM7.Mem)
{
return *(u32*)&SWRAM_ARM7.Mem[addr & SWRAM_ARM7.Mask];
}
else
{
return *(u32*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)];
}
case 0x03800000:
return *(u32*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)];
case 0x04000000:
return NDS::ARM7IORead32(addr);
case 0x04800000:
if (addr < 0x04810000)
{
if (!(PowerControl7 & (1<<1))) return 0;
return Wifi.Read(addr) | (Wifi.Read(addr+2) << 16);
}
break;
case 0x06000000:
case 0x06800000:
return GPU.ReadVRAM_ARM7<u32>(addr);
case 0x08000000:
case 0x08800000:
case 0x09000000:
case 0x09800000:
if (!(ExMemCnt[0] & (1<<7))) return 0x00000000; // deselected CPU is 00h-filled
return GBACartSlot.ROMRead(addr) |
(GBACartSlot.ROMRead(addr+2) << 16);
case 0x0A000000:
case 0x0A800000:
if (!(ExMemCnt[0] & (1<<7))) return 0x00000000; // deselected CPU is 00h-filled
return GBACartSlot.SRAMRead(addr) |
(GBACartSlot.SRAMRead(addr+1) << 8) |
(GBACartSlot.SRAMRead(addr+2) << 16) |
(GBACartSlot.SRAMRead(addr+3) << 24);
}
//Log(LogLevel::Warn, "unknown arm7 read32 %08X | %08X\n", addr, ARM7.R[15]);
return 0;
}
void NDS::ARM7Write8(u32 addr, u8 val)
{
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_MainRAM>(addr);
*(u8*)&MainRAM[addr & MainRAMMask] = val;
return;
case 0x03000000:
if (SWRAM_ARM7.Mem)
{
JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_SharedWRAM>(addr);
*(u8*)&SWRAM_ARM7.Mem[addr & SWRAM_ARM7.Mask] = val;
return;
}
else
{
JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_WRAM7>(addr);
*(u8*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)] = val;
return;
}
case 0x03800000:
JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_WRAM7>(addr);
*(u8*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)] = val;
return;
case 0x04000000:
NDS::ARM7IOWrite8(addr, val);
return;
case 0x06000000:
case 0x06800000:
JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_VWRAM>(addr);
GPU.WriteVRAM_ARM7<u8>(addr, val);
return;
case 0x08000000:
case 0x08800000:
case 0x09000000:
case 0x09800000:
return;
case 0x0A000000:
case 0x0A800000:
if (!(ExMemCnt[0] & (1<<7))) return; // deselected CPU, skip the write
GBACartSlot.SRAMWrite(addr, val);
return;
}
//if (ARM7.R[15] > 0x00002F30) // ARM7 BIOS bug
if (addr >= 0x01000000)
Log(LogLevel::Debug, "unknown arm7 write8 %08X %02X @ %08X\n", addr, val, ARM7.R[15]);
}
void NDS::ARM7Write16(u32 addr, u16 val)
{
addr &= ~0x1;
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_MainRAM>(addr);
*(u16*)&MainRAM[addr & MainRAMMask] = val;
return;
case 0x03000000:
if (SWRAM_ARM7.Mem)
{
JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_SharedWRAM>(addr);
*(u16*)&SWRAM_ARM7.Mem[addr & SWRAM_ARM7.Mask] = val;
return;
}
else
{
JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_WRAM7>(addr);
*(u16*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)] = val;
return;
}
case 0x03800000:
JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_WRAM7>(addr);
*(u16*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)] = val;
return;
case 0x04000000:
NDS::ARM7IOWrite16(addr, val);
return;
case 0x04800000:
if (addr < 0x04810000)
{
if (!(PowerControl7 & (1<<1))) return;
Wifi.Write(addr, val);
return;
}
break;
case 0x06000000:
case 0x06800000:
JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_VWRAM>(addr);
GPU.WriteVRAM_ARM7<u16>(addr, val);
return;
case 0x08000000:
case 0x08800000:
case 0x09000000:
case 0x09800000:
if (!(ExMemCnt[0] & (1<<7))) return; // deselected CPU, skip the write
GBACartSlot.ROMWrite(addr, val);
return;
case 0x0A000000:
case 0x0A800000:
if (!(ExMemCnt[0] & (1<<7))) return; // deselected CPU, skip the write
GBACartSlot.SRAMWrite(addr, val & 0xFF);
GBACartSlot.SRAMWrite(addr+1, val >> 8);
return;
}
if (addr >= 0x01000000)
Log(LogLevel::Debug, "unknown arm7 write16 %08X %04X @ %08X\n", addr, val, ARM7.R[15]);
}
void NDS::ARM7Write32(u32 addr, u32 val)
{
addr &= ~0x3;
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_MainRAM>(addr);
*(u32*)&MainRAM[addr & MainRAMMask] = val;
return;
case 0x03000000:
if (SWRAM_ARM7.Mem)
{
JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_SharedWRAM>(addr);
*(u32*)&SWRAM_ARM7.Mem[addr & SWRAM_ARM7.Mask] = val;
return;
}
else
{
JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_WRAM7>(addr);
*(u32*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)] = val;
return;
}
case 0x03800000:
JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_WRAM7>(addr);
*(u32*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)] = val;
return;
case 0x04000000:
NDS::ARM7IOWrite32(addr, val);
return;
case 0x04800000:
if (addr < 0x04810000)
{
if (!(PowerControl7 & (1<<1))) return;
Wifi.Write(addr, val & 0xFFFF);
Wifi.Write(addr+2, val >> 16);
return;
}
break;
case 0x06000000:
case 0x06800000:
JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_VWRAM>(addr);
GPU.WriteVRAM_ARM7<u32>(addr, val);
return;
case 0x08000000:
case 0x08800000:
case 0x09000000:
case 0x09800000:
if (!(ExMemCnt[0] & (1<<7))) return; // deselected CPU, skip the write
GBACartSlot.ROMWrite(addr, val & 0xFFFF);
GBACartSlot.ROMWrite(addr+2, val >> 16);
return;
case 0x0A000000:
case 0x0A800000:
if (!(ExMemCnt[0] & (1<<7))) return; // deselected CPU, skip the write
GBACartSlot.SRAMWrite(addr, val & 0xFF);
GBACartSlot.SRAMWrite(addr+1, (val >> 8) & 0xFF);
GBACartSlot.SRAMWrite(addr+2, (val >> 16) & 0xFF);
GBACartSlot.SRAMWrite(addr+3, val >> 24);
return;
}
if (addr >= 0x01000000)
Log(LogLevel::Debug, "unknown arm7 write32 %08X %08X @ %08X\n", addr, val, ARM7.R[15]);
}
bool NDS::ARM7GetMemRegion(u32 addr, bool write, MemRegion* region)
{
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
region->Mem = MainRAM;
region->Mask = MainRAMMask;
return true;
case 0x03000000:
// note on this, and why we can only cover it in one particular case:
// it is typical for games to map all shared WRAM to the ARM7
// then access all the WRAM as one contiguous block starting at 0x037F8000
// this case needs a bit of a hack to cover
// it's not really worth bothering anyway
if (!SWRAM_ARM7.Mem)
{
region->Mem = ARM7WRAM;
region->Mask = ARM7WRAMSize-1;
return true;
}
break;
case 0x03800000:
region->Mem = ARM7WRAM;
region->Mask = ARM7WRAMSize-1;
return true;
}
// BIOS. ARM7 PC has to be within range.
if (addr < 0x00004000 && !write)
{
if (ARM7.R[15] < 0x4000 && (addr >= ARM7BIOSProt || ARM7.R[15] < ARM7BIOSProt))
{
region->Mem = &ARM7BIOS[0];
region->Mask = 0x3FFF;
return true;
}
}
region->Mem = NULL;
return false;
}
#define CASE_READ8_16BIT(addr, val) \
case (addr): return (val) & 0xFF; \
case (addr+1): return (val) >> 8;
#define CASE_READ8_32BIT(addr, val) \
case (addr): return (val) & 0xFF; \
case (addr+1): return ((val) >> 8) & 0xFF; \
case (addr+2): return ((val) >> 16) & 0xFF; \
case (addr+3): return (val) >> 24;
u8 NDS::ARM9IORead8(u32 addr)
{
switch (addr)
{
case 0x04000130: LagFrameFlag = false; return KeyInput & 0xFF;
case 0x04000131: LagFrameFlag = false; return (KeyInput >> 8) & 0xFF;
case 0x04000132: return KeyCnt[0] & 0xFF;
case 0x04000133: return KeyCnt[0] >> 8;
case 0x04000180: return IPCSync9 & 0xFF;
case 0x04000181: return IPCSync9 >> 8;
case 0x040001A0:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot.GetSPICnt() & 0xFF;
return 0;
case 0x040001A1:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot.GetSPICnt() >> 8;
return 0;
case 0x040001A2:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot.ReadSPIData();
return 0;
case 0x040001A4:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot.GetROMCnt() & 0xFF;
return 0;
case 0x040001A5:
if (!(ExMemCnt[0] & (1<<11)))
return (NDSCartSlot.GetROMCnt() >> 8) & 0xFF;
return 0;
case 0x040001A6:
if (!(ExMemCnt[0] & (1<<11)))
return (NDSCartSlot.GetROMCnt() >> 16) & 0xFF;
return 0;
case 0x040001A7:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot.GetROMCnt() >> 24;
return 0;
case 0x040001A8:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot.GetROMCommand(0);
return 0;
case 0x040001A9:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot.GetROMCommand(1);
return 0;
case 0x040001AA:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot.GetROMCommand(2);
return 0;
case 0x040001AB:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot.GetROMCommand(3);
return 0;
case 0x040001AC:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot.GetROMCommand(4);
return 0;
case 0x040001AD:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot.GetROMCommand(5);
return 0;
case 0x040001AE:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot.GetROMCommand(6);
return 0;
case 0x040001AF:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot.GetROMCommand(7);
return 0;
case 0x04000208: return IME[0];
case 0x04000240: return GPU.VRAMCNT[0];
case 0x04000241: return GPU.VRAMCNT[1];
case 0x04000242: return GPU.VRAMCNT[2];
case 0x04000243: return GPU.VRAMCNT[3];
case 0x04000244: return GPU.VRAMCNT[4];
case 0x04000245: return GPU.VRAMCNT[5];
case 0x04000246: return GPU.VRAMCNT[6];
case 0x04000247: return WRAMCnt;
case 0x04000248: return GPU.VRAMCNT[7];
case 0x04000249: return GPU.VRAMCNT[8];
CASE_READ8_16BIT(0x04000280, DivCnt)
CASE_READ8_32BIT(0x04000290, DivNumerator[0])
CASE_READ8_32BIT(0x04000294, DivNumerator[1])
CASE_READ8_32BIT(0x04000298, DivDenominator[0])
CASE_READ8_32BIT(0x0400029C, DivDenominator[1])
CASE_READ8_32BIT(0x040002A0, DivQuotient[0])
CASE_READ8_32BIT(0x040002A4, DivQuotient[1])
CASE_READ8_32BIT(0x040002A8, DivRemainder[0])
CASE_READ8_32BIT(0x040002AC, DivRemainder[1])
CASE_READ8_16BIT(0x040002B0, SqrtCnt)
CASE_READ8_32BIT(0x040002B4, SqrtRes)
CASE_READ8_32BIT(0x040002B8, SqrtVal[0])
CASE_READ8_32BIT(0x040002BC, SqrtVal[1])
case 0x04000300: return PostFlag9;
}
if (addr >= 0x04000000 && addr < 0x04000060)
{
return GPU.GPU2D_A.Read8(addr);
}
if (addr >= 0x04001000 && addr < 0x04001060)
{
return GPU.GPU2D_B.Read8(addr);
}
if (addr >= 0x04000320 && addr < 0x040006A4)
{
return GPU.GPU3D.Read8(addr);
}
// NO$GBA debug register "Emulation ID"
if(addr >= 0x04FFFA00 && addr < 0x04FFFA10)
{
// FIX: GBATek says this should be padded with spaces
static char const emuID[16] = "melonDS " MELONDS_VERSION_BASE;
auto idx = addr - 0x04FFFA00;
return (u8)(emuID[idx]);
}
if ((addr & 0xFFFFF000) != 0x04004000)
Log(LogLevel::Debug, "unknown ARM9 IO read8 %08X %08X\n", addr, ARM9.R[15]);
return 0;
}
u16 NDS::ARM9IORead16(u32 addr)
{
switch (addr)
{
case 0x04000004: return GPU.DispStat[0];
case 0x04000006: return GPU.VCount;
case 0x04000060: return GPU.GPU3D.Read16(addr);
case 0x04000064:
case 0x04000066: return GPU.GPU2D_A.Read16(addr);
case 0x040000B8: return DMAs[0].Cnt & 0xFFFF;
case 0x040000BA: return DMAs[0].Cnt >> 16;
case 0x040000C4: return DMAs[1].Cnt & 0xFFFF;
case 0x040000C6: return DMAs[1].Cnt >> 16;
case 0x040000D0: return DMAs[2].Cnt & 0xFFFF;
case 0x040000D2: return DMAs[2].Cnt >> 16;
case 0x040000DC: return DMAs[3].Cnt & 0xFFFF;
case 0x040000DE: return DMAs[3].Cnt >> 16;
case 0x040000E0: return ((u16*)DMA9Fill)[0];
case 0x040000E2: return ((u16*)DMA9Fill)[1];
case 0x040000E4: return ((u16*)DMA9Fill)[2];
case 0x040000E6: return ((u16*)DMA9Fill)[3];
case 0x040000E8: return ((u16*)DMA9Fill)[4];
case 0x040000EA: return ((u16*)DMA9Fill)[5];
case 0x040000EC: return ((u16*)DMA9Fill)[6];
case 0x040000EE: return ((u16*)DMA9Fill)[7];
case 0x04000100: return TimerGetCounter(0);
case 0x04000102: return Timers[0].Cnt;
case 0x04000104: return TimerGetCounter(1);
case 0x04000106: return Timers[1].Cnt;
case 0x04000108: return TimerGetCounter(2);
case 0x0400010A: return Timers[2].Cnt;
case 0x0400010C: return TimerGetCounter(3);
case 0x0400010E: return Timers[3].Cnt;
case 0x04000130: LagFrameFlag = false; return KeyInput & 0xFFFF;
case 0x04000132: return KeyCnt[0];
case 0x04000180: return IPCSync9;
case 0x04000184:
{
u16 val = IPCFIFOCnt9;
if (IPCFIFO9.IsEmpty()) val |= 0x0001;
else if (IPCFIFO9.IsFull()) val |= 0x0002;
if (IPCFIFO7.IsEmpty()) val |= 0x0100;
else if (IPCFIFO7.IsFull()) val |= 0x0200;
return val;
}
case 0x040001A0:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot.GetSPICnt();
return 0;
case 0x040001A2:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot.ReadSPIData();
return 0;
case 0x040001A4:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot.GetROMCnt() & 0xFFFF;
return 0;
case 0x040001A6:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot.GetROMCnt() >> 16;
return 0;
case 0x040001A8:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot.GetROMCommand(0) |
(NDSCartSlot.GetROMCommand(1) << 8);
return 0;
case 0x040001AA:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot.GetROMCommand(2) |
(NDSCartSlot.GetROMCommand(3) << 8);
return 0;
case 0x040001AC:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot.GetROMCommand(4) |
(NDSCartSlot.GetROMCommand(5) << 8);
return 0;
case 0x040001AE:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot.GetROMCommand(6) |
(NDSCartSlot.GetROMCommand(7) << 8);
return 0;
case 0x04000204: return ExMemCnt[0];
case 0x04000208: return IME[0];
case 0x04000210: return IE[0] & 0xFFFF;
case 0x04000212: return IE[0] >> 16;
case 0x04000214: return IF[0] & 0xFFFF;
case 0x04000216: return IF[0] >> 16;
case 0x04000240: return GPU.VRAMCNT[0] | (GPU.VRAMCNT[1] << 8);
case 0x04000242: return GPU.VRAMCNT[2] | (GPU.VRAMCNT[3] << 8);
case 0x04000244: return GPU.VRAMCNT[4] | (GPU.VRAMCNT[5] << 8);
case 0x04000246: return GPU.VRAMCNT[6] | (WRAMCnt << 8);
case 0x04000248: return GPU.VRAMCNT[7] | (GPU.VRAMCNT[8] << 8);
case 0x04000280: return DivCnt;
case 0x04000290: return DivNumerator[0] & 0xFFFF;
case 0x04000292: return DivNumerator[0] >> 16;
case 0x04000294: return DivNumerator[1] & 0xFFFF;
case 0x04000296: return DivNumerator[1] >> 16;
case 0x04000298: return DivDenominator[0] & 0xFFFF;
case 0x0400029A: return DivDenominator[0] >> 16;
case 0x0400029C: return DivDenominator[1] & 0xFFFF;
case 0x0400029E: return DivDenominator[1] >> 16;
case 0x040002A0: return DivQuotient[0] & 0xFFFF;
case 0x040002A2: return DivQuotient[0] >> 16;
case 0x040002A4: return DivQuotient[1] & 0xFFFF;
case 0x040002A6: return DivQuotient[1] >> 16;
case 0x040002A8: return DivRemainder[0] & 0xFFFF;
case 0x040002AA: return DivRemainder[0] >> 16;
case 0x040002AC: return DivRemainder[1] & 0xFFFF;
case 0x040002AE: return DivRemainder[1] >> 16;
case 0x040002B0: return SqrtCnt;
case 0x040002B4: return SqrtRes & 0xFFFF;
case 0x040002B6: return SqrtRes >> 16;
case 0x040002B8: return SqrtVal[0] & 0xFFFF;
case 0x040002BA: return SqrtVal[0] >> 16;
case 0x040002BC: return SqrtVal[1] & 0xFFFF;
case 0x040002BE: return SqrtVal[1] >> 16;
case 0x04000300: return PostFlag9;
case 0x04000304: return PowerControl9;
case 0x04004000:
case 0x04004004:
case 0x04004010:
// shut up logging for DSi registers
return 0;
}
if ((addr >= 0x04000000 && addr < 0x04000060) || (addr == 0x0400006C))
{
return GPU.GPU2D_A.Read16(addr);
}
if ((addr >= 0x04001000 && addr < 0x04001060) || (addr == 0x0400106C))
{
return GPU.GPU2D_B.Read16(addr);
}
if (addr >= 0x04000320 && addr < 0x040006A4)
{
return GPU.GPU3D.Read16(addr);
}
if ((addr & 0xFFFFF000) != 0x04004000)
Log(LogLevel::Debug, "unknown ARM9 IO read16 %08X %08X\n", addr, ARM9.R[15]);
return 0;
}
u32 NDS::ARM9IORead32(u32 addr)
{
switch (addr)
{
case 0x04000004: return GPU.DispStat[0] | (GPU.VCount << 16);
case 0x04000060: return GPU.GPU3D.Read32(addr);
case 0x04000064: return GPU.GPU2D_A.Read32(addr);
case 0x040000B0: return DMAs[0].SrcAddr;
case 0x040000B4: return DMAs[0].DstAddr;
case 0x040000B8: return DMAs[0].Cnt;
case 0x040000BC: return DMAs[1].SrcAddr;
case 0x040000C0: return DMAs[1].DstAddr;
case 0x040000C4: return DMAs[1].Cnt;
case 0x040000C8: return DMAs[2].SrcAddr;
case 0x040000CC: return DMAs[2].DstAddr;
case 0x040000D0: return DMAs[2].Cnt;
case 0x040000D4: return DMAs[3].SrcAddr;
case 0x040000D8: return DMAs[3].DstAddr;
case 0x040000DC: return DMAs[3].Cnt;
case 0x040000E0: return DMA9Fill[0];
case 0x040000E4: return DMA9Fill[1];
case 0x040000E8: return DMA9Fill[2];
case 0x040000EC: return DMA9Fill[3];
case 0x040000F4: return 0; // ???? Golden Sun Dark Dawn keeps reading this
case 0x04000100: return TimerGetCounter(0) | (Timers[0].Cnt << 16);
case 0x04000104: return TimerGetCounter(1) | (Timers[1].Cnt << 16);
case 0x04000108: return TimerGetCounter(2) | (Timers[2].Cnt << 16);
case 0x0400010C: return TimerGetCounter(3) | (Timers[3].Cnt << 16);
case 0x04000130: LagFrameFlag = false; return (KeyInput & 0xFFFF) | (KeyCnt[0] << 16);
case 0x04000180: return IPCSync9;
case 0x04000184: return NDS::ARM9IORead16(addr);
case 0x040001A0:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot.GetSPICnt() | (NDSCartSlot.ReadSPIData() << 16);
return 0;
case 0x040001A4:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot.GetROMCnt();
return 0;
case 0x040001A8:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot.GetROMCommand(0) |
(NDSCartSlot.GetROMCommand(1) << 8) |
(NDSCartSlot.GetROMCommand(2) << 16) |
(NDSCartSlot.GetROMCommand(3) << 24);
return 0;
case 0x040001AC:
if (!(ExMemCnt[0] & (1<<11)))
return NDSCartSlot.GetROMCommand(4) |
(NDSCartSlot.GetROMCommand(5) << 8) |
(NDSCartSlot.GetROMCommand(6) << 16) |
(NDSCartSlot.GetROMCommand(7) << 24);
return 0;
case 0x04000208: return IME[0];
case 0x04000210: return IE[0];
case 0x04000214: return IF[0];
case 0x04000240: return GPU.VRAMCNT[0] | (GPU.VRAMCNT[1] << 8) | (GPU.VRAMCNT[2] << 16) | (GPU.VRAMCNT[3] << 24);
case 0x04000244: return GPU.VRAMCNT[4] | (GPU.VRAMCNT[5] << 8) | (GPU.VRAMCNT[6] << 16) | (WRAMCnt << 24);
case 0x04000248: return GPU.VRAMCNT[7] | (GPU.VRAMCNT[8] << 8);
case 0x04000280: return DivCnt;
case 0x04000290: return DivNumerator[0];
case 0x04000294: return DivNumerator[1];
case 0x04000298: return DivDenominator[0];
case 0x0400029C: return DivDenominator[1];
case 0x040002A0: return DivQuotient[0];
case 0x040002A4: return DivQuotient[1];
case 0x040002A8: return DivRemainder[0];
case 0x040002AC: return DivRemainder[1];
case 0x040002B0: return SqrtCnt;
case 0x040002B4: return SqrtRes;
case 0x040002B8: return SqrtVal[0];
case 0x040002BC: return SqrtVal[1];
case 0x04000300: return PostFlag9;
case 0x04000304: return PowerControl9;
case 0x04100000:
if (IPCFIFOCnt9 & 0x8000)
{
u32 ret;
if (IPCFIFO7.IsEmpty())
{
IPCFIFOCnt9 |= 0x4000;
ret = IPCFIFO7.Peek();
}
else
{
ret = IPCFIFO7.Read();
if (IPCFIFO7.IsEmpty() && (IPCFIFOCnt7 & 0x0004))
SetIRQ(1, IRQ_IPCSendDone);
}
return ret;
}
else
return IPCFIFO7.Peek();
case 0x04100010:
if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot.ReadROMData();
return 0;
case 0x04004000:
case 0x04004004:
case 0x04004010:
// shut up logging for DSi registers
return 0;
// NO$GBA debug register "Clock Cycles"
// Since it's a 64 bit reg. the CPU will access it in two parts:
case 0x04FFFA20: return (u32)(GetSysClockCycles(0) & 0xFFFFFFFF);
case 0x04FFFA24: return (u32)(GetSysClockCycles(0) >> 32);
}
if ((addr >= 0x04000000 && addr < 0x04000060) || (addr == 0x0400006C))
{
return GPU.GPU2D_A.Read32(addr);
}
if ((addr >= 0x04001000 && addr < 0x04001060) || (addr == 0x0400106C))
{
return GPU.GPU2D_B.Read32(addr);
}
if (addr >= 0x04000320 && addr < 0x040006A4)
{
return GPU.GPU3D.Read32(addr);
}
if ((addr & 0xFFFFF000) != 0x04004000)
Log(LogLevel::Debug, "unknown ARM9 IO read32 %08X %08X\n", addr, ARM9.R[15]);
return 0;
}
void NDS::ARM9IOWrite8(u32 addr, u8 val)
{
switch (addr)
{
case 0x0400006C:
case 0x0400006D: GPU.GPU2D_A.Write8(addr, val); return;
case 0x0400106C:
case 0x0400106D: GPU.GPU2D_B.Write8(addr, val); return;
case 0x04000132:
KeyCnt[0] = (KeyCnt[0] & 0xFF00) | val;
return;
case 0x04000133:
KeyCnt[0] = (KeyCnt[0] & 0x00FF) | (val << 8);
return;
case 0x04000181:
IPCSync7 &= 0xFFF0;
IPCSync7 |= (val & 0x0F);
IPCSync9 &= 0xB0FF;
IPCSync9 |= ((val & 0x4F) << 8);
if ((val & 0x20) && (IPCSync7 & 0x4000))
{
SetIRQ(1, IRQ_IPCSync);
}
return;
case 0x04000188:
NDS::ARM9IOWrite32(addr, val | (val << 8) | (val << 16) | (val << 24));
return;
case 0x040001A0:
if (!(ExMemCnt[0] & (1<<11)))
NDSCartSlot.WriteSPICnt((NDSCartSlot.GetSPICnt() & 0xFF00) | val);
return;
case 0x040001A1:
if (!(ExMemCnt[0] & (1<<11)))
NDSCartSlot.WriteSPICnt((NDSCartSlot.GetSPICnt() & 0x00FF) | (val << 8));
return;
case 0x040001A2:
if (!(ExMemCnt[0] & (1<<11)))
NDSCartSlot.WriteSPIData(val);
return;
case 0x040001A4:
if (!(ExMemCnt[0] & (1<<11)))
NDSCartSlot.WriteROMCnt((NDSCartSlot.GetROMCnt() & 0xFFFFFF00) | val);
return;
case 0x040001A5:
if (!(ExMemCnt[0] & (1<<11)))
NDSCartSlot.WriteROMCnt((NDSCartSlot.GetROMCnt() & 0xFFFF00FF) | (val << 8));
return;
case 0x040001A6:
if (!(ExMemCnt[0] & (1<<11)))
NDSCartSlot.WriteROMCnt((NDSCartSlot.GetROMCnt() & 0xFF00FFFF) | (val << 16));
return;
case 0x040001A7:
if (!(ExMemCnt[0] & (1<<11)))
NDSCartSlot.WriteROMCnt((NDSCartSlot.GetROMCnt() & 0x00FFFFFF) | (val << 24));
return;
case 0x040001A8: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot.SetROMCommand(0, val); return;
case 0x040001A9: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot.SetROMCommand(1, val); return;
case 0x040001AA: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot.SetROMCommand(2, val); return;
case 0x040001AB: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot.SetROMCommand(3, val); return;
case 0x040001AC: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot.SetROMCommand(4, val); return;
case 0x040001AD: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot.SetROMCommand(5, val); return;
case 0x040001AE: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot.SetROMCommand(6, val); return;
case 0x040001AF: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot.SetROMCommand(7, val); return;
case 0x04000208: IME[0] = val & 0x1; UpdateIRQ(0); return;
case 0x04000240: GPU.MapVRAM_AB(0, val); return;
case 0x04000241: GPU.MapVRAM_AB(1, val); return;
case 0x04000242: GPU.MapVRAM_CD(2, val); return;
case 0x04000243: GPU.MapVRAM_CD(3, val); return;
case 0x04000244: GPU.MapVRAM_E(4, val); return;
case 0x04000245: GPU.MapVRAM_FG(5, val); return;
case 0x04000246: GPU.MapVRAM_FG(6, val); return;
case 0x04000247: MapSharedWRAM(val); return;
case 0x04000248: GPU.MapVRAM_H(7, val); return;
case 0x04000249: GPU.MapVRAM_I(8, val); return;
case 0x04000300:
if (PostFlag9 & 0x01) val |= 0x01;
PostFlag9 = val & 0x03;
return;
}
if (addr >= 0x04000000 && addr < 0x04000060)
{
GPU.GPU2D_A.Write8(addr, val);
return;
}
if (addr >= 0x04001000 && addr < 0x04001060)
{
GPU.GPU2D_B.Write8(addr, val);
return;
}
if (addr >= 0x04000320 && addr < 0x040006A4)
{
GPU.GPU3D.Write8(addr, val);
return;
}
Log(LogLevel::Debug, "unknown ARM9 IO write8 %08X %02X %08X\n", addr, val, ARM9.R[15]);
}
void NDS::ARM9IOWrite16(u32 addr, u16 val)
{
switch (addr)
{
case 0x04000004: GPU.SetDispStat(0, val); return;
case 0x04000006: GPU.SetVCount(val); return;
case 0x04000060: GPU.GPU3D.Write16(addr, val); return;
case 0x04000064:
case 0x04000066: GPU.GPU2D_A.Write16(addr, val); return;
case 0x04000068:
case 0x0400006A: GPU.GPU2D_A.Write16(addr, val); return;
case 0x0400006C: GPU.GPU2D_A.Write16(addr, val); return;
case 0x0400106C: GPU.GPU2D_B.Write16(addr, val); return;
case 0x040000B8: DMAs[0].WriteCnt((DMAs[0].Cnt & 0xFFFF0000) | val); return;
case 0x040000BA: DMAs[0].WriteCnt((DMAs[0].Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x040000C4: DMAs[1].WriteCnt((DMAs[1].Cnt & 0xFFFF0000) | val); return;
case 0x040000C6: DMAs[1].WriteCnt((DMAs[1].Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x040000D0: DMAs[2].WriteCnt((DMAs[2].Cnt & 0xFFFF0000) | val); return;
case 0x040000D2: DMAs[2].WriteCnt((DMAs[2].Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x040000DC: DMAs[3].WriteCnt((DMAs[3].Cnt & 0xFFFF0000) | val); return;
case 0x040000DE: DMAs[3].WriteCnt((DMAs[3].Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x040000E0: DMA9Fill[0] = (DMA9Fill[0] & 0xFFFF0000) | val; return;
case 0x040000E2: DMA9Fill[0] = (DMA9Fill[0] & 0x0000FFFF) | (val << 16); return;
case 0x040000E4: DMA9Fill[1] = (DMA9Fill[1] & 0xFFFF0000) | val; return;
case 0x040000E6: DMA9Fill[1] = (DMA9Fill[1] & 0x0000FFFF) | (val << 16); return;
case 0x040000E8: DMA9Fill[2] = (DMA9Fill[2] & 0xFFFF0000) | val; return;
case 0x040000EA: DMA9Fill[2] = (DMA9Fill[2] & 0x0000FFFF) | (val << 16); return;
case 0x040000EC: DMA9Fill[3] = (DMA9Fill[3] & 0xFFFF0000) | val; return;
case 0x040000EE: DMA9Fill[3] = (DMA9Fill[3] & 0x0000FFFF) | (val << 16); return;
case 0x04000100: Timers[0].Reload = val; return;
case 0x04000102: TimerStart(0, val); return;
case 0x04000104: Timers[1].Reload = val; return;
case 0x04000106: TimerStart(1, val); return;
case 0x04000108: Timers[2].Reload = val; return;
case 0x0400010A: TimerStart(2, val); return;
case 0x0400010C: Timers[3].Reload = val; return;
case 0x0400010E: TimerStart(3, val); return;
case 0x04000132:
KeyCnt[0] = val;
return;
case 0x04000180:
IPCSync7 &= 0xFFF0;
IPCSync7 |= ((val & 0x0F00) >> 8);
IPCSync9 &= 0xB0FF;
IPCSync9 |= (val & 0x4F00);
if ((val & 0x2000) && (IPCSync7 & 0x4000))
{
SetIRQ(1, IRQ_IPCSync);
}
return;
case 0x04000184:
if (val & 0x0008)
IPCFIFO9.Clear();
if ((val & 0x0004) && (!(IPCFIFOCnt9 & 0x0004)) && IPCFIFO9.IsEmpty())
SetIRQ(0, IRQ_IPCSendDone);
if ((val & 0x0400) && (!(IPCFIFOCnt9 & 0x0400)) && (!IPCFIFO7.IsEmpty()))
SetIRQ(0, IRQ_IPCRecv);
if (val & 0x4000)
IPCFIFOCnt9 &= ~0x4000;
IPCFIFOCnt9 = (val & 0x8404) | (IPCFIFOCnt9 & 0x4000);
return;
case 0x04000188:
NDS::ARM9IOWrite32(addr, val | (val << 16));
return;
case 0x040001A0:
if (!(ExMemCnt[0] & (1<<11)))
NDSCartSlot.WriteSPICnt(val);
return;
case 0x040001A2:
if (!(ExMemCnt[0] & (1<<11)))
NDSCartSlot.WriteSPIData(val & 0xFF);
return;
case 0x040001A4:
if (!(ExMemCnt[0] & (1<<11)))
NDSCartSlot.WriteROMCnt((NDSCartSlot.GetROMCnt() & 0xFFFF0000) | val);
return;
case 0x040001A6:
if (!(ExMemCnt[0] & (1<<11)))
NDSCartSlot.WriteROMCnt((NDSCartSlot.GetROMCnt() & 0x0000FFFF) | (val << 16));
return;
case 0x040001A8:
if (!(ExMemCnt[0] & (1<<11)))
{
NDSCartSlot.SetROMCommand(0, val & 0xFF);
NDSCartSlot.SetROMCommand(1, val >> 8);
}
return;
case 0x040001AA:
if (!(ExMemCnt[0] & (1<<11)))
{
NDSCartSlot.SetROMCommand(2, val & 0xFF);
NDSCartSlot.SetROMCommand(3, val >> 8);
}
return;
case 0x040001AC:
if (!(ExMemCnt[0] & (1<<11)))
{
NDSCartSlot.SetROMCommand(4, val & 0xFF);
NDSCartSlot.SetROMCommand(5, val >> 8);
}
return;
case 0x040001AE:
if (!(ExMemCnt[0] & (1<<11)))
{
NDSCartSlot.SetROMCommand(6, val & 0xFF);
NDSCartSlot.SetROMCommand(7, val >> 8);
}
return;
case 0x040001B8: ROMSeed0[4] = val & 0x7F; return;
case 0x040001BA: ROMSeed1[4] = val & 0x7F; return;
case 0x04000204:
{
u16 settablemask = 0x88FF;
if ((ConsoleType == 1) && (((DSi*)this)->SCFG_EXT[1] & (1<<24))) settablemask |= 0x0400; // bit 10 can be set if SCFG_EXT bit 24 is set
u16 oldVal = ExMemCnt[0];
ExMemCnt[0] = (ExMemCnt[0] & ~settablemask) | (val & settablemask);
ExMemCnt[1] = (ExMemCnt[1] & (~settablemask | 0x7F)) | (val & (settablemask & ~0x7F));
if ((oldVal ^ ExMemCnt[0]) & 0xFF)
SetGBASlotTimings();
return;
}
case 0x04000208: IME[0] = val & 0x1; UpdateIRQ(0); return;
case 0x04000210: IE[0] = (IE[0] & 0xFFFF0000) | val; UpdateIRQ(0); return;
case 0x04000212: IE[0] = (IE[0] & 0x0000FFFF) | (val << 16); UpdateIRQ(0); return;
// TODO: what happens when writing to IF this way??
case 0x04000214: IF[0] &= ~val; GPU.GPU3D.CheckFIFOIRQ(); UpdateIRQ(0); return;
case 0x04000216: IF[0] &= ~(val<<16); GPU.GPU3D.CheckFIFOIRQ(); UpdateIRQ(0); return;
case 0x04000240:
GPU.MapVRAM_AB(0, val & 0xFF);
GPU.MapVRAM_AB(1, val >> 8);
return;
case 0x04000242:
GPU.MapVRAM_CD(2, val & 0xFF);
GPU.MapVRAM_CD(3, val >> 8);
return;
case 0x04000244:
GPU.MapVRAM_E(4, val & 0xFF);
GPU.MapVRAM_FG(5, val >> 8);
return;
case 0x04000246:
GPU.MapVRAM_FG(6, val & 0xFF);
MapSharedWRAM(val >> 8);
return;
case 0x04000248:
GPU.MapVRAM_H(7, val & 0xFF);
GPU.MapVRAM_I(8, val >> 8);
return;
case 0x04000280: DivCnt = val; StartDiv(); return;
case 0x040002B0: SqrtCnt = val; StartSqrt(); return;
case 0x04000300:
if (PostFlag9 & 0x01) val |= 0x01;
PostFlag9 = val & 0x03;
return;
case 0x04000304:
PowerControl9 = val & 0x820F;
GPU.SetPowerCnt(PowerControl9);
return;
}
if (addr >= 0x04000000 && addr < 0x04000060)
{
GPU.GPU2D_A.Write16(addr, val);
return;
}
if (addr >= 0x04001000 && addr < 0x04001060)
{
GPU.GPU2D_B.Write16(addr, val);
return;
}
if (addr >= 0x04000320 && addr < 0x040006A4)
{
GPU.GPU3D.Write16(addr, val);
return;
}
Log(LogLevel::Debug, "unknown ARM9 IO write16 %08X %04X %08X\n", addr, val, ARM9.R[15]);
}
void NDS::ARM9IOWrite32(u32 addr, u32 val)
{
switch (addr)
{
case 0x04000004:
GPU.SetDispStat(0, val & 0xFFFF);
GPU.SetVCount(val >> 16);
return;
case 0x04000060: GPU.GPU3D.Write32(addr, val); return;
case 0x04000064:
case 0x04000068: GPU.GPU2D_A.Write32(addr, val); return;
case 0x0400006C: GPU.GPU2D_A.Write16(addr, val&0xFFFF); return;
case 0x0400106C: GPU.GPU2D_B.Write16(addr, val&0xFFFF); return;
case 0x040000B0: DMAs[0].SrcAddr = val; return;
case 0x040000B4: DMAs[0].DstAddr = val; return;
case 0x040000B8: DMAs[0].WriteCnt(val); return;
case 0x040000BC: DMAs[1].SrcAddr = val; return;
case 0x040000C0: DMAs[1].DstAddr = val; return;
case 0x040000C4: DMAs[1].WriteCnt(val); return;
case 0x040000C8: DMAs[2].SrcAddr = val; return;
case 0x040000CC: DMAs[2].DstAddr = val; return;
case 0x040000D0: DMAs[2].WriteCnt(val); return;
case 0x040000D4: DMAs[3].SrcAddr = val; return;
case 0x040000D8: DMAs[3].DstAddr = val; return;
case 0x040000DC: DMAs[3].WriteCnt(val); return;
case 0x040000E0: DMA9Fill[0] = val; return;
case 0x040000E4: DMA9Fill[1] = val; return;
case 0x040000E8: DMA9Fill[2] = val; return;
case 0x040000EC: DMA9Fill[3] = val; return;
case 0x04000100:
Timers[0].Reload = val & 0xFFFF;
TimerStart(0, val>>16);
return;
case 0x04000104:
Timers[1].Reload = val & 0xFFFF;
TimerStart(1, val>>16);
return;
case 0x04000108:
Timers[2].Reload = val & 0xFFFF;
TimerStart(2, val>>16);
return;
case 0x0400010C:
Timers[3].Reload = val & 0xFFFF;
TimerStart(3, val>>16);
return;
case 0x04000130:
KeyCnt[0] = val >> 16;
return;
case 0x04000180:
case 0x04000184:
NDS::ARM9IOWrite16(addr, val);
return;
case 0x04000188:
if (IPCFIFOCnt9 & 0x8000)
{
if (IPCFIFO9.IsFull())
IPCFIFOCnt9 |= 0x4000;
else
{
bool wasempty = IPCFIFO9.IsEmpty();
IPCFIFO9.Write(val);
if ((IPCFIFOCnt7 & 0x0400) && wasempty)
SetIRQ(1, IRQ_IPCRecv);
}
}
return;
case 0x040001A0:
if (!(ExMemCnt[0] & (1<<11)))
{
NDSCartSlot.WriteSPICnt(val & 0xFFFF);
NDSCartSlot.WriteSPIData((val >> 16) & 0xFF);
}
return;
case 0x040001A4:
if (!(ExMemCnt[0] & (1<<11)))
NDSCartSlot.WriteROMCnt(val);
return;
case 0x040001A8:
if (!(ExMemCnt[0] & (1<<11)))
{
NDSCartSlot.SetROMCommand(0, val & 0xFF);
NDSCartSlot.SetROMCommand(1, (val >> 8) & 0xFF);
NDSCartSlot.SetROMCommand(2, (val >> 16) & 0xFF);
NDSCartSlot.SetROMCommand(3, val >> 24);
}
return;
case 0x040001AC:
if (!(ExMemCnt[0] & (1<<11)))
{
NDSCartSlot.SetROMCommand(4, val & 0xFF);
NDSCartSlot.SetROMCommand(5, (val >> 8) & 0xFF);
NDSCartSlot.SetROMCommand(6, (val >> 16) & 0xFF);
NDSCartSlot.SetROMCommand(7, val >> 24);
}
return;
case 0x040001B0: *(u32*)&ROMSeed0[0] = val; return;
case 0x040001B4: *(u32*)&ROMSeed1[0] = val; return;
case 0x04000208: IME[0] = val & 0x1; UpdateIRQ(0); return;
case 0x04000210: IE[0] = val; UpdateIRQ(0); return;
case 0x04000214: IF[0] &= ~val; GPU.GPU3D.CheckFIFOIRQ(); UpdateIRQ(0); return;
case 0x04000240:
GPU.MapVRAM_AB(0, val & 0xFF);
GPU.MapVRAM_AB(1, (val >> 8) & 0xFF);
GPU.MapVRAM_CD(2, (val >> 16) & 0xFF);
GPU.MapVRAM_CD(3, val >> 24);
return;
case 0x04000244:
GPU.MapVRAM_E(4, val & 0xFF);
GPU.MapVRAM_FG(5, (val >> 8) & 0xFF);
GPU.MapVRAM_FG(6, (val >> 16) & 0xFF);
MapSharedWRAM(val >> 24);
return;
case 0x04000248:
GPU.MapVRAM_H(7, val & 0xFF);
GPU.MapVRAM_I(8, (val >> 8) & 0xFF);
return;
case 0x04000280: DivCnt = val; StartDiv(); return;
case 0x040002B0: SqrtCnt = val; StartSqrt(); return;
case 0x04000290: DivNumerator[0] = val; StartDiv(); return;
case 0x04000294: DivNumerator[1] = val; StartDiv(); return;
case 0x04000298: DivDenominator[0] = val; StartDiv(); return;
case 0x0400029C: DivDenominator[1] = val; StartDiv(); return;
case 0x040002B8: SqrtVal[0] = val; StartSqrt(); return;
case 0x040002BC: SqrtVal[1] = val; StartSqrt(); return;
case 0x04000304:
PowerControl9 = val & 0x820F;
GPU.SetPowerCnt(PowerControl9);
return;
case 0x04100010:
if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot.WriteROMData(val);
return;
// NO$GBA debug register "String Out (raw)"
case 0x04FFFA10:
{
char output[1024] = { 0 };
char ch = '.';
for (size_t i = 0; i < 1023 && ch != '\0'; i++)
{
ch = NDS::ARM9Read8(val + i);
output[i] = ch;
}
Log(LogLevel::Debug, "%s", output);
return;
}
// NO$GBA debug registers "String Out (with parameters)" and "String Out (with parameters, plus linefeed)"
case 0x04FFFA14:
case 0x04FFFA18:
{
NocashPrint(0, val, 0x04FFFA18 == addr);
return;
}
// NO$GBA debug register "Char Out"
case 0x04FFFA1C: Log(LogLevel::Debug, "%c", val & 0xFF); return;
}
if (addr >= 0x04000000 && addr < 0x04000060)
{
GPU.GPU2D_A.Write32(addr, val);
return;
}
if (addr >= 0x04001000 && addr < 0x04001060)
{
GPU.GPU2D_B.Write32(addr, val);
return;
}
if (addr >= 0x04000320 && addr < 0x040006A4)
{
GPU.GPU3D.Write32(addr, val);
return;
}
Log(LogLevel::Debug, "unknown ARM9 IO write32 %08X %08X %08X\n", addr, val, ARM9.R[15]);
}
u8 NDS::ARM7IORead8(u32 addr)
{
switch (addr)
{
case 0x04000130: return KeyInput & 0xFF;
case 0x04000131: return (KeyInput >> 8) & 0xFF;
case 0x04000132: return KeyCnt[1] & 0xFF;
case 0x04000133: return KeyCnt[1] >> 8;
case 0x04000134: return RCnt & 0xFF;
case 0x04000135: return RCnt >> 8;
case 0x04000136: return (KeyInput >> 16) & 0xFF;
case 0x04000137: return KeyInput >> 24;
case 0x04000138: return RTC.Read() & 0xFF;
case 0x04000180: return IPCSync7 & 0xFF;
case 0x04000181: return IPCSync7 >> 8;
case 0x040001A0:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot.GetSPICnt() & 0xFF;
return 0;
case 0x040001A1:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot.GetSPICnt() >> 8;
return 0;
case 0x040001A2:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot.ReadSPIData();
return 0;
case 0x040001A4:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot.GetROMCnt() & 0xFF;
return 0;
case 0x040001A5:
if (ExMemCnt[0] & (1<<11))
return (NDSCartSlot.GetROMCnt() >> 8) & 0xFF;
return 0;
case 0x040001A6:
if (ExMemCnt[0] & (1<<11))
return (NDSCartSlot.GetROMCnt() >> 16) & 0xFF;
return 0;
case 0x040001A7:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot.GetROMCnt() >> 24;
return 0;
case 0x040001A8:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot.GetROMCommand(0);
return 0;
case 0x040001A9:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot.GetROMCommand(1);
return 0;
case 0x040001AA:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot.GetROMCommand(2);
return 0;
case 0x040001AB:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot.GetROMCommand(3);
return 0;
case 0x040001AC:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot.GetROMCommand(4);
return 0;
case 0x040001AD:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot.GetROMCommand(5);
return 0;
case 0x040001AE:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot.GetROMCommand(6);
return 0;
case 0x040001AF:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot.GetROMCommand(7);
return 0;
case 0x040001C2: return SPI.ReadData();
case 0x04000208: return IME[1];
case 0x04000240: return GPU.VRAMSTAT;
case 0x04000241: return WRAMCnt;
case 0x04000300: return PostFlag7;
case 0x04000304: return PowerControl7;
}
if (addr >= 0x04000400 && addr < 0x04000520)
{
return SPU.Read8(addr);
}
if ((addr & 0xFFFFF000) != 0x04004000)
Log(LogLevel::Debug, "unknown ARM7 IO read8 %08X %08X\n", addr, ARM7.R[15]);
return 0;
}
u16 NDS::ARM7IORead16(u32 addr)
{
switch (addr)
{
case 0x04000004: return GPU.DispStat[1];
case 0x04000006: return GPU.VCount;
case 0x040000B8: return DMAs[4].Cnt & 0xFFFF;
case 0x040000BA: return DMAs[4].Cnt >> 16;
case 0x040000C4: return DMAs[5].Cnt & 0xFFFF;
case 0x040000C6: return DMAs[5].Cnt >> 16;
case 0x040000D0: return DMAs[6].Cnt & 0xFFFF;
case 0x040000D2: return DMAs[6].Cnt >> 16;
case 0x040000DC: return DMAs[7].Cnt & 0xFFFF;
case 0x040000DE: return DMAs[7].Cnt >> 16;
case 0x04000100: return TimerGetCounter(4);
case 0x04000102: return Timers[4].Cnt;
case 0x04000104: return TimerGetCounter(5);
case 0x04000106: return Timers[5].Cnt;
case 0x04000108: return TimerGetCounter(6);
case 0x0400010A: return Timers[6].Cnt;
case 0x0400010C: return TimerGetCounter(7);
case 0x0400010E: return Timers[7].Cnt;
case 0x04000130: return KeyInput & 0xFFFF;
case 0x04000132: return KeyCnt[1];
case 0x04000134: return RCnt;
case 0x04000136: return KeyInput >> 16;
case 0x04000138: return RTC.Read();
case 0x04000180: return IPCSync7;
case 0x04000184:
{
u16 val = IPCFIFOCnt7;
if (IPCFIFO7.IsEmpty()) val |= 0x0001;
else if (IPCFIFO7.IsFull()) val |= 0x0002;
if (IPCFIFO9.IsEmpty()) val |= 0x0100;
else if (IPCFIFO9.IsFull()) val |= 0x0200;
return val;
}
case 0x040001A0: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.GetSPICnt(); return 0;
case 0x040001A2: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.ReadSPIData(); return 0;
case 0x040001A4:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot.GetROMCnt() & 0xFFFF;
return 0;
case 0x040001A6:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot.GetROMCnt() >> 16;
return 0;
case 0x040001A8:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot.GetROMCommand(0) |
(NDSCartSlot.GetROMCommand(1) << 8);
return 0;
case 0x040001AA:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot.GetROMCommand(2) |
(NDSCartSlot.GetROMCommand(3) << 8);
return 0;
case 0x040001AC:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot.GetROMCommand(4) |
(NDSCartSlot.GetROMCommand(5) << 8);
return 0;
case 0x040001AE:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot.GetROMCommand(6) |
(NDSCartSlot.GetROMCommand(7) << 8);
return 0;
case 0x040001C0: return SPI.ReadCnt();
case 0x040001C2: return SPI.ReadData();
case 0x04000204: return ExMemCnt[1];
case 0x04000206:
if (!(PowerControl7 & (1<<1))) return 0;
return WifiWaitCnt;
case 0x04000208: return IME[1];
case 0x04000210: return IE[1] & 0xFFFF;
case 0x04000212: return IE[1] >> 16;
case 0x04000300: return PostFlag7;
case 0x04000304: return PowerControl7;
case 0x04000308: return ARM7BIOSProt;
}
if (addr >= 0x04000400 && addr < 0x04000520)
{
return SPU.Read16(addr);
}
if ((addr & 0xFFFFF000) != 0x04004000)
Log(LogLevel::Debug, "unknown ARM7 IO read16 %08X %08X\n", addr, ARM7.R[15]);
return 0;
}
u32 NDS::ARM7IORead32(u32 addr)
{
switch (addr)
{
case 0x04000004: return GPU.DispStat[1] | (GPU.VCount << 16);
case 0x040000B0: return DMAs[4].SrcAddr;
case 0x040000B4: return DMAs[4].DstAddr;
case 0x040000B8: return DMAs[4].Cnt;
case 0x040000BC: return DMAs[5].SrcAddr;
case 0x040000C0: return DMAs[5].DstAddr;
case 0x040000C4: return DMAs[5].Cnt;
case 0x040000C8: return DMAs[6].SrcAddr;
case 0x040000CC: return DMAs[6].DstAddr;
case 0x040000D0: return DMAs[6].Cnt;
case 0x040000D4: return DMAs[7].SrcAddr;
case 0x040000D8: return DMAs[7].DstAddr;
case 0x040000DC: return DMAs[7].Cnt;
case 0x04000100: return TimerGetCounter(4) | (Timers[4].Cnt << 16);
case 0x04000104: return TimerGetCounter(5) | (Timers[5].Cnt << 16);
case 0x04000108: return TimerGetCounter(6) | (Timers[6].Cnt << 16);
case 0x0400010C: return TimerGetCounter(7) | (Timers[7].Cnt << 16);
case 0x04000130: return (KeyInput & 0xFFFF) | (KeyCnt[1] << 16);
case 0x04000134: return RCnt | (KeyInput & 0xFFFF0000);
case 0x04000138: return RTC.Read();
case 0x04000180: return IPCSync7;
case 0x04000184: return NDS::ARM7IORead16(addr);
case 0x040001A0:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot.GetSPICnt() | (NDSCartSlot.ReadSPIData() << 16);
return 0;
case 0x040001A4:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot.GetROMCnt();
return 0;
case 0x040001A8:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot.GetROMCommand(0) |
(NDSCartSlot.GetROMCommand(1) << 8) |
(NDSCartSlot.GetROMCommand(2) << 16) |
(NDSCartSlot.GetROMCommand(3) << 24);
return 0;
case 0x040001AC:
if (ExMemCnt[0] & (1<<11))
return NDSCartSlot.GetROMCommand(4) |
(NDSCartSlot.GetROMCommand(5) << 8) |
(NDSCartSlot.GetROMCommand(6) << 16) |
(NDSCartSlot.GetROMCommand(7) << 24);
return 0;
case 0x040001C0:
return SPI.ReadCnt() | (SPI.ReadData() << 16);
case 0x04000208: return IME[1];
case 0x04000210: return IE[1];
case 0x04000214: return IF[1];
case 0x04000304: return PowerControl7;
case 0x04000308: return ARM7BIOSProt;
case 0x04100000:
if (IPCFIFOCnt7 & 0x8000)
{
u32 ret;
if (IPCFIFO9.IsEmpty())
{
IPCFIFOCnt7 |= 0x4000;
ret = IPCFIFO9.Peek();
}
else
{
ret = IPCFIFO9.Read();
if (IPCFIFO9.IsEmpty() && (IPCFIFOCnt9 & 0x0004))
SetIRQ(0, IRQ_IPCSendDone);
}
return ret;
}
else
return IPCFIFO9.Peek();
case 0x04100010:
if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.ReadROMData();
return 0;
}
if (addr >= 0x04000400 && addr < 0x04000520)
{
return SPU.Read32(addr);
}
if ((addr & 0xFFFFF000) != 0x04004000)
Log(LogLevel::Debug, "unknown ARM7 IO read32 %08X %08X\n", addr, ARM7.R[15]);
return 0;
}
void NDS::ARM7IOWrite8(u32 addr, u8 val)
{
switch (addr)
{
case 0x04000132:
KeyCnt[1] = (KeyCnt[1] & 0xFF00) | val;
return;
case 0x04000133:
KeyCnt[1] = (KeyCnt[1] & 0x00FF) | (val << 8);
return;
case 0x04000134:
RCnt = (RCnt & 0xFF00) | val;
return;
case 0x04000135:
RCnt = (RCnt & 0x00FF) | (val << 8);
return;
case 0x04000138: RTC.Write(val, true); return;
case 0x04000181:
IPCSync9 &= 0xFFF0;
IPCSync9 |= (val & 0x0F);
IPCSync7 &= 0xB0FF;
IPCSync7 |= ((val & 0x4F) << 8);
if ((val & 0x20) && (IPCSync9 & 0x4000))
{
SetIRQ(0, IRQ_IPCSync);
}
return;
case 0x04000188:
NDS::ARM7IOWrite32(addr, val | (val << 8) | (val << 16) | (val << 24));
return;
case 0x040001A0:
if (ExMemCnt[0] & (1<<11))
{
NDSCartSlot.WriteSPICnt((NDSCartSlot.GetSPICnt() & 0xFF00) | val);
}
return;
case 0x040001A1:
if (ExMemCnt[0] & (1<<11))
NDSCartSlot.WriteSPICnt((NDSCartSlot.GetSPICnt() & 0x00FF) | (val << 8));
return;
case 0x040001A2:
if (ExMemCnt[0] & (1<<11))
NDSCartSlot.WriteSPIData(val);
return;
case 0x040001A4:
if (ExMemCnt[0] & (1<<11))
NDSCartSlot.WriteROMCnt((NDSCartSlot.GetROMCnt() & 0xFFFFFF00) | val);
return;
case 0x040001A5:
if (ExMemCnt[0] & (1<<11))
NDSCartSlot.WriteROMCnt((NDSCartSlot.GetROMCnt() & 0xFFFF00FF) | (val << 8));
return;
case 0x040001A6:
if (ExMemCnt[0] & (1<<11))
NDSCartSlot.WriteROMCnt((NDSCartSlot.GetROMCnt() & 0xFF00FFFF) | (val << 16));
return;
case 0x040001A7:
if (ExMemCnt[0] & (1<<11))
NDSCartSlot.WriteROMCnt((NDSCartSlot.GetROMCnt() & 0x00FFFFFF) | (val << 24));
return;
case 0x040001A8: if (ExMemCnt[0] & (1<<11)) NDSCartSlot.SetROMCommand(0, val); return;
case 0x040001A9: if (ExMemCnt[0] & (1<<11)) NDSCartSlot.SetROMCommand(1, val); return;
case 0x040001AA: if (ExMemCnt[0] & (1<<11)) NDSCartSlot.SetROMCommand(2, val); return;
case 0x040001AB: if (ExMemCnt[0] & (1<<11)) NDSCartSlot.SetROMCommand(3, val); return;
case 0x040001AC: if (ExMemCnt[0] & (1<<11)) NDSCartSlot.SetROMCommand(4, val); return;
case 0x040001AD: if (ExMemCnt[0] & (1<<11)) NDSCartSlot.SetROMCommand(5, val); return;
case 0x040001AE: if (ExMemCnt[0] & (1<<11)) NDSCartSlot.SetROMCommand(6, val); return;
case 0x040001AF: if (ExMemCnt[0] & (1<<11)) NDSCartSlot.SetROMCommand(7, val); return;
case 0x040001C2:
SPI.WriteData(val);
return;
case 0x04000208: IME[1] = val & 0x1; UpdateIRQ(1); return;
case 0x04000300:
if (ARM7.R[15] >= 0x4000)
return;
if (!(PostFlag7 & 0x01))
PostFlag7 = val & 0x01;
return;
case 0x04000301:
val &= 0xC0;
if (val == 0x40) Stop(StopReason::GBAModeNotSupported);
else if (val == 0x80) ARM7.Halt(1);
else if (val == 0xC0) EnterSleepMode();
return;
}
if (addr >= 0x04000400 && addr < 0x04000520)
{
SPU.Write8(addr, val);
return;
}
Log(LogLevel::Debug, "unknown ARM7 IO write8 %08X %02X %08X\n", addr, val, ARM7.R[15]);
}
void NDS::ARM7IOWrite16(u32 addr, u16 val)
{
switch (addr)
{
case 0x04000004: GPU.SetDispStat(1, val); return;
case 0x04000006: GPU.SetVCount(val); return;
case 0x040000B8: DMAs[4].WriteCnt((DMAs[4].Cnt & 0xFFFF0000) | val); return;
case 0x040000BA: DMAs[4].WriteCnt((DMAs[4].Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x040000C4: DMAs[5].WriteCnt((DMAs[5].Cnt & 0xFFFF0000) | val); return;
case 0x040000C6: DMAs[5].WriteCnt((DMAs[5].Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x040000D0: DMAs[6].WriteCnt((DMAs[6].Cnt & 0xFFFF0000) | val); return;
case 0x040000D2: DMAs[6].WriteCnt((DMAs[6].Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x040000DC: DMAs[7].WriteCnt((DMAs[7].Cnt & 0xFFFF0000) | val); return;
case 0x040000DE: DMAs[7].WriteCnt((DMAs[7].Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x04000100: Timers[4].Reload = val; return;
case 0x04000102: TimerStart(4, val); return;
case 0x04000104: Timers[5].Reload = val; return;
case 0x04000106: TimerStart(5, val); return;
case 0x04000108: Timers[6].Reload = val; return;
case 0x0400010A: TimerStart(6, val); return;
case 0x0400010C: Timers[7].Reload = val; return;
case 0x0400010E: TimerStart(7, val); return;
case 0x04000132: KeyCnt[1] = val; return;
case 0x04000134: RCnt = val; return;
case 0x04000138: RTC.Write(val, false); return;
case 0x04000180:
IPCSync9 &= 0xFFF0;
IPCSync9 |= ((val & 0x0F00) >> 8);
IPCSync7 &= 0xB0FF;
IPCSync7 |= (val & 0x4F00);
if ((val & 0x2000) && (IPCSync9 & 0x4000))
{
SetIRQ(0, IRQ_IPCSync);
}
return;
case 0x04000184:
if (val & 0x0008)
IPCFIFO7.Clear();
if ((val & 0x0004) && (!(IPCFIFOCnt7 & 0x0004)) && IPCFIFO7.IsEmpty())
SetIRQ(1, IRQ_IPCSendDone);
if ((val & 0x0400) && (!(IPCFIFOCnt7 & 0x0400)) && (!IPCFIFO9.IsEmpty()))
SetIRQ(1, IRQ_IPCRecv);
if (val & 0x4000)
IPCFIFOCnt7 &= ~0x4000;
IPCFIFOCnt7 = (val & 0x8404) | (IPCFIFOCnt7 & 0x4000);
return;
case 0x04000188:
NDS::ARM7IOWrite32(addr, val | (val << 16));
return;
case 0x040001A0:
if (ExMemCnt[0] & (1<<11))
NDSCartSlot.WriteSPICnt(val);
return;
case 0x040001A2:
if (ExMemCnt[0] & (1<<11))
NDSCartSlot.WriteSPIData(val & 0xFF);
return;
case 0x040001A4:
if (ExMemCnt[0] & (1<<11))
NDSCartSlot.WriteROMCnt((NDSCartSlot.GetROMCnt() & 0xFFFFFF00) | val);
return;
case 0x040001A6:
if (ExMemCnt[0] & (1<<11))
NDSCartSlot.WriteROMCnt((NDSCartSlot.GetROMCnt() & 0xFF00FFFF) | (val << 16));
return;
case 0x040001A8:
if (ExMemCnt[0] & (1<<11))
{
NDSCartSlot.SetROMCommand(0, val & 0xFF);
NDSCartSlot.SetROMCommand(1, val >> 8);
}
return;
case 0x040001AA:
if (ExMemCnt[0] & (1<<11))
{
NDSCartSlot.SetROMCommand(2, val & 0xFF);
NDSCartSlot.SetROMCommand(3, val >> 8);
}
return;
case 0x040001AC:
if (ExMemCnt[0] & (1<<11))
{
NDSCartSlot.SetROMCommand(4, val & 0xFF);
NDSCartSlot.SetROMCommand(5, val >> 8);
}
return;
case 0x040001AE:
if (ExMemCnt[0] & (1<<11))
{
NDSCartSlot.SetROMCommand(6, val & 0xFF);
NDSCartSlot.SetROMCommand(7, val >> 8);
}
return;
case 0x040001B8: ROMSeed0[12] = val & 0x7F; return;
case 0x040001BA: ROMSeed1[12] = val & 0x7F; return;
case 0x040001C0:
SPI.WriteCnt(val);
return;
case 0x040001C2:
SPI.WriteData(val & 0xFF);
return;
case 0x04000204:
{
u16 settablemask = 0x007F;
u16 oldVal = ExMemCnt[1];
ExMemCnt[1] = (ExMemCnt[1] & ~settablemask) | (val & settablemask);
if ((ExMemCnt[1] ^ oldVal) & 0xFF)
SetGBASlotTimings();
return;
}
case 0x04000206:
if (!(PowerControl7 & (1<<1))) return;
SetWifiWaitCnt(val);
return;
case 0x04000208: IME[1] = val & 0x1; UpdateIRQ(1); return;
case 0x04000210: IE[1] = (IE[1] & 0xFFFF0000) | val; UpdateIRQ(1); return;
case 0x04000212: IE[1] = (IE[1] & 0x0000FFFF) | (val << 16); UpdateIRQ(1); return;
// TODO: what happens when writing to IF this way??
case 0x04000300:
if (ARM7.R[15] >= 0x4000)
return;
if (!(PostFlag7 & 0x01))
PostFlag7 = val & 0x01;
return;
case 0x04000304:
{
u16 change = PowerControl7 ^ val;
PowerControl7 = val & 0x0003;
SPU.SetPowerCnt(val & 0x0001);
Wifi.SetPowerCnt(val & 0x0002);
if (change & 0x0002) UpdateWifiTimings();
}
return;
case 0x04000308:
if (ARM7BIOSProt == 0)
ARM7BIOSProt = val & 0xFFFE;
return;
}
if (addr >= 0x04000400 && addr < 0x04000520)
{
SPU.Write16(addr, val);
return;
}
Log(LogLevel::Debug, "unknown ARM7 IO write16 %08X %04X %08X\n", addr, val, ARM7.R[15]);
}
void NDS::ARM7IOWrite32(u32 addr, u32 val)
{
switch (addr)
{
case 0x04000004:
GPU.SetDispStat(1, val & 0xFFFF);
GPU.SetVCount(val >> 16);
return;
case 0x040000B0: DMAs[4].SrcAddr = val; return;
case 0x040000B4: DMAs[4].DstAddr = val; return;
case 0x040000B8: DMAs[4].WriteCnt(val); return;
case 0x040000BC: DMAs[5].SrcAddr = val; return;
case 0x040000C0: DMAs[5].DstAddr = val; return;
case 0x040000C4: DMAs[5].WriteCnt(val); return;
case 0x040000C8: DMAs[6].SrcAddr = val; return;
case 0x040000CC: DMAs[6].DstAddr = val; return;
case 0x040000D0: DMAs[6].WriteCnt(val); return;
case 0x040000D4: DMAs[7].SrcAddr = val; return;
case 0x040000D8: DMAs[7].DstAddr = val; return;
case 0x040000DC: DMAs[7].WriteCnt(val); return;
case 0x04000100:
Timers[4].Reload = val & 0xFFFF;
TimerStart(4, val>>16);
return;
case 0x04000104:
Timers[5].Reload = val & 0xFFFF;
TimerStart(5, val>>16);
return;
case 0x04000108:
Timers[6].Reload = val & 0xFFFF;
TimerStart(6, val>>16);
return;
case 0x0400010C:
Timers[7].Reload = val & 0xFFFF;
TimerStart(7, val>>16);
return;
case 0x04000130: KeyCnt[1] = val >> 16; return;
case 0x04000134: RCnt = val & 0xFFFF; return;
case 0x04000138: RTC.Write(val & 0xFFFF, false); return;
case 0x04000180:
case 0x04000184:
NDS::ARM7IOWrite16(addr, val);
return;
case 0x04000188:
if (IPCFIFOCnt7 & 0x8000)
{
if (IPCFIFO7.IsFull())
IPCFIFOCnt7 |= 0x4000;
else
{
bool wasempty = IPCFIFO7.IsEmpty();
IPCFIFO7.Write(val);
if ((IPCFIFOCnt9 & 0x0400) && wasempty)
SetIRQ(0, IRQ_IPCRecv);
}
}
return;
case 0x040001A0:
if (ExMemCnt[0] & (1<<11))
{
NDSCartSlot.WriteSPICnt(val & 0xFFFF);
NDSCartSlot.WriteSPIData((val >> 16) & 0xFF);
}
return;
case 0x040001A4:
if (ExMemCnt[0] & (1<<11))
NDSCartSlot.WriteROMCnt(val);
return;
case 0x040001A8:
if (ExMemCnt[0] & (1<<11))
{
NDSCartSlot.SetROMCommand(0, val & 0xFF);
NDSCartSlot.SetROMCommand(1, (val >> 8) & 0xFF);
NDSCartSlot.SetROMCommand(2, (val >> 16) & 0xFF);
NDSCartSlot.SetROMCommand(3, val >> 24);
}
return;
case 0x040001AC:
if (ExMemCnt[0] & (1<<11))
{
NDSCartSlot.SetROMCommand(4, val & 0xFF);
NDSCartSlot.SetROMCommand(5, (val >> 8) & 0xFF);
NDSCartSlot.SetROMCommand(6, (val >> 16) & 0xFF);
NDSCartSlot.SetROMCommand(7, val >> 24);
}
return;
case 0x040001B0: *(u32*)&ROMSeed0[8] = val; return;
case 0x040001B4: *(u32*)&ROMSeed1[8] = val; return;
case 0x040001C0:
SPI.WriteCnt(val & 0xFFFF);
SPI.WriteData((val >> 16) & 0xFF);
return;
case 0x04000208: IME[1] = val & 0x1; UpdateIRQ(1); return;
case 0x04000210: IE[1] = val; UpdateIRQ(1); return;
case 0x04000214: IF[1] &= ~val; UpdateIRQ(1); return;
case 0x04000304:
{
u16 change = PowerControl7 ^ val;
PowerControl7 = val & 0x0003;
SPU.SetPowerCnt(val & 0x0001);
Wifi.SetPowerCnt(val & 0x0002);
if (change & 0x0002) UpdateWifiTimings();
}
return;
case 0x04000308:
if (ARM7BIOSProt == 0)
ARM7BIOSProt = val & 0xFFFE;
return;
case 0x04100010:
if (ExMemCnt[0] & (1<<11)) NDSCartSlot.WriteROMData(val);
return;
}
if (addr >= 0x04000400 && addr < 0x04000520)
{
SPU.Write32(addr, val);
return;
}
Log(LogLevel::Debug, "unknown ARM7 IO write32 %08X %08X %08X\n", addr, val, ARM7.R[15]);
}
}